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Preliminaries from Analysis

As a general setting throughout this document, we consider functions of time f : [0, T ]→ R.

We assume knowledge of the Lebesgue measure and integration.

1.1 Elementary Calculus

1.1.1 Differentiation

Unless stated otherwise, we consider functions R→ R.

For t ∈ R and function g, we write

∆t := t′ − t
∆g(t) := g(t′)− g(t).

Recall that a function is continuous at t if

∆t→ 0 =⇒ ∆g(t)→ 0.

Moreover, g is differentiable at t if

lim
∆t→0

∆g(t)

∆(t)
= C

and we write g′(t) := C.

We know that differentiability implies continuity but the converse need not hold. This is
intuitive since continuity only requires ∆g(t)→ 0 whenever ∆t→ 0, whereas differentiability
also requires that ∆g(t) converges at least at the same rate as ∆t.

11
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Theorem 1.1.1 (Mean Value)
If f is continuous on [a, b] and differentiable on (a, b), there is some c ∈ (a, b) such
that

f(b)− f(a) = f ′(c)(b− a).

We write Ck(X,Y ) to denote the set of functions f : X → Y that are k-times differentiable
with a continuous k-th derivative. We also write C := C0 as a shorthand for continuous
functions.

1.1.2 Right & Left-Continuous Functions

Recall that a function g is right-continuous if

lim
t↓t0

g(t) = g(t0)

and vice versa for left-continuous functions.

As a shorthand, we write

g(t−) := lim
t′↑t

g(t′)

g(t+) := lim
t′↓t

g(t′).

Definition 1.1.2 (Jump Discontinuity)
A point t is a jump discontinuity if both g(t+), g(t−) exist but are not equal.

Any other discontinuity is said to be of the second kind.

Theorem 1.1.3
A function g : [a, b]→ R can have at most countably many jump discontinuities.

Theorem 1.1.4
If f : [a, b] → R is differentiable with a finite derivative f ′(t), then for all t ∈ [a, b],
f ′(t) is either continuous at t or has a discontinuity of the second kind.

12
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Proof
If f ′(t+) exists, then

f ′(t) = lim
∆t↓0

f(t+∆)− f(t)
∆

= lim
∆↓0,t<c<t+∆

f ′(c)

= f ′(t+).

Similarly, f ′(t−) = f ′(t) if it exists.

The result follows. 2

1.1.3 Functions in Stochastic Calculus

We focus on regular functions, ie those without discontinuities of the second kind. The
class D = D[0, T ] of right-continuous functions on [0, T ] with left limits are referred to
as CADLAG functions. Note that C ⊆ D. Similarly the class of regular left-continuous
functions are called CAGLAD.

In stochastic calculus, ∆g(t) usually stands for the size of the jump at t,

∆g(t) := g(t+)− g(t−).

This differs from the convention for standard calculus. We will clarify if it is unclear from
context.

1.2 Variation of a Function

Definition 1.2.1 (Variation)
The variation of a function g : [a, b]→ R is given by

Vg([a, b]) = sup
n∑

i=1

|g(tni )− g(tni−1)|

where the supremum is taken over all partitions

a = tn0 < tn1 < · · · < tnn = b.

The sums in the definition above increase as new points are added. Thus

Vg[a, b] = lim
δn→0

n∑
i=1

|g(tni )− g(tni−1)|

13
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where δn = maxi∈[n](ti − ti−1).

If Vg[a, b] <∞, then g is said to be a function of finite variation on [a, b]. If g is a function
of t ≥ 0, then the variation function of g is defined as

Vg(t) := Vg[0, t].

Note that Vg(t) is non-decreasing in t. We say that g : R+ → R is of finite variation (FV) if
Vg(t) <∞ for all t ≥ 0.

Example 1.2.2
1) If g(t) is increasing, then Vg(t) = g(t)− g(0).
2) If g(t) is decreasing, then Vg(t) = g(0)− g(t).

Proposition 1.2.3 (Variation of a Differentiable Function)
Suppose g ∈ C1 and g′ is absolutely integrable over [0, t]. Then

Vg(t) =

∫ t

0

|g′(x)|ds.

Proof
The Riemann integral is the supremum of Riemann sums over partitions as δn → 0. Apply
this definition with the mean value theorem. 2

If a function g : R+ → R only changes by jumps, we can write

g(t) =
∑
0≤s≤t

∆g(s).

Proposition 1.2.4 (Variation of a Pure Jump Function)
Suppose g is

(i) regular,
(ii) left or right-continuous,
(iii) and only changes by jumps.

Then
Vg(t) =

∑
0≤s≤t

|∆g(s)|.

14



©Fel
ix

Zh
ou

Theorem 1.2.5 (Jordan Decomposition)
Any function g : R+ → R of finite variation can be expressed as the difference of two
increasing functions

g(t) = a(t)− b(t).

One such decomposition is given by

a(t) = Vg(t)

b(t) = Vg(t)− g(t).

Proof
It is clear the difference of two increasing functions has finite variation.

Conversely, note Vg(t) = a(t) is increasing. On the other hand, fix any s < t. We have

b(t)− b(s) = Vg[0, t]− Vg[0, s]− g(t) + g(s)

≥ Vg[s, t]− |g(t)− g(s)| Vg[0, s] + Vg[s, t] = Vg[0, t]

≥ 0. 2

Another decomposition is given by

g(t) =
1

2
[Vg(t) + g(t)]− 1

2
[Vg(t)− g(t)] .

Proposition 1.2.6
Let f, g be function so finite variation. The following are all of finite variation:

(a) f + g

(b) fg

(c) f/g given |g| ≥ C ∈ R

Theorem 1.2.7
A finite variation function can have no more than countable discontinuities. Moreover,
all discontinuities are jumps.

Proof
The result holds for monotone functions and FV functions are differences of monotone
functions. 2

15
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Theorem 1.2.8
Let g ∈ C1 and suppose g′(t) is absolutely integrable. Then g is of finite variation.

Proof
Vg(t) =

∫ t

0
|g′(t)|dt <∞ for all t by assumption. 2

Proposition 1.2.9
Suppose g : [a, b] → R is continuous. Let ti := i

N
, i = 0, 1, . . . , N denote the uniform

partition of size N + 1. Then

Vg[a, b] = lim
N→∞

N∑
i=1

|g(ti)− g(ti−1)| =: vn.

Proof (Sketcha)
Let N1 be sufficiently large so that some partition P1 approximates Vg[a, b] with error ε/2.
Take N2 to be sufficiently large so that uniform continuity holds for ε/4N1 and consider
the uniform partition P2 on N2 points. The common refinement P = P1 ∪ P2 clearly
approximates Vg[a, b] to error ε/2. Using uniform continuity, we can show that by removing
the points P1 from P to yield P2, we introduces an error of at most 2N1 · ε/4N1 = ε/2.

This concludes the proof. 2

ahttps://math.stackexchange.com/a/3130591

Theorem 1.2.10 (Banach Indicatrix)
Let g(t) be a continuous function on [a, b] and define

S(c) := { t ∈ [a, b] : g(t) = c }
s(c) := |S(t)|.

Then the variation of g is equal to ∫ ∞

−∞
s(a)da.

Proof (Sketcha)
We can approximate s(c) using a monotonically increasing sequence sk(c), k ≥ 1 of in-
dicator functions. Partition [a, b] into 2k intervals I(k)1 , . . . , I

(k)

2k
of length 2−k[b − a] with

16
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endpoints a = t
(k)
0 < t

(k)
1 < · · · < t

(k)

2k
= b. Define

sk :=
2k∑
i=1

1 { ∗ } f(I(k)i ).

