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Background






Chapter 1

Preliminaries from Analysis

As a general setting throughout this document, we consider functions of time f : [0,7] — R.

We assume knowledge of the Lebesgue measure and integration.

1.1 Elementary Calculus

1.1.1 Differentiation

Unless stated otherwise, we consider functions R — R.

For t € R and function g, we write

At =t —t
Ag(t) := g(t') — g(t).

Recall that a function is continuous at t if
At -0 = Ag(t) — 0.

Moreover, g is differentiable at t if

. Ag(t)
NG

and we write ¢'(t) := C'.

We know that differentiability implies continuity but the converse need not hold. This is
intuitive since continuity only requires Ag(t) — 0 whenever At — 0, whereas differentiability
also requires that Ag(t) converges at least at the same rate as At.
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Theorem 1.1.1 (Mean Value)
If f is continuous on [a,b] and differentiable on (a,b), there is some ¢ € (a,b) such
that

f(b) = f(a) = f'(c)(b - a).

We write C*(X,Y) to denote the set of functions f : X — Y that are k-times differentiable
with a continuous k-th derivative. We also write C' := C° as a shorthand for continuous
functions.

1.1.2 Right & Left-Continuous Functions

Recall that a function g is right-continuous if

lim g(t) = g(to)

tlto

and vice versa for left-continuous functions.

As a shorthand, we write

) -— i /
glt=)u=limg(t)

[y— 3 I
g(t+) = lim g(t').

Definition 1.1.2 (Jump Discontinuity)
A point ¢ is a jump discontinuity if both g(t+), g(t—) exist but are not equal.

Any other discontinuity is said to be of the second kind.

Theorem 1.1.3
A function ¢ : [a,b] — R can have at most countably many jump discontinuities.

Theorem 1.1.4
If f:[a,b] — R is differentiable with a finite derivative f’(t), then for all ¢ € [a, b],
f'(t) is either continuous at t or has a discontinuity of the second kind.

12



Proof
If f/'(t+) exists, then

fE+A) = f{t)

/ 7
f(t)—ggg

= i '
Aw,tgcn<t+A J'(e)

= f'(t+).

Similarly, f'(t—) = f'(¢) if it exists.

The result follows. O

1.1.3 Functions in Stochastic Calculus

We focus on regular functions, ie those without discontinuities of the second kind. The
class D = DJ0,T] of right-continuous functions on [0,7"] with left limits are referred to
as CADLAG functions. Note that C' C D. Similarly the class of regular left-continuous
functions are called CAGLAD.

In stochastic calculus, Ag(t) usually stands for the size of the jump at ¢,

Ag(t) == g(t+) — g(t—).

This differs from the convention for standard calculus. We will clarify if it is unclear from
context.

1.2 Variation of a Function

Definition 1.2.1 (Variation)
The variation of a function g : [a,b] — R is given by

V,([a,b]) = sup Zlg(t?) —g(t)

where the supremum is taken over all partitions

a=ty <t <---<ty=0b

The sums in the definition above increase as new points are added. Thus
V,la,b| = li t) — g(t
g[aa ] énlgOZng( z) g( z—1)|

13



where §,, = max;c, (t; — ti—1).

If Vyla,b] < oo, then g is said to be a function of finite variation on [a,b]. If ¢ is a function
of t > 0, then the variation function of g is defined as

V,(t) = V0.4

Note that V,(¢) is non-decreasing in ¢. We say that ¢ : Ry — R is of finite variation (FV) if
V,(t) < oo for all ¢t > 0.

Example 1.2.2
1) If g(t) is increasing, then V,(t) = g(t) — ¢(0).

2) If g(t) is decreasing, then V(t) = ¢g(0) — g(¢).

Proposition 1.2.3 (Variation of a Differentiable Function)
Suppose g € C! and ¢’ is absolutely integrable over [0,¢]. Then

Vi(t) = / ¢/ (2)\ds.

Proof
The Riemann integral is the supremum of Riemann sums over partitions as d,, — 0. Apply
this definition with the mean value theorem. O

If a function g : R, — R only changes by jumps, we can write

g(t) = > Ag(s).

0<s<t

Proposition 1.2.4 (Variation of a Pure Jump Function)
Suppose ¢ is
(i) regular,

(ii) left or right-continuous,

(iii) and only changes by jumps.
Then




Theorem 1.2.5 (Jordan Decomposition)
Any function g : R, — R of finite variation can be expressed as the difference of two

increasing functions

g(t) = a(t) = b(t).

One such decomposition is given by

Proof
It is clear the difference of two increasing functions has finite variation.

