

Replicable Learning of Large-Margin Halfspaces

A. Kalavasis, A. Karbasi, K.G. Larsen, G. Velegkas, F. Zhou

Yale University, Aarhus University

ICML 2024

Collaborators

Alkis Kalavasis (Yale)

Kasper G. Larsen (Aarhus)

Amin Karbasi (Yale, Google)

Grigoris Velegkas (Yale)

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

"1500 Scientists Lift the Lid on Reproducibility." *Nature* (2016)

HAVE YOU FAILED TO REPRODUCE AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.

 2019 NeurIPS/ICLR Reproducibility Challenge (github.com/reproducibility-challenge)

- 2019 NeurIPS/ICLR Reproducibility Challenge (github.com/reproducibility-challenge)
- Ongoing ML Reproducibility Challenge (paperswithcode.com/rc2022)

Yale

Trying to develop agreed-upon set of replicable practices is difficult.

Figure: Number of accepted NeurIPS papers by year.

Goal: Design ML algorithms with replicability as theoretical guarantee. Initiated by [Impagliazzo, Lei, Pitassi, and Sorell '22] (STOC'22).

► X data domain

- ► X data domain
- \mathcal{D} distribution over X

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n
- ξ uniformly random binary string

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n
- ξ uniformly random binary string

DEFINITION (REPLICABLE ALGORITHM; [ILPS '22])

A randomized algorithm $\mathcal{A} : X^n \to Y$ is *replicable* if \mathcal{A} produces the same output on two independently drawn datasets from the same distribution.

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n
- ξ uniformly random binary string

DEFINITION (REPLICABLE ALGORITHM; [ILPS '22])

A randomized algorithm $\mathcal{A} : X^n \to Y$ is ρ -replicable if \mathcal{A} produces the same output on two independently drawn datasets from the same distribution.

$$\Pr_{\mathcal{S}_1,\mathcal{S}_2,\xi} \left[\mathcal{A}(\mathcal{S}_1;\xi) \neq \mathcal{A}(\mathcal{S}_2;\xi) \right] \leq \rho.$$

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n
- ξ uniformly random binary string

DEFINITION (REPLICABLE ALGORITHM; [ILPS '22])

A randomized algorithm $\mathcal{A} : X^n \to Y$ is ρ -replicable if \mathcal{A} produces the same output on two independently drawn datasets from the same distribution.

$$\Pr_{S_1,S_2,\xi} \left[\mathcal{A}(S_1;\xi) \neq \mathcal{A}(S_2;\xi) \right] \le \rho.$$

Remark: Replicability is trivial to obtain by itself!

Yale

1. Concentration of Measure

Example: Replicable Mean Estimation

- 1. Concentration of Measure
- 2. Discretization

- 1. Concentration of Measure
- 2. Discretization
- 3. Shared Random Offset

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

• Distribution \mathcal{D} over \mathbb{R}^d

- Distribution \mathcal{D} over \mathbb{R}^d
 - features e.g. unlabeled images

- Distribution \mathcal{D} over \mathbb{R}^d
 - features e.g. unlabeled images
- Binary classifiers: halfspaces $\mathcal{H} = \{w \in \mathbb{R}^d\}$

- Distribution \mathcal{D} over \mathbb{R}^d
 - features e.g. unlabeled images
- Binary classifiers: halfspaces $\mathcal{H} = \{w \in \mathbb{R}^d\}$
- Given: Samples (x, y^*) where $x \sim \mathcal{D}$, $y^*(x) = \operatorname{sgn}(\langle w^*, x \rangle)$

- Distribution \mathcal{D} over \mathbb{R}^d
 - features e.g. unlabeled images
- Binary classifiers: halfspaces $\mathcal{H} = \{ w \in \mathbb{R}^d \}$
- ▶ Given: Samples (x, y^*) where $x \sim D$, $y^*(x) = sgn(\langle w^*, x \rangle)$
 - label determined by "side" of the halfspace

- Distribution \mathcal{D} over \mathbb{R}^d
 - features e.g. unlabeled images
- Binary classifiers: halfspaces $\mathcal{H} = \{w \in \mathbb{R}^d\}$
- ▶ Given: Samples (x, y*) where x ~ D, y*(x) = sgn(⟨w*, x⟩)
 ▶ label determined by "side" of the halfspace
- ▶ Want: $\hat{w} = \mathcal{A}(S_1)$ such that $\mathbb{E}_x[\hat{y}(x) \neq y^{\star}(x)] \leq \varepsilon$