It can be shown that sk ↑ s and also∫
s(a) = lim

k

∫
sk(a) ≤ Vg[a, b].

Fix ε > 0. By continuity and the previous proposition, for sufficiently large k,∫
sk(a) ≥

2k∑
i=1

|g(t(k)i )− g(t(k)i−1)| ≥ Vg[a, b]− ε.

The result follows. 2

ahttps://math.stackexchange.com/a/144832

1.2.1 Continuous & Discrete Parts of a Function

Let g : R+ → R be right-continuous and increasing. It has at most countably many jumps
and the sum of jumps is finite over finite time intervals. Define the discontinuous part gd of
g by

gd(t) :=
∑
s≤t

[g(s)− g(s−)] =
∑
0<s≤t

∆g(s)

and the continuous part gc of g by

gc(t) = g(t)− gd(t).

By construction, g = gc + gd with gd only changing by jumps and gc being continuous.

Since finite variation functions are differences of increasing functions, the decomposition
extends for functions of finite variation. Note the decomposition is unique up to constants.
Indeed, if g = hc + hd then

hc − gc = gd − hd,

implying that hd − gd is continuous. Hence hd and gd have the same set of jump points and
so hd − gd = c for some constant c.

17
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1.2.2 Quadratic Variation

Definition 1.2.11 (Quadratic Variation)
Let g : R+ → R. Its quadratic variation over [0, t] is given by

[g](t) := lim
δn→0

n∑
i=1

[g(tni )− g(tni−1)]
2

when it exists. The limit is taken over partitions with decreasing maximum width δn.

We can extend the notion of variation to Φ-variation where Φ : R+ → R+ is monotonically
increasing. The Φ-variation of g on [0, t] is

VΦ[g] := sup
n∑

i=1

Φ(|g(tni )| − g(ti−1)
n)

where the supremum is taken over all partitions (not just ones with decreasing width).

We note that the definition of quadratic variation is different to the Φ variation definition
with Φ(u) := u2. In our setting, the limit is taken over shrinking partitions and not all
possible partitions. The definition is equivalent for Φ(u) = u due to the triangle inequality
but not in general.

We rarely encounter quadratic variation in calculus despite its importance in stochastic
calculus since smooth functions have zero quadratic variation.

Theorem 1.2.12
If g is continuous and of finite variation, then its quadraatic variation is zero.

Proof
We have

[g](t) = lim
δn→0

n∑
i=1

[g(tni )− g(tni−1)]
2

≤ lim
δn→0

max
i
|g(tni )− g(tni−1)|Vg(t).

But continuity on compact sets imply uniform continuity and so the limit is zero. 2

We refer to functions with zero quadratic variation and finite variation as functions of zero
energy.

18
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Definition 1.2.13 (Quadratic Covariation)
The quadratic covariation of f, g : R+ → R on [0, t] is given by the following limit
when it exists:

[f, g](t) := lim
δn→0

n∑
i=1

[f(tni )− f(tni )][g(tni )− g(tni−1)].

The limit is taken over shrinking partitions.

Theorem 1.2.14
If f is continuous and g is of finite variation, then [f, g](t) = 0.

Theorem 1.2.15 (Polarization Identity)
Let f, g be such that their covariation is defined.

[f, g](t) =
1

2
([f + g, f + g](t)− [f, f ](t)− [g, g](t)) .

Clearly covariation is symmetric and it follows from the polarization identity that it is
bilinear. By definition, the quadratic variation function is non-decreasing and hence of finite
variation. This extends to quadratic covariation by the polarization identity.

1.3 Riemann-Stieltjes Integral

The Riemann-Stieltjes integral is an integral of the form

∫ b

a

f(t)dg(t)

where g is of finite variation. Note it suffices to define the integral with respect to monotone
functions as functions of finite variation are differences of monotone functions.

Definition 1.3.1 (Stieltjes Integral)
The Stieltjes integral of f : R→ R with respect to g : R→ R monotone over [a, b] is
defined as ∫ b

a

fdg =

∫ b

a

f(t)dg(t) = lim
δn→0

f(ξni )[g(t
n
i )− g(tni−1)].
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We can interpret the Riemann-Stieltjes integral as a Lebesgue integral∫
(0,t]

dg(s) = g(t)− g(0).

We then have ∫
(0,t)

dg(s) = g(t−)− g(0).

If g′(t) exists and g(t) = g(0) +
∫ t

0
g′(s)ds, it is possible to show that∫ b

a

f(t)dg(t) =

∫ b

a

f(t)g′(t)dt,

which is similar to the notion of a Radon-Nikodym derivative for absolutely continuous
measures.

If g(t) =
∑btc

k=a h(k), then ∫ b

a

f(t)dg(t) =
b∑

k=a+1

f(k)h(k).

Let g : R→ R be a function of finite variation and decompose it as

g = a− b
a = Vg

b = Vg − g.

Definition 1.3.2 (Stieltjes Integral)
If ∫ t

0

|f(s)||dg(s)| :=
∫ t

0

|f(s)|dVg(s) <∞,

then we say f is Stieltjes integrable with respect to g and its integral is defined by∫
(0,t]

f(s)dg(s) :=

∫
(0,t]

f(s)da(s)−
∫
(0,t]

f(s)db(s).

We write ∫ b

a

f(s)dg(s) :=

∫
(a,b]

f(s)dg(s).

If f is Riemann-Stieltjes integrable with respect to g, then the variation of the integral is
given by

V (t) :=

∫ t

0

|f(s)||dg(s)| =
∫ t

0

|f(s)|dVg(s).
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In stochastic calculus, we may need to integrate with respect to functions of infinite variation.
It can be shown that such integrals cannot be defined as a usual limit of approximating sums.

Theorem 1.3.3
Let δn denote the width of the largest interval in a partition of [a, b]. If

lim
δn→0

n∑
i=1

f(tni−1)[g(t
n
i )− g(tni−1)]

exists for any continuous function f , then g must be of finite variation on [a, b].

1.3.1 Lebesgue-Stieltjes Integral

This interpretation is due to the appendix of a booki.

Definition 1.3.4 (Borel Measure)
A Borel measure on R is a non-negative set function µ defined for all Borel sets of R
such that

(i) µ(∅) = 0

(ii) µ(I) <∞ for every bounded interval I
(iii) µ(∪∞i=1)Bi) =

∑∞
i=1 µ(Bi) for disjoint Borel sets Bi’s

Theorem 1.3.5
The following hold.

(a) Let µ be a Borel measure on R and G : R→ R be satisfy G(b)−G(a) = µ(a, b].
Then G is right-continuous and increasing.

(b) Let G : R → R be right-continuous and increasing. Define µ(a, b] := G(b) −
G(a). There is a unique extension of µ to a Borel measure on R.

ihttps://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118150672.app1
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Proposition 1.3.6
Let G : R → R be right-continuous and increasing, with µ being its associated Borel
measure.

(a) µ(a, b) = G(b−)−G(a)
(b) µ[a, b] = G(b)−G(a−)
(c) µ[a, b) = G(b−)−G(a−)
(d) µ { a } = G(a)−G(a−)
(e) G is continuous at a if and only if µ { a } = 0.

For a right-continous increasing function G, we can then equivalently define∫
B

fdG :=

∫
B

fdµ

where B is a Borel set and µ is the associated Borel measure of G.