Conversely, note V,(t) = a(t) is increasing. On the other hand, fix any s < ¢. We have
b(t) = b(s) = V5[0, 1] = V5[0, s] — g(t) + 9(s)

> Vyls, 1] — 1g(t) — g(s)| Vol0, 8] + Vyls, 1] = V[0, 1]
> 0. O

Another decomposition is given by

9(t) = 5 Ve(t) + 9(t)] = % V(1) = g(1)].-

N | —

Proposition 1.2.6
Let f, g be function so finite variation. The following are all of finite variation:

(@) f+g
(b) fg
(c) f/g given |g| > C € R

Theorem 1.2.7
A finite variation function can have no more than countable discontinuities. Moreover,

all discontinuities are jumps.

Proof
The result holds for monotone functions and FV functions are differences of monotone
functions. O
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Theorem 1.2.8
Let g € C' and suppose ¢/(t) is absolutely integrable. Then g is of finite variation.

Proof
V,(t) = [|g'(t)]dt < oo for all ¢ by assumption. 0

Proposition 1.2.9
Suppose g : [a,b] — R is continuous. Let ¢; := +,7 = 0,1,..., N denote the uniform
partition of size N + 1. Then

Vola, b] = lim Y “|g(t;) — g(tio1)| =: vn.

N—o00 <

Proof (Sketchl%)

Let N; be sufficiently large so that some partition P, approximates Vj[a, b] with error ¢/2.
Take Ny to be sufficiently large so that uniform continuity holds for ¢/an, and consider
the uniform partition P, on Ny points. The common refinement P = P; U P, clearly
approximates Vj[a, b] to error ¢/2. Using uniform continuity, we can show that by removing
the points P, from P to yield P,, we introduces an error of at most 2Ny - ¢/an; = ¢/2.

This concludes the proof. O

“https://math.stackexchange.com/a/3130591

Theorem 1.2.10 (Banach Indicatrix)
Let g(t) be a continuous function on [a, b] and define

S(c):={te€a,b]:g(t)=c}
s(c) :==|S(t)|.

Then the variation of g is equal to

Proof (Sketch)
We can approximate s(c) using a monotonically increasing sequence si(c),k > 1 of in-

dicator functions. Partition [a,b] into 2¥ intervals I\, .. ,[2(5) of length 27%[b — a] with

16
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endpoints a = t(k) < tgk) téﬁ = b. Define

o= 1 HAUY)

It can be shown that s; T s and also

/s(a) — li/gn/sk(a) < V)[a,b).

Fix € > 0. By continuity and the previous proposition, for sufficiently large k,

/ >Z|g By _ g(t™ Dl > Vyla, b —e.

The result follows. O

“https://math.stackexchange.com/a/144832

1.2.1 Continuous & Discrete Parts of a Function

Let g : R, — R be right-continuous and increasing. It has at most countably many jumps
and the sum of jumps is finite over finite time intervals. Define the discontinuous part g¢ of

g by
g'(t) = Z[Q(S) —g(s—)] = Z Ag(s)

and the continuous part g¢ of g by

g°(t) = g(t) — g"(t).

By construction, g = g¢ + ¢% with g only changing by jumps and ¢¢ being continuous.

Since finite variation functions are differences of increasing functions, the decomposition
extends for functions of finite variation. Note the decomposition is unique up to constants.
Indeed, if g = h® + h¢ then

hc_gc:gd_hd’

implying that h?¢ — g¢ is continuous. Hence h¢ and g¢ have the same set of jump points and
so h? — gd = ¢ for some constant c.
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1.2.2 Quadratic Variation

Definition 1.2.11 (Quadratic Variation)
Let g : Ry — R. Its quadratic variation over [0,1] is given by

[9](t) == 513902[9(15?) — gt

when it exists. The limit is taken over partitions with decreasing maximum width &,,.

We can extend the notion of variation to ®-variation where ® : R, — R+ is monotonically
increasing. The ®-variation of ¢ on [0, ¢] is

Vag] := sup Z (|g(t7)] — g(ti-1)")

=1

where the supremum is taken over all partitions (not just ones with decreasing width).

We note that the definition of quadratic variation is different to the ® variation definition
with ®(u) := u?. In our setting, the limit is taken over shrinking partitions and not all
possible partitions. The definition is equivalent for ®(u) = u due to the triangle inequality
but not in general.

We rarely encounter quadratic variation in calculus despite its importance in stochastic
calculus since smooth functions have zero quadratic variation.

