On the Complexity of Nucleolus Computation for Bipartite b-Matching Games

Jochen Könemann, Justin Toth, Felix Zhou

Nucleolus Computation of b-Matching Games

• Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma = (N, \nu)$.

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma = (N, \nu)$.

• *Player set:*
$$N = \{1, 2, ..., n\}.$$

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma = (N, \nu)$.

• *Player set:*
$$N = \{1, 2, ..., n\}.$$

• Characteristic function: $\nu: 2^N \to \mathbb{R}$ with $\nu(\emptyset) = 0$.

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma = (N, \nu)$.

• *Player set:*
$$N = \{1, 2, ..., n\}.$$

Characteristic function:
 ν : 2^N → ℝ with ν(Ø) = 0.
 ν(S) is revenue of coalition S.

► What sort of coalitions will form?

- ▶ What sort of coalitions will form?
- ► How will the total revenue be shared?

- ▶ What sort of coalitions will form?
- ▶ How will the total revenue be shared?

• Allocation:
$$x \in \mathbb{R}^N : x(N) = \nu(N)$$
.

- ▶ What sort of coalitions will form?
- ▶ How will the total revenue be shared?
- Allocation: $x \in \mathbb{R}^N : x(N) = \nu(N)$.
- Imputation: Subset of allocations such that $x(i) \ge \nu(\{i\})$ for all $i \in N$.

• Graph G = (N, E).

- Graph G = (N, E).
- Edge weights $w : E \to \mathbb{R}$.

- ▶ Graph G = (N, E).
- Edge weights $w: E \to \mathbb{R}$.
- Vertex-incidence capacity $b: N \to \mathbb{Z}_+$.

• Graph
$$G = (N, E)$$
.

- Edge weights $w : E \to \mathbb{R}$.
- Vertex-incidence capacity $b: N \to \mathbb{Z}_+$.
- Find a (multi-)set of edges M maximizing w(M) such that each $v \in N$ is in incident to at most b_v edges of M.

• Graph
$$G = (N, E)$$
.

- Edge weights $w : E \to \mathbb{R}$.
- Vertex-incidence capacity $b: N \to \mathbb{Z}_+$.
- Find a (multi-)set of edges M maximizing w(M) such that each $v \in N$ is in incident to at most b_v edges of M.

b-Matching Games

▶ Instance of b-Matching: G, w, b.

b-Matching Games

- ▶ Instance of b-Matching: G, w, b.
- ► Players: Vertices.

b-Matching Games

- ▶ Instance of b-Matching: G, w, b.
- ▶ Players: Vertices.
- Characteristic Function: $\nu(S)$ is the weight of a maximum weight *b*-matching in G[S].

• Excess: $e(S, x) := x(S) - \nu(S)$.

- Excess: $e(S, x) := x(S) \nu(S)$.
- "Satisfaction" of a coalition with respect to x.

- Excess: $e(S, x) := x(S) \nu(S)$.
- "Satisfaction" of a coalition with respect to x.
- Imputations: Non-negative singleton excess.

- Excess: $e(S, x) := x(S) \nu(S)$.
- "Satisfaction" of a coalition with respect to x.
- ► Imputations: Non-negative singleton excess.
- Core: Subset of imputations such that $e(S, x) \ge 0$ for all $S \subseteq N$.

 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.

- ▶ 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.
- ▶ 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in bipartite b-matching games.

Core

- ▶ 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.
- ▶ 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in bipartite b-matching games.
 - ► The core of a combinatorial optimization game is non-empty if and only if the fractional LP of the underlying optimization problem has integral optimal solutions.

Core

- ▶ 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.
- ▶ 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in bipartite b-matching games.
 - ► The core of a combinatorial optimization game is non-empty if and only if the fractional LP of the underlying optimization problem has integral optimal solutions.
- ▶ The core can be empty, even for 1-matching games.

► Alternative definition of "fairness"?

- ► Alternative definition of "fairness"?
- ► Idea: Maximize the satisfaction among the worst-case coalitions.

 $\begin{array}{ll} \max \epsilon & LP_1 \\ x(N) = \nu(N) \\ x(S) \geq \nu(S) + \epsilon & \forall \varnothing \neq S \subsetneq N \end{array}$

• Why stop at the worst-case coalitions?

