

Replicable Clustering

Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris Velegkas, Felix Zhou

Yale, Google Research

NeurIPS 2023

Personnel

Hossein Esfandiari (Google)

Amin Karbasi (Yale, Google)

Vahab Mirrokni (Google)

Grigoris Velegkas (Yale)

Felix Zhou (Yale)

Clustering

Our Contribution

Related Works

Technical Overview

Clustering

Our Contribution

Related Works

Technical Overview

"1500 Scientists Lift the Lid on Reproducibility." *Nature* (2016)

HAVE YOU FAILED TO REPRODUCE AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.

 2019 NeurIPS/ICLR Reproducibility Challenge (github.com/reproducibility-challenge)

- 2019 NeurIPS/ICLR Reproducibility Challenge (github.com/reproducibility-challenge)
- Ongoing ML Reproducibility Challenge (paperswithcode.com/rc2022)

Trying to develop agreed-upon set of replicable practices is difficult.

Figure: Number of accepted NeurIPS papers by year.

Goal: Design ML algorithms with replicability as theoretical guarantee. Initiated by [Impagliazzo, Lei, Pitassi, and Sorell '22] (STOC'22).

► X data domain

- ► X data domain
- \mathcal{D} distribution over X

- ► X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n
- ξ uniformly random binary string

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n
- ξ uniformly random binary string

DEFINITION (REPLICABLE ALGORITHM; [ILPS '22]) A randomized algorithm $\mathcal{A} : X^n \to Y$ is ρ -replicable if

$$\Pr_{S_1,S_2,\xi} \left[\mathcal{A}(S_1;\xi) = \mathcal{A}(S_2;\xi) \right] \ge 1 - \rho.$$

- X data domain
- \mathcal{D} distribution over X
- $S_1, S_2 \sim_{i.i.d.} \mathcal{D}^n$ datasets of size n
- ξ uniformly random binary string

DEFINITION (REPLICABLE ALGORITHM; [ILPS '22]) A randomized algorithm $\mathcal{A} : X^n \to Y$ is ρ -replicable if

$$\Pr_{S_1,S_2,\xi} \left[\mathcal{A}(S_1;\xi) = \mathcal{A}(S_2;\xi) \right] \ge 1 - \rho.$$

Remark: Replicability is trivial to obtain by itself!

Yale

1. Concentration of Measure

Example: Replicable Mean Estimation

- 1. Concentration of Measure
- 2. Discretization

- 1. Concentration of Measure
- 2. Discretization
- 3. Shared Random Offset

Clustering

Our Contribution

Related Works

Technical Overview

• Given: Sample access to distribution \mathcal{D} over $[0,1]^d$

- **Given:** Sample access to distribution \mathcal{D} over $[0,1]^d$
- ▶ Want: Choose k centers $y_1, \ldots, y_k \in [0, 1]^d$ minimizing expected "cost of travel" to nearest center

- **Given:** Sample access to distribution \mathcal{D} over $[0,1]^d$
- ► Want: Choose k centers y₁,..., y_k ∈ [0,1]^d minimizing expected "cost of travel" to nearest center
- ► Solve $\operatorname{argmin}_{y_1, \dots, y_k \in [0,1]^d} \mathbb{E}_{X \sim \mathcal{D}} \left[\min_{j \in [k]} \|X y_j\|_2^2 \right]$

- **Given:** Sample access to distribution \mathcal{D} over $[0,1]^d$
- ▶ Want: Choose k centers $y_1, \ldots, y_k \in [0, 1]^d$ minimizing expected "cost of travel" to nearest center
- ► Solve $\operatorname{argmin}_{y_1, \dots, y_k \in [0,1]^d} \mathbb{E}_{X \sim \mathcal{D}} \left| \min_{j \in [k]} \|X y_j\|_2^2 \right|$
- Sample complexity? Time complexity?