Theorem 1.2.12
If ¢ is continuous and of finite variation, then its quadraatic variation is zero.

Proof
We have
gl(®) = lim > [g(t}) — g(t}1))*
n—0 i1
< lim max|g(t) — g(ti_1)|Vs(?).
n—0 1
But continuity on compact sets imply uniform continuity and so the limit is zero. O

We refer to functions with zero quadratic variation and finite variation as functions of zero
energy.

18



Definition 1.2.13 (Quadratic Covariation)
The quadratic covariation of f,¢g : Ry — R on [0,¢] is given by the following limit
when it exists:

1,910 1= Jim S = FEDlo(E) = 9t

The limit is taken over shrinking partitions.

Theorem 1.2.14
If f is continuous and g is of finite variation, then [f, g](t) = 0.

Theorem 1.2.15 (Polarization Identity)
Let f, g be such that their covariation is defined.

1 9l(t) = 5 (If + 9. f +9l(8) = [f, F1(8) = g, 9](2)) -

N | —

Clearly covariation is symmetric and it follows from the polarization identity that it is
bilinear. By definition, the quadratic variation function is non-decreasing and hence of finite
variation. This extends to quadratic covariation by the polarization identity.

1.3 Riemann-Stieltjes Integral

The Riemann-Stieltjes integral is an integral of the form

/ﬂWW)

where ¢ is of finite variation. Note it suffices to define the integral with respect to monotone
functions as functions of finite variation are differences of monotone functions.

Definition 1.3.1 (Stieltjes Integral)
The Stieltjes integral of f : R — R with respect to g : R — R monotone over [a, b] is
defined as

| rdg= [ gte) = Jim €N - gter )

19



We can interpret the Riemann-Stieltjes integral as a Lebesgue integral
/( dg(s) = g(t) — g(0).
We then have
| o) = gtt-) = 500}
(0.,t)

If ¢'(t) exists and g(t )+ f s)ds, it is possible to show that

" v o

which is similar to the notion of a Radon-Nikodym derivative for absolutely continuous
measures.

1If g(t) = - h(k), then

Let g : R — R be a function of finite variation and decompose it as

g=a—>b
a="Vy
b=V, —g.

Definition 1.3.2 (Stieltjes Integral)

If
/0 1£()lldg(s)] == / 1F()[dVi(s) < oo

then we say f is Stieltjes integrable with respect to g and its integral is defined by

f(s)dg(s) .= | [f(s)da(s) — [ [f(s)db(s).

(0,¢] (0,2] (0.1

We write

/ Fg(s) = [ 1s)dgls)

If f is Riemann-Stieltjes integrable with respect to g, then the wvariation of the integral is

given by . ‘
= [1reldgr = [ 1ravie)

20



In stochastic calculus, we may need to integrate with respect to functions of infinite variation.
It can be shown that such integrals cannot be defined as a usual limit of approximating sums.

Theorem 1.3.3
Let §,, denote the width of the largest interval in a partition of [a, b]. If
lim > f(H)[9(t7) — g(ty)]

0n—0
"=

exists for any continuous function f, then g must be of finite variation on [a, b].

1.3.1 Lebesgue-Stieltjes Integral

This interpretation is due to the appendix of a bookﬂ

Definition 1.3.4 (Borel Measure)
A Borel measure on R is a non-negative set function p defined for all Borel sets of R
such that

(i) p(@) =0
(ii) p(I) < oo for every bounded interval [
(i) p(U2y)B;) = >, u(B;) for disjoint Borel sets B;’s

Theorem 1.3.5
The following hold.
(a) Let 1 be a Borel measure on R and G : R — R be satisty G(b) — G(a) = p(a, b].
Then G is right-continuous and increasing.

(b) Let G : R — R be right-continuous and increasing. Define p(a,b] := G(b) —
G(a). There is a unique extension of y to a Borel measure on R.

"https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118150672.app1l
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Proposition 1.3.6
Let G : R — R be right-continuous and increasing, with p being its associated Borel
measure.
(a) p(a,b) = G(b—) — G(a)
(b) pla,b] = G(b) — G(a—)
(c) pla,b) =G(b—) — G(a—)
(d) p{a}=Gla) - Gla—)
)

(e) G is continuous at a if and only if p{a} = 0.

C

For a right-continous increasing function GG, we can then equivalently define

/B fdG = /B fdy

where B is a Borel set and p is the associated Borel measure of G.

