On the Complexity of Nucleolus Computation for Bipartite b-Matching Games

Jochen Könemann, Justin Toth, Felix Zhou

Cooperative Game Theory

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.

Cooperative Game Theory

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma=(N, \nu)$.

Cooperative Game Theory

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma=(N, \nu)$.
- Player set: $N=\{1,2, \ldots, n\}$.

Cooperative Game Theory

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma=(N, \nu)$.

- Player set: $N=\{1,2, \ldots, n\}$.
- Characteristic function: $\nu: 2^{N} \rightarrow \mathbb{R}$ with $\nu(\varnothing)=0$.

Cooperative Game Theory

- Setting: Finite collection N of players, any subset $S \subseteq N$ can collaborate to generate revenue.
- Cooperative game: $\Gamma=(N, \nu)$.
- Player set: $N=\{1,2, \ldots, n\}$.

- Characteristic function: $\nu: 2^{N} \rightarrow \mathbb{R}$ with $\nu(\varnothing)=0$.
- $\nu(S)$ is revenue of coalition S.

Cooperative Game Theory

- What sort of coalitions will form?

Cooperative Game Theory

- What sort of coalitions will form?
- How will the total revenue be shared?

Cooperative Game Theory

- What sort of coalitions will form?
- How will the total revenue be shared?
- Allocation: $x \in \mathbb{R}^{N}: x(N)=\nu(N)$.

Cooperative Game Theory

- What sort of coalitions will form?
- How will the total revenue be shared?
- Allocation: $x \in \mathbb{R}^{N}: x(N)=\nu(N)$.
- Imputation: Subset of allocations such that $x(i) \geq \nu(\{i\})$ for all $i \in N$.

(Non-simple) b-Matching Problem

- Graph $G=(N, E)$.

(Non-simple) b-Matching Problem

- Graph $G=(N, E)$.
- Edge weights $w: E \rightarrow \mathbb{R}$.

$$
w \equiv 1
$$

$$
b \equiv 2
$$

(Non-simple) b-Matching Problem

- Graph $G=(N, E)$.
- Edge weights $w: E \rightarrow \mathbb{R}$.
- Vertex-incidence capacity $b: N \rightarrow \mathbb{Z}_{+}$.

$$
w \equiv 1
$$

$$
b \equiv 2
$$

(Non-simple) b-Matching Problem

- Graph $G=(N, E)$.
- Edge weights $w: E \rightarrow \mathbb{R}$.
- Vertex-incidence capacity $b: N \rightarrow \mathbb{Z}_{+}$.
- Find a (multi-)set of edges M maximizing $w(M)$ such that each $v \in N$ is in incident to at most b_{v} edges of M.

$$
w \equiv 1
$$

$$
b \equiv 2
$$

(Non-simple) b-Matching Problem

- Graph $G=(N, E)$.
- Edge weights $w: E \rightarrow \mathbb{R}$.
- Vertex-incidence capacity $b: N \rightarrow \mathbb{Z}_{+}$.
- Find a (multi-)set of edges M maximizing $w(M)$ such that each $v \in N$ is in incident to at most b_{v} edges of M.

$$
w \equiv 1
$$

$$
b \equiv 2
$$

b-Matching Games

- Instance of b-Matching: G, w, b.

$$
\nu=4
$$

b-Matching Games

- Instance of b-Matching: G, w, b.
- Players: Vertices.

$$
\nu=4
$$

b-Matching Games

- Instance of b-Matching: G, w, b.
- Players: Vertices.
- Characteristic Function: $\nu(S)$ is the weight of a maximum weight b-matching in $G[S]$.

$w \equiv 1$
$\nu=2$

Core

- Excess: $e(S, x):=x(S)-\nu(S)$.

Core

- Excess: $e(S, x):=x(S)-\nu(S)$.
- "Satisfaction" of a coalition with respect to x.

Core

- Excess: $e(S, x):=x(S)-\nu(S)$.
- "Satisfaction" of a coalition with respect to x.
- Imputations: Non-negative singleton excess.

