
Replicable Learning of Large-Margin Halfspaces
A. Kalavasis, A. Karbasi, K.G. Larsen, G. Velegkas, F. Zhou
Yale University, Aarhus University ICML 2024

Collaborators

Alkis Kalavasis
(Yale)

Amin Karbasi
(Yale, Google)

Kasper G. Larsen
(Aarhus)

Grigoris Velegkas
(Yale)

2 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

3 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

4 of 34

Replicability

5 of 34

Reproducibility Crisis

“1500 Scientists Lift the Lid
on Reproducibility.”
Nature (2016)

6 of 34

Reproducibility Crisis

I 2019 NeurIPS/ICLR Reproducibility Challenge
(github.com/reproducibility-challenge)

I Ongoing ML Reproducibility Challenge
(paperswithcode.com/rc2022)

7 of 34

https://github.com/reproducibility-challenge
https://paperswithcode.com/rc2022

Reproducibility Crisis

I 2019 NeurIPS/ICLR Reproducibility Challenge
(github.com/reproducibility-challenge)

I Ongoing ML Reproducibility Challenge
(paperswithcode.com/rc2022)

7 of 34

https://github.com/reproducibility-challenge
https://paperswithcode.com/rc2022

Reproducibility Crisis

Trying to develop agreed-upon set of replicable practices is difficult.

Figure: Number of accepted NeurIPS papers by year.

8 of 34

Algorithmic Replicability

Goal: Design ML algorithms with replicability as theoretical guarantee.

Initiated by [Impagliazzo, Lei, Pitassi, and Sorell ’22] (STOC’22).

9 of 34

Algorithmic Replicability

I X data domain

I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!

10 of 34

Algorithmic Replicability

I X data domain
I D distribution over X

I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!

10 of 34

Algorithmic Replicability

I X data domain
I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n

I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!

10 of 34

Algorithmic Replicability

I X data domain
I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!

10 of 34

Algorithmic Replicability

I X data domain
I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!

10 of 34

Algorithmic Replicability

I X data domain
I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is ρ-replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!

10 of 34

Algorithmic Replicability

I X data domain
I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is ρ-replicable if A produces the same
output on two independently drawn datasets from the same distribution.

Pr
S1,S2,ξ

[A(S1; ξ) 6= A(S2; ξ)] ≤ ρ.

Remark: Replicability is trivial to obtain by itself!

10 of 34

Example: Replicable Mean Estimation

1. Concentration of Measure

2. Discretization
3. Shared Random Offset

R

11 of 34

Example: Replicable Mean Estimation

1. Concentration of Measure
2. Discretization

3. Shared Random Offset

R

11 of 34

Example: Replicable Mean Estimation

1. Concentration of Measure
2. Discretization
3. Shared Random Offset

R

11 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

12 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)

I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)

I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)

I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)

I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)
I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)
I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)
I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

I Distribution D over Rd

I features e.g. unlabeled images

I Binary classifiers: halfspaces H = {w ∈ Rd}

I Given: Samples (x , y?) where x ∼ D, y?(x) = sgn(〈w?, x〉)
I label determined by “side” of the halfspace

I Want: ŵ = A(S1) such that Ex [ŷ(x) 6= y?(x)] ≤ ε

I And Pr[A(S1) 6= A(S2)] ≤ ρ when S1, S2 ∼i.i.d. Dn (ρ-Replicability)

I τ -Margin Assumption: “every x is τ -far from decision boundary”

13 of 34

Large-Margin Halfspaces

w⋆

0

14 of 34

Large-Margin Halfspaces

w⋆

0

14 of 34

Large-Margin Halfspaces

w⋆

≥ τ
≥ τ

0

14 of 34

Remarks

I Learning halfspaces is fundamental ML task,
inspired perceptron, SVMs, AdaBoost

I τ -margin assumption is necessary for replicably learning halfspaces

I We design first replicable algorithms for learning large-margin
halfspaces with dimension-independent sample complexity.