Example 1.3.7
If g : R→ R is right-continuous, increasing, and also differentiable on R except at points
in a countably infinite set x1, x2, . . . ,∫ t

0

f(x)dg(x) =

∫ t

0

f(x)g(x)dx+
∑

n:0<xn≤t

f(xn)∆g(xn).

Since finite variation functions are differences of increasing functions, we can extend the
definition to these functions as usual. It follows from this decomposition that all standard
results from Lebesgue integration, such as convergence theorems, and Fubini’s theorem for
iterated integrals over product spaces, hold for

∫
fdg when f is Borel measurable and g is

of bounded variation on finite intervals.

1.3.2 Integration by Parts

Theorem 1.3.8
Let f, g : R→ R be right-continuous functions of finite variation. Then

f(b)g(b)− f(a)g(a) =
∫ b

a

f(s−)dg(s) +
∫ b

a

g(s)df(s)

=

∫ b

a

f(s−)dg(s) +
∫ b

a

g(s−)df(s) +
∑
a<s≤b

∆f(s)∆g(s).
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Remark 1.3.9 In the case that f is continuous, we recover the familiar integration by parts
formula.

f(b)g(b)− f(a)g(a) =
∫ b

a

f(s)dg(s) +

∫ b

a

g(s)df(s).

Proof
By Fubini’s theorem,

[f(b)− f(b)][g(a)− g(a)]

=

∫ b

a

∫ b

a

df(x)dg(y)

=

∫ b

a

∫ b

a

1{x<y }df(x)dg(y) +

∫ b

a

∫ b

a

1{x≥y }dg(y)df(x)

=

∫ b

a

[f(y−)− f(a)]dg(y) +
∫ b

a

[g(x)− g(a)]df(x)

=

∫ b

a

f(y−)dg(y)− f(a)[g(b)− g(a)] +
∫ b

a

g(x)df(x)− g(a)[f(b)− f(a)]

=

∫ b

a

f(y−)dg(y) +
∫ b

a

g(x)df(x).

This shows the first equality. The second equality follows by the decomposition∫ b

a

∆g(s)f(s) =

∫ b

a

∆g(s)df c(s) +
∑
a<s≤b

∆g(s)∆f(s)

=
∑
a<s≤b

∆g(s)∆f(s). 2

Example 1.3.10
Let g be of finite variation with g(0) = 0. Then by integration by parts,∫ t

0

g(s−)dg(s) = g2(t)

2
− 1

2

∑
s≤t

(∆g(s))2.

On the other hand, ∫ t

0

g(s)dg(s) = g2(t)−
∫ t

0

g(s−)dg(s)

=
g2(t)

2
+

1

2

∑
s≤t

(∆g(s))2.
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Thus it follows that ∫ t

0

g(s−)dg(s) ≤ g2(t)

2
≤
∫ t

0

g(s)dg(s).

Remark 1.3.11 In the case that g is continuous, we have the identity

∫ t

0

g(s)dg(s) =
g2(t)

2
.

In particular, if F (t) :=
∫ t

0
f(s)ds, then

1

2

∫ t

0

∫ t

0

f(u)f(v)dudv =
1

2

(∫ t

0

f(s)ds

)2

=
1

2
F 2(t)

=

∫ t

0

F (s)f(s)ds

=

∫ t

0

∫ s

0

f(u)f(s)duds.

1.3.3 Change of Variables

Theorem 1.3.12
Let f ∈ C1 and g be right-continuous and have finite variation.

f(g(t))− f(g(0))

=

∫ t

0

f ′(g(s−))dg(s)

+
∑
0<s≤t

[f(g(s))− f(g(s−))− f ′(g(s−))[g(s)− g(s−)]] .

If g is continuous,

f(g(t))− f(g(0)) =
∫ t

0

f ′(g(s))dg(s)

=

∫ g(t)

g(0)

f ′(u)du.
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Example 1.3.13
Take f(x) = x2. We have

g2(t)− g2(0)

= 2

∫ t

0

g(s−)dg(s)

+
∑
0<s≤t

[f(g(s))− f(g(s−))− f ′(g(s−))[g(s)− g(s−)]]

∑
0<s≤t

[f(g(s))− f(g(s−))− f ′(g(s−))[g(s)− g(s−)]]

=
∑
0<s≤t

[
g2(s)− g2(s−)− 2g(s−)[g(s)− g(s−)]

]
=
∑
0<s≤t

[
g2(s) + g2(s−)− 2g(s−)g(s)

]
=
∑
0<s≤t

[∆g(s)]2.

1.4 Taylor’s Theorem

Recall that a function f : Rn → R is differentiable at x ∈ Rn provided that there is a vector
∇f(x) ∈ Rn such that

∆f(x) = 〈∇f(x),∆x〉+ o(‖∆(x)‖).

If f is differentiable at x, then all partial derivatives necessarily exist. It suffices to have
continuous partial derivatives in order to have differentiability.

Let f ∈ C2(RnR). Then the second-order Taylor expansion is given by

∆f(x) = 〈∇f(x), dx〉+ 1

2
(dx)T∇2f(x+ θ∆x)(dx)

where ∇2f(x+ θ∆x) denotes the Hessian matrix at some mid point in [x, x+∆x].

1.4.1 Differentials & Integrals

We write the differential df(t) of a differentiable function f as the largest term in its Taylor
expansion.

Thus if dx := ∆x, then
f(x+ dx)− f(x) = f ′(t)dt+ o(|dt|)

25



©Fel
ix

Zh
ou

and so df(t) = f ′(t)dt.

By the chain rule, if both f, g are differentiable, then f(g(x)) is also differentiable with

df(g(t)) = f ′(g(t))g′(t)dt = f ′(g(t))dg(t).

The main relationship between integral and differential calculus is the fundamental theorem
of calculus:

Theorem 1.4.1
If f is differentiable on [a, b] and f ′ is integrable on [a, b], then

f(b)− f(a) =
∫ b

a

f ′(s)ds.

For differentiable functions, differential equations of the form

df(t) = ϕ(t)dw(t)

can be written as an integral equation

f(t) = f(0) +

∫ t

0

ϕ(s)dw(s).

In stochastic calculus, stochastic differentials do not formally exist as the random functions
w(t) are not differentiable at any point. By introducing a stochastic integral, stochastic
differential equations are defined as solutions to these stochastic integral solutions.

1.5 Other Results

1.5.1 Lipschitz & Hölder Continuity

Lipschitz and Hölder conditions describe subclasses of continuous functions. They appear
as conditions on the coefficients in the results of the existence and uniqueness of solutions
of ordinary and stochastic differential equations.

Definition 1.5.1 (Hölder Continuity)
f : I ⊆ R → R satisfies a Hölder condition (Hölder continuous) of order α ∈ (0, 1]
over the interval I if there is a constant K > 0 so that for every x, y ∈ I,

|f(x)− f(y)| ≤ K|x− y|α.
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A Lipschitz condition is a Hölder condition with α = 1.

We say that f : R → R is smooth on [a, b] if it has a continuous derivative f ′ on (a, b) and
the limits f ′(a+), f ′(b−) exist.

f is piecewise continuous on [a, b] if it is continuous on [a, b] except on a finite number of
points at which both left and right limits exist.

We say f is piecewise smooth on [a, b] if it is piecewise continuous on [a, b] and f ′ exists and
is also piecewise continous on [a, b].

1.5.2 Growth Conditions

Definition 1.5.2 (Polynomial Growth Condition)
We say that f : R → R satisfies the polynomial growth condition if there is some
constant K > 0,m ∈ Z+ such that

|f(x)| ≤ K(1 + |x|m).