Core

- Excess: $e(S, x):=x(S)-\nu(S)$.
- "Satisfaction" of a coalition with respect to x.
- Imputations: Non-negative singleton excess.

- Core: Subset of imputations such that $e(S, x) \geq 0$ for all $S \subseteq N$.

Core

- 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.

Core

- 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.
- 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in bipartite b-matching games.

Core

- 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.
- 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in bipartite b-matching games.
- The core of a combinatorial optimization game is non-empty if and only if the fractional LP of the underlying optimization problem has integral optimal solutions.

Core

- 2012; Biro, Kern, Paulusma: Stable matchings with payments (variant of stable marriage problem) correspond to core allocations.
- 1999; Deng, Ibaraki, Nagamochi: The core is non-empty in bipartite b-matching games.
- The core of a combinatorial optimization game is non-empty if and only if the fractional LP of the underlying optimization problem has integral optimal solutions.
- The core can be empty, even for 1-matching games.

$$
x(u, v) \geq \nu(u, v)=1 . \ldots \underbrace{u}
$$

Nucleolus

- Alternative definition of "fairness"?

$$
\begin{array}{ll}
\max \epsilon & L P_{1} \\
x(N)=\nu(N) & \forall \varnothing \neq S \subsetneq N
\end{array}
$$

Nucleolus

- Alternative definition of "fairness"?
- Idea: Maximize the satisfaction among the worst-case coalitions.

$$
\begin{array}{ll}
\max \epsilon & L P_{1} \\
x(N)=\nu(N) & \forall \varnothing \neq S \subsetneq N
\end{array}
$$

Nucleolus

- Why stop at the worst-case coalitions?

Nucleolus

- Why stop at the worst-case coalitions?
- $\Theta(x) \in \mathbb{R}^{2^{n}-2}$: Entries are $e(S, x), \varnothing \neq S \subset N$, sorted in non-decreasing order.

Nucleolus

- Why stop at the worst-case coalitions?
- $\Theta(x) \in \mathbb{R}^{2^{n}-2}$: Entries are $e(S, x), \varnothing \neq S \subset N$, sorted in non-decreasing order.

- Nucleolus: (Unique) imputation maximizing $\Theta(x)$ lexicographically.

Nucleolus

- The nucleolus always exists.

Nucleolus

- The nucleolus always exists.
- The nucleolus is unique.

Nucleolus

- The nucleolus always exists.
- The nucleolus is unique.
- If core is non-empty, nucleolus is a member of the core.

Kopelowitz Scheme

- How can we compute the nucleolus?

$$
\begin{aligned}
& L P_{1}: \max \epsilon \\
& x(N)=\nu(N) \\
& x(S) \geq \nu(S)+\epsilon \\
& \quad \forall \varnothing \neq S \subsetneq N
\end{aligned}
$$

Kopelowitz Scheme

- How can we compute the nucleolus?

$$
L P_{1}: \max \epsilon
$$

- Idea: Solve a sequence of recursively defined linear programs $L P_{k}, k \geq 1$.

$$
x(N)=\nu(N)
$$

$$
\begin{aligned}
& x(S) \geq \nu(S)+\epsilon \\
& \quad \forall \varnothing \neq S \subsetneq N
\end{aligned}
$$

Kopelowitz Scheme

- How can we compute the nucleolus?
- Idea: Solve a sequence of recursively defined linear programs $L P_{k}, k \geq 1$.
- Tight coalitions $\mathcal{J}_{k} \subseteq 2^{N}$: For all optimal solutions $\left(x, \epsilon_{k}\right)$ of $L P_{k}$,

$$
L P_{1}: \max \epsilon
$$

$$
x(N)=\nu(N)
$$

$$
x(S)=\nu(S)+\epsilon_{k}
$$

$$
\begin{aligned}
& x(S) \geq \nu(S)+\epsilon \\
& \forall \varnothing \neq S \subsetneq N
\end{aligned}
$$

