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» Setting: Finite collection N of
players, any subset S C N can
collaborate to generate revenue.

» Cooperative game: T' = (N, v).

» Player set: N ={1,2,...,n}.

» Characteristic function:
v: 2V - R with v(@) = 0.
» 1(S5) is revenue of coalition S.
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» What sort of coalitions will form?
» How will the total revenue be shared?
» Allocation: x € RN : 2(N) = v(N).

» Imputation: Subset of allocations such that z(i) > v({i})
forall i € N.
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» Instance of b-Matching: G, w, b.

» Players: Vertices.

» Characteristic Function: v(S) is the weight of a maximum

weight b-matching in G[S].
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> Fxcess: e(S,xz) = x(S) — v(9).

» “Satisfaction” of a coalition with
respect to x.

» Imputations: Non-negative
singleton excess.

» (Core: Subset of imputations such
that e(S,z) > 0 for all S C N.
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» 2012; Biro, Kern, Paulusma: Stable matchings with
payments (variant of stable marriage problem) correspond
to core allocations.

» 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in
bipartite b-matching games.

» The core of a combinatorial optimization game is

non-empty if and only if the fractional LP of the underlying
optimization problem has integral optimal solutions.

» The core can be empty, even for 1-matching games.

x(u,v) > viu,v) = 1
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» Alternative definition of “fairness”?

max e LP;
z(N) =v(N)
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» Alternative definition of “fairness”?

» [dea: Maximize the satisfaction among the worst-case
coalitions.

LP,

Vo £SCN
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» Why stop at the worst-case
coalitions?

» O(x) € R¥"~2: Entries are
e(S,z),o # S C N, sorted in
non-decreasing order.

» Nucleolus: (Unique) imputation
maximizing O(x)
lexicographically.
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» The nucleolus always exists.

» The nucleolus is unique.

» If core is non-empty, nucleolus is a member of the core.
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How can we compute the
nucleolus? LP; :maxe

Idea: Solve a sequence of
recursively defined linear z(N) =v(N)
programs LPy, k > 1.

Tight coalitions .7, C 2/V: For all z(S) > v(S)+e
optimal solutions (z, €) of LPj, Vo £SCN
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» How can we compute the
nucleolus? LPy,q :maxe

» Idea: Solve a sequence of

recursively defined linear z(S) = v(S) + €
programs LPy, k > 1. VSe g, 1<r<k
» Tight coalitions 7 C 2N For all
optimal solutions (z,€) of LPy, 2(8) > v(S) + ¢
z(S) =v(S) + €. L
» Define LPy1 by fixing new tight VS e 2V U Ir

constraints. r=1
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» Each LP has O (2‘N|) constraints.

» At least one coalition is added to Jj for every k.

» Solve O (2|N |) LPs until solution is unique.

» Can use Kopelowitz scheme to characterize the nucleolus.

» Maschler’s scheme: Variant of Kopelowitz scheme which
guarantees termination after O(|N|) iterations.

Introduction — Kopelowitz Scheme



Deciding whether an allocation is the nucleolus of an

unweighted bipartite 3-matching game is NP-hard, even in
graphs of maximum degree 7.

Computing the nucleolus of a bipartite b-matching game is
NP-hard, even when b < 3 and the underlying graph is sparse.
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Suppose G has bipartition N = AU B. Let k > 0 be a universal
constant.

» Suppose b, =2 for all v € A but b, = 2 for at most k
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G is polynomial-time computable.
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Let G = (N, E),w, and b < 2 be an instance of b-matching.
Suppose G has bipartition N = AU B. Let k > 0 be a universal
constant.

» Suppose b, =2 for all v € A but b, = 2 for at most k
vertices of B, then the nucleolus of the b-matching game in
G is polynomial-time computable.

» If b = 2, then the nucleolus of the non-simple b-matching
game on G is polynomial-time computable.
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1-Matching Games
» 2003; Kern, Paulusma: Posed the question of computing
the nucleolus as an open problem.

» 2008; Deng, Fang: Conjectured this problem to be
NP-hard.

» 2018; Kénemann, Pashkovich, Toth: The nucleolus is
computable in polynomial time.
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b-Matching Games

» 2010; Bateni et al: Polynomial-time algorithm to compute
the nucleolus in bipartite graphs when one side of the
bipartition is restricted to b, = 1.

> 2018; Biro et al: Testing core membership in bipartite
graphs is NP-hard if b = 3 and w = 1.

> 2019; Biro et al: Testing core non-emptiness, and thus
computing the nucleolus, is NP-hard when 6 < 3 and
w=1.
» Proof uses gadget graph with many odd cycles.

» Supports plausible conjecture that nucleolus is
polynomial-time computable for bipartite graphs.

» Surprisingly, our work answers this in the negative.

Introduction — Related Work
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» Cubic Subgraph Problem: Given a graph G = (N, E), does
it contain a subgraph where each vertex has degree 37

» 1984; Plesnik: Cubic subgraph is NP-hard even in bipartite
planar graphs of maximum degree 4.