The linear growth condition is a polynomial growth condition with m = 1.

Proposition 1.5.3
Suppose f : R2 → R is such that |f(0, t)| ≤ C for all t and f(x, t) is uniformly Lipschitz
condition in x. Then f(x, t) satisfies the linear growth condition in x,

|f(x, t)| ≤ K(1 + |x|).

Theorem 1.5.4 (Gronwall’s Inequality)
Let g, h : [0, T ] → R be regular and non-negative. For any regular, non-negative f
satisfying the following inequality for all t ∈ [0, T ]

f(t) ≤ g(t) +

∫ t

0

h(s)f(s)ds,

we have
f(t) ≤ g(t) +

∫ t

0

h(s)g(s) exp

(∫ t

s

h(u)du

)
ds.

In the case where g is non-decreasing, the integral above simplifies to give

f(t) ≤ g(t) exp

(∫ t

0

h(s)ds

)
.
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In the most basic case when g = A, h = B are constants,

f(t) ≤ A exp(Bt).

1.5.3 First-Order Linear Differential Equations

A first-order linear differential equation is of the form

dx(t)

dt
+ g(t)x(t) = k(t).

These equations are solved by using the integrating factor method. Choose some G(t) such
that G′(t) = g(t). After multiple both sides by eG(t), integrating, and solving for x(t), we
have

x(t) = e−G(t)

∫ t

0

(
eG(s)k(s)

)
ds+ x(0)eG(0)−G(t).

Note that G(t) is unique up to an additive constant so that the solution above is unique.

28



©Fel
ix

Zh
ouChapter 2

Preliminaries from Probability
Theory

The treatment in this chapter is far from complete compared to the analysis preliminaries.
We assume a first graduate course in probability. In particular, we assume knowledge of
elementary measure-theoretic probability.

2.1 Gaussian Distributions

The density of a Gaussian random vector X : Ω→ Rn is given by

fX(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The moment generating function of the Gaussian distribution N (µ,Σ) is given by

E[e〈t,X〉] = eµt−
1
2
tTΣt.

If Z is the random vector whose components Zi ∼ i.i.d.N (0, 1), then

X = µ+ AZ

for some AAT = Σ. In general, if X ∼ N (µ,Σ) and B is a matrix,

BX ∼ N (Bµ,BΣBT ).

Definition 2.1.1
A collection of random variables is a Gaussian process if the joint distribution of any
finite subset of its members is Gaussian.
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It can be shown that if a process X(t) has independent Gaussian increments, then it is a
Gaussian process.

2.2 Conditional Expectation

Let X ∈ L1 be some random variable. Given some σ-field G, the conditional expectation of
X with respect to G is some G-measurable random variable E[X | G] such that∫

B

XdP =

∫
B

E[x | G]dP

for any G-measurable B.

Equivantly, for any bounded G-measurable variable ξ,

E[ξE[X | G]] = E[ξX].

The existence of such a variable is guaranteed by the Radon-Nikodym theorem. Moreover,
E[x | G] is a.s. unique.

2.2.1 Discrete & Continuous Cases

The conditional distribution function of X given Y = y is defined as

P {X ≤| Y = y } := P {X ≤ x, Y = y }
P {Y = y }

.

This is not defined if the event upon which we condition has probability 0. We can overcome
this difficulty if X,Y have a joint density p(x, y). In this case, we define the conditional
density of X given Y = y

p(x | y) := (x, y)

pY (y)
.

Here pY (y) :=
∫
p(x, y)dx is the marginal density of Y .

The conditional expectation of X given y is thus

E[X | Y = y] :=

∫
xf(x | y)dx.

By replacing y with the random variable Y , we recover the conditional expectation E[X | Y ].

Remark that the conditional distributiona and density are only defined at points fY (y) > 0.
We can define it arbitrarily at points fY (y) = 0 since those points amount only to a set of
measure 0. Note that this recovers the fact that the conditional expectation is a.s. unique.
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2.2.2 Properties of Conditional Expectation

By directly applying the definition of the conditional expectation, use by considering ap-
proximations through simple functions and applying the monotone convergence theorem, it
is possible to derive the following properties.

1. If G = {∅,Ω },
E[X | G] a.s.

= E[X].

2. If Y is G-measurable,
E[Y X | G] a.s.

= Y E[X | G].

3. If G1 ⊆ G2,
E[E[X | G2] | G1]

a.s.
= E[X | G1].

This is known as the smoothing property. Note that by taking G1 = {∅,Ω },

E[E[X | G2]]
a.s.
= E[X].

4. If σ(X) ⊥ G and F ⊥ G,

E[X | σ(F ,G)] a.s.
= E[X | F ].

5. If g is a convex function on Im(X),

g(E[X | G])
a.s.

≤ E[g(X) | G].

In particular, by taking g(x) := |x|,

|E[X | G]|
a.s.

≤ E[|X| | G].

6. Suppose 0
a.s.

≤ Xn ↑ X ∈ L1. Then

E[Xn | G]
a.s.

↑ E[X | G].

This is the familiar monontone convergence.

7. If 0
a.s.

≤ Xn,
E
[
lim inf

n
Xn | G

] a.s.

≤ lim inf
n

E[Xn | G].

This is known as Fatou’s Lemma.

8. If Xn
a.s.−−→ X and |Xn|

a.s.

≤ Y with E[Y ] <∞,

E[Xn | G]
a.s.−−→ E[X | G].
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The following results are commonly applied.

Theorem 2.2.1
Let X ⊥ Y be random variables and φ(x, y) ∈ L1. Then

E[φ(X,Y ) | Y ] = G(Y )

where G(y) := E[φ(X, y)].

Theorem 2.2.2
Let (X,Y ) be a Gaussian vector. Then the conditional distribution of X | Y is also
Gaussian. Moreover, provided that Cov [ Y, Y ] is non-singular,

E[X | Y ] = E[X] + Cov [X,Y ] Cov [ Y, Y ]−1 (Y − E[Y ]).

If Cov [ Y, Y ] is singular, the same formula holds with the inverse replaced by the
Moore-Penrose pseudo-inverse.

Theorem 2.2.3 (Best Estimator / Predictor)
Let Y be such that for any X-measurable random variable Z,

E[(X − X̂)2] ≤ E[(X − Z)2].

Then X̂
a.s.
= E[X | Y ].

2.3 Continuous Time Processes

The construction of continous time stochastic processes follow the same ideas as in discrete
time, but are much more involved. Consider a random element S : Ω → D[0, T ] where
D[0, T ] is the set of all CADLAG functions on [0, T ].

The simplest sets for which we would like to calculate probabilities are sets of the form
{ω : S(t1;ω) ∈ [a, b] } for some fixed t1 ∈ [0, T ]. More generally, we may also be interested
how the value at t1 affects the value at another time t2. In general, we would like to have
all finite-dimensional distributions of the process. That is, probabilities of the form

{ ω : S(ti;ω) ∈ Bi, i ∈ [n] }

where Bi are intervals on the line. Formally, these sets are known as cylinder sets.

Probability is first defined on cylinders and then extended to the field generated by cylin-
ders. Kolmogorov’s extension theorem ensures that such an extension is consistent and
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well-defined. A probability defined on a field of cylinder sets can then be extended uniquely
to the σ-field generated by cylinder sets.

It follows from this cosntruction that:

(a) For any choice of points 0 ≤ t1 ≤ · · · ≤ tn ≤ T , S(t1), . . . S(tn) is a random vector.
(b) The process is determined by its finite-dimensional distributions.