Example 1.3.7
If g : R — R is right-continuous, increasing, and also differentiable on R except at points
in a countably infinite set x1, o, ...,

/ F()dg( / f@g@dz+ S F@)Ag(an).

n:0<x, <t

Since finite variation functions are differences of increasing functions, we can extend the
definition to these functions as usual. It follows from this decomposition that all standard
results from Lebesgue integration, such as convergence theorems, and Fubini’s theorem for
iterated integrals over product spaces, hold for | fdg when f is Borel measurable and g is
of bounded variation on finite intervals.

1.3.2 Integration by Parts

Theorem 1.3.8
Let f,g: R — R be right-continuous functions of finite variation. Then

F(®)9() — f(a)ala) = / £(s=)dg(s) + / 9(s)df ()
— [ #s-dgs) + [ g(s-)d(s) + 32 AFA().

a<s<b

22



Remark 1.3.9 In the case that f is continuous, we recover the familiar integration by parts
formula.
F(b 0= [ 1)+ [ o)
Proof

By Fubini’s theorem,

llg(a) = g(a)]

o fon
/ / 1oy lf (2)dg (y / / 1oy ydo(u)df (z

/ (v-) — f(@)ldg(y) + / l9(x) — gla)ldf (z)
/ Fy—)dg(y) — F(@)g(b) — g(a)] + / 9(2)df (z) — gla)LF(b) — F(a)]

=/a fly—)dg(y +/a g(x)df (z).

This shows the first equality. The second equality follows by the decomposition

/abAg<s>f<s>= /b (s + Y Ag(s)Af(s

a<s<b

= ) Ag(s)Af(s). m

a<s<b

Example 1.3.10
Let g be of finite variation with g(0) = 0. Then by integration by parts,

[ ottt = 5 - 5 St

On the other hand,




Thus it follows that

[ ottt < TP < [ gtspiato)

Remark 1.3.11 In the case that g is continuous, we have the identity

| oteasts) = 2

In particular, if F(¢ fo s)ds, then

//f dudv§</f o)

/ F(u) f(s)duds.

1.3.3 Change of Variables

Theorem 1.3.12
Let f € C! and ¢ be right-continuous and have finite variation.

— f(9(0))

flg(t))
= /0 f(g(s
+

If g is continuous,

24



Example 1.3.13
Take f(z) = 2. We have

= > [Ag(s)*.

0<s<t

1.4 Taylor’s Theorem

Recall that a function f: R™ — R is differentiable at x € R™ provided that there is a vector
V f(x) € R™ such that
Af(z) = (V [f(z),Az) + o([|A(z)]])-

If f is differentiable at x, then all partial derivatives necessarily exist. It suffices to have
continuous partial derivatives in order to have differentiability.

Let f € C*(R"R). Then the second-order Taylor expansion is given by
1
Af(z) =(Vf(z),dz) + §(d$)TV2f(~’U + 0Az)(dx)

where V2 f(x + 0Az) denotes the Hessian matrix at some mid point in [z, + Ax].

1.4.1 Differentials & Integrals

We write the differential df (t) of a differentiable function f as the largest term in its Taylor
expansion.

Thus if dz := Ax, then
fla +dz) = f(z) = f(t)dt + o(|dt])
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and so df (t) = f'(t)dt.
By the chain rule, if both f, g are differentiable, then f(g(x)) is also differentiable with

df(9(t)) = f'(g(t))g' ()dt = ['(g(t))dy(t).

The main relationship between integral and differential calculus is the fundamental theorem
of calculus:

Theorem 1.4.1
If f is differentiable on [a, b] and f’ is integrable on [a, b], then

f@—ﬂwzjf@m

For differentiable functions, differential equations of the form

df (t) = p(t)dw(t)

can be written as an integral equation
t
76 = £0) + [ ols)dus)
0

In stochastic calculus, stochastic differentials do not formally exist as the random functions
w(t) are not differentiable at any point. By introducing a stochastic integral, stochastic
differential equations are defined as solutions to these stochastic integral solutions.

1.5 Other Results

1.5.1 Lipschitz & Holder Continuity

Lipschitz and Hoélder conditions describe subclasses of continuous functions. They appear
as conditions on the coefficients in the results of the existence and uniqueness of solutions
of ordinary and stochastic differential equations.

Definition 1.5.1 (H6lder Continuity)
f 1 C R — R satisfies a Holder condition (Holder continuous) of order o € (0, 1]
over the interval [ if there is a constant K > 0 so that for every z,y € I,

[f(z) = f(y)| < K|z —y|*.
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A Lipschitz condition is a Hélder condition with o = 1.