• Given: Points $x_1, \ldots, x_n \in [0, 1]^d$

- Given: Points $x_1, \ldots, x_n \in [0, 1]^d$
- ▶ Want: Choose k centers $y_1, \ldots, y_k \in [0, 1]^d$ minimizing average "cost of travel" to nearest center

- Given: Points $x_1, \ldots, x_n \in [0, 1]^d$
- ► Want: Choose k centers y₁,..., y_k ∈ [0,1]^d minimizing average "cost of travel" to nearest center
- Solve $\operatorname{argmin}_{y_1, \dots, y_k \in [0,1]^d} \frac{1}{n} \sum_{i \in [n]} \left[\min_{j \in [k]} \|x_i y_j\|_2^2 \right]$

- Given: Points $x_1, \ldots, x_n \in [0, 1]^d$
- ► Want: Choose k centers y₁,..., y_k ∈ [0,1]^d minimizing average "cost of travel" to nearest center
- ► Solve $\operatorname{argmin}_{y_1,...,y_k \in [0,1]^d} \frac{1}{n} \sum_{i \in [n]} \left[\min_{j \in [k]} \|x_i y_j\|_2^2 \right]$
- ► Time complexity?

Clustering algorithms reveal properties of the underlying population

- ► Clustering algorithms reveal properties of the underlying population
- ► Replicability is an important property for downstream applications

• **Given:** Sample access to distribution \mathcal{D} over $[0,1]^d$

- **Given:** Sample access to distribution \mathcal{D} over $[0,1]^d$
- ► Want: $\operatorname{argmin}_{y_1, \dots, y_k \in [0,1]^d} \mathbb{E}_{X \sim D} \left[\min_{j \in [k]} \|X y_j\|_2^2 \right]$

- **Given:** Sample access to distribution \mathcal{D} over $[0,1]^d$
- ► Want: $\operatorname{argmin}_{y_1, \dots, y_k \in [0,1]^d} \mathbb{E}_{X \sim D} \left[\min_{j \in [k]} \|X y_j\|_2^2 \right]$
- And: $\Pr_{X,X',\xi} [\{y_1,\ldots,y_k\} = \{y'_1,\ldots,y'_k\}] \ge 1 \rho$

- **Given:** Sample access to distribution \mathcal{D} over $[0,1]^d$
- ► Want: $\operatorname{argmin}_{y_1, \dots, y_k \in [0,1]^d} \mathbb{E}_{X \sim D} \left[\min_{j \in [k]} \|X y_j\|_2^2 \right]$
- And: $\Pr_{X,X',\xi} [\{y_1,\ldots,y_k\} = \{y'_1,\ldots,y'_k\}] \ge 1 \rho$
- Sample Complexity? Time Complexity?

Replicability

Clustering

Our Contribution

Related Works

Technical Overview

 Assume black-box polynomial time β-approximation oracle for sample *k*-means.

- Assume black-box polynomial time β-approximation oracle for sample *k*-means.
- There is a ρ -replicable algorithm \mathcal{A} for statistical *k*-means:

- Assume black-box polynomial time β-approximation oracle for sample *k*-means.
- There is a ρ -replicable algorithm \mathcal{A} for statistical *k*-means:
- ▶ with high probability, the cost of the solution is at most $(1 + \varepsilon)\beta \cdot \text{OPT}$.

- Assume black-box polynomial time β-approximation oracle for sample *k*-means.
- There is a ρ -replicable algorithm \mathcal{A} for statistical *k*-means:
- with high probability, the cost of the solution is at most $(1 + \varepsilon)\beta \cdot \text{OPT}$.
- \mathcal{A} has time and sample complexity

$$\tilde{O}_{\rho,\varepsilon}\left(\mathrm{poly}(k,d)k^{\log\log k}\right).$$

- ► Assume black-box polynomial time β-approximation oracle for sample *k*-means.
- There is a ρ -replicable algorithm \mathcal{A} for statistical *k*-means:
- with probability at least 1δ , the cost of the solution is at most $(1 + \varepsilon)\beta \cdot \text{OPT}$.
- \mathcal{A} has time and sample complexity

$$\tilde{O}\left(\operatorname{poly}(k, d, 1/\rho)(2\sqrt{m}/\varepsilon)^{O(m)}\log \frac{1}{\delta}\right)$$

where $m = O(\varepsilon^{-2} \log k / \delta \varepsilon)$.