- Distribution \mathcal{D} over \mathbb{R}^d
 - features e.g. unlabeled images
- Binary classifiers: halfspaces $\mathcal{H} = \{ w \in \mathbb{R}^d \}$
- ► Given: Samples (x, y*) where x ~ D, y*(x) = sgn(⟨w*, x⟩)
 ► label determined by "side" of the halfspace
- ▶ Want: $\hat{w} = \mathcal{A}(S_1)$ such that $\mathbb{E}_x[\hat{y}(x) \neq y^{\star}(x)] \leq \varepsilon$
- ▶ And $\Pr[\mathcal{A}(S_1) \neq \mathcal{A}(S_2)] \leq \rho$ when $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ (ρ -Replicability)

- Distribution \mathcal{D} over \mathbb{R}^d
 - features e.g. unlabeled images
- Binary classifiers: halfspaces $\mathcal{H} = \{ w \in \mathbb{R}^d \}$
- ► Given: Samples (x, y*) where x ~ D, y*(x) = sgn(⟨w*, x⟩)
 ► label determined by "side" of the halfspace
- ▶ Want: $\hat{w} = \mathcal{A}(S_1)$ such that $\mathbb{E}_x[\hat{y}(x) \neq y^{\star}(x)] \leq \varepsilon$
- ▶ And $\Pr[\mathcal{A}(S_1) \neq \mathcal{A}(S_2)] \leq \rho$ when $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ (ρ -Replicability)
- τ -Margin Assumption: "every x is τ -far from decision boundary"

 Learning halfspaces is fundamental ML task, inspired perceptron, SVMs, AdaBoost

- Learning halfspaces is fundamental ML task, inspired perceptron, SVMs, AdaBoost
- \blacktriangleright $\tau\text{-margin}$ assumption is necessary for replicably learning halfspaces

- Learning halfspaces is fundamental ML task, inspired perceptron, SVMs, AdaBoost
- τ -margin assumption is necessary for replicably learning halfspaces
- We design first replicable algorithms for learning large-margin halfspaces with dimension-independent sample complexity.

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

Theorem (kklvz '23)

• ρ -replicable learner for τ -margin halfspaces with ε -error

Theorem (kklvz '23)

▶ ρ -replicable learner for τ -margin halfspaces with ε -error

•
$$m = \tilde{O}\left(\frac{1}{\varepsilon^2 \tau^6 \rho^2}\right)$$
 sample complexity

Theorem (kklvz '23)

▶ ρ -replicable learner for τ -margin halfspaces with ε -error

•
$$m = \tilde{O}\left(\frac{1}{\varepsilon^2 \tau^6 \rho^2}\right)$$
 sample complexity

▶ poly(*m*, *d*) running time

1. Divide data into B disjoint equisized batches

- 1. Divide data into B disjoint equisized batches
- 2. Run a (non-replicable) algorithm on each batch independently $\hat{w}_1, \ldots, \hat{w}_B$

- 1. Divide data into B disjoint equisized batches
- 2. Run a (non-replicable) algorithm on each batch independently $\hat{w}_1, \ldots, \hat{w}_B$
- 3. Take the average of output vectors $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}_{i}$

- 1. Divide data into B disjoint equisized batches
- 2. Run a (non-replicable) algorithm on each batch independently $\hat{w}_1, \ldots, \hat{w}_B$
- 3. Take the average of output vectors $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}_{i}$
- 4. Apply random projection $\bar{w} \mapsto A\bar{w}$ to reduce dimension

- 1. Divide data into B disjoint equisized batches
- 2. Run a (non-replicable) algorithm on each batch independently $\hat{w}_1, \ldots, \hat{w}_B$
- 3. Take the average of output vectors $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}_{i}$
- 4. Apply random projection $\bar{w} \mapsto A\bar{w}$ to reduce dimension
- 5. Replicably round $A\bar{w}$ using Alon-Klartag [AK'17] rounding scheme

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC'22), studied statistical queries and large-margin halfspaces

- 1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC'22), studied statistical queries and large-margin halfspaces
- 2. Bandits [EKKKMV'23], Clustering [EKMVZ'23], Reinforcement Learning [KVYZ'23, EHKS'23]