2.3.1 Continuity & Regularity of Paths

It is natural to consider a stochastic process S(t) as a random function in t. Realizations
of S are CADLAG functions ω ∈ D[0, 1]. Finite-dimensional distributions do not determine
the continuity of sample paths.

Example 2.3.1
Let X(t) = 0 for all t ∈ [0, 1] and τ ∼ U [0, 1]. Define

Y (t) :=

{
X(t), t 6= τ

1, t = τ

so that all finite-dimensional distributions ofX(t), Y (t) are the same. Moreover, P {X(t) = Y (t) } =
1 for all t ∈ [0, 1].

However, the sample paths of X are continuous, but every sample path of Y has a jump.

Definition 2.3.2 (Versions (Modifications))
Two stochastic processes are versions (modifications) of one another if

P {X(t) = Y (t) } = 1

for every t ∈ [0, T ].

Thus the two processes from the previous example are versions one another. If we agree to
pick any version of the process we want, we can pick the smoothest possible version of the
processes.

Define Nt := {X(t) 6= Y (t) } and remark that P(Nt) = 0. However, there are uncountably
many t’s and there is no contradiction that N := ∪tNt has probability 1. In the case that
P(N) = 0, we say X,Y are indistinguishable (evanescent).

Remark that in discrete time, if X,Y are versions of one another, they are indistinguishable.
In addition, if X,Y are both right-continuous, then they are indistinguishable.

We would like to work with continuous or regular versions of processes if possible. Some
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conditions for the existence of such versions are given below.

Theorem 2.3.3
Let S(t) be a real-valued stochastic process.

1. If there α, ε, C > 0 so that for any 0 ≤ u ≤ t ≤ T ,

E [ |S(t)− S(u)|α ] ≤ C(t− u)1+ε,

then there exists a version of S with Hölder continuous paths of order h < ε/α.
2. If there are α1, α2, ε, C > 0 so that for any 0 ≤ u ≤ v ≤ t ≤ T ,

E [ |S(v)− S(u)|α1 · |S(t)− S(v)|α2 ] ≤ C(t− u)1+ε,

Then there exists a version of S that is regular and has one-sided limits at the
boundaries.

This result allows us to decide on the existence of continuous (regular) versions of processes
by considering the bivariate (trivariate) distributions of the process. The same result hods
when the process takes values in Rd, except that the Euclidean distance replaces the absolute
value in the above functions.

Regular functions are typically considered the same if all left and right limits coincide. In
this case, it can be convenient to identify any such function with its right-continous version.

Theorem 2.3.4
If the stochastic process S(t) is

(i) right-continuous in probability, ie for every t ∈ [0, T ],

S(u)
p−→ S(t)

as u ↓ t
(ii) regular

then it has a right-continuous version.

It is possible to derive alternative conditions for smoothness when additional properties of
the process is known to us.

2.3.2 σ-Field Generated by a Stochastic Process

We define
Ft := σ {Su : u ≤ t }
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as the smallest σ-field containing sets of the form {Su ∈ [a, b] } for 0 ≤ u ≤ t and a, b ∈ R.
We interpret this as the information available to an observer of the process S up to time t.

2.3.3 Filtered Probability Space & Adapted Processes

A filtration F = {Ft } is a family of increasing σ-fields on (Ω,F), ie

Fs ⊆ Ft ⊆ F

for every s ≤ t.

A filtered probability space (Ω,F ,F ,P) is a probability space (Ω,F ,F ) paired with a filtra-
tion F such that

F0 ⊆ Ft ⊆ . . . ⊆ FT = F .

A stochastic process on this filtered probability space is said to be adapted if for every t,
S(t) is Ft-measurable. Intuitively, this means Ft contains all information about S(t) (and
possibly more).

2.3.4 The Usual Conditions

A filtration is said to be right-continuous if

Ft = Ft+ :=
⋂
s>t

Fs.

The standard assumption (referred to as the usual condition) is that filtrations are right-
continuous. We interpret this as any information known immediately after t is also known
at t.

Remark 2.3.5 If S(t) is F -adapted, it is also adapted to G := { Gt } for

Gt := Ft+,

which is a right-continuous filtration.

The assumption of right-continuous filtration has a number of important and useful con-
sequences. We will see that it allows us to assume that martingales, submartingales, and
supermartingales have regular, right-continuous versions.

It is also assumed that any subset of a set of zero probability is F0-measurable. It is always
possible to enlarge the σ-field to include such sets if this property does not hold in the first
place.
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2.3.5 Martingales & Friends

Definition 2.3.6 (Martingale)
Suppose a F -adapted process X(t) is a martingale if

(i) X(t) ∈ L1 for all t
(ii) For any s < t,

E [X(t) | Fs ] = X(s).

If in place of (ii) we have

E [X(t) | Fs ] ≤ X(s),

then X(t) is a supermartingale. Similarly, if instead of (ii) we have

E [X(t) | Fs ] ≥ X(s),

then X(t) is said to be a submartingale.

The following is an important example of a martingale.

Theorem 2.3.7 (Doob-Lévy Martingale)
Let Y ∈ L1 be an integrable random variable. Then

M(t) := E [ Y | Ft ]

is a martingale.

Proof
By the smoothing property,

E [M(t) | Fs ] := E [ E [ Y | Ft ] | Fs ]

= E [ Y | Fs ]

=:M(s). 2

Using the smoothing property, we can show that the mean of a martingale, supermatingale,
and submartingale is constant, non-increasing, and non-decreasing in t, respectively.

If X(t) is a supermartingale, then −X(t) is a submartingale by definition.

The super and submartingale property allows us to derive conditions of the right-continuous
versions of processes without the assumption of continuity in probability.
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Theorem 2.3.8
Let F be a right-continuous filtration with each σ-field Ft completed by null sets
from F . A F -adapted supermartingale X(t) has a CADLAG version if and only
if its mean function EX(t) is right-continuous. Consequently, any martingale with
right-continuous filtration admits a regular right-continuous version.

In view of these results, it will often be assumed that the version of the process under
consideration is CADLAG.

2.3.6 Stopping Times

Definition 2.3.9 (Stopping Time)
A non-negative random variable τ : Ω → [0,∞] is a stopping time with respect to a
filtration F if for each t,

{ τ ≤ t } ∈ Ft.

It follows from the definition that { τ > t } ∈ Ft as well.

Remark 2.3.10 The event {
τ ≤ t− 1

n

}
∈ Ft−1/n.

Since Ft’s are increasing, we also have { τ ≤ t− 1/n } ∈ Ft. Therefore { τ < t } ∈ Ft. In fact,
define

Ft− :=
∨
s<t

Fs := σ

(⋃
s<t

Fs

)
.

The above argument show that { t < τ } ∈ Ft−.

Theorem 2.3.11
Let F be a right-continuous filtration. Then τ is a F -stopping time if and only if
for each t, the event { τ < t } ∈ Ft.

Proof
The remark above shows the implication direction. Conversely, suppose { τ < t } ∈ Ft for
all t. We have

{ τ ≤ t } =
⋂
n≥1

{ τ < t+
1

n
} .

Since { τ < t+ 1/n } ∈ Ft+1/n, we also have { τ ≤ t } ∈ Ft by the right-continuity of F . 2
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The assumption of right-continuity of F is important when studying hitting or exit times of
a process. If S(t) is a stochastic process adapted to F , the hitting time of set A is defined
as

TA := inf { t ≥ 0 : S(t) ∈ A } .
The first exit time from a set D is defined as

τD := inf { t ≥ 0 : S(t) /∈ D } .