- Why stop at the worst-case coalitions?
- ► $\Theta(x) \in \mathbb{R}^{2^n-2}$: Entries are $e(S, x), \emptyset \neq S \subset N$, sorted in non-decreasing order.

- Why stop at the worst-case coalitions?
- ► $\Theta(x) \in \mathbb{R}^{2^n-2}$: Entries are $e(S, x), \emptyset \neq S \subset N$, sorted in non-decreasing order.
- ► Nucleolus: (Unique) imputation maximizing Θ(x) lexicographically.

- ► The nucleolus always exists.
- ► The nucleolus is unique.

- ► The nucleolus always exists.
- ► The nucleolus is unique.
- ▶ If core is non-empty, nucleolus is a member of the core.

► How can we compute the nucleolus?

 $LP_1 : \max \epsilon$ $x(N) = \nu(N)$ $x(S) \ge \nu(S) + \epsilon$ $\forall \emptyset \neq S \subsetneq N$

► How can we compute the nucleolus?

▶ Idea: Solve a sequence of recursively defined linear programs $LP_k, k \ge 1$.

 $LP_1 : \max \epsilon$ $x(N) = \nu(N)$

 $\begin{aligned} x(S) \geq \nu(S) + \epsilon \\ \forall \varnothing \neq S \subsetneq N \end{aligned}$

► How can we compute the nucleolus?

- ▶ Idea: Solve a sequence of recursively defined linear programs $LP_k, k \ge 1$.
- ► Tight coalitions $\mathcal{J}_k \subseteq 2^N$: For all optimal solutions (x, ϵ_k) of LP_k , $x(S) = \nu(S) + \epsilon_k$.

 $x(N) = \nu(N)$

$$\begin{split} x(S) \geq \nu(S) + \epsilon \\ \forall \varnothing \neq S \subsetneq N \end{split}$$

- ► How can we compute the nucleolus?
- ► Idea: Solve a sequence of recursively defined linear programs $LP_k, k \ge 1$.
- ► Tight coalitions $\mathcal{J}_k \subseteq 2^N$: For all optimal solutions (x, ϵ_k) of LP_k , $x(S) = \nu(S) + \epsilon_k$.
- Define LP_{k+1} by fixing new tight constraints.

 $LP_{k+1}: \max \epsilon$

 $\begin{aligned} x(S) &= \nu(S) + \epsilon_k \\ \forall S \in \mathcal{J}_r, 1 \le r \le k \end{aligned}$

$$\begin{aligned} x(S) \geq \nu(S) + \epsilon \\ \forall S \in 2^N \setminus \bigcup_{r=1}^k \mathcal{J}_r \end{aligned}$$

• Each LP has $O(2^{|N|})$ constraints.

- Each LP has $O(2^{|N|})$ constraints.
- At least one coalition is added to \mathcal{J}_k for every k.

- Each LP has $O(2^{|N|})$ constraints.
- At least one coalition is added to \mathcal{J}_k for every k.
- Solve $O(2^{|N|})$ LPs until solution is unique.

- Each LP has $O(2^{|N|})$ constraints.
- At least one coalition is added to \mathcal{J}_k for every k.
- Solve $O(2^{|N|})$ LPs until solution is unique.
- ▶ Can use Kopelowitz scheme to characterize the nucleolus.

- Each LP has $O(2^{|N|})$ constraints.
- At least one coalition is added to \mathcal{J}_k for every k.
- Solve $O(2^{|N|})$ LPs until solution is unique.
- ▶ Can use Kopelowitz scheme to characterize the nucleolus.
- Maschler's scheme: Variant of Kopelowitz scheme which guarantees termination after O(|N|) iterations.

Deciding whether an allocation is the nucleolus of an unweighted bipartite 3-matching game is NP-hard, even in graphs of maximum degree 7.

Theorem [Könemann, Toth, Zhou '21]

Computing the nucleolus of a bipartite *b*-matching game is NP-hard, even when $b \leq 3$ and the underlying graph is sparse.

Let G = (N, E), w, and $b \leq 2$ be an instance of *b*-matching. Suppose G has bipartition $N = A \cup B$. Let $k \geq 0$ be a universal constant.

• Suppose $b_v = 2$ for all $v \in A$ but $b_v = 2$ for at most k vertices of B, then the nucleolus of the b-matching game in G is polynomial-time computable.

Let G = (N, E), w, and $b \leq 2$ be an instance of *b*-matching. Suppose G has bipartition $N = A \cup B$. Let $k \geq 0$ be a universal constant.