We say that f: R — R is smooth on [a,b] if it has a continuous derivative f’ on (a,b) and
the limits f'(a+), f'(b—) exist.

f is piecewise continuous on [a,b] if it is continuous on [a,b] except on a finite number of
points at which both left and right limits exist.

We say f is piecewise smooth on [a, b] if it is piecewise continuous on [a, b] and f’ exists and
is also piecewise continous on [a, b].

1.5.2 Growth Conditions

Definition 1.5.2 (Polynomial Growth Condition)
We say that f : R — R satisfies the polynomial growth condition if there is some
constant K > 0, m € Z, such that

|[f(@)] < K(1 + [z]™).

The linear growth condition is a polynomial growth condition with m = 1.

Proposition 1.5.3
Suppose f : R? — R is such that |f(0,¢)| < C for all t and f(z,t) is uniformly Lipschitz
condition in . Then f(x,t) satisfies the linear growth condition in x,

|f(z,t)] < K(1+ [z]).

Theorem 1.5.4 (Gronwall’s Inequality)
Let g,h : [0,T7] — R be regular and non-negative. For any regular, non-negative f
satisfying the following inequality for all ¢ € [0, T

<o+ | " h(s)(s)ds,

we have

r0 <90+ [ moe ([ ) s

In the case where ¢ is non-decreasing, the integral above simplifies to give

s < gten ([ 1sas).
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In the most basic case when g = A, h = B are constants,

f(t) < Aexp(Bt).

1.5.3 First-Order Linear Differential Equations

A first-order linear differential equation is of the form

dx(t)
dt

+g(t)x(t) = k(t).
These equations are solved by using the integrating factor method. Choose some G(t) such

that G'(t) = g(t). After multiple both sides by e“®  integrating, and solving for x(t), we
have

t
I(t) = efG(t) / (eG(S)k(S)) dS + x(o)eG(O)*G(t)
0

Note that G(t) is unique up to an additive constant so that the solution above is unique.
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Chapter 2

Preliminaries from Probability
Theory

The treatment in this chapter is far from complete compared to the analysis preliminaries.
We assume a first graduate course in probability. In particular, we assume knowledge of
elementary measure-theoretic probability.

2.1 Gaussian Distributions

The density of a Gaussian random vector X : {2 — R"” is given by

fx(z) = Wexp <—%(m — )t N — M)) )

The moment generating function of the Gaussian distribution N (p, X) is given by

E[e(t,X)] _ eut—%tTZt‘

If Z is the random vector whose components Z; ~ i.i.d. N (0, 1), then
X=p+AZ
for some AAT = 3. In general, if X ~ N (p,Y) and B is a matrix,
BX ~ N (Bu, BLB).

Definition 2.1.1
A collection of random variables is a Gaussian process if the joint distribution of any
finite subset of its members is Gaussian.

29



It can be shown that if a process X (¢) has independent Gaussian increments, then it is a
Gaussian process.

2.2 Conditional Expectation

Let X € L' be some random variable. Given some o-field G, the conditional expectation of
X with respect to G is some G-measurable random variable E[X | G] such that

/BXdp:/BEmg]dP

for any G-measurable B.
Equivantly, for any bounded G-measurable variable &,
EEE[X | G]] = E[X].

The existence of such a variable is guaranteed by the Radon-Nikodym theorem. Moreover,
E[z | G] is a.s. unique.

2.2.1 Discrete & Continuous Cases

The conditional distribution function of X given Y = y is defined as
P{X<zY=y}
P{Y =y}

This is not defined if the event upon which we condition has probability 0. We can overcome
this difficulty if X,Y have a joint density p(z,y). In this case, we define the conditional
density of X given Y =y

P{X<|YV=y}:=

(z,y)
py (y)
Here py (y) := [ p(x,y)dz is the marginal density of Y.

p(z|y) =

The conditional expectation of X given y is thus
BLX |V =) = [ af(a|y)da.

By replacing y with the random variable Y, we recover the conditional expectation E[X | Y].

Remark that the conditional distributiona and density are only defined at points fy(y) > 0.
We can define it arbitrarily at points fy(y) = 0 since those points amount only to a set of
measure (0. Note that this recovers the fact that the conditional expectation is a.s. unique.
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2.2.2 Properties of Conditional Expectation

By directly applying the definition of the conditional expectation, use by considering ap-
proximations through simple functions and applying the monotone convergence theorem, it
is possible to derive the following properties.

1L IfG={2,0},
E[X | G] © E[X].

2. If Y is G-measurable,
EYX |G 2 YE[X | G].

3~ If gl g g27
EE[X | G] | Gi] = E[X | Gi].