» Two From Cubic Subgraph Problem: Given a graph
G = (N, E), does it contain a subgraph where every vertex
has degree 3 except for two vertices of degree 27
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Two From Cubic Subgraph is NP-hard even in bipartite graphs
of maximum degree 7.

» Builds on Plesnik’s proof.
» Requires significant innovation in the gadget graph.

» Relies on a piece of graph theory of individual interest.
» Let X be a regular subgraph of some graph G.

» Let Y be a highly vertex-connected subgraph of G.
» “Either V(Y) CV(X) or V(Y)NV(X) = 2"

Hardness — Overview
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» Let G = (N, E) be bipartite
instance of two from cubic
subgraph. £

Zu

Yu

Wy

» Create gadget graph
G* = (N*, E*) by “adding a
K33 to every vertex.

» The nucleolus of the unweighted
3-matching game on G* is “some
specific allocation” if and only if
G does not contain a two from
cubic subgraph.

Hardness — Overview
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» The maximum cardinality 3-matching on G* has size 3|N*|.
» G* remains bipartite, thus the core is non-empty.

» Biro et al. used gadget for hardness of core separation.
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» The maximum cardinality 3-matching on G* has size 3|N*|.

» G* remains bipartite, thus the core is non-empty.

» Biro et al. used gadget for hardness of core separation.

» “some allocation” resides in the core of game on G* if and
only if G has no cubic subgraph.
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T = % is the nucleolus of the 3-matching game on G* if and only
if G does not contain a two from cubic subgraph.
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» Let (z*,€x) be an optimal solution to each LPj of
Kopelowitz scheme.

max € LP;
z(S) =v(S) + e vSe J,0<r<k-1
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2(S) > v(S) + ¢ vseJg\ U
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» Let (z*,€x) be an optimal solution to each LPj of
Kopelowitz scheme.

» If there is no two from cubic subgraph, ¢; = 0, e = % and
f— 5 is the unique optimal solution to LP5.

» If there is a two from cubic subgraph, ¢ =0 and = = % is

not optimal in LPs.

max € LP;
z(S) =v(S) + e vSe J,0<r<k-1
k—1
2(S) > v(S) + ¢ vseJg\ U

r=0
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e1=0
» Core is non-empty for bipartite graphs, so e; > 0.

> €1 S m*(u7vu;w11,7xuayu;zu) - V(K373) =0.
> > uene(Kss,27) =e(N*,z7) = 0.
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e1=0

» Core is non-empty for bipartite graphs, so e; > 0.

*
> e <z (uavu;wuamu;yu;zu) -

> > ey (K3 3,2%) =e(N*,2*) = 0.

U(K373) =0.

» The only coalitions fixed in LP; are the union K33 gadgets.
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Since z(N*) = 3|N*|, e2 < minyen~ 2*(v) <
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» Since z(N*) = %|N*|, €2 < minyey+ x*(v) < %

» Minimum excess coalitions not fixed in LP; contain the

singletons and so €2 = %

AN

AN

Zu

N

Ty

Wy

NN

N

u

N

Uy

<

Hardness

The Reduction



3
6225

» Since z(N*) = %|N*|, €2 < minyey+ x*(v) < %

» Minimum excess coalitions not fixed in LP; contain the

singletons and so e; = 3

5.

» Uses fact that G does not contain a two from cubic

subgraph.
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Converse when G does contain a two from cubic subgraph is
similar.

> 61:()
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Converse when G does contain a two from cubic subgraph is
similar.

> 61:()

» Construct allocation which is feasible in L P, with strictly

. . _ 3
greater objective than r = 3.
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Let G = (N, E),w, and b < 2 be an instance of b-matching.
Suppose G has bipartition N = AU B. Let k > 0 be a universal
constant.

» Suppose b, =2 for all v € A but b, = 2 for at most k
vertices of B, then the nucleolus of the b-matching game in
G is polynomial-time computable.

» If b = 2, then the nucleolus of the non-simple b-matching
game on G is polynomial-time computable.
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» Prune constraints from Kopelowitz scheme which are “not
necessary”.

» If the remaining constraints are polynomial-sized, the
nucleolus can be computed in polynomial time.

» If core is non-empty and there is some maximum
b-matching of G[S] that is disconnected, S can be omitted.
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» b, =2 for all v € A but b, = 2 for at most k vertices of B.
» Extension of the work from Bateni et al.

» Then the largest connected component in a b-matching has
cardinality at most 2k + 3.

» Run Kopelowitz scheme with O (]N ]2k+3) constraints.
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» Suppose b = 2.

» There is a maximum non-simple b-matching consisting of
only parallel edges.
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» Suppose b = 2.

» There is a maximum non-simple b-matching consisting of
only parallel edges.

» Run Kopelowitz scheme with O (|N|?) constraints.

w=1
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» Computing the nucleolus for simple bipartite b-matching
games when b < 3 is NP-hard.

» When b < 2, there are polynomial-time algorithms which
compute the nucleolus for special cases.

» (Can we compute the nucleolus for b-matching games in
general graphs when b < 2 in polynomial time?

» Is there a combinatorial algorithm to compute the
nucleolus for b-matching games?

Conclusion



Thanks!
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