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Reproducibility Crisis

“1500 Scientists Lift the Lid
on Reproducibility.”
Nature (2016)

6 of 34



Reproducibility Crisis

I 2019 NeurIPS/ICLR Reproducibility Challenge
(github.com/reproducibility-challenge)

I Ongoing ML Reproducibility Challenge
(paperswithcode.com/rc2022)
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Reproducibility Crisis

Trying to develop agreed-upon set of replicable practices is difficult.

Figure: Number of accepted NeurIPS papers by year.
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Algorithmic Replicability

Goal: Design ML algorithms with replicability as theoretical guarantee.

Initiated by [Impagliazzo, Lei, Pitassi, and Sorell ’22] (STOC’22).
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Algorithmic Replicability

I X data domain

I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!
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Example: Replicable Mean Estimation

1. Concentration of Measure

2. Discretization
3. Shared Random Offset

R
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Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)

I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”
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Large-Margin Halfspaces

w⋆

0
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Large-Margin Halfspaces

w⋆
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≥ τ
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Remarks

I Learning halfspaces is fundamental ML task,
inspired perceptron, SVMs, AdaBoost

I τ -margin assumption is necessary for replicably learning halfspaces

I We design first replicable algorithms for learning large-margin
halfspaces with dimension-independent sample complexity.
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Our Results

theorem (kklvz ’23)

I ρ-replicable learner for τ -margin halfspaces with ε-error

I m = Õ
(

1
ε2τ6ρ2

)
sample complexity

I poly(m, d) running time
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High-Level Idea

1. Divide data into B disjoint equisized batches

2. Run a (non-replicable) algorithm on each batch independently
ŵ1, . . . , ŵB

3. Take the average of output vectors w̄ = 1
B
∑

i ŵi

4. Apply random projection w̄ 7→ Aw̄ to reduce dimension

5. Replicably round Aw̄ using Alon-Klartag [AK’17] rounding scheme
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Replicability

1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC’22),
studied statistical queries and large-margin halfspaces

2. Bandits [EKKKMV’23], Clustering [EKMVZ’23],
Reinforcement Learning [KVYZ’23, EHKS’23]

3. Equivalences to Differential Privacy (DP) etc.
[KKSV’23, MSS’23, KKVZ’24]

4. List-Replicability [CMY’23, DPWV’23, CCMY’24]
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(Non-Replicable) Large-Margin Halfspaces

1. Θ
(

1
ετ2

)
sample complexity

2. DP algorithms [BDMN’05, NUZ’20, BCS’20, BMS’22]

3. Margin-independent algorithms under finite domain
[BMNS’19, KMST’20]

4. Robust algorithms [DKM’19, DDKW’23]
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Comparison with Prior Work

Replicable Algorithms for Large-Margin Halfspaces

Algorithm Sample Complexity Running Time Proper

Prior Work

[ILPS’22] with foams rounding (dε−3τ−8ρ−2)1.01 2d · poly(1/ε, 1/ρ, 1/τ) No

[ILPS’22] with box rounding (d3ε−4τ−10ρ−2)1.01 poly(d , 1/ε, 1/ρ, 1/τ) No

Our Work

SGD + Alon-Klartag rounding ε−2τ−6ρ−2 poly(d , 1/ε, 1/ρ, 1/τ) Yes

SVM + Alon-Klartag rounding ε−1τ−7ρ−2 poly(d , 1/ε, 1/ρ, 1/τ) Yes

22 of 34



Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

23 of 34



Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview
Step I: Solving the Non-Replicable Problem
Step II: Dimensionality Reduction
Step III: Replicable Rounding

24 of 34



Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]

I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]

I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D
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Stochastic Gradient Descent

theorem
Assume an unbiased stochastic gradient oracle ĝ(w) for “nice” convex
function f (w). SGD w t+1 ← w t − ηt ĝ(w t) outputs an ε-optimal solution
in O(1/ε2) iterations.

I τ -margin hinge loss `(w ; x) = max(0, 2− 2y?

τ · (w
>x)) is “nice”
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function f (w). SGD w t+1 ← w t − ηt ĝ(w t) outputs an ε-optimal solution
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Step II: Dimensionality Reduction

I Repeat Step I with disjoint data to obtain solutions ŵ (1), . . . , ŵ (B)

and compute average solution w̄ = 1
B
∑

i ŵ (i)

I By convexity, Ex∼D[`(w̄ ; x)] ≤ ε as well!
I By independence, w̄ concentrates about its mean!

I Random orthogonal projection A : Rd → Rk for k(τ) << d

I projection preserves distances and inner products (solution quality)
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and compute average solution w̄ = 1
B
∑
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Step III: Replicable Rounding

I Assume now the ambient dimension is k << d

I Suppose there are two vectors w , w̃ ∈ Rk with ‖w − w̃‖1 small
I Implicitly impose a grid of length L on Rk

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)
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Alon-Klartag Rounding

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)

I E[round(w)] = w so rounding preserves inner products
I round(w) = round(w̃) with probability O(‖w − w̃‖1)
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Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension

I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point
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Future Work

I Improve sample complexity of replicable algorithms

I Sample complexity lower bounds specifically for replicability
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Thank you!

arxiv.org/abs/2402.13857

felix-zhou.com

felix.zhou@yale.edu
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