Replicability in Reinforcement Learning

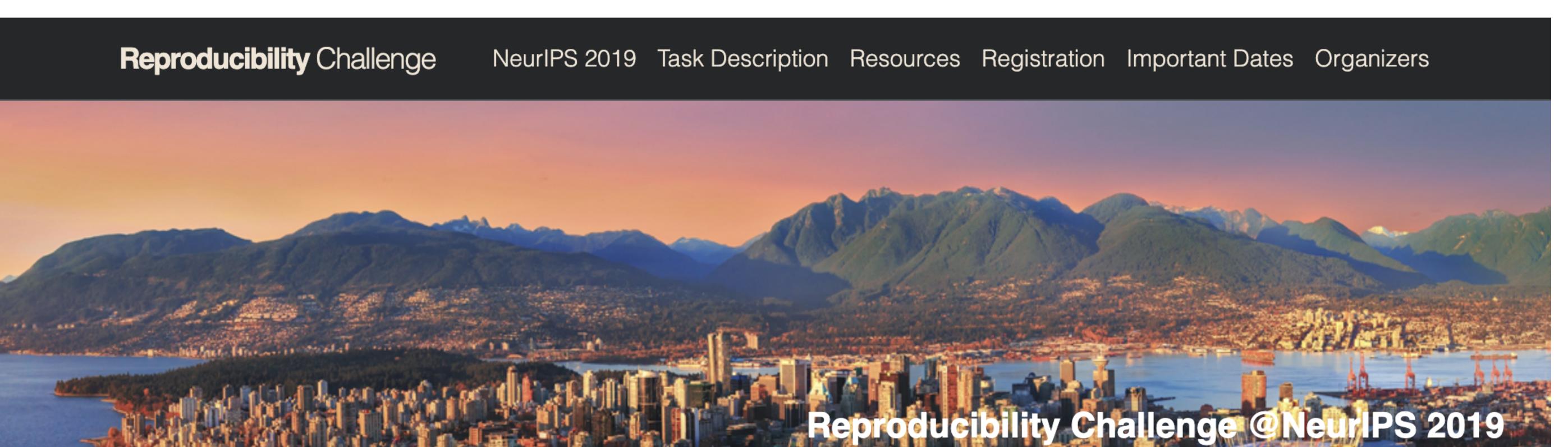
Amin Karbasi, Grigoris Velegkas, Lin F. Yang, Felix Zhou Yale, Google Research, UCLA

Replicability Crisis

1,500 scientists lift the lid on reproducibility

Monya Baker

- Over 70% of researchers failed to replicate others' work
- Over 50% failed to replicate their own work!



- 2019 NeurlPS/ICLR Reproducibility Challenge (github.com/reproducibility-challenge)
- Ongoing ML Reproducibility Challenge (papersithcode.com/rc2022)

Goal: Mathematical Study of Replicability

X data domain

• $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ size n datasets

• \mathcal{D} distribution over X

• ξ random binary string

Definition (Replicable Algorithm) [Impagliazzo, Lei, Pitassi, Sorrell '22] A randomized algorithm $\mathscr{A}:X^n\to Y$ is ρ -replicable if

$$\Pr_{S_1, S_2, \xi} [\mathscr{A}(S_1; \xi) = \mathscr{A}(S_2; \xi)] \ge 1 - \rho.$$

Input: i.i.d. datasets, shared internal randomness

Goal: the output of the algorithm should be the same (w.h.p.)

Definition (TV Indistinguishable Algorithm) [Kalavasis, Karbasi, Moran, Velegkas '23] A randomized algorithm $\mathscr{A}:X^n\to Y$ is ρ -TV indistinguishable if

 $\mathbb{E}_{S_1,S_2}\left[d_{\mathrm{TV}}\left(\mathscr{A}(S_1),\mathscr{A}(S_2)\right)\right] \leq \rho.$