This is known as the smoothing property. Note that by taking G; = {2,Q },
E[E[X | Go]] = E[X].
4. f o(X) L Gand F L G,
E[X |o(F,G) = E[X | F].

5. If g is a convex function on Im(X),

a.s.

g(EX [G]) < E[g(X) | G].

In particular, by taking g(x) := |z|,

E[X | G]| < E[X]| G-

6. Suppose 0 a'g& X, 1+ X € L'. Then

E[X,|g] T E[X |G].
This is the familiar monontone convergence.

7160 < X,
E [hm inf X, | G| < liminf E[X,, | G].

This is known as Fatou’s Lemma.

8. If X, 2% X and |X,| < Y with E[Y] < oo,

E[X, | G] == E[X | g].
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The following results are commonly applied.

Theorem 2.2.1
Let X 1 Y be random variables and ¢(z,y) € L'. Then

E[¢(X,Y) | Y] =G(Y)

where G(y) := E[¢(X, y)].

Theorem 2.2.2
Let (X,Y) be a Gaussian vector. Then the conditional distribution of X | Y is also
Gaussian. Moreover, provided that Cov [Y,Y | is non-singular,

E[X | Y] =E[X]+ Cov[X,Y]Cov[Y,Y ] " (Y — E[Y]).

If Cov[Y,Y | is singular, the same formula holds with the inverse replaced by the
Moore-Penrose pseudo-inverse.

Theorem 2.2.3 (Best Estimator / Predictor)
Let Y be such that for any X-measurable random variable Z,

E[(X - X)’] <E[(X - Z)°).

Then X = E[X | Y].

2.3 Continuous Time Processes

The construction of continous time stochastic processes follow the same ideas as in discrete
time, but are much more involved. Consider a random element S : Q@ — DI[0,7] where
D[0,T7] is the set of all CADLAG functions on [0, 7.

The simplest sets for which we would like to calculate probabilities are sets of the form
{w: S(t;;w) € [a,b] } for some fixed t; € [0,T]. More generally, we may also be interested
how the value at t; affects the value at another time ¢5. In general, we would like to have
all finite-dimensional distributions of the process. That is, probabilities of the form

{w:S(t;w) € Biyien]}
where B; are intervals on the line. Formally, these sets are known as cylinder sets.

Probability is first defined on cylinders and then extended to the field generated by cylin-
ders. Kolmogorov’s extension theorem ensures that such an extension is consistent and
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well-defined. A probability defined on a field of cylinder sets can then be extended uniquely
to the o-field generated by cylinder sets.

It follows from this cosntruction that:

(a) For any choice of points 0 <¢; <--- <t, <T, S(t1),...S5(t,) is a random vector.

(b) The process is determined by its finite-dimensional distributions.

2.3.1 Continuity & Regularity of Paths

It is natural to consider a stochastic process S(t) as a random function in ¢. Realizations
of S are CADLAG functions w € D[0, 1]. Finite-dimensional distributions do not determine
the continuity of sample paths.

Example 2.3.1
Let X(t) =0 for all t € [0, 1] and 7 ~ U[0, 1]. Define

Y(t) = {f(“’ '

so that all finite-dimensional distributions of X (¢), Y'(¢) are the same. Moreover, P{ X (¢) =Y (t) } =
1 for all t € [0, 1].

However, the sample paths of X are continuous, but every sample path of Y has a jump.

Definition 2.3.2 (Versions (Modifications))
Two stochastic processes are versions (modifications) of one another if

P{X(#)=Y({#)}=1

for every t € [0, T.

Thus the two processes from the previous example are versions one another. If we agree to
pick any version of the process we want, we can pick the smoothest possible version of the
processes.

Define N, := { X(¢) # Y(¢) } and remark that P(V;) = 0. However, there are uncountably
many t’s and there is no contradiction that N := U, /N, has probability 1. In the case that
P(N) =0, we say X,Y are indistinguishable (evanescent).

Remark that in discrete time, if X, Y are versions of one another, they are indistinguishable.
In addition, if X,Y are both right-continuous, then they are indistinguishable.

We would like to work with continuous or regular versions of processes if possible. Some
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conditions for the existence of such versions are given below.

Theorem 2.3.3
Let S(t) be a real-valued stochastic process.
1. If there a,e,C' > 0 so that for any 0 < u <t < T,

E[]S(t) — Su)|*] < C(t —w)'™*,

then there exists a version of S with Holder continuous paths of order h < ¢/a.