15 of 34

Remarks

I Learning halfspaces is fundamental ML task,
inspired perceptron, SVMs, AdaBoost

I τ -margin assumption is necessary for replicably learning halfspaces

I We design first replicable algorithms for learning large-margin
halfspaces with dimension-independent sample complexity.

15 of 34

Remarks

I Learning halfspaces is fundamental ML task,
inspired perceptron, SVMs, AdaBoost

I τ -margin assumption is necessary for replicably learning halfspaces

I We design first replicable algorithms for learning large-margin
halfspaces with dimension-independent sample complexity.

15 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

16 of 34

Our Results

theorem (kklvz ’23)

I ρ-replicable learner for τ -margin halfspaces with ε-error

I m = Õ
(

1
ε2τ6ρ2

)
sample complexity

I poly(m, d) running time

17 of 34

Our Results

theorem (kklvz ’23)

I ρ-replicable learner for τ -margin halfspaces with ε-error

I m = Õ
(

1
ε2τ6ρ2

)
sample complexity

I poly(m, d) running time

17 of 34

Our Results

theorem (kklvz ’23)

I ρ-replicable learner for τ -margin halfspaces with ε-error

I m = Õ
(

1
ε2τ6ρ2

)
sample complexity

I poly(m, d) running time

17 of 34

High-Level Idea

1. Divide data into B disjoint equisized batches

2. Run a (non-replicable) algorithm on each batch independently
ŵ1, . . . , ŵB

3. Take the average of output vectors w̄ = 1
B
∑

i ŵi

4. Apply random projection w̄ 7→ Aw̄ to reduce dimension

5. Replicably round Aw̄ using Alon-Klartag [AK’17] rounding scheme

18 of 34

High-Level Idea

1. Divide data into B disjoint equisized batches

2. Run a (non-replicable) algorithm on each batch independently
ŵ1, . . . , ŵB

3. Take the average of output vectors w̄ = 1
B
∑

i ŵi

4. Apply random projection w̄ 7→ Aw̄ to reduce dimension

5. Replicably round Aw̄ using Alon-Klartag [AK’17] rounding scheme

18 of 34

High-Level Idea

1. Divide data into B disjoint equisized batches

2. Run a (non-replicable) algorithm on each batch independently
ŵ1, . . . , ŵB

3. Take the average of output vectors w̄ = 1
B
∑

i ŵi

4. Apply random projection w̄ 7→ Aw̄ to reduce dimension

5. Replicably round Aw̄ using Alon-Klartag [AK’17] rounding scheme

18 of 34

High-Level Idea

1. Divide data into B disjoint equisized batches

2. Run a (non-replicable) algorithm on each batch independently
ŵ1, . . . , ŵB

3. Take the average of output vectors w̄ = 1
B
∑

i ŵi

4. Apply random projection w̄ 7→ Aw̄ to reduce dimension

5. Replicably round Aw̄ using Alon-Klartag [AK’17] rounding scheme

18 of 34

High-Level Idea

1. Divide data into B disjoint equisized batches

2. Run a (non-replicable) algorithm on each batch independently
ŵ1, . . . , ŵB

3. Take the average of output vectors w̄ = 1
B
∑

i ŵi

4. Apply random projection w̄ 7→ Aw̄ to reduce dimension

5. Replicably round Aw̄ using Alon-Klartag [AK’17] rounding scheme

18 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

19 of 34

Replicability

1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC’22),
studied statistical queries and large-margin halfspaces

2. Bandits [EKKKMV’23], Clustering [EKMVZ’23],
Reinforcement Learning [KVYZ’23, EHKS’23]

3. Equivalences to Differential Privacy (DP) etc.
[KKSV’23, MSS’23, KKVZ’24]

4. List-Replicability [CMY’23, DPWV’23, CCMY’24]

20 of 34

Replicability

1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC’22),
studied statistical queries and large-margin halfspaces