- Suppose $b_v = 2$ for all $v \in A$ but $b_v = 2$ for at most k vertices of B, then the nucleolus of the b-matching game in G is polynomial-time computable.
- ▶ If $b \equiv 2$, then the nucleolus of the non-simple *b*-matching game on *G* is polynomial-time computable.

 2003; Kern, Paulusma: Posed the question of computing the nucleolus as an open problem.

- 2003; Kern, Paulusma: Posed the question of computing the nucleolus as an open problem.
- 2008; Deng, Fang: Conjectured this problem to be NP-hard.

- ▶ 2003; Kern, Paulusma: Posed the question of computing the nucleolus as an open problem.
- 2008; Deng, Fang: Conjectured this problem to be NP-hard.
- ▶ 2018; Könemann, Pashkovich, Toth: The nucleolus is computable in polynomial time.

▶ 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_v = 1$.

- ▶ 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_v = 1$.
- ▶ 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.

- ▶ 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_v = 1$.
- ▶ 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- ▶ 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.

- ▶ 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_v = 1$.
- ▶ 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- ▶ 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.
 - ▶ Proof uses gadget graph with many odd cycles.

- ▶ 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_v = 1$.
- ▶ 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- ▶ 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.
 - ▶ Proof uses gadget graph with many odd cycles.
 - Supports plausible conjecture that nucleolus is polynomial-time computable for bipartite graphs.

- ▶ 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_v = 1$.
- ▶ 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- ▶ 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.
 - ▶ Proof uses gadget graph with many odd cycles.
 - Supports plausible conjecture that nucleolus is polynomial-time computable for bipartite graphs.
 - Surprisingly, our work answers this in the negative.

Hardness Proof Overview

• Cubic Subgraph Problem: Given a graph G = (N, E), does it contain a subgraph where each vertex has degree 3?

Hardness Proof Overview

- Cubic Subgraph Problem: Given a graph G = (N, E), does it contain a subgraph where each vertex has degree 3?
- ▶ 1984; Plesnik: Cubic subgraph is NP-hard even in bipartite planar graphs of maximum degree 4.

Hardness Proof Overview

- Cubic Subgraph Problem: Given a graph G = (N, E), does it contain a subgraph where each vertex has degree 3?
- ▶ 1984; Plesnik: Cubic subgraph is NP-hard even in bipartite planar graphs of maximum degree 4.
- Two From Cubic Subgraph Problem: Given a graph G = (N, E), does it contain a subgraph where every vertex has degree 3 except for two vertices of degree 2?

Two From Cubic Subgraph is NP-hard even in bipartite graphs of maximum degree 7.

▶ Builds on Plesnik's proof.

- ▶ Builds on Plesnik's proof.
- ▶ Requires significant innovation in the gadget graph.

- ▶ Builds on Plesnik's proof.
- ▶ Requires significant innovation in the gadget graph.
- ▶ Relies on a piece of graph theory of individual interest.

- ▶ Builds on Plesnik's proof.
- ▶ Requires significant innovation in the gadget graph.
- ▶ Relies on a piece of graph theory of individual interest.
 - Let X be a regular subgraph of some graph G.

- ▶ Builds on Plesnik's proof.
- ▶ Requires significant innovation in the gadget graph.
- ▶ Relies on a piece of graph theory of individual interest.
 - Let X be a regular subgraph of some graph G.
 - Let Y be a highly vertex-connected subgraph of G.

- ▶ Builds on Plesnik's proof.
- ▶ Requires significant innovation in the gadget graph.
- ▶ Relies on a piece of graph theory of individual interest.
 - Let X be a regular subgraph of some graph G.
 - Let Y be a highly vertex-connected subgraph of G.
 - "Either $V(Y) \subseteq V(X)$ or $V(Y) \cap V(X) = \emptyset$ ".

• Let G = (N, E) be bipartite instance of two from cubic subgraph.

- Let G = (N, E) be bipartite instance of two from cubic subgraph.
- Create gadget graph
 G* = (N*, E*) by "adding a
 K_{3,3}" to every vertex.

- Let G = (N, E) be bipartite instance of two from cubic subgraph.
- Create gadget graph
 G* = (N*, E*) by "adding a
 K_{3,3}" to every vertex.
- ► The nucleolus of the unweighted 3-matching game on G* is "some specific allocation" if and only if G does not contain a two from cubic subgraph.