Observe that τD = TR\D.

Theorem 2.3.12
Let S(t) be continuous and adapted to F .

(a) If D is an open subset of R, then τD is a stopping time.
(b) If A is closed, then TA is a stopping time.
(c) If in addition F is right-continuous, then for closed sets D and open sets A,

τD, TA are stopping times as well.

Proof
We have

{ τD > t } =
⋂

0≤u≤t

{S(u) ∈ D } .

This event is an uncountable intersection over all u ≤ t of events from Ft. By the
continuity of S(u) and D being open, if there is some irrational u such that S(u) ∈ D,
then there must be some close by rational point q such that S(q) ∈ D. It follows that⋂

0≤u≤t

{S(u) ∈ D } =
⋂

q∈Q:0≤q≤t

{S(q) ∈ D }

which is a countable intersection of events from Ft and hence belongs to Ft. This shows
that tD is a stopping time.

Since R \ A is open and TA = τR\A, it follows immediately that TA is a stopping time.

Now suppose that F is right-continuous. Our plan is to apply the previous theorem and
show hat { τD < t } ∈ Ft. The case for TA follows again by taking complements.

Suppose D is closed. Then R \D is a countable union of open sets, in fact open intervals.
Thus D is a countable intersection of closed intervals Cn = [an, bn]. It follows that

D =
⋂
n≥1

[an, bn]

=
⋂
n≥1

⋂
m≥1

(
an −

1

m
, bn +

1

m

)
.
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Define Dn,m := (an−1/m, bn+1/m). Then τDn,m is a stopping time and so { τDn,m > t } ∈ Ft.
But

{ τD ≥ t } =
⋂

n,m≥1

{
τDn,m > t

}
,

hence { τD ≥ t } ∈ Ft and { τD < t } ∈ Ft as desired. 2

For general CADLAG processes, the following result holds.

Theorem 2.3.13
Suppose S(t) is a CADLAG, F -adapted process for some right-continuous F .

(a) If A ⊆ R is open, then TA is a stopping time.
(b) If A is closed, then

{ t > 0 : S(t) ∈ A ∨ S(t−) ∈ A }

is a stopping time.

It is possible but much harder to show that the hitting time of a Borel set is a stopping time.

The following results give basic properties of stopping times.

Theorem 2.3.14
Let S, T be stoppign times. The following are all stopping times.

(a) min(S, T )

(b) max(S, T )

(c) S + T

2.3.7 σ-Field FT

If T is some stopping time, events observed before or at time T are described by a σ-field
FT , defined as the collection of sets

FT := { A ∈ F : ∀t, A ∩ {T ≤ t } ∈ Ft } .
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Theorem 2.3.15
Let S, T be stopping times. Then the following properties hold.

(a) If A ∈ FS, then A ∩ {S = T } ∈ FT .
(b) {S = T } ∈ FS ∩ FT .
(c) If A ∈ FS, then A ∩ {S ≤ T } ∈ FT .
(d) {S ≤ T } ∈ FS ∩ FT .

2.3.8 Fubini’s Theorem

We state a particular case of Fubini’s theorem that is formulated in the way that is typically
applied in practice.

Theorem 2.3.16
Let X(t) be a stochastic process on [0, T ] with regular sample paths. Then∫ T

0

E [ |X(t)| ] dt = E
[ ∫ T

0

|X(t)|dt
]
.

Furthermore, if this quantity is finite,

E
[ ∫ T

0

X(t)dt

]
=

∫ T

0

E [X(t) ] dt.
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Part II

Stochastic Calculus
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Basic Stochastic Processes

3.1 Brownian Motion

The Brownian motion, also known as the Wiener process, serves as a basic model for the
cumulative effect of pure noise. If B(t) denotes the position of a particle at time t, the
displacement B(t) − B(0) is the effect of purely random bombardment by molecules of the
fluide, or the effect of noise over time t.

3.1.1 Defining Properties

Definition 3.1.1 (Brownian Motion)
Brownian motion is a stochastic process B(t) with the following properties:

(i) (Independent Increments) B(t) − B(s) ⊥ Bu for all t > s ≥ u ≥ 0 and B(t) −
B(s) ⊥ Fs for all t > s.

(ii) (Normal Increments) B(t)−B(s) ∼ N (0, t− s).
(iii) (Continuity of Paths) The sample paths of B(t) are continuous functions of t.

The initial position is not specified in the definition but we can take it to be 0. We write
Px to denote the probability of events when the process states at x. The first two properties
determine all the finite-dimensional distributions, all of whom are Gaussian. The time
interval on which Brownian motion is defined is [0, T ] for some ∈ (0,∞].

Remark that we can deduce the existence of a continuous version of Brownian motion from
the first two properties. Indeed,

E
[
|B(t)−B(s)|4

]
= 3(t− s)2.
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Note that a more general model of Brownian motion is a pair (B(t),F ) where B(t) is an
F -adapted process satisfying the defining properties.

Example 3.1.2
Although B(t)−B(s) is independent of the past,

B(t)− 2B(s) = [B(t)−B(s)]−B(s)

is not.

Example 3.1.3
We write W d

= B to be an independent copy.

By computation,

P {B(0) ≤ 0, B(1) ≤ 0, B(2) ≤ (0) }
= P {B(1) ≤ 0, B(2) ≤ 0 }
= P {B(1) ≤ 0, B(2)−B(1) ≤ −B(1) }
= P {B(1) ≤ 0,W (1) ≤ −B(1) }

=

∫ 0

−∞
P (W (1) ≤ −x)f(x)dx

=

∫ ∞

0

Φ(x)f(−x)dx change of variable

=

∫ ∞

0

Φ(x)f(x)dx f symmetric

=

∫ ∞

0

Φ(x)dΦ(x)

=

∫ ∞

1/2

ydy change of variable

=
3

8
.

3.1.2 Transition Probability Functions

If the process started at x ∈ R, B(0) = x and B(t) ∼ N (x, t). More specifically, the
conditional distribution of B(t+ s) given B(s) = x is N (x, t).

Define the transition function

P (y, t, x, s) := P {B(t+ s) ≤ y | B(s) = x }
= Px {B(t) ≤ y } .
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The density function of this distribution is the transition density of Brownian motion,

pt(x, y) :=
1√
2πt

exp

(
−(y − x)2

2t

)
.

The finite-dimensional distributions can be computed using the transition density since the
increments of Brownian motion are independent. Indeed,

Px {B(t1) ≤ x1, B(t2) ≤ x2, . . . , B(tn) ≤ xn }

=

∫ x1

−∞
pt1(x, y1)dy1

∫ x2

−∞
pt2−t1(y1, y2)dy2· · ·

∫ xn

−∞
ptn−1−tn(yn−1, yn)dyn.

3.1.3 Space Homogeneity

Definition 3.1.4 (Space-Homogeneous)
A stochastic process is called space-homogeneous if its finite dimensional distributions
are translation invariant, ie

P {X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn | X(0) = 0 }
= P {X(t1) ≤ x1 + x,X(t2) ≤ x2 + x, . . . , X(tn) ≤ xn + x | X(0) = x } .

Brownian motion is space-homogeneous.

3.1.4 Brownian Motion as a Gaussian Process

Recall a process is Gaussian if all finite-dimensional distributions are Gaussian.

Example 3.1.5
Let X ∼ N (µ1, σ

2
1), Y ∼ N (µ2, σ

2
2) be independent. The distribution of (X,X + Y ) is

bivariate normal with mean vector (µ1, µ1 + µ2) and covariance matrix

Σ =

[
σ2
1 σ2

1

σ2
1 σ2

1 + σ2
2

]
.