2. Bandits [EKKKMV’23], Clustering [EKMVZ’23],
Reinforcement Learning [KVYZ’23, EHKS’23]

3. Equivalences to Differential Privacy (DP) etc.
[KKSV’23, MSS’23, KKVZ’24]

4. List-Replicability [CMY’23, DPWV’23, CCMY’24]

20 of 34

Replicability

1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC’22),
studied statistical queries and large-margin halfspaces

2. Bandits [EKKKMV’23], Clustering [EKMVZ’23],
Reinforcement Learning [KVYZ’23, EHKS’23]

3. Equivalences to Differential Privacy (DP) etc.
[KKSV’23, MSS’23, KKVZ’24]

4. List-Replicability [CMY’23, DPWV’23, CCMY’24]

20 of 34

Replicability

1. Initiated by Impagliazzo, Lei, Pitassi, Sorell (STOC’22),
studied statistical queries and large-margin halfspaces

2. Bandits [EKKKMV’23], Clustering [EKMVZ’23],
Reinforcement Learning [KVYZ’23, EHKS’23]

3. Equivalences to Differential Privacy (DP) etc.
[KKSV’23, MSS’23, KKVZ’24]

4. List-Replicability [CMY’23, DPWV’23, CCMY’24]

20 of 34

(Non-Replicable) Large-Margin Halfspaces

1. Θ
(

1
ετ2

)
sample complexity

2. DP algorithms [BDMN’05, NUZ’20, BCS’20, BMS’22]

3. Margin-independent algorithms under finite domain
[BMNS’19, KMST’20]

4. Robust algorithms [DKM’19, DDKW’23]

21 of 34

(Non-Replicable) Large-Margin Halfspaces

1. Θ
(

1
ετ2

)
sample complexity

2. DP algorithms [BDMN’05, NUZ’20, BCS’20, BMS’22]

3. Margin-independent algorithms under finite domain
[BMNS’19, KMST’20]

4. Robust algorithms [DKM’19, DDKW’23]

21 of 34

(Non-Replicable) Large-Margin Halfspaces

1. Θ
(

1
ετ2

)
sample complexity

2. DP algorithms [BDMN’05, NUZ’20, BCS’20, BMS’22]

3. Margin-independent algorithms under finite domain
[BMNS’19, KMST’20]

4. Robust algorithms [DKM’19, DDKW’23]

21 of 34

(Non-Replicable) Large-Margin Halfspaces

1. Θ
(

1
ετ2

)
sample complexity

2. DP algorithms [BDMN’05, NUZ’20, BCS’20, BMS’22]

3. Margin-independent algorithms under finite domain
[BMNS’19, KMST’20]

4. Robust algorithms [DKM’19, DDKW’23]

21 of 34

Comparison with Prior Work

Replicable Algorithms for Large-Margin Halfspaces

Algorithm Sample Complexity Running Time Proper

Prior Work

[ILPS’22] with foams rounding (dε−3τ−8ρ−2)1.01 2d · poly(1/ε, 1/ρ, 1/τ) No

[ILPS’22] with box rounding (d3ε−4τ−10ρ−2)1.01 poly(d , 1/ε, 1/ρ, 1/τ) No

Our Work

SGD + Alon-Klartag rounding ε−2τ−6ρ−2 poly(d , 1/ε, 1/ρ, 1/τ) Yes

SVM + Alon-Klartag rounding ε−1τ−7ρ−2 poly(d , 1/ε, 1/ρ, 1/τ) Yes

22 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview

23 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview
Step I: Solving the Non-Replicable Problem
Step II: Dimensionality Reduction
Step III: Replicable Rounding

24 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]

I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]

I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]
I “threshold” function of the inner product

I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]

I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]
I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]

I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]
I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]

I

I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]
I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]
I cannot evaluate exactly due to expectation

I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]
I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]
I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]
I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]
I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]

I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Step I: Solving the Non-Replicable Problem

I Minimize population loss minw Ex∼D[1{y? · (w>x) < τ/2}]
I “threshold” function of the inner product
I discrete, non-convex, difficult to efficiently minimize!