Kopelowitz Scheme

- How can we compute the nucleolus?
- Idea: Solve a sequence of recursively defined linear programs $L P_{k}, k \geq 1$.

$$
\begin{aligned}
& x(S)=\nu(S)+\epsilon_{k} \\
& \quad \forall S \in \mathcal{J}_{r}, 1 \leq r \leq k
\end{aligned}
$$

- Tight coalitions $\mathcal{J}_{k} \subseteq 2^{N}$: For all optimal solutions $\left(x, \epsilon_{k}\right)$ of $L P_{k}$, $x(S)=\nu(S)+\epsilon_{k}$.
- Define $L P_{k+1}$ by fixing new tight constraints.

$$
\begin{aligned}
& x(S) \geq \nu(S)+\epsilon \\
& \quad \forall S \in 2^{N} \backslash \bigcup_{r=1}^{k} \mathcal{J}_{r}
\end{aligned}
$$

Kopelowitz Scheme

- Each LP has $O\left(2^{|N|}\right)$ constraints.

Kopelowitz Scheme

- Each LP has $O\left(2^{|N|}\right)$ constraints.
- At least one coalition is added to \mathcal{J}_{k} for every k.

Kopelowitz Scheme

- Each LP has $O\left(2^{|N|}\right)$ constraints.
- At least one coalition is added to \mathcal{J}_{k} for every k.
- Solve $O\left(2^{|N|}\right)$ LPs until solution is unique.

Kopelowitz Scheme

- Each LP has $O\left(2^{|N|}\right)$ constraints.
- At least one coalition is added to \mathcal{J}_{k} for every k.
- Solve $O\left(2^{|N|}\right)$ LPs until solution is unique.
- Can use Kopelowitz scheme to characterize the nucleolus.

Kopelowitz Scheme

- Each LP has $O\left(2^{|N|}\right)$ constraints.
- At least one coalition is added to \mathcal{J}_{k} for every k.
- Solve $O\left(2^{|N|}\right)$ LPs until solution is unique.
- Can use Kopelowitz scheme to characterize the nucleolus.
- Maschler's scheme: Variant of Kopelowitz scheme which guarantees termination after $O(|N|)$ iterations.

Main Results

Theorem [Könemann, Toth, Zhou '21]

Deciding whether an allocation is the nucleolus of an unweighted bipartite 3-matching game is NP-hard, even in graphs of maximum degree 7 .

Theorem [Könemann, Toth, Zhou '21]

Computing the nucleolus of a bipartite b-matching game is NP-hard, even when $b \leq 3$ and the underlying graph is sparse.

Positive Results

Theorem [Könemann, Toth, Zhou '21]

Let $G=(N, E), w$, and $b \leq 2$ be an instance of b-matching. Suppose G has bipartition $N=A \cup B$. Let $k \geq 0$ be a universal constant.

- Suppose $b_{v}=2$ for all $v \in A$ but $b_{v}=2$ for at most k vertices of B, then the nucleolus of the b-matching game in G is polynomial-time computable.

Positive Results

Theorem [Könemann, Toth, Zhou '21]

Let $G=(N, E), w$, and $b \leq 2$ be an instance of b-matching. Suppose G has bipartition $N=A \cup B$. Let $k \geq 0$ be a universal constant.

- Suppose $b_{v}=2$ for all $v \in A$ but $b_{v}=2$ for at most k vertices of B, then the nucleolus of the b-matching game in G is polynomial-time computable.
- If $b \equiv 2$, then the nucleolus of the non-simple b-matching game on G is polynomial-time computable.

History \& Related Work

1-Matching Games

- 2003; Kern, Paulusma: Posed the question of computing the nucleolus as an open problem.

History \& Related Work

1-Matching Games

- 2003; Kern, Paulusma: Posed the question of computing the nucleolus as an open problem.
- 2008; Deng, Fang: Conjectured this problem to be NP-hard.

