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Cooperative Game Theory

I Setting: Finite collection N of
players, any subset S ⊆ N can
collaborate to generate revenue.

I Cooperative game: Γ = (N, ν).
I Player set: N = {1, 2, . . . , n}.
I Characteristic function:
ν : 2N → R with ν(∅) = 0.

I ν(S) is revenue of coalition S.
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Cooperative Game Theory

I What sort of coalitions will form?

I How will the total revenue be shared?
I Allocation: x ∈ RN : x(N) = ν(N).
I Imputation: Subset of allocations such that x(i) ≥ ν({i})

for all i ∈ N .
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(Non-simple) b-Matching Problem

I Graph G = (N,E).

I Edge weights w : E → R.
I Vertex-incidence capacity b : N → Z+.

b ≡ 2

w ≡ 1
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(Non-simple) b-Matching Problem

I Graph G = (N,E).
I Edge weights w : E → R.
I Vertex-incidence capacity b : N → Z+.
I Find a (multi-)set of edges M maximizing w(M) such that

each v ∈ N is in incident to at most bv edges of M .

b ≡ 2

w ≡ 1
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b-Matching Games

I Instance of b-Matching: G,w, b.

I Players: Vertices.
I Characteristic Function: ν(S) is the weight of a maximum

weight b-matching in G[S].

b ≡ 2

w ≡ 1

ν = 4 ν = 2
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Core

I Excess: e(S, x) := x(S)− ν(S).

I “Satisfaction” of a coalition with
respect to x.

I Imputations: Non-negative
singleton excess.

I Core: Subset of imputations such
that e(S, x) ≥ 0 for all S ⊆ N .
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Core

I 2012; Biro, Kern, Paulusma: Stable matchings with
payments (variant of stable marriage problem) correspond
to core allocations.

I 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in
bipartite b-matching games.

I The core of a combinatorial optimization game is
non-empty if and only if the fractional LP of the underlying
optimization problem has integral optimal solutions.

I The core can be empty, even for 1-matching games.

b ≡ 1

w ≡ 1
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I 2012; Biro, Kern, Paulusma: Stable matchings with
payments (variant of stable marriage problem) correspond
to core allocations.

I 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in
bipartite b-matching games.
I The core of a combinatorial optimization game is

non-empty if and only if the fractional LP of the underlying
optimization problem has integral optimal solutions.

I The core can be empty, even for 1-matching games.

b ≡ 1

w ≡ 1

u

v w

x(u, v) ≥ ν(u, v) = 1
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Nucleolus

I Alternative definition of “fairness”?

I Idea: Maximize the satisfaction among the worst-case
coalitions.

max ε LP1

x(N) = ν(N)
x(S) ≥ ν(S) + ε ∀∅ 6= S ( N
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Nucleolus

I Why stop at the worst-case
coalitions?

I Θ(x) ∈ R2n−2: Entries are
e(S, x),∅ 6= S ⊂ N , sorted in
non-decreasing order.

I Nucleolus: (Unique) imputation
maximizing Θ(x)
lexicographically.
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Nucleolus

I The nucleolus always exists.

I The nucleolus is unique.
I If core is non-empty, nucleolus is a member of the core.
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Kopelowitz Scheme

I How can we compute the
nucleolus?

I Idea: Solve a sequence of
recursively defined linear
programs LPk, k ≥ 1.

I Tight coalitions Jk ⊆ 2N : For all
optimal solutions (x, εk) of LPk,
x(S) = ν(S) + εk.

I Define LPk+1 by fixing new tight
constraints.

LP1 : max ε

x(N) = ν(N)

x(S) ≥ ν(S) + ε

∀∅ 6= S ( N
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I How can we compute the
nucleolus?

I Idea: Solve a sequence of
recursively defined linear
programs LPk, k ≥ 1.

I Tight coalitions Jk ⊆ 2N : For all
optimal solutions (x, εk) of LPk,
x(S) = ν(S) + εk.

I Define LPk+1 by fixing new tight
constraints.