Indeed, suppose Z ∼ N (0, I2). Then

(X,X + Y ) = µ+ AZ

where
A =

[
σ1 0
σ1 σ2

]
.
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Similar to this example, we can express any finite-dimensional distribution of Brownian
motion using the independence of increments. Let Y1 := B(t1) and Yk := B(tk) − B(tk−1)
for k > 1. By construction, the Yk’s are all independent. Moreover, Y1 ∼ N (0, t1) and
Yk ∼ N (0, tk − tk−1) for k > 1. Remark that Y1 =

√
t1Z1 and Yk =

√
tk − tk−1Zk, k > 1.

Thus (B(tk))k∈[n] is a linear transformation of Z ∼ N (0, In).

Definition 3.1.6 (Covariance Function)
The covariance function of a process X(t) is defined as

γ(s, t) := Cov [X(t), X(s) ]

= E [ (X(t)− E[X(t)])(X(s)− E[X(s)]) ]

= E [X(t)X(s) ]− E[X(t)]E[X(s)].

The next result characterizes Brownian motion as a particular Gaussian process.

Theorem 3.1.7
A stochastic process satisfies the defining properties of a Brownian motion started at
zero if and only if it is a Gaussian process with zero mean function and covariance
function min(t, s).

Proof
Since the mean of Brownian motion is zero

γ(s, t) = E [B(t)B(s) ] .

If t < s, then B(s) = B(t) +B(s)−B(t) and

E [B(t)B(s) ] = E[B2(t)] + E [B(t)(B(s)−B(t)) ]

= E[B2(t)]

= t

and vice versa if t > s.

Conversely, let t be arbitrary and s ≥ 0. Suppose X(t) is a Gaussian process so its joint
distribution of X(t), X(t+ s) must be a bivariate normal with zero mean by assumption.
But then the vector (X(t), X(t+ s)−X(t)) is also bivariate normal. For any u ≤ t,

Cov [X(u), X(t+ s)−X(t) ] = Cov [X(u), X(t+ s) ]− Cov [X(u), X(t) ]

= min(u, t+ s)−min(u, t) assumption
= 0.

But a bivariate normal distribution has independent marginals if and only if they are
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independent. Moreover,

Cov [X(t+ s)−X(t), X(t+ s)−X(t) ] = (t+ s)− 2t+ t

= s.

Hence the increment X(t + s) −X(t) ∼ N (0, s) and is independent of X(t). Therefore,
it is a Brownian motion. 2

Example 3.1.8
We find the distribution of

∑n
i=1B(i). The random vectorX = (B(i))i∈[n] is a multivariate

normal vector with mean zero and covariance matrix with entries Σij = min(i, j). Then
the desired random random is equal to 1TX and hence has a normal distribution with
mean zero and covariance 1TΣ1.

Example 3.1.9
Suppose we wish to find the distribution of 1

n

∑n
i=1B(i). Define Y = (B(i/n))i∈[n] and

remark that Y = 1√
n
X where X is from the previous example. Thus the covariance

matrix of Y is given by 1/√nΣ and 1TY has mean zero and variance 1/√n1TΣ1.

Example 3.1.10
We wish to find the probability

P
{
ω :

∫ 1

0

B(t;ω)dt > x

}
.

First note that since Brownian motion has continuous paths, the Riemann integral is
well-defined for any particular sample path. In order to find the desired probability, we
remark that the distribution of

∫ 1

0
B(t)dt can be obtained as a limit of the distributions of

the approximating sums
∑

iB(ti)∆, where the points ti partition [0, 1] and ∆ := ti+1− ti.

Since the limit of Gaussian distributions is Gaussian,
∫ 1

0
B(t)dt has a normal distribution
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with zero mean. It remains only to compute its variance. By Fubini’s theorem,

Var

[∫ 1

0

B(t)dt

]
= Cov

[ ∫ 1

0

B(t)dt,

∫ 1

0

B(s)ds

]
= E

[ ∫ 1

0

B(t)dt

∫ 1

0

B(s)ds

]
=

∫ 1

0

∫ 1

0

E [B(t)B(s) ] dtds

=

∫ 1

0

∫ 1

0

Cov [B(t), B(s) ] dtds

=

∫ 1

0

∫ 1

0

min(t, s)dtds

=
1

3
.

Thus
∫ 1

0
B(t)dt ∼ N (0, 1/3) and the desired probability is calculated explicitly.

Note the application of Fubini’s theorem is justified since∫ 1

0

∫ 1

0

E [ |B(t)B(s)| ] dtds

≤
∫ 1

0

∫ 1

0

E [ |B(t)| ] · E [ |B(s)| ] dtds Cauchy-Schwartz

=

∫ 1

0

∫ 1

0

√
Var[B(t)] · Var[B(s)]dtds

<∞.

3.1.5 Brownian Motion as a Random Series

The process

t

π
ξ0 +

√
2

π

∑
j≥1

sin(jt)

j
ξj

where ξj ∼iid N (0, 1), j ≥ 0 is a Brownian motion on [0, π]. Convergence of the series is
understood a.s. This representation resembles Weirstrauss’s continuous but nowhere dif-
ferentiable function. The claim can be shown by showing that the partial sums converge
uniformly and verifying the process is Gaussian with zero mean and covariance min(s, t).

A more general representation of a Brownian motion is given by using an orthonormal
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sequence of functions on [0, T ], say hj(t). Then take

B(t) =
∑
j≥0

ξjHj(t).

Here
∫ t

0
hj(s)ds is a Brownian motion on [0, T ].

3.2 Properties of Brownian Motion Paths

3.2.1 Quadratic Variation of Brownian Motion

The quadratic variation of Brownina motion is a random variable given by

[B,B](t) = [B,B]([0, t])

= lim
δn→0

n∑
i=1

|B(tni )−B(tni−1)|2.

Here the limit is taken in probability over all shrinking partitions of [0, t].

Theorem 3.2.1
The quadratic variation of Brownian motion over [0, t] is t.

Proof (Sketcha)
Define

Tn :=
∑
i∈[n]

|B(tni )−B(tni−1)|2.

By the independence of normal increments, we see that E[Tn] = t. We claim that
Var[Tn − t]

p−→ 0 so the result follows by Chebyshev’s inequality.

First we note that

E
[
(Tn − t)2

]
= E

∑
i∈[n]

|B(tni )−B(tni−1)|2 − (tni − tni−1)

2 
=
∑
i∈[n]

E
[ (
|B(tni )−B(tni−1)|2 − (tni − tni−1)

)2 ]
.

This is because each summand is an independent zero mean random variable thus any
interaction terms when expanding the square becomes zero.
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By computation,

E
[
(Tn − t)2

]
=
∑
i∈[n]

E
[
|B(tni )−B(tni−1)|4

]
− 2

∑
i∈[n]

(tni − tni−1)E
[
|B(tni )−B(tni−1)|2

]
+
∑
i∈[n]

(tni − tni−1)
2

= 2
∑
i∈[n]

(tni − tni−1)
2 E[Z4] = 3σ4, Z ∼ N (0, σ2)

≤ 2δnT.

As δn → 0, this variance also tends to 0. This concludes the proof by our initial remark.2
ahttps://math.uchicago.edu/~may/REU2019/REUPapers/Carlstein.pdf

We also note that it is possible to show that Tn
a.s.−−→ t for any sequence of partitions which

are successive refinements and satisfy δn → 0.