History \& Related Work

1-Matching Games

- 2003; Kern, Paulusma: Posed the question of computing the nucleolus as an open problem.
- 2008; Deng, Fang: Conjectured this problem to be NP-hard.
- 2018; Könemann, Pashkovich, Toth: The nucleolus is computable in polynomial time.

History \& Related Work

b-Matching Games

- 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_{v}=1$.

History \& Related Work

b-Matching Games

- 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_{v}=1$.
- 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.

History \& Related Work

b-Matching Games

- 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_{v}=1$.
- 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.

History \& Related Work

b-Matching Games

- 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_{v}=1$.
- 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.
- Proof uses gadget graph with many odd cycles.

History \& Related Work

b-Matching Games

- 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_{v}=1$.
- 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.
- Proof uses gadget graph with many odd cycles.
- Supports plausible conjecture that nucleolus is polynomial-time computable for bipartite graphs.

History \& Related Work

b-Matching Games

- 2010; Bateni et al: Polynomial-time algorithm to compute the nucleolus in bipartite graphs when one side of the bipartition is restricted to $b_{v}=1$.
- 2018; Biro et al: Testing core membership in bipartite graphs is NP-hard if $b \equiv 3$ and $w \equiv 1$.
- 2019; Biro et al: Testing core non-emptiness, and thus computing the nucleolus, is NP-hard when $b \leq 3$ and $w \equiv 1$.
- Proof uses gadget graph with many odd cycles.
- Supports plausible conjecture that nucleolus is polynomial-time computable for bipartite graphs.
- Surprisingly, our work answers this in the negative.

Hardness Proof Overview

- Cubic Subgraph Problem: Given a graph $G=(N, E)$, does it contain a subgraph where each vertex has degree 3 ?

Hardness Proof Overview

- Cubic Subgraph Problem: Given a graph $G=(N, E)$, does it contain a subgraph where each vertex has degree 3?
- 1984; Plesnik: Cubic subgraph is NP-hard even in bipartite planar graphs of maximum degree 4 .

Hardness Proof Overview

- Cubic Subgraph Problem: Given a graph $G=(N, E)$, does it contain a subgraph where each vertex has degree 3?
- 1984; Plesnik: Cubic subgraph is NP-hard even in bipartite planar graphs of maximum degree 4.
- Two From Cubic Subgraph Problem: Given a graph $G=(N, E)$, does it contain a subgraph where every vertex has degree 3 except for two vertices of degree 2 ?

Hardness Proof Overview

Theorem [Könemann, Toth, Zhou '21]

Two From Cubic Subgraph is NP-hard even in bipartite graphs of maximum degree 7 .

- Builds on Plesnik's proof.

Hardness Proof Overview

Theorem [Könemann, Toth, Zhou '21]

Two From Cubic Subgraph is NP-hard even in bipartite graphs of maximum degree 7 .

- Builds on Plesnik's proof.
- Requires significant innovation in the gadget graph.

Hardness Proof Overview

Theorem [Könemann, Toth, Zhou '21]

Two From Cubic Subgraph is NP-hard even in bipartite graphs of maximum degree 7 .

- Builds on Plesnik's proof.
- Requires significant innovation in the gadget graph.
- Relies on a piece of graph theory of individual interest.

Hardness Proof Overview

Theorem [Könemann, Toth, Zhou '21]

Two From Cubic Subgraph is NP-hard even in bipartite graphs of maximum degree 7 .

- Builds on Plesnik's proof.
- Requires significant innovation in the gadget graph.
- Relies on a piece of graph theory of individual interest.
- Let X be a regular subgraph of some graph G.

Hardness Proof Overview

Theorem [Könemann, Toth, Zhou '21]

Two From Cubic Subgraph is NP-hard even in bipartite graphs of maximum degree 7 .

- Builds on Plesnik's proof.
- Requires significant innovation in the gadget graph.
- Relies on a piece of graph theory of individual interest.
- Let X be a regular subgraph of some graph G.
- Let Y be a highly vertex-connected subgraph of G.