LPk+1 : max ε

x(S) = ν(S) + εk

∀S ∈ Jr, 1 ≤ r ≤ k

x(S) ≥ ν(S) + ε

∀S ∈ 2N \
k⋃

r=1
Jr
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Kopelowitz Scheme

I Each LP has O
(
2|N |

)
constraints.

I At least one coalition is added to Jk for every k.

I Solve O
(
2|N |

)
LPs until solution is unique.

I Can use Kopelowitz scheme to characterize the nucleolus.
I Maschler’s scheme: Variant of Kopelowitz scheme which

guarantees termination after O(|N |) iterations.
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Main Results

Theorem [Könemann, Toth, Zhou ’21]

Deciding whether an allocation is the nucleolus of an
unweighted bipartite 3-matching game is NP-hard, even in
graphs of maximum degree 7.

Theorem [Könemann, Toth, Zhou ’21]

Computing the nucleolus of a bipartite b-matching game is
NP-hard, even when b ≤ 3 and the underlying graph is sparse.
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Positive Results

Theorem [Könemann, Toth, Zhou ’21]

Let G = (N,E), w, and b ≤ 2 be an instance of b-matching.
Suppose G has bipartition N = A ∪B. Let k ≥ 0 be a universal
constant.
I Suppose bv = 2 for all v ∈ A but bv = 2 for at most k

vertices of B, then the nucleolus of the b-matching game in
G is polynomial-time computable.

I If b ≡ 2, then the nucleolus of the non-simple b-matching
game on G is polynomial-time computable.
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History & Related Work

1-Matching Games
I 2003; Kern, Paulusma: Posed the question of computing

the nucleolus as an open problem.

I 2008; Deng, Fang: Conjectured this problem to be
NP-hard.

I 2018; Könemann, Pashkovich, Toth: The nucleolus is
computable in polynomial time.
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History & Related Work

b-Matching Games
I 2010; Bateni et al: Polynomial-time algorithm to compute

the nucleolus in bipartite graphs when one side of the
bipartition is restricted to bv = 1.

I 2018; Biro et al: Testing core membership in bipartite
graphs is NP-hard if b ≡ 3 and w ≡ 1.

I 2019; Biro et al: Testing core non-emptiness, and thus
computing the nucleolus, is NP-hard when b ≤ 3 and
w ≡ 1.

I Proof uses gadget graph with many odd cycles.
I Supports plausible conjecture that nucleolus is

polynomial-time computable for bipartite graphs.
I Surprisingly, our work answers this in the negative.
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Hardness Proof Overview
I Cubic Subgraph Problem: Given a graph G = (N,E), does

it contain a subgraph where each vertex has degree 3?

I 1984; Plesnik: Cubic subgraph is NP-hard even in bipartite
planar graphs of maximum degree 4.

I Two From Cubic Subgraph Problem: Given a graph
G = (N,E), does it contain a subgraph where every vertex
has degree 3 except for two vertices of degree 2?
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Hardness Proof Overview

Theorem [Könemann, Toth, Zhou ’21]

Two From Cubic Subgraph is NP-hard even in bipartite graphs
of maximum degree 7.

I Builds on Plesnik’s proof.

I Requires significant innovation in the gadget graph.
I Relies on a piece of graph theory of individual interest.

I Let X be a regular subgraph of some graph G.
I Let Y be a highly vertex-connected subgraph of G.
I “Either V (Y ) ⊆ V (X) or V (Y ) ∩ V (X) = ∅”.
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I Relies on a piece of graph theory of individual interest.
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Hardness Proof Overview

I Let G = (N,E) be bipartite
instance of two from cubic
subgraph.

I Create gadget graph
G∗ = (N∗, E∗) by “adding a
K3,3” to every vertex.

I The nucleolus of the unweighted
3-matching game on G∗ is “some
specific allocation” if and only if
G does not contain a two from
cubic subgraph.
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Gadget Graph

I The maximum cardinality 3-matching on G∗ has size 3
2 |N

∗|.

