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Reproducibility Crisis

“1500 Scientists Lift the Lid
on Reproducibility.”
Nature (2016)

6 of 36



Reproducibility Crisis

I 2019 NeurIPS/ICLR Reproducibility Challenge
(github.com/reproducibility-challenge)

I Ongoing ML Reproducibility Challenge
(paperswithcode.com/rc2022)

7 of 36

github.com/reproducibility-challenge
paperswithcode.com/rc2022


Reproducibility Crisis

I 2019 NeurIPS/ICLR Reproducibility Challenge
(github.com/reproducibility-challenge)

I Ongoing ML Reproducibility Challenge
(paperswithcode.com/rc2022)

7 of 36

github.com/reproducibility-challenge
paperswithcode.com/rc2022


Reproducibility Crisis

Trying to develop agreed-upon set of replicable practices is difficult.

Figure: Number of accepted NeurIPS papers by year.
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Reproducibility Crisis
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Algorithmic Replicability

Goal: Design ML algorithms with replicability as theoretical guarantee.

Initiated by [Impagliazzo, Lei, Pitassi, and Sorell ’22] (STOC’22).
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Algorithmic Replicability

I X data domain

I D distribution over X
I S1,S2 ∼i.i.d. Dn datasets of size n
I ξ uniformly random binary string

definition (replicable algorithm; [ilps ’22])

A randomized algorithmA : Xn → Y is ρ-replicable if

Pr
S1,S2,ξ

[A(S1; ξ) = A(S2; ξ)] ≥ 1− ρ.

Remark: Replicability is trivial to obtain by itself!
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Example: Replicable Mean Estimation

1. Concentration of Measure

2. Discretization
3. Shared Random Offset

R
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Statistical k-Means

I Given: Sample access to distribution D over [0, 1]d

I Want: Choose k centers y1, . . . , yk ∈ [0, 1]d minimizing expected
“cost of travel” to nearest center

I Solve argminy1,...,yk∈[0,1]d EX∼D

[
minj∈[k] ‖X − yj‖22

]
I Sample complexity? Time complexity?
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Sample k-Means

I Given: Points x1, . . . , xn ∈ [0, 1]d

I Want: Choose k centers y1, . . . , yk ∈ [0, 1]d minimizing average
“cost of travel” to nearest center

I Solve argminy1,...,yk∈[0,1]d
1
n
∑

i∈[n]

[
minj∈[k] ‖xi − yj‖22

]
I Time complexity?
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Replicability in Clustering

I Clustering algorithms reveal properties of the underlying population

I Replicability is an important property for downstream applications
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Replicable Statistical k-Means

I Given: Sample access to distribution D over [0, 1]d

I Want: argminy1,...,yk∈[0,1]d EX∼D

[
minj∈[k] ‖X − yj‖22

]
I And: PrX ,X ′,ξ [{y1, . . . , yk} = {y ′

1, . . . , y ′
k}] ≥ 1− ρ

I Sample Complexity? Time Complexity?
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Replicable Statistical k-Means
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Our Results

theorem (ekmvz ’23)

I Assume black-box polynomial time β-approximation oracle for sample
k-means.

I There is a ρ-replicable algorithmA for statistical k-means:
I with high probability, the cost of the solution is at most (1+ ε)β ·OPT.
I A has time and sample complexity

Õρ,ε

(
poly(k, d)k log log k

)
.
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Õρ,ε

(
poly(k, d)k log log k

)
.

20 of 36



Our Results

theorem (ekmvz ’23)

I Assume black-box polynomial time β-approximation oracle for sample
k-means.

I There is a ρ-replicable algorithmA for statistical k-means:
I with high probability, the cost of the solution is at most (1+ ε)β ·OPT.

I A has time and sample complexity
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More Precisely…

theorem (ekmvz ’23)

I Assume black-box polynomial time β-approximation oracle for sample
k-means.

I There is a ρ-replicable algorithmA for statistical k-means:
I with probability at least 1− δ, the cost of the solution is at most
(1 + ε)β ·OPT.