Hardness Proof Overview

Theorem [Könemann, Toth, Zhou '21]

Two From Cubic Subgraph is NP-hard even in bipartite graphs of maximum degree 7 .

- Builds on Plesnik's proof.
- Requires significant innovation in the gadget graph.
- Relies on a piece of graph theory of individual interest.
- Let X be a regular subgraph of some graph G.
- Let Y be a highly vertex-connected subgraph of G.
- "Either $V(Y) \subseteq V(X)$ or $V(Y) \cap V(X)=\varnothing$ ".

Hardness Proof Overview

- Let $G=(N, E)$ be bipartite instance of two from cubic subgraph.

Hardness Proof Overview

- Let $G=(N, E)$ be bipartite instance of two from cubic subgraph.
- Create gadget graph $G^{*}=\left(N^{*}, E^{*}\right)$ by "adding a $K_{3,3}$ " to every vertex.

Hardness Proof Overview

- Let $G=(N, E)$ be bipartite instance of two from cubic subgraph.
- Create gadget graph $G^{*}=\left(N^{*}, E^{*}\right)$ by "adding a $K_{3,3}$ " to every vertex.
- The nucleolus of the unweighted 3 -matching game on G^{*} is "some specific allocation" if and only if G does not contain a two from cubic subgraph.

Gadget Graph

- The maximum cardinality 3 -matching on G^{*} has size $\frac{3}{2}\left|N^{*}\right|$.

Gadget Graph

- The maximum cardinality 3 -matching on G^{*} has size $\frac{3}{2}\left|N^{*}\right|$.
- G^{*} remains bipartite, thus the core is non-empty.

Gadget Graph

- The maximum cardinality 3 -matching on G^{*} has size $\frac{3}{2}\left|N^{*}\right|$.
- G^{*} remains bipartite, thus the core is non-empty.
- Biro et al. used gadget for hardness of core separation.

Gadget Graph

- The maximum cardinality 3 -matching on G^{*} has size $\frac{3}{2}\left|N^{*}\right|$.
- G^{*} remains bipartite, thus the core is non-empty.
- Biro et al. used gadget for hardness of core separation.
- "some allocation" resides in the core of game on G^{*} if and only if G has no cubic subgraph.

The Reduction

Theorem [Könemann, Toth, Zhou '21]

$x \equiv \frac{3}{2}$ is the nucleolus of the 3 -matching game on G^{*} if and only if G does not contain a two from cubic subgraph.

The Reduction

- Let $\left(x^{*}, \epsilon_{k}\right)$ be an optimal solution to each $L P_{k}$ of Kopelowitz scheme.

$$
\begin{array}{cl}
\max \epsilon & L P_{k} \\
x(S)=\nu(S)+\epsilon_{r} & \forall S \in \mathcal{J}_{r}, 0 \leq r \leq k-1 \\
x(S) \geq \nu(S)+\epsilon & \forall S \in \mathcal{J} \backslash \bigcup_{r=0}^{k-1} \mathcal{J}_{r}
\end{array}
$$

The Reduction

- Let $\left(x^{*}, \epsilon_{k}\right)$ be an optimal solution to each $L P_{k}$ of Kopelowitz scheme.
- If there is no two from cubic subgraph, $\epsilon_{1}=0, \epsilon_{2}=\frac{3}{2}$, and $x^{*} \equiv \frac{3}{2}$ is the unique optimal solution to $L P_{2}$.

$$
\begin{array}{cl}
\max \epsilon & L P_{k} \\
x(S)=\nu(S)+\epsilon_{r} & \forall S \in \mathcal{J}_{r}, 0 \leq r \leq k-1 \\
x(S) \geq \nu(S)+\epsilon & \forall S \in \mathcal{J} \backslash \bigcup_{r=0}^{k-1} \mathcal{J}_{r}
\end{array}
$$