I G∗ remains bipartite, thus the core is non-empty.
I Biro et al. used gadget for hardness of core separation.

I “some allocation” resides in the core of game on G∗ if and
only if G has no cubic subgraph.
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The Reduction

Theorem [Könemann, Toth, Zhou ’21]

x ≡ 3
2 is the nucleolus of the 3-matching game on G∗ if and only

if G does not contain a two from cubic subgraph.
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The Reduction

I Let (x∗, εk) be an optimal solution to each LPk of
Kopelowitz scheme.

I If there is no two from cubic subgraph, ε1 = 0, ε2 = 3
2 , and

x∗ ≡ 3
2 is the unique optimal solution to LP2.

I If there is a two from cubic subgraph, ε1 = 0 and x ≡ 3
2 is

not optimal in LP2.

max ε LPk

x(S) = ν(S) + εr ∀S ∈ Jr, 0 ≤ r ≤ k − 1

x(S) ≥ ν(S) + ε ∀S ∈ J \
k−1⋃
r=0
Jr
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Case I: No Two From Cubic Subgraph

ε1 = 0
I Core is non-empty for bipartite graphs, so ε1 ≥ 0.

I ε1 ≤ x∗(u, vu, wu, xu, yu, zu)− ν(K3,3) = 0.

I
∑

u∈N e(K3,3, x
∗) = e(N∗, x∗) = 0.

I The only coalitions fixed in LP1 are the union K3,3 gadgets.
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Case I: No Two From Cubic Subgraph

ε2 = 3
2

I Since x(N∗) = 3
2 |N

∗|, ε2 ≤ minv∈N∗ x∗(v) ≤ 3
2 .

I Minimum excess coalitions not fixed in LP1 contain the
singletons and so ε2 = 3

2 .

I Uses fact that G does not contain a two from cubic
subgraph.
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Case II: Contains Two From Cubic Subgraph

Converse when G does contain a two from cubic subgraph is
similar.
I ε1 = 0

I Construct allocation which is feasible in LP2 with strictly
greater objective than x ≡ 3

2 .
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Positive Results

Theorem [Könemann, Toth, Zhou ’21]

Let G = (N,E), w, and b ≤ 2 be an instance of b-matching.
Suppose G has bipartition N = A ∪B. Let k ≥ 0 be a universal
constant.
I Suppose bv = 2 for all v ∈ A but bv = 2 for at most k

vertices of B, then the nucleolus of the b-matching game in
G is polynomial-time computable.

I If b ≡ 2, then the nucleolus of the non-simple b-matching
game on G is polynomial-time computable.
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Positive Results

I Prune constraints from Kopelowitz scheme which are “not
necessary”.

I If the remaining constraints are polynomial-sized, the
nucleolus can be computed in polynomial time.

I If core is non-empty and there is some maximum
b-matching of G[S] that is disconnected, S can be omitted.

b ≡ 2

w ≡ 1

ν = 4 ν = 2
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Simple b-Matching Games

I bv = 2 for all v ∈ A but bv = 2 for at most k vertices of B.

I Extension of the work from Bateni et al.

I Then the largest connected component in a b-matching has
cardinality at most 2k + 3.

I Run Kopelowitz scheme with O
(
|N |2k+3

)
constraints.
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Non-simple b-Matching Games

I Suppose b ≡ 2.

I There is a maximum non-simple b-matching consisting of
only parallel edges.

I Run Kopelowitz scheme with O
(
|N |2

)
constraints.

b ≡ 2

w ≡ 1
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Conclusion

I Computing the nucleolus for simple bipartite b-matching
games when b ≤ 3 is NP-hard.

I When b ≤ 2, there are polynomial-time algorithms which
compute the nucleolus for special cases.

I Can we compute the nucleolus for b-matching games in
general graphs when b ≤ 2 in polynomial time?

I Is there a combinatorial algorithm to compute the
nucleolus for b-matching games?
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Thanks!

Nucleolus Computation of b-Matching Games Conclusion
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