2. If there are ay, ag,e,C > 0 so that forany 0 <u <v <t <T,
E[[S(v) = S(w)|** - |S(t) = S(v)|**] < Ot —u)'*,

Then there exists a version of S that is regular and has one-sided limits at the
boundaries.

This result allows us to decide on the existence of continuous (regular) versions of processes
by considering the bivariate (trivariate) distributions of the process. The same result hods
when the process takes values in R?, except that the Euclidean distance replaces the absolute
value in the above functions.

Regular functions are typically considered the same if all left and right limits coincide. In
this case, it can be convenient to identify any such function with its right-continous version.

Theorem 2.3.4
If the stochastic process S(t) is
(i) right-continuous in probability, ie for every ¢ € [0, T,

asu |t

(ii) regular
then it has a right-continuous version.

It is possible to derive alternative conditions for smoothness when additional properties of
the process is known to us.

2.3.2 o-Field Generated by a Stochastic Process

We define
Fr=c{S,:u<t}
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as the smallest o-field containing sets of the form { S, € [a,b] } for 0 < u < ¢ and a,b € R.
We interpret this as the information available to an observer of the process S up to time t.

2.3.3 Filtered Probability Space & Adapted Processes

A filtration F = { F; } is a family of increasing o-fields on (2, F), ie
FsCFRCF

for every s < t.

A filtered probability space (2, F,.%,P) is a probability space (2, F,.%#) paired with a filtra-
tion .% such that
fogftggFT:F

A stochastic process on this filtered probability space is said to be adapted if for every t,
S(t) is Fi-measurable. Intuitively, this means F; contains all information about S(t) (and
possibly more).

2.3.4 The Usual Conditions

A filtration is said to be right-continuous if
Fi=Fio =) Fe
s>t

The standard assumption (referred to as the usual condition) is that filtrations are right-
continuous. We interpret this as any information known immediately after ¢ is also known
at ¢.

Remark 2.3.5 If S(t) is #-adapted, it is also adapted to 4 := { G, } for
Gt = Fiy,

which is a right-continuous filtration.

The assumption of right-continuous filtration has a number of important and useful con-
sequences. We will see that it allows us to assume that martingales, submartingales, and
supermartingales have regular, right-continuous versions.

It is also assumed that any subset of a set of zero probability is Fy-measurable. It is always
possible to enlarge the o-field to include such sets if this property does not hold in the first
place.
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2.3.5 Martingales & Friends

Definition 2.3.6 (Martingale)
Suppose a % -adapted process X (t) is a martingale if
(i) X(t) € L' for all ¢

(ii) For any s < t,
E[X(t) | Fs]=X(s).

If in place of (ii) we have

E[X(@) | Fo] < X(s),
then X () is a supermartingale. Similarly, if instead of (ii) we have
EIX() | Fo] = X(s),

then X () is said to be a submartingale.
The following is an important example of a martingale.

Theorem 2.3.7 (Doob-Lévy Martingale)
Let Y € L! be an integrable random variable. Then

M(t) :=E[Y | F]

is a martingale.

Proof
By the smoothing property,

E{M() | Fo] =E[E[Y | ]| F]
E

[V [ ]
=: M(s).

|

Using the smoothing property, we can show that the mean of a martingale, supermatingale,

and submartingale is constant, non-increasing, and non-decreasing in ¢, respectively.

If X (t) is a supermartingale, then —X (¢) is a submartingale by definition.

The super and submartingale property allows us to derive conditions of the right-continuous

versions of processes without the assumption of continuity in probability.
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Theorem 2.3.8

Let .7 be a right-continuous filtration with each o-field F; completed by null sets
from F. A .Z-adapted supermartingale X (¢) has a CADLAG version if and only
if its mean function EX (¢) is right-continuous. Consequently, any martingale with
right-continuous filtration admits a regular right-continuous version.

In view of these results, it will often be assumed that the version of the process under

consideration is CADLAG.

2.3.6 Stopping Times

Definition 2.3.9 (Stopping Time)
A non-negative random variable 7 : Q — [0, 00] is a stopping time with respect to a
filtration .Z if for each t,

{r<t}eF.

It follows from the definition that {7 >t} € F; as well.

1
{Tgt——}e.a_l/n.
n

Since F;’s are increasing, we also have {7 <t —1/n } € F;. Therefore {7 <t} € F;. In fact,

define
Fi_ = \/.7:3 =0 (U]:S> )

s<t s<t

Remark 2.3.10 The event

The above argument show that {t <7} € F_.

Theorem 2.3.11
Let .Z be a right-continuous filtration. Then 7 is a .%#-stopping time if and only if
for each t, the event {7 <t} € F;.