The Reduction

- Let $\left(x^{*}, \epsilon_{k}\right)$ be an optimal solution to each $L P_{k}$ of Kopelowitz scheme.
- If there is no two from cubic subgraph, $\epsilon_{1}=0, \epsilon_{2}=\frac{3}{2}$, and $x^{*} \equiv \frac{3}{2}$ is the unique optimal solution to $L P_{2}$.
- If there is a two from cubic subgraph, $\epsilon_{1}=0$ and $x \equiv \frac{3}{2}$ is not optimal in $L P_{2}$.

$$
\begin{array}{cl}
\max \epsilon & L P_{k} \\
x(S)=\nu(S)+\epsilon_{r} & \forall S \in \mathcal{J}_{r}, 0 \leq r \leq k-1 \\
x(S) \geq \nu(S)+\epsilon & \forall S \in \mathcal{J} \backslash \bigcup_{r=0}^{k-1} \mathcal{J}_{r}
\end{array}
$$

Case I: No Two From Cubic Subgraph

$\epsilon_{1}=0$

- Core is non-empty for bipartite graphs, so $\epsilon_{1} \geq 0$.

Case I: No Two From Cubic Subgraph

$\epsilon_{1}=0$

- Core is non-empty for bipartite graphs, so $\epsilon_{1} \geq 0$.
- $\epsilon_{1} \leq x^{*}\left(u, v_{u}, w_{u}, x_{u}, y_{u}, z_{u}\right)-\nu\left(K_{3,3}\right)=0$.

Case I: No Two From Cubic Subgraph

$\epsilon_{1}=0$

- Core is non-empty for bipartite graphs, so $\epsilon_{1} \geq 0$.
- $\epsilon_{1} \leq x^{*}\left(u, v_{u}, w_{u}, x_{u}, y_{u}, z_{u}\right)-\nu\left(K_{3,3}\right)=0$.
- $\sum_{u \in N} e\left(K_{3,3}, x^{*}\right)=e\left(N^{*}, x^{*}\right)=0$.

Case I: No Two From Cubic Subgraph

$\epsilon_{1}=0$

- Core is non-empty for bipartite graphs, so $\epsilon_{1} \geq 0$.
- $\epsilon_{1} \leq x^{*}\left(u, v_{u}, w_{u}, x_{u}, y_{u}, z_{u}\right)-\nu\left(K_{3,3}\right)=0$.
- $\sum_{u \in N} e\left(K_{3,3}, x^{*}\right)=e\left(N^{*}, x^{*}\right)=0$.
- The only coalitions fixed in $L P_{1}$ are the union $K_{3,3}$ gadgets.

Case I: No Two From Cubic Subgraph

$\epsilon_{2}=\frac{3}{2}$

- Since $x\left(N^{*}\right)=\frac{3}{2}\left|N^{*}\right|, \epsilon_{2} \leq \min _{v \in N^{*}} x^{*}(v) \leq \frac{3}{2}$.

Case I: No Two From Cubic Subgraph

$\epsilon_{2}=\frac{3}{2}$

- Since $x\left(N^{*}\right)=\frac{3}{2}\left|N^{*}\right|, \epsilon_{2} \leq \min _{v \in N^{*}} x^{*}(v) \leq \frac{3}{2}$.
- Minimum excess coalitions not fixed in $L P_{1}$ contain the singletons and so $\epsilon_{2}=\frac{3}{2}$.

Case I: No Two From Cubic Subgraph

$\epsilon_{2}=\frac{3}{2}$

- Since $x\left(N^{*}\right)=\frac{3}{2}\left|N^{*}\right|, \epsilon_{2} \leq \min _{v \in N^{*}} x^{*}(v) \leq \frac{3}{2}$.
- Minimum excess coalitions not fixed in $L P_{1}$ contain the singletons and so $\epsilon_{2}=\frac{3}{2}$.
- Uses fact that G does not contain a two from cubic subgraph.

Case II: Contains Two From Cubic Subgraph

Converse when G does contain a two from cubic subgraph is similar.

- $\epsilon_{1}=0$

Case II: Contains Two From Cubic Subgraph

Converse when G does contain a two from cubic subgraph is similar.