I Design a convex surrogate loss minw Ex∼D[`(w ; x)]
I cannot evaluate exactly due to expectation
I cannot compute gradient exactly

I We have ∇Ex∼D[`(w ; x)] = Ex∼D[∇`(w ; x)]
I ∇`(w ; x) is unbiased estimate of gradient for x ∼ D

25 of 34

Stochastic Gradient Descent

theorem
Assume an unbiased stochastic gradient oracle ĝ(w) for “nice” convex
function f (w). SGD w t+1 ← w t − ηt ĝ(w t) outputs an ε-optimal solution
in O(1/ε2) iterations.

I τ -margin hinge loss `(w ; x) = max(0, 2− 2y?

τ · (w
>x)) is “nice”

26 of 34

Stochastic Gradient Descent

theorem
Assume an unbiased stochastic gradient oracle ĝ(w) for “nice” convex
function f (w). SGD w t+1 ← w t − ηt ĝ(w t) outputs an ε-optimal solution
in O(1/ε2) iterations.

I τ -margin hinge loss `(w ; x) = max(0, 2− 2y?

τ · (w
>x)) is “nice”

26 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview
Step I: Solving the Non-Replicable Problem
Step II: Dimensionality Reduction
Step III: Replicable Rounding

27 of 34

Step II: Dimensionality Reduction

I Repeat Step I with disjoint data to obtain solutions ŵ (1), . . . , ŵ (B)

and compute average solution w̄ = 1
B
∑

i ŵ (i)

I By convexity, Ex∼D[`(w̄ ; x)] ≤ ε as well!
I By independence, w̄ concentrates about its mean!

I Random orthogonal projection A : Rd → Rk for k(τ) << d

I projection preserves distances and inner products (solution quality)

28 of 34

Step II: Dimensionality Reduction

I Repeat Step I with disjoint data to obtain solutions ŵ (1), . . . , ŵ (B)

and compute average solution w̄ = 1
B
∑

i ŵ (i)

I By convexity, Ex∼D[`(w̄ ; x)] ≤ ε as well!

I By independence, w̄ concentrates about its mean!

I Random orthogonal projection A : Rd → Rk for k(τ) << d

I projection preserves distances and inner products (solution quality)

28 of 34

Step II: Dimensionality Reduction

I Repeat Step I with disjoint data to obtain solutions ŵ (1), . . . , ŵ (B)

and compute average solution w̄ = 1
B
∑

i ŵ (i)

I By convexity, Ex∼D[`(w̄ ; x)] ≤ ε as well!
I By independence, w̄ concentrates about its mean!

I Random orthogonal projection A : Rd → Rk for k(τ) << d

I projection preserves distances and inner products (solution quality)

28 of 34

Step II: Dimensionality Reduction

I Repeat Step I with disjoint data to obtain solutions ŵ (1), . . . , ŵ (B)

and compute average solution w̄ = 1
B
∑

i ŵ (i)

I By convexity, Ex∼D[`(w̄ ; x)] ≤ ε as well!
I By independence, w̄ concentrates about its mean!

I Random orthogonal projection A : Rd → Rk for k(τ) << d

I projection preserves distances and inner products (solution quality)

28 of 34

Step II: Dimensionality Reduction

I Repeat Step I with disjoint data to obtain solutions ŵ (1), . . . , ŵ (B)

and compute average solution w̄ = 1
B
∑

i ŵ (i)

I By convexity, Ex∼D[`(w̄ ; x)] ≤ ε as well!
I By independence, w̄ concentrates about its mean!