Proof
The remark above shows the implication direction. Conversely, suppose { 7 <t} € F; for
all . We have

{Tgt}:ﬂ{7'<t+%}.

n>1

Since {7 <t +1/n} € Fiyu),, we also have { 7 <t} € F; by the right-continuity of .. O
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The assumption of right-continuity of .%# is important when studying hitting or exit times of
a process. If S(t) is a stochastic process adapted to %, the hitting time of set A is defined
as

Th:=inf{t>0:5(t)ecA}.
The first exit time from a set D is defined as

mp:=inf{t>0:5(t)¢ D}.
Observe that 7p = T\ p.

Theorem 2.3.12
Let S(t) be continuous and adapted to .Z.
(a) If D is an open subset of R, then 7p is a stopping time.

(b) If A is closed, then T4 is a stopping time.

(c) If in addition % is right-continuous, then for closed sets D and open sets A,
Tp, T4 are stopping times as well.

Proof
We have

{rp>t}= (] {SweD}.

This event is an uncountable intersection over all v < t of events from F;. By the
continuity of S(u) and D being open, if there is some irrational u such that S(u) € D,
then there must be some close by rational point ¢ such that S(q) € D. It follows that

() {SweD}y= () {S@eD}
0<u<t q€Q:0<q<t

which is a countable intersection of events from F; and hence belongs to F;. This shows
that tp is a stopping time.

Since R\ A is open and Ty = 7\ 4, it follows immediately that T4 is a stopping time.

Now suppose that .# is right-continuous. Our plan is to apply the previous theorem and
show hat { 7p <t} € F;. The case for T4 follows again by taking complements.

Suppose D is closed. Then R\ D is a countable union of open sets, in fact open intervals.
Thus D is a countable intersection of closed intervals C,, = [a,, b,]. It follows that

D = ()[an,by]

n>1

:ﬂﬂ<an—%,bn+%>.

n>1m>1
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Define D, ,, := (ap—1/m, b, +1/m). Then 7p, . is a stopping time and so { 7p,,,, >t} € F.
But
{TDZt}Z ﬂ {TDn,m >t},
n,m>1
hence {7p >t} € Frand {7p <t} € F; as desired. O

For general CADLAG processes, the following result holds.

Theorem 2.3.13
Suppose S(t) is a CADLAG, #-adapted process for some right-continuous % .
(a) If A C R is open, then T} is a stopping time.

(b) If A is closed, then
{t>0:5(t)e AvS(t—)e A}
is a stopping time.

It is possible but much harder to show that the hitting time of a Borel set is a stopping time.

The following results give basic properties of stopping times.
Theorem 2.3.14
Let S, T be stoppign times. The following are all stopping times.
(a) min(S,T)
(b) max(S,T)
(c) S+T

2.3.7 o-Field JT"T

If T is some stopping time, events observed before or at time T are described by a o-field
Fr, defined as the collection of sets

Fri={AcF:VLLAN{T <t} eF}.
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Theorem 2.3.15
Let S, T be stopping times. Then the following properties hold.
(a) If A€ Fg, then AN{S=T1} € Fr.

(b) {S=T} € Fsn Fr.
(c) If A€ Fg, then AN{S<T} e Fr.
(d) {S<T}e Fsn Fr.

2.3.8 Fubini’s Theorem

We state a particular case of Fubini’s theorem that is formulated in the way that is typically
applied in practice.

Theorem 2.3.16
Let X (t) be a stochastic process on [0, 7] with regular sample paths. Then

/OTIE[\X(t)Hdt:E UOTyX(t)ut].

Furthermore, if this quantity is finite,

E{/OTX(t)dt} :/OTIE[X(t)]dt.
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Part 11

Stochastic Calculus
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Chapter 3

Basic Stochastic Processes

3.1 Brownian Motion

The Brownian motion, also known as the Wiener process, serves as a basic model for the
cumulative effect of pure noise. If B(t) denotes the position of a particle at time ¢, the
displacement B(t) — B(0) is the effect of purely random bombardment by molecules of the
fluide, or the effect of noise over time ¢.

3.1.1 Defining Properties

Definition 3.1.1 (Brownian Motion)
Brownian motion is a stochastic process B(t) with the following properties:
(i) (Independent Increments) B(t) — B(s) L B, for allt > s >« > 0 and B(t) —
B(s) L Fs for all t > s.

(ii) (Normal Increments) B(t) — B(s) ~ N (0,t — s).
(iii) (Continuity of Paths) The sample paths of B(t) are continuous functions of .

The initial position is not specified in th