- $\epsilon_{1}=0$
- Construct allocation which is feasible in $L P_{2}$ with strictly greater objective than $x \equiv \frac{3}{2}$.

Positive Results

Theorem [Könemann, Toth, Zhou '21]

Let $G=(N, E), w$, and $b \leq 2$ be an instance of b-matching. Suppose G has bipartition $N=A \cup B$. Let $k \geq 0$ be a universal constant.

- Suppose $b_{v}=2$ for all $v \in A$ but $b_{v}=2$ for at most k vertices of B, then the nucleolus of the b-matching game in G is polynomial-time computable.
- If $b \equiv 2$, then the nucleolus of the non-simple b-matching game on G is polynomial-time computable.

Positive Results

- Prune constraints from Kopelowitz scheme which are "not necessary".

Positive Results

- Prune constraints from Kopelowitz scheme which are "not necessary".
- If the remaining constraints are polynomial-sized, the nucleolus can be computed in polynomial time.

Positive Results

- Prune constraints from Kopelowitz scheme which are "not necessary".
- If the remaining constraints are polynomial-sized, the nucleolus can be computed in polynomial time.
- If core is non-empty and there is some maximum b-matching of $G[S]$ that is disconnected, S can be omitted.

$$
\nu=4
$$

$\nu=2$

Simple b-Matching Games

- $b_{v}=2$ for all $v \in A$ but $b_{v}=2$ for at most k vertices of B.

Simple b-Matching Games

- $b_{v}=2$ for all $v \in A$ but $b_{v}=2$ for at most k vertices of B.
- Extension of the work from Bateni et al.

Simple b-Matching Games

- $b_{v}=2$ for all $v \in A$ but $b_{v}=2$ for at most k vertices of B.
- Extension of the work from Bateni et al.
- Then the largest connected component in a b-matching has cardinality at most $2 k+3$.

Simple b-Matching Games

- $b_{v}=2$ for all $v \in A$ but $b_{v}=2$ for at most k vertices of B.
- Extension of the work from Bateni et al.
- Then the largest connected component in a b-matching has cardinality at most $2 k+3$.
- Run Kopelowitz scheme with $O\left(|N|^{2 k+3}\right)$ constraints.

Non-simple b-Matching Games

- Suppose $b \equiv 2$.

$$
\begin{aligned}
& w \equiv 1 \\
& b \equiv 2
\end{aligned}
$$

Non-simple b-Matching Games

- Suppose $b \equiv 2$.
- There is a maximum non-simple b-matching consisting of only parallel edges.

$$
\begin{aligned}
& w \equiv 1 \\
& b \equiv 2
\end{aligned}
$$

Non-simple b-Matching Games

- Suppose $b \equiv 2$.
- There is a maximum non-simple b-matching consisting of only parallel edges.
- Run Kopelowitz scheme with $O\left(|N|^{2}\right)$ constraints.

$$
\begin{aligned}
& w \equiv 1 \\
& b \equiv 2
\end{aligned}
$$

Conclusion

- Computing the nucleolus for simple bipartite b-matching games when $b \leq 3$ is NP-hard.

Conclusion

- Computing the nucleolus for simple bipartite b-matching games when $b \leq 3$ is NP-hard.
- When $b \leq 2$, there are polynomial-time algorithms which compute the nucleolus for special cases.

Conclusion

- Computing the nucleolus for simple bipartite b-matching games when $b \leq 3$ is NP-hard.
- When $b \leq 2$, there are polynomial-time algorithms which compute the nucleolus for special cases.
- Can we compute the nucleolus for b-matching games in general graphs when $b \leq 2$ in polynomial time?

Conclusion

- Computing the nucleolus for simple bipartite b-matching games when $b \leq 3$ is NP-hard.
- When $b \leq 2$, there are polynomial-time algorithms which compute the nucleolus for special cases.
- Can we compute the nucleolus for b-matching games in general graphs when $b \leq 2$ in polynomial time?
- Is there a combinatorial algorithm to compute the nucleolus for b-matching games?

Thanks!