• The maximum cardinality 3-matching on G^* has size $\frac{3}{2}|N^*|$.

- The maximum cardinality 3-matching on G^* has size $\frac{3}{2}|N^*|$.
- G^* remains bipartite, thus the core is non-empty.

- The maximum cardinality 3-matching on G^* has size $\frac{3}{2}|N^*|$.
- G^* remains bipartite, thus the core is non-empty.
- ▶ Biro et al. used gadget for hardness of core separation.

- The maximum cardinality 3-matching on G^* has size $\frac{3}{2}|N^*|$.
- G^* remains bipartite, thus the core is non-empty.
- ▶ Biro et al. used gadget for hardness of core separation.
 - "some allocation" resides in the core of game on G^* if and only if G has no cubic subgraph.

 $x \equiv \frac{3}{2}$ is the nucleolus of the 3-matching game on G^* if and only if G does not contain a two from cubic subgraph.

The Reduction

• Let (x^*, ϵ_k) be an optimal solution to each LP_k of Kopelowitz scheme.

$$\max \epsilon \qquad LP_k$$

$$x(S) = \nu(S) + \epsilon_r \qquad \forall S \in \mathcal{J}_r, 0 \le r \le k - 1$$

$$x(S) \ge \nu(S) + \epsilon \qquad \forall S \in \mathcal{J} \setminus \bigcup_{r=0}^{k-1} \mathcal{J}_r$$

The Reduction

- Let (x^*, ϵ_k) be an optimal solution to each LP_k of Kopelowitz scheme.
- If there is no two from cubic subgraph, $\epsilon_1 = 0, \epsilon_2 = \frac{3}{2}$, and $x^* \equiv \frac{3}{2}$ is the unique optimal solution to LP_2 .

The Reduction

- Let (x^*, ϵ_k) be an optimal solution to each LP_k of Kopelowitz scheme.
- If there is no two from cubic subgraph, $\epsilon_1 = 0, \epsilon_2 = \frac{3}{2}$, and $x^* \equiv \frac{3}{2}$ is the unique optimal solution to LP_2 .
- If there is a two from cubic subgraph, $\epsilon_1 = 0$ and $x \equiv \frac{3}{2}$ is not optimal in LP_2 .

$$\max \epsilon \qquad LP_k$$

$$x(S) = \nu(S) + \epsilon_r \qquad \forall S \in \mathcal{J}_r, 0 \le r \le k-1$$

$$x(S) \ge \nu(S) + \epsilon \qquad \forall S \in \mathcal{J} \setminus \bigcup_{r=0}^{k-1} \mathcal{J}_r$$

 $\epsilon_1 = 0$

• Core is non-empty for bipartite graphs, so $\epsilon_1 \ge 0$.

 $\epsilon_1 = 0$

• Core is non-empty for bipartite graphs, so $\epsilon_1 \ge 0$.

•
$$\epsilon_1 \leq x^*(u, v_u, w_u, x_u, y_u, z_u) - \nu(K_{3,3}) = 0.$$

 $\epsilon_1 = 0$

• Core is non-empty for bipartite graphs, so $\epsilon_1 \ge 0$.

•
$$\epsilon_1 \leq x^*(u, v_u, w_u, x_u, y_u, z_u) - \nu(K_{3,3}) = 0.$$

• $\sum_{u \in N} e(K_{3,3}, x^*) = e(N^*, x^*) = 0.$

 $\epsilon_1 = 0$

• Core is non-empty for bipartite graphs, so $\epsilon_1 \geq 0$.

•
$$\epsilon_1 \leq x^*(u, v_u, w_u, x_u, y_u, z_u) - \nu(K_{3,3}) = 0.$$

• $\sum_{u \in N} e(K_{3,3}, x^*) = e(N^*, x^*) = 0.$

• The only coalitions fixed in LP_1 are the union $K_{3,3}$ gadgets.

$$\epsilon_2 = \frac{3}{2}$$

$$\bullet \text{ Since } x(N^*) = \frac{3}{2}|N^*|, \ \epsilon_2 \le \min_{v \in N^*} x^*(v) \le \frac{3}{2}$$

 $\epsilon_2 = \frac{3}{2}$

- Since $x(N^*) = \frac{3}{2}|N^*|, \epsilon_2 \le \min_{v \in N^*} x^*(v) \le \frac{3}{2}$.
- Minimum excess coalitions not fixed in LP_1 contain the singletons and so $\epsilon_2 = \frac{3}{2}$.