1. Reduce problem on distribution to problem on samples

- 1. Reduce problem on distribution to problem on samples
 - Uniform Law of Large Numbers

- 1. Reduce problem on distribution to problem on samples
 - Uniform Law of Large Numbers
- 2. Consolidate multiple points into weighted point

- 1. Reduce problem on distribution to problem on samples
 - Uniform Law of Large Numbers
- 2. Consolidate multiple points into weighted point
 - Replicable Coreset Construction

- 0. Data-Oblivious Dimensionality Reduction
- 1. Reduce problem on distribution to problem on samples
 - Uniform Law of Large Numbers
- 2. Consolidate multiple points into weighted point
 - Replicable Coreset Construction

- 0. Data-Oblivious Dimensionality Reduction
 - Johnson-Lindenstrauss transform
- 1. Reduce problem on distribution to problem on samples
 - Uniform Law of Large Numbers
- 2. Consolidate multiple points into weighted point
 - Replicable Coreset Construction

Replicability

Clustering

Our Contribution

Related Works

Technical Overview

THEOREM (BEN-DAVID '07)

- Assume black-box polynomial time β-approximation oracle for sample *k*-means.
- ► There is an algorithm *A* for statistical *k*-means:
- ▶ with high probability, the cost of the solution is at most $(1 + \varepsilon)\beta \cdot (4 \text{ OPT}).$
- \mathcal{A} has time and sample complexity

 $\tilde{O}\left(\mathrm{poly}(d,k,1/\varepsilon)
ight)$.

 Stable choice of k: Produce clusterings that do not vary much from one sample to another. [BEG '01], [LRBB '04], [VB '05], [B '06], [RC '06], [V '10]

- Stable choice of k: Produce clusterings that do not vary much from one sample to another. [BEG '01], [LRBB '04], [VB '05], [B '06], [RC '06], [V '10]
- [Ben-David, Pál, Simon; '07]: "for large sample sizes, stability is fully determined by the symmetry within the data."

 Inspiration: operations research and statistics [Lloyd '57], [Hakimi '64], [Steinhaus '57]

- Inspiration: operations research and statistics [Lloyd '57], [Hakimi '64], [Steinhaus '57]
- Sample Metric k-Means: polynomial time 9-approximation [ANS '19], (1 + 8/e)-approximation is NP-hard [CGKLL '19]

- Inspiration: operations research and statistics [Lloyd '57], [Hakimi '64], [Steinhaus '57]
- Sample Metric k-Means: polynomial time 9-approximation [ANS '19], (1 + ⁸/e)-approximation is NP-hard [CGKLL '19]
- Sample Euclidean k-Means: polynomial time 5.912-approximation [CEMN '22], 1.07-approximation is NP-hard [CK '19], [CLK '22]

- Inspiration: operations research and statistics [Lloyd '57], [Hakimi '64], [Steinhaus '57]
- ► Sample Metric k-Means: polynomial time 9-approximation [ANS '19], (1 + ⁸/e)-approximation is NP-hard [CGKLL '19]
- Sample Euclidean k-Means: polynomial time 5.912-approximation [CEMN '22], 1.07-approximation is NP-hard [CK '19], [CLK '22]
- Dimensionality Reduction Johnson-Lindenstrauss Transform [Johnson '84], [KKM '19]

- Inspiration: operations research and statistics [Lloyd '57], [Hakimi '64], [Steinhaus '57]
- Sample Metric k-Means: polynomial time 9-approximation [ANS '19], (1 + ⁸/e)-approximation is NP-hard [CGKLL '19]
- Sample Euclidean k-Means: polynomial time 5.912-approximation [CEMN '22], 1.07-approximation is NP-hard [CK '19], [CLK '22]
- Dimensionality Reduction Johnson-Lindenstrauss Transform [Johnson '84], [KKM '19]
- Coresets geometric coresets [FS '05], sampling-based coresets [HSYZ '18], survey [SW '18]