Remark 3.2.2 In the proof above, we actually showed the stronger statement that Tn
2−→ t.

By varying t, the quadratic variation process of Brownian motion is t. Remark that the
classic quadratic variation of Brownian motion paths, defined as the supremum over all
partitions, not just shrinking ones, is infinite.

3.2.2 Properties of Brownian Paths

Let us think of B(t) as a distribution over sample paths. Almost surely, a sample path
satisfies the following.

1. Is a continuous function of t.
2. Not monotone in any interval, regardless of the length.
3. Not differentiable at any point.
4. Has infinite variation on any interval, regardless of length.
5. Has quadratic variation on [0, t] equal to t, for any t.

Note that a continuous function with bounded derivative is of finite variation. Thus it follows
from property 4 that B(t) can not have a bounded derivative on any interval. This is not
yet the non-differentiability at any point. We show a simpler statement below.
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Theorem 3.2.3
For any t, the trajectories of Brownian motion are not differentiable at t almost surely.

Proof
We remark that

B(t+∆)−B(t)

∆
d
=

√
∆Z

∆
=

Z√
∆
.

Here Z ∼ N (0, 1). But

P
{ ∣∣∣∣ Z√∆

∣∣∣∣ > K

}
→ 1

for any K as ∆→ 0, the ratio converges to∞ in distribution and so the derivative cannot
exist almost surely. 2

3.3 Three Martingales of Brownian Motion

Recall a stochastic process is a martingale if for any t, X(t) ∈ L1 and for any s > 0,

E [X(t+ s) | Ft ]
a.s.
= X(t).

where Ft = σ {X(u) : u ≤ t } = σ(X(t)).

Remark 3.3.1 Intuitively, Ft is the information available to an observer at time t. A set
A ∈ Ft only if one can decide whether or not A has occured by observing the process up to
time t.

Remark 3.3.2 Since the conditional expectation given a σ-field is defined as a random
variable, all relations such as equalities and inequalities must be understood in the almost
surely sense. Thus the “a.s.” will frequently be dropped for brevity.

Examples of martingales constructed from Brownian motion are stated below.

Theorem 3.3.3
Let B(t) be a Brownian motion. The following are martingales.

(a) B(t)

(b) B(t)2 − t
(c) exp(uB(t)− u2t/2) for any u
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Proof
First, we remark that

E [ g(B(t+ s)−B(t)) | Ft ]

= E [ g(B(t+ s)−B(t)) ] B(t+ s)−B(t) ⊥ Ft

= E[g(X(s))].

B(t): By definition, B(t) ∼ N (0, t) so that B(t) ∈ L1. By the indepedence of increments,

E [B(t+ s) | Ft ] = E [B(t) | Ft ] + E [B(t+ s)−B(t) | Ft ]

= B(t) + 0.

B(t)2 − t: By definition, E[B2(t) ] = t <∞. We now perform a similar calculation.

E
[
B2(t+ s)

∣∣ Ft

]
= E

[
(B(t) +B(t+ s)−B(t))2

∣∣ Ft

]
= B2(t) + 2B(t) · E [B(t+ s)−B(t) | Ft ] + E

[
(B(t+ s)−B(t))2

∣∣ Ft

]
= B2(t) + s.

Subtracting (t+ s) from both sides yields the martingale property.

exp(uB(t)− u2t/2): Since B(t) ∼ N (0, t), inspecting its moment generating function yields
integrability.

E [ exp(uB(t)) ] = exp(tu2/2) <∞.

Finally, we apply our initial remark.

E [ exp(uB(t+ s)) | Ft ]

= E [ exp(uB(t) + u(B(t+ s)−B(t))) | Ft ]

= exp(uB(t)) · E [ u(B(t+ s)−B(t)) | Ft ] σ(B(t)) = Ft

= exp(uB(t)) · E [ u(B(t+ s)−B(t)) ] remark
= exp(uB(t)) exp(u2s/2).

The martingale property is obtained by multiplying both sides by exp(−u2(t+s)/2). 2

All three martingales are central in theory. Lévy’s characterization states that X(t) is a
continuous martingale such that X2(t)− t is a martingale if and only if X(t) is a Brownian
motion. The third martingale is known as the exponential martingale and can be used to
establish distributional properties of the process.
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3.4 Markov Property of Brownian Motion

Definition 3.4.1 (Markov)
A stochastic process X(t) is Markov if for any s > 0 and t,

P {X(t+ s) ≤ y | Ft }
a.s.
= P {X(t+ s) ≤ y | X(t) } .

Theorem 3.4.2
Brownian motion is Markov.

Proof
It suffices to show that the moment generating function for B(t + s) | Ft is the same as
B(t+ s) | B(t).

Indeed,

E [ exp(uB(t+ s)) | Ft ]

= exp(uB(t)) · E [ exp(uB(t+ s)−B(t)) | Ft ]

= exp(uB(t)) · E [ exp(uB(t+ s)−B(t)) ] B(t+ s)−B(t) ⊥ Ft

= exp(uB(t)) · E [ exp(uB(t+ s)−B(t)) | B(t) ] B(t+ s)−B(t) ⊥ B(t)

= E [ exp(uB(t+ s)) | B(t) ] . B(t) ∈ σ(B(t)) 2

Recall the transition probability function of a Markov process X(t) is defined as
P (y, t, x, s) := P {X(t) ≤ y | X(s) = x } .

It is possible to choose these functions so that for nay fixed x, they are true probabilities on
the line. In the case of Brownian motion,

P (y, t, x, s) =

∫ y

−∞

1√
2π(t− s)

exp

(
−(u− x)2

2(t− s)

)
du.

In other words,
P (y, t, x, s) = P {B(t− s) ≤ y | B(0) = x } .

This property states that Brownian motion is time-homogeneous, that its distributions do
not change with a shift in time.

3.4.1 Stopping Times & Strong Markov Property

Recall that a random time T is a stopping time for B(t) if for any t ≥ 0, {T ≤ t } ∈ Ft.
Intuitively, this means that it is possible to deduce whether T has occured or not by time t
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through observing B(s), 0 ≤ s ≤ t.

The following are all examples of stopping times and random times.

1. Any deterministic time is a stopping time since {T ≤ t } is either ∅ or Ω.
2. The first hitting time of a ∈ R is a stopping time since {T > t } = { ∀u ≤ t, B(u) < a }.
3. The time T when Brownian motion reaches its maximum on the interval [0, 1] is not a

stopping time.
4. The time T of the last zero before time t = 1 is not a stopping time.

The strong Markov property is similar to the Markov property, except that the fixed time t
is replaced by a stopping time.

Theorem 3.4.3
Brownian motion is strongly Markov: For any finite stopping time T , the regular
conditional distribution B(T + t) | FT for t ≥ 0 is PB(T ).

P {B(T + t) ≤ y | FT }
a.s.
= P {B(T + t) ≤ y | B(T ) } .

The proof of the strong Markov property cand be shown using the exponential martingale
and the optional stopping theorem.

Corollary 3.4.4
Let T be a finite stopping time. Define a new process in t ≥ 0 as

B̂(t) := B(T + t)−B(T ).

Then B̂(t) is a Brownian motion started at zero and is independent of FT .

3.5 Hitting Times & Exit Times

Let Tx denote the first time B(t) hits x ∈ R,

Tx := inf { t > 0 : B(t) = x } .

Moreover, denote the time to exit an interval by τ := min(Ta, Tb).

Theorem 3.5.1
Let x ∈ (a, b) and τ