 $\epsilon_2 = \frac{3}{2}$

- Since $x(N^*) = \frac{3}{2}|N^*|, \epsilon_2 \le \min_{v \in N^*} x^*(v) \le \frac{3}{2}$.
- Minimum excess coalitions not fixed in LP_1 contain the singletons and so $\epsilon_2 = \frac{3}{2}$.
 - ▶ Uses fact that *G* does not contain a two from cubic subgraph.

Case II: Contains Two From Cubic Subgraph

Converse when G does contain a two from cubic subgraph is similar.

 $\blacktriangleright \epsilon_1 = 0$

Case II: Contains Two From Cubic Subgraph

Converse when G does contain a two from cubic subgraph is similar.

- $\blacktriangleright \ \epsilon_1 = 0$
- Construct allocation which is feasible in LP_2 with strictly greater objective than $x \equiv \frac{3}{2}$.

Theorem [Könemann, Toth, Zhou '21]

Let G = (N, E), w, and $b \leq 2$ be an instance of *b*-matching. Suppose G has bipartition $N = A \cup B$. Let $k \geq 0$ be a universal constant.

- Suppose $b_v = 2$ for all $v \in A$ but $b_v = 2$ for at most k vertices of B, then the nucleolus of the *b*-matching game in G is polynomial-time computable.
- ▶ If $b \equiv 2$, then the nucleolus of the non-simple *b*-matching game on *G* is polynomial-time computable.

Positive Results

 Prune constraints from Kopelowitz scheme which are "not necessary".

Positive Results

- Prune constraints from Kopelowitz scheme which are "not necessary".
- ▶ If the remaining constraints are polynomial-sized, the nucleolus can be computed in polynomial time.

Positive Results

- Prune constraints from Kopelowitz scheme which are "not necessary".
- ▶ If the remaining constraints are polynomial-sized, the nucleolus can be computed in polynomial time.
- ► If core is non-empty and there is some maximum b-matching of G[S] that is disconnected, S can be omitted.

▶ $b_v = 2$ for all $v \in A$ but $b_v = 2$ for at most k vertices of B.

- ▶ $b_v = 2$ for all $v \in A$ but $b_v = 2$ for at most k vertices of B.
 - ▶ Extension of the work from Bateni et al.

- b_v = 2 for all v ∈ A but b_v = 2 for at most k vertices of B.
 Extension of the work from Bateni et al.
- Then the largest connected component in a *b*-matching has cardinality at most 2k + 3.

- b_v = 2 for all v ∈ A but b_v = 2 for at most k vertices of B.
 Extension of the work from Bateni et al.
- Then the largest connected component in a *b*-matching has cardinality at most 2k + 3.
- ▶ Run Kopelowitz scheme with $O(|N|^{2k+3})$ constraints.

Non-simple b-Matching Games

• Suppose
$$b \equiv 2$$
.

- Suppose $b \equiv 2$.
- ▶ There is a maximum non-simple *b*-matching consisting of only parallel edges.

- Suppose $b \equiv 2$.
- ▶ There is a maximum non-simple *b*-matching consisting of only parallel edges.
- Run Kopelowitz scheme with $O(|N|^2)$ constraints.

• Computing the nucleolus for simple bipartite *b*-matching games when $b \leq 3$ is NP-hard.

- Computing the nucleolus for simple bipartite *b*-matching games when $b \leq 3$ is NP-hard.
- ▶ When $b \leq 2$, there are polynomial-time algorithms which compute the nucleolus for special cases.

- Computing the nucleolus for simple bipartite *b*-matching games when $b \leq 3$ is NP-hard.
- ▶ When $b \leq 2$, there are polynomial-time algorithms which compute the nucleolus for special cases.
- ▶ Can we compute the nucleolus for *b*-matching games in general graphs when $b \leq 2$ in polynomial time?

- Computing the nucleolus for simple bipartite *b*-matching games when $b \leq 3$ is NP-hard.
- ▶ When $b \leq 2$, there are polynomial-time algorithms which compute the nucleolus for special cases.
- ▶ Can we compute the nucleolus for *b*-matching games in general graphs when $b \leq 2$ in polynomial time?
- ▶ Is there a combinatorial algorithm to compute the nucleolus for *b*-matching games?

Thanks!