 Algorithm Design: statistical queries, heavy-hitters, medians, learning halfspaces [ILPS '22], stochastic bandits [EKKKMV '23], reinforcement learning [KYGZ '23], [EHKS '23]

- Algorithm Design: statistical queries, heavy-hitters, medians, learning halfspaces [ILPS '22], stochastic bandits [EKKKMV '23], reinforcement learning [KYGZ '23], [EHKS '23]
- Learning Theory: equivalence with DP [BGHILPSS '23], statistical indistinguishability [KKMV '23], list-replicability [CMY '23], [DPWV '23]

Replicability

Clustering

Our Contribution

Related Works

Technical Overview

Intuition: Little hope for replicability with continuous distributions, need to discretize and round similar to mean estimation.

Idea: Replicably approximate the input distribution with a finite (discrete) distribution.

For some $R: \mathcal{X} \to \mathcal{X}$ with small $|R(\mathcal{X})|$, uniformly approximate

$$cost(y) := \mathbb{E}_{X} \left[\min_{j} \|X - y_{j}\|_{2}^{2} \right]$$

For some $R: \mathcal{X} \to \mathcal{X}$ with small $|R(\mathcal{X})|$, uniformly approximate

$$\operatorname{cost}(y) := \mathbb{E}_{X} \left[\min_{j} \|X - y_{j}\|_{2}^{2} \right]$$
$$\approx \mathbb{E}_{X} \left[\min_{j} \|R(X) - y_{j}\|_{2}^{2} \right]$$

For some $R: \mathcal{X} \to \mathcal{X}$ with small $|R(\mathcal{X})|$, uniformly approximate

$$\operatorname{cost}(y) := \mathbb{E}_{X} \left[\min_{j} \|X - y_{j}\|_{2}^{2} \right]$$
$$\approx \mathbb{E}_{X} \left[\min_{j} \|R(X) - y_{j}\|_{2}^{2} \right]$$
$$= \sum_{z \in R(\mathcal{X})} \min_{j} \|z - y_{j}\|_{2}^{2} \cdot \mathbb{P}(R^{-1}(z))$$

Quad Tree

Idea: Recursively partition $[0,1]^d$ into subcubes and consolidate mass from entire subcube into single point

• Given: Sample access to distribution, $\nu \in [0, 1]$.

- Given: Sample access to distribution, $\nu \in [0, 1]$.
- Want: All elements with mass at least ν .

- Given: Sample access to distribution, $\nu \in [0, 1]$.
- Want: All elements with mass at least ν .

Theorem (ILPS '22)

There is a replicable heavy-hitters algorithm.

Algorithm Replicable Quad Tree

- 1: **rQuadTree**(Node Z, error ε , depth *i*):
- 2: if diam $(Z) \ge C_1 \varepsilon$ then
- 3: return
- 4: end if
- 5: for $Z' \in \operatorname{subcubes}(Z)$ do
- 6: // Heavy Hitters Operation!
- 7: **if** $\mathbb{P}(Z') \geq C_2 \cdot 2^i \varepsilon / k$ then
- 8: Add Z' as child of Z
- 9: **rQuadTree** $(Z', \varepsilon, i+1)$
- 10: end if
- 11: end for

Yale

0. Data-Oblivious Dimensionality Reduction

- 0. Data-Oblivious Dimensionality Reduction
- 1. Uniform Law of Large Numbers

- 0. Data-Oblivious Dimensionality Reduction
- 1. Uniform Law of Large Numbers
- 2. Replicable Coreset Estimation

- 0. Data-Oblivious Dimensionality Reduction
- 1. Uniform Law of Large Numbers
- 2. Replicable Coreset Estimation
 - A series of heavy hitter estimations that can be made replicable.

Polynomial sample/time complexity for replicable k-means

- Polynomial sample/time complexity for replicable k-means
- ► Replicable (*k*, *p*)-clustering

- Polynomial sample/time complexity for replicable k-means
- ► Replicable (*k*, *p*)-clustering
- Sample complexity lower bounds for (replicable) clustering

Thank You!