I Random orthogonal projection A : Rd → Rk for k(τ) << d
I projection preserves distances and inner products (solution quality)

28 of 34

Table of Contents

Replicability

Learning Large-Margin Halfspaces

Our Contribution

Related Works

Technical Overview
Step I: Solving the Non-Replicable Problem
Step II: Dimensionality Reduction
Step III: Replicable Rounding

29 of 34

Step III: Replicable Rounding

I Assume now the ambient dimension is k << d

I Suppose there are two vectors w , w̃ ∈ Rk with ‖w − w̃‖1 small
I Implicitly impose a grid of length L on Rk

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)

30 of 34

Step III: Replicable Rounding

I Assume now the ambient dimension is k << d
I Suppose there are two vectors w , w̃ ∈ Rk with ‖w − w̃‖1 small

I Implicitly impose a grid of length L on Rk

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)

30 of 34

Step III: Replicable Rounding

I Assume now the ambient dimension is k << d
I Suppose there are two vectors w , w̃ ∈ Rk with ‖w − w̃‖1 small
I Implicitly impose a grid of length L on Rk

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)

1

30 of 34

Step III: Replicable Rounding

I Assume now the ambient dimension is k << d
I Suppose there are two vectors w , w̃ ∈ Rk with ‖w − w̃‖1 small
I Implicitly impose a grid of length L on Rk

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)

1

3
4 ·

1
4

1
4 ·

1
4

3
4 ·

3
4

3
4 ·

1
4

30 of 34

Alon-Klartag Rounding

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)

I E[round(w)] = w so rounding preserves inner products
I round(w) = round(w̃) with probability O(‖w − w̃‖1)

1

3
4 ·

1
4

1
4 ·

1
4

3
4 ·

3
4

3
4 ·

1
4

31 of 34

Alon-Klartag Rounding

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)
I E[round(w)] = w so rounding preserves inner products

I round(w) = round(w̃) with probability O(‖w − w̃‖1)

1

3
4 ·

1
4

1
4 ·

1
4

3
4 ·

3
4

3
4 ·

1
4

31 of 34

Alon-Klartag Rounding

I Round to vertex v = round(w) with prob. ∝
∏k

j=1(L− |wi − vi |)
I E[round(w)] = w so rounding preserves inner products
I round(w) = round(w̃) with probability O(‖w − w̃‖1)

1

3
4 ·

1
4

1
4 ·

1
4

3
4 ·

3
4

3
4 ·

1
4

31 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension

I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution

I average will be close across executions

2. Randomly project w̄ to lower-dimension

I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension

I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension

I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension
I projection preserves inner products (and solution quality)

I projection preserves distances
(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension
I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension
I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid

I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension
I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid
I rounding is unbiased (preserves inner products and solution quality)

I rounds closeby solutions to the same point

32 of 34

Summary

1. Solve non-replicable problem multiple times → w (1), . . . ,w (B), take
average w̄

I average remains good solution
I average will be close across executions

2. Randomly project w̄ to lower-dimension
I projection preserves inner products (and solution quality)
I projection preserves distances

(projected solutions remain close across executions)

3. Round to corners of grid
I rounding is unbiased (preserves inner products and solution quality)
I rounds closeby solutions to the same point

32 of 34

Future Work

I Improve sample complexity of replicable algorithms

I Sample complexity lower bounds specifically for replicability

33 of 34

Future Work

I Improve sample complexity of replicable algorithms

I Sample complexity lower bounds specifically for replicability

33 of 34

Thank you!

arxiv.org/abs/2402.13857

felix-zhou.com

felix.zhou@yale.edu

34 of 34

https://arxiv.org/abs/2402.13857
https://felix-zhou.com/
mailto:felix.zhou@yale.edu

	Replicability
	Learning Large-Margin Halfspaces
	Our Contribution
	Related Works
	Technical Overview
	Step I: Solving the Non-Replicable Problem
	Step II: Dimensionality Reduction
	Step III: Replicable Rounding