- 1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC'22), studied statistical queries and large-margin halfspaces
- 2. Bandits [EKKKMV'23], Clustering [EKMVZ'23], Reinforcement Learning [KVYZ'23, EHKS'23]
- 3. Equivalences to Differential Privacy (DP) etc. [KKSV'23, MSS'23, KKVZ'24]

- 1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC'22), studied statistical queries and large-margin halfspaces
- 2. Bandits [EKKKMV'23], Clustering [EKMVZ'23], Reinforcement Learning [KVYZ'23, EHKS'23]
- 3. Equivalences to Differential Privacy (DP) etc. [KKSV'23, MSS'23, KKVZ'24]
- 4. List-Replicability [CMY'23, DPWV'23, CCMY'24]

1. $\Theta\left(\frac{1}{\varepsilon\tau^2}\right)$ sample complexity

- 1. $\Theta\left(\frac{1}{\varepsilon\tau^2}\right)$ sample complexity
- 2. DP algorithms [BDMN'05, NUZ'20, BCS'20, BMS'22]

- 1. $\Theta\left(\frac{1}{\varepsilon\tau^2}\right)$ sample complexity
- 2. DP algorithms [BDMN'05, NUZ'20, BCS'20, BMS'22]
- Margin-independent algorithms under finite domain [BMNS'19, KMST'20]

- 1. $\Theta\left(\frac{1}{\varepsilon\tau^2}\right)$ sample complexity
- 2. DP algorithms [BDMN'05, NUZ'20, BCS'20, BMS'22]
- 3. Margin-independent algorithms under finite domain [BMNS'19, KMST'20]
- 4. Robust algorithms [DKM'19, DDKW'23]

Replicable Algorithms for Large-Margin Halfspaces			
Algorithm	Sample Complexity	Running Time	Proper
Prior Work			
[ILPS'22] with foams rounding	$({\rm d}\varepsilon^{-3}\tau^{-8}\rho^{-2})^{1.01}$	$2^{\textit{d}} \cdot \operatorname{poly}(1/\varepsilon, 1/\rho, 1/\tau)$	No
[ILPS'22] with box rounding	$(\mathbf{d}^{3}\varepsilon^{-4}\tau^{-10}\rho^{-2})^{1.01}$	$\operatorname{poly}(\mathbf{d}, 1/\varepsilon, 1/\rho, 1/\tau)$	No
Our Work			
SGD + Alon-Klartag rounding	$\varepsilon^{-2}\tau^{-6}\rho^{-2}$	$\operatorname{poly}(\mathbf{d}, 1/\varepsilon, 1/\rho, 1/\tau)$	Yes
SVM + Alon-Klartag rounding	$\varepsilon^{-1}\tau^{-7}\rho^{-2}$	$\operatorname{poly}(\textit{d}, 1/\varepsilon, 1/\rho, 1/\tau)$	Yes

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview Step I: Solving the Non-Replicable Problem Step II: Dimensionality Reduction Step III: Replicable Rounding

• Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbbm{1}\{y^{\star} \cdot (w^{\top}x) < \tau/2\}]$

- Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{1}\{y^* \cdot (w^\top x) < \tau/2\}]$
 - "threshold" function of the inner product

• Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbbm{1}\{y^{\star} \cdot (w^{\top}x) < \tau/2\}]$

- "threshold" function of the inner product
- discrete, non-convex, difficult to efficiently minimize!

- Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{1}\{y^{\star} \cdot (w^{\top}x) < \tau/2\}]$
 - "threshold" function of the inner product
 - discrete, non-convex, difficult to efficiently minimize!
- Design a convex *surrogate* loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\ell(w; x)]$

- Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbbm{1}\{y^{\star} \cdot (w^{\top}x) < \tau/2\}]$
 - "threshold" function of the inner product
 - discrete, non-convex, difficult to efficiently minimize!
- Design a convex surrogate loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\ell(w; x)]$
 - cannot evaluate exactly due to expectation

- Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbbm{1}\{y^{\star} \cdot (w^{\top}x) < \tau/2\}]$
 - "threshold" function of the inner product
 - discrete, non-convex, difficult to efficiently minimize!
- Design a convex surrogate loss $\min_{w} \mathbb{E}_{x \sim D}[\ell(w; x)]$
 - cannot evaluate exactly due to expectation
 - cannot compute gradient exactly

- Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{1}\{y^{\star} \cdot (w^{\top}x) < \tau/2\}]$
 - "threshold" function of the inner product
 - discrete, non-convex, difficult to efficiently minimize!
- Design a convex surrogate loss $\min_{w} \mathbb{E}_{x \sim D}[\ell(w; x)]$
 - cannot evaluate exactly due to expectation
 - cannot compute gradient exactly
- ▶ We have $\nabla \mathbb{E}_{x \sim D}[\ell(w; x)] = \mathbb{E}_{x \sim D}[\nabla \ell(w; x)]$

- Minimize population loss $\min_{w} \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{1}\{y^{\star} \cdot (w^{\top}x) < \tau/2\}]$
 - "threshold" function of the inner product
 - discrete, non-convex, difficult to efficiently minimize!
- Design a convex surrogate loss $\min_{w} \mathbb{E}_{x \sim D}[\ell(w; x)]$
 - cannot evaluate exactly due to expectation
 - cannot compute gradient exactly
- We have $\mathbf{\nabla} \mathbb{E}_{x \sim \mathcal{D}}[\ell(w; x)] = \mathbb{E}_{x \sim \mathcal{D}}[\mathbf{\nabla} \ell(w; x)]$
 - $\nabla \ell(w; x)$ is *unbiased* estimate of gradient for $x \sim D$

THEOREM

Assume an unbiased stochastic gradient oracle $\hat{g}(w)$ for "nice" convex function f(w). SGD $w^{t+1} \leftarrow w^t - \eta_t \hat{g}(w^t)$ outputs an ε -optimal solution in $O(1/\varepsilon^2)$ iterations.

THEOREM

Assume an unbiased stochastic gradient oracle $\hat{g}(w)$ for "nice" convex function f(w). SGD $w^{t+1} \leftarrow w^t - \eta_t \hat{g}(w^t)$ outputs an ε -optimal solution in $O(1/\varepsilon^2)$ iterations.

► τ -margin hinge loss $\ell(w; x) = \max(0, 2 - \frac{2y^{\star}}{\tau} \cdot (w^{\top}x))$ is "nice"

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview Step I: Solving the Non-Replicable Problem Step II: Dimensionality Reduction Step III: Replicable Rounding

▶ Repeat Step I with disjoint data to obtain solutions $\hat{w}^{(1)}, \ldots, \hat{w}^{(B)}$ and compute average solution $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}^{(i)}$

- ▶ Repeat Step I with disjoint data to obtain solutions $\hat{w}^{(1)}, \ldots, \hat{w}^{(B)}$ and compute average solution $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}^{(i)}$
 - ▶ By convexity, $\mathbb{E}_{x \sim D}[\ell(\bar{w}; x)] \leq \varepsilon$ as well!

- ▶ Repeat Step I with disjoint data to obtain solutions $\hat{w}^{(1)}, \ldots, \hat{w}^{(B)}$ and compute average solution $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}^{(i)}$
 - By convexity, $\mathbb{E}_{x \sim D}[\ell(\bar{w}; x)] \leq \varepsilon$ as well!
 - By independence, \bar{w} concentrates about its mean!

- ▶ Repeat Step I with disjoint data to obtain solutions $\hat{w}^{(1)}, \ldots, \hat{w}^{(B)}$ and compute average solution $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}^{(i)}$
 - By convexity, $\mathbb{E}_{x \sim \mathcal{D}}[\ell(\bar{w}; x)] \leq \varepsilon \text{ as well!}$
 - By independence, \bar{w} concentrates about its mean!
- ▶ Random orthogonal projection $A : \mathbb{R}^d \to \mathbb{R}^k$ for $k(\tau) << d$

- ▶ Repeat Step I with disjoint data to obtain solutions $\hat{w}^{(1)}, \ldots, \hat{w}^{(B)}$ and compute average solution $\bar{w} = \frac{1}{B} \sum_{i} \hat{w}^{(i)}$
 - By convexity, $\mathbb{E}_{x \sim \mathcal{D}}[\ell(\bar{w}; x)] \leq \varepsilon \text{ as well!}$
 - By independence, \bar{w} concentrates about its mean!
- ▶ Random orthogonal projection $A : \mathbb{R}^d \to \mathbb{R}^k$ for $k(\tau) << d$
 - projection preserves distances and inner products (solution quality)