I A has time and sample complexity

Õ
(
poly(k, d , 1/ρ)(2

√
m/ε)O(m) log

1

δ

)
.

where m = O(ε−2 log k/δε).
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Overview of Techniques

0. Data-Oblivious Dimensionality Reduction

I Johnson-Lindenstrauss transform

1. Reduce problem on distribution to problem on samples

I Uniform Law of Large Numbers

2. Consolidate multiple points into weighted point

I Replicable Coreset Construction
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Statistical k-Means

theorem (ben-david ’07)

I Assume black-box polynomial time β-approximation oracle for sample
k-means.

I There is an algorithmA for statistical k-means:
I with high probability, the cost of the solution is at most
(1 + ε)β · (4OPT).

I A has time and sample complexity

Õ (poly(d , k, 1/ε)) .

24 of 36



Stability in Statistical k-Means

I Stable choice of k: Produce clusterings that do not vary much
from one sample to another. [BEG ’01], [LRBB ’04], [VB ’05], [B
’06], [RC ’06], [V ’10]

I [Ben-David, Pál, Simon; ’07]: “for large sample sizes, stability is
fully determined by the symmetry within the data.”
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Sample k-Means

I Inspiration: operations research and statistics [Lloyd ’57],
[Hakimi ’64], [Steinhaus ’57]

I Sample Metric k-Means: polynomial time 9-approximation
[ANS ’19], (1 + 8/e)-approximation is NP-hard [CGKLL ’19]

I Sample Euclidean k-Means: polynomial time 5.912-approximation
[CEMN ’22], 1.07-approximation is NP-hard [CK ’19], [CLK ’22]

I Dimensionality Reduction Johnson-Lindenstrauss Transform
[Johnson ’84], [KKM ’19]

I Coresets geometric coresets [FS ’05], sampling-based coresets
[HSYZ ’18], survey [SW ’18]
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Replicability

I Algorithm Design: statistical queries, heavy-hitters, medians,
learning halfspaces [ILPS ’22], stochastic bandits [EKKKMV ’23],
reinforcement learning [KYGZ ’23], [EHKS ’23]

I Learning Theory: equivalence with DP [BGHILPSS ’23], statistical
indistinguishability [KKMV ’23], list-replicability [CMY ’23],
[DPWV ’23]
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Replicable Coreset Estimation

Intuition: Little hope for replicability with continuous distributions, need
to discretize and round similar to mean estimation.

Idea: Replicably approximate the input distribution with a finite
(discrete) distribution.

29 of 36



Replicable Coreset Estimation

For some R : X → X with small |R(X )|, uniformly approximate

cost(y) := EX

[
min

j
‖X − yj‖22

]

≈ EX

[
min

j
‖R(X)− yj‖22

]
=

∑
z∈R(X )

min
j

‖z − yj‖22 · P(R
−1(z))
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Quad Tree

Idea: Recursively partition [0, 1]d into subcubes and consolidate mass
from entire subcube into single point
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Recall: Heavy-Hitters

I Given: Sample access to distribution, ν ∈ [0, 1].

I Want: All elements with mass at least ν.

theorem (ilps ’22)

There is a replicable heavy-hitters algorithm.
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Replicable Quad Tree

Algorithm Replicable Quad Tree
1: rQuadTree(Node Z , error ε, depth i):
2: if diam(Z) ≥ C1ε then
3: return
4: end if
5: for Z ′ ∈ subcubes(Z) do
6: // Heavy Hitters Operation!
7: if P(Z ′) ≥ C2 · 2iε/k then
8: Add Z ′ as child of Z
9: rQuadTree(Z ′, ε, i + 1)

10: end if
11: end for

33 of 36



Summary

0. Data-Oblivious Dimensionality Reduction

1. Uniform Law of Large Numbers

2. Replicable Coreset Estimation

I A series of heavy hitter estimations that can be made replicable.
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Future Work

I Polynomial sample/time complexity for replicable k-means

I Replicable (k, p)-clustering

I Sample complexity lower bounds for (replicable) clustering
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Thank You!


	Replicability
	Clustering
	Our Contribution
	Related Works
	Technical Overview

