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Hunters vs Fishermen

In a small village, two mutually exclusive occupations are available:
hunting and fishing.

Simple question:

What makes a good fisherman and what makes a good hunter?

1. Collect random sample of hunters and fishermen from the village.

2. Record relevant features and income.

3. Estimate parameters of 2 linear models, one per occupation.
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Hunters vs Fishermen

The resulting linear fits can be biased due to selection bias.

I Better hunters will opt to hunt, and vice-versa.
I Never observe fishing earnings of an individual better at hunting!

Weight (kg)

Ab
ilit

y

Observed/unobserved hunting sample
Observed/unobserved fishing sample

True hunting ability

True fishing ability

OLS on observed hunters’ ability

OLS on observed fishers’ ability

/
/

Courtesy of Cherapanamjeri, Daskalakis, Ilyas, Zampetakis [CDIZ23].
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History: Inference under Selection Bias

Rich history in Statistics and Econometrics, starting with foundational
works of Roy [Roy51], Heckman [Hec79], Willis and Rosen [WR79], Fair
and Jaffe [FJ72], and has since found many applications:

I Causal inference and imitation learning [Hec90]

I Learning from strategically reported data [HMPW16; DRSW+18;
KR20],

I Learning from auction data [AH02; AH07; CDIZ22].
I Studies of participation in the labor force [Hec74; Han76; Nel77;

Hec79; Cog80; Han80]
I Studies of migration and income [NZ80; Bor87]
I Studies of the effect of unions on wages [Lee78; AF82]
I Studies of returns on education [GHH78; KLMT79; WR79]
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Model: Regression under Self-Selection Biases

Goal: recover unknown regressors w1, . . . ,wk ∈ Rd to error ε > 0
given observations (x1, ymax

1 ), . . . , (xn, ymax
n ).

definition 1 (maximum self-selection model [cdiz23])

An observation (x, ymax) is generated as follows:

1. x ∼ N (0, Id).

2. yi = w>
i x + ξi where ξi ∼i.i.d. N (0, 1).

3. Observe (x, ymax) where ymax = max{y1, . . . , yk}.

8 of 28



Model: Regression under Self-Selection Biases

Goal: recover unknown regressors w1, . . . ,wk ∈ Rd to error ε > 0
given observations (x1, ymax

1 ), . . . , (xn, ymax
n ).

definition 1 (maximum self-selection model [cdiz23])

An observation (x, ymax) is generated as follows:

1. x ∼ N (0, Id).

2. yi = w>
i x + ξi where ξi ∼i.i.d. N (0, 1).

3. Observe (x, ymax) where ymax = max{y1, . . . , yk}.

8 of 28



Model: Regression under Self-Selection Biases

Goal: recover unknown regressors w1, . . . ,wk ∈ Rd to error ε > 0
given observations (x1, ymax

1 ), . . . , (xn, ymax
n ).

definition 1 (maximum self-selection model [cdiz23])

An observation (x, ymax) is generated as follows:

1. x ∼ N (0, Id).

2. yi = w>
i x + ξi where ξi ∼i.i.d. N (0, 1).

3. Observe (x, ymax) where ymax = max{y1, . . . , yk}.

8 of 28



Model: Regression under Self-Selection Biases

Goal: recover unknown regressors w1, . . . ,wk ∈ Rd to error ε > 0
given observations (x1, ymax

1 ), . . . , (xn, ymax
n ).

definition 1 (maximum self-selection model [cdiz23])

An observation (x, ymax) is generated as follows:

1. x ∼ N (0, Id).

2. yi = w>
i x + ξi where ξi ∼i.i.d. N (0, 1).

3. Observe (x, ymax) where ymax = max{y1, . . . , yk}.

8 of 28



Model: Regression under Self-Selection Biases

Goal: recover unknown regressors w1, . . . ,wk ∈ Rd to error ε > 0
given observations (x1, ymax

1 ), . . . , (xn, ymax
n ).

definition 1 (maximum self-selection model [cdiz23])

An observation (x, ymax) is generated as follows:

1. x ∼ N (0, Id).

2. yi = w>
i x + ξi where ξi ∼i.i.d. N (0, 1).

3. Observe (x, ymax) where ymax = max{y1, . . . , yk}.

8 of 28



Table of Contents

Regression under Self-Selection Biases

Prior Works

Our Contributions

Technical Overview

9 of 28



Prior Works: Regression under Self-Selection Biases

Efficient algorithms for finite samples were not known until recently.

[CDIZ23] Cherapanamjeri, Daskalakis, Ilyas, Zampetakis [STOC’23]
designed a moment-based algorithm with poly(d) · exp(k/ε)
sample complexity and running time.