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

Step I: Solving the Non-Replicable Problem Step II: Dimensionality Reduction Step III: Replicable Rounding

• Assume now the ambient dimension is $k \ll d$

- Assume now the ambient dimension is $k \ll d$
- Suppose there are two vectors $w, \tilde{w} \in \mathbb{R}^k$ with $\|w \tilde{w}\|_1$ small

Step III: Replicable Rounding

- Assume now the ambient dimension is $k \ll d$
- Suppose there are two vectors $w, \tilde{w} \in \mathbb{R}^k$ with $\|w \tilde{w}\|_1$ small
- Implicitly impose a grid of length L on \mathbb{R}^k

Step III: Replicable Rounding

- Assume now the ambient dimension is $k \ll d$
- Suppose there are two vectors $w, \tilde{w} \in \mathbb{R}^k$ with $\|w \tilde{w}\|_1$ small
- Implicitly impose a grid of length L on \mathbb{R}^k
- ▶ Round to vertex v = round(w) with prob. $\propto \prod_{i=1}^{k} (L |w_i v_i|)$

Alon-Klartag Rounding

▶ Round to vertex v = round(w) with prob. $\propto \prod_{i=1}^{k} (L - |w_i - v_i|)$

Alon-Klartag Rounding

- ▶ Round to vertex v = round(w) with prob. $\propto \prod_{i=1}^{k} (L |w_i v_i|)$
- $\mathbb{E}[\operatorname{round}(w)] = w$ so rounding preserves inner products

Alon-Klartag Rounding

- Round to vertex v = round(w) with prob. $\propto \prod_{j=1}^{k} (L |w_i v_j|)$
- $\mathbb{E}[\operatorname{round}(w)] = w$ so rounding preserves inner products
- ▶ $round(w) = round(\tilde{w})$ with probability $O(\|w \tilde{w}\|_1)$

1. Solve non-replicable problem multiple times $\to w^{(1)}, \dots, w^{(B)}$, take average \bar{w}

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \dots, w^{(B)},$ take average \bar{w}
 - average remains good solution

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \ldots, w^{(B)},$ take average \bar{w}
 - average remains good solution
 - average will be close across executions

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \ldots, w^{(B)},$ take average \bar{w}
 - average remains good solution
 - average will be close across executions
- 2. Randomly project \bar{w} to lower-dimension

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \ldots, w^{(B)},$ take average \bar{w}
 - average remains good solution
 - average will be close across executions
- 2. Randomly project \bar{w} to lower-dimension
 - projection preserves inner products (and solution quality)

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \ldots, w^{(B)},$ take average \bar{w}
 - average remains good solution
 - average will be close across executions
- 2. Randomly project \bar{w} to lower-dimension
 - projection preserves inner products (and solution quality)
 - projection preserves distances (projected solutions remain close across executions)

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \ldots, w^{(B)},$ take average \bar{w}
 - average remains good solution
 - average will be close across executions
- 2. Randomly project \bar{w} to lower-dimension
 - projection preserves inner products (and solution quality)
 - projection preserves distances (projected solutions remain close across executions)
- 3. Round to corners of grid

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \ldots, w^{(B)},$ take average \bar{w}
 - average remains good solution
 - average will be close across executions
- 2. Randomly project \bar{w} to lower-dimension
 - projection preserves inner products (and solution quality)
 - projection preserves distances (projected solutions remain close across executions)
- 3. Round to corners of grid
 - rounding is unbiased (preserves inner products and solution quality)

- 1. Solve non-replicable problem multiple times $\to w^{(1)}, \ldots, w^{(B)},$ take average \bar{w}
 - average remains good solution
 - average will be close across executions
- 2. Randomly project \bar{w} to lower-dimension
 - projection preserves inner products (and solution quality)
 - projection preserves distances (projected solutions remain close across executions)
- 3. Round to corners of grid
 - rounding is unbiased (preserves inner products and solution quality)
 - rounds closeby solutions to the same point

Improve sample complexity of replicable algorithms

- Improve sample complexity of replicable algorithms
- ► Sample complexity lower bounds specifically for replicability

arxiv.org/abs/2402.13857

felix-zhou.com

felix.zhou@yale.edu