Replicable Tabular Reinforcement Learning with Generative Model

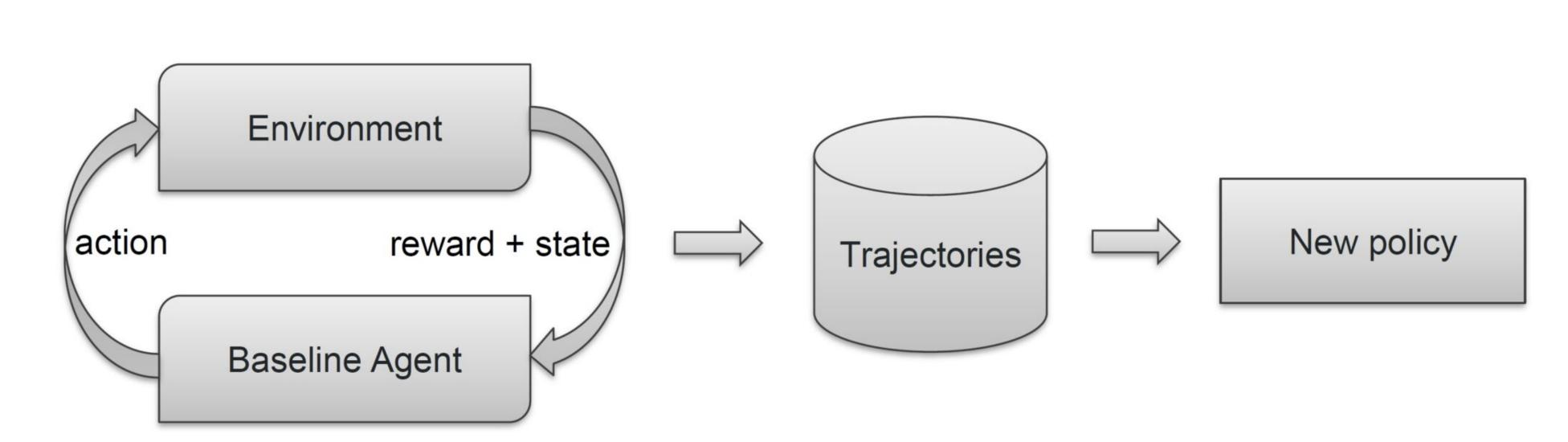
- **Given:** Generative model that gives samples of the reward and transition $r(s, a), P(\cdot | s, a)$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$
- Want: Output a policy $\pi: \mathcal{S} \to \mathcal{A}$
- Solve $\operatorname{argmax}_{\pi:\mathcal{S}\to\mathcal{A}}\mathbb{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r(s_{t},a_{t})|s_{0},P,\pi\right]$
- And: $\Pr_{S,S',\xi} \left| \pi_{S,\xi} = \pi'_{S',\xi} \right| \ge 1 \rho$

Main Result (Replicable Algorithms)

- Assume access to a generative model for the MDP.
- There is a ρ -replicable algorithm for the policy estimation problem such that:
- with probability at least $1-\delta$, outputs ε -approximate solution (additive).
- the algorithm has sample complexity

$$\tilde{O}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|^3\log(1/\delta)}{(1-\gamma)^5\varepsilon^2\rho^2}\right)$$
.

The algorithm has polynomial running time (in the previous parameters).



Main Result (TV Indistinguishable Algorithms)

- Assume access to a generative model for the MDP.
- There is a ρ -TV indistinguishable algorithm for the policy estimation problem such that:
- with probability at least $1-\delta$, outputs ε -approximate solution (additive).
- the algorithm has sample complexity

$$\tilde{O}\left(\frac{|\mathcal{S}|^2|\mathcal{A}|^2\log(1/\delta)}{(1-\gamma)^5\varepsilon^2\rho^2}\right)$$
.

The algorithm has polynomial running time (in the previous parameters).

Remark

We can transform the TV indistinguishable algorithm to a replicable one, but we need time $\exp(|\mathcal{S}|\cdot|\mathcal{A}|)$.

Overview of Techiques

- 0. Get enough samples to estimate a Q-function \widehat{Q} such that $||\widehat{Q}-Q^*||_{\infty}$ is sufficiently small
 - Many techniques from the RL literature
- Across the two executions we have that $||\widehat{Q}_1 \widehat{Q}_2||_{\infty}$ is sufficiently small
 - lacktriangle Replicable Algorithm: Use randomized rounding scheme from [Impagliazzo, Lei, Pitassi, Sorrell '22] to get $\widehat{Q}_1=\widehat{Q}_2$
 - TV Indistinguishable Algorithm: Novel technique based on the Gaussian mechanism from the DP literature (coulde be of independent
- 2. From Q-function approximation to policy estimation:
 - lacktriangle Replicable Algorithm: Use greedy policy w.r.t. the estimated Q-function
- ullet TV Indistinguishable Algorithm: Use greedy policy w.r.t. the estimated Q-function + data-processing inequality
- 3. Lower bound for a class of algorithms

Can we get sample complexity linear in $|S| \cdot |A|$?

- Replicability and TV indistinguishability impose a discrete metric on the policy space
- Idea: Consider a more fine-grained notion of distance over policies
- Treat policies as probability distributions over actions

Approximate Replicability

- S state space
- \mathcal{G} generative model of the MDP

- $S_1, S_2 \sim_{i.i.d.} \mathcal{G}$ i.i.d. samples from the generative model
- κ dissimilarity measure of distributions (e.g., KL divergence)
- ξ random binary string

Definition (Approximately Replicable Policy Estimator)

A randomized algorithm \mathcal{A} is (ρ_1, ρ_2) -approximately replicable if

$$\Pr_{S_1,S_2,\xi} \left[\max_{s \in \mathcal{S}} \kappa \left(\pi_1(s), \pi_2(s) \right) \ge \rho_1 \right] \le \rho_2,$$

where π_1, π_2 is the output of the algorithm on $(S_1; \xi), (S_2; \xi)$, respectively.

Main Result (Approximately Replicable Algorithms)

- Assume access to a generative model for the MDP.
- There is a (ρ_1, ρ_2) -replicable algorithm for the policy estimation problem such that:
- with probability at least $1-\delta$, outputs ε -approximate solution (additive).
- the algorithm has sample complexity

$$\tilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|\log\left(1/(\delta\cdot\rho_2)\right)}{(1-\gamma)^5\varepsilon^2\rho_1^2}\right)$$

The algorithm has polynomial running time (in the previous parameters).

Future Work

- Improve upper bounds for replicable algorithms
- Establish lower bounds for TV indistinguishable algorithms
- Improve dependence on γ
- Study the general function approximation setting
- Study the online setting