[GM24] Gaitonde and Mossel also used moments to design an
algorithm with poly(d , k, 1/ε) sample complexity but
poly(d) + (1/ε)Õ(k) running time.

Question: Polynomial number of samples is sufficient. Can we design
an algorithm with polynomial running time?
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Our Results

theorem 1 (kalavasis, mehrotra, z. ’25)

There is an algorithm for regression under self-selection bias with
poly(d , 1/ε, k) sample complexity and poly(d , 1/ε) + 2Õ(k) running time.

12 of 28



Our Results

theorem 2 (kalavasis, mehrotra, z. ’25)

There is an SGD-based local convergence algorithm for regression under
self-selection bias with poly(d , 1/ε, k) sample complexity and running time,
given a poly(1/k)-warm start.

13 of 28



Key Idea

(a) Non-Identifiable Case (b) Convex Partition Case

1. Unexpected connection to learning with “coarse observations”
[Fotakis, Kalavasis, Kontonis, Tzamos, 2021].

I Simplifying example: instead of observing z ∼ N (µ?, I), we observe
a set from some given partition containing z. Can we recover µ??

2. Run stochastic gradient descent (SGD) on the “coarse negative
log-likelihood function.”
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Learning with Coarse Observations

Goal: recover unknown parameter θ? given coarsened observations
P1, . . . ,Pn from a given partition P of Rd .

definition 2 (coarse learning model [fkkt21])

An observation P ∈ P is generated as follows:

1. z ∼ qθ? .

2. Observe unique P ∈ P s.t. P 3 z .
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Self-Selection Partition

I θ? = (w1, . . . ,wk) and qθ? is distribution of z = (x, ymax).

I Observing (x, ymax) ≡ {x} × Pymax where Pymax ∈ Pmax below.

y1

y2

y3

Self-selection partition for k = 2 and a single observation for k = 3.
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Remark

Reduction to coarse learning is general and captures other problems such
as regression with “second-price auction data”.

y1

y2

y3

A single observation of second-price auction data for k = 3.
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Coarse Negative Log-Likelihood

Facts about the general coarse NLL

LP(θ)

= −EP∼qP
θ?

[
log qP

θ (P)
]
= −

∑
P∈P

qθ?(P) · log
∫

z∈P
qθ(z) .

I θ? is a stationary point of LP

∇θLP(θ) = Ez∼qθ
[z]− EP∼qP

θ?
Ez∼qθ |P [z] .

I LP is convex* if each P ∈ P is convex (Brascamp–Lieb Inequality)

∇2
θLP(θ) = Covz∼qθ

[z]− EP∼qP
θ?

Covz∼qθ |P [z] .
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Remark

If we also observe index imax of the regressor attaining ymax, the partition
becomes convex, and we can straightforwardly recover the efficient
algorithm of [CDIZ23] for the known-index variant of self-selection.

Known-index self-selection partition for k = 2.
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Challenges

1. How can we compute ∇LPmax = Ez∼qθ
[z]− EP∼qP

θ?
Ez∼qθ |P [z]?

I Unbiased estimates given samples x ,Pymax . X

2. Self-selection partition Pmax is not convex, hence LPmax potentially
has many local minima.

I We show it is locally convex about θ?. X(with warm start)

3. LPmax can be “flat” near θ?, and SGD may be unable to recover θ?.
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Quadratic Growth from “Information Preservation”

Claim: It suffices to show TV(qPmax
θ , qPmax

θ? ) ≥ Ω(‖θ − θ?‖).

α · ‖θ − θ?‖2 ≤ TV(qPmax
θ , qPmax

θ? )2

≤ KL(qPmax
θ ‖qPmax

θ? ) Pinsker’s
= LPmax(θ) . by definition

f(x)
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Proof Intuition of “Information Preservation”

I Identity an event E such that w>
imax

x � w>
j x for all j 6= imax.

I Conditional on E , Pymax “looks” like a convex set under qθ? .

I Conditional on E and under regularity conditions, prove that
TV(qPmax

θ | E , qPmax
θ? | E) ≥ Ω(‖θ − θ?‖).

I Conclude using the fact
TV(qPmax

θ , qPmax
θ? ) ≥ Pr[E ] · TV(qPmax

θ | E , qPmax
θ? | E).

Pymax

(W ⋆)⊤x
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Conclusion

I Study the geometry of regression with self-selection bias through
the lenses of the coarse learning framework.

I Leads to an SGD-based local convergence algorithm, which
improves on the running time of [GM24].

Is there a fully-polynomial (SGD-based) algorithm
for regression with self-selection bias?
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That’s All!

felix-zhou.com

felix.zhou@yale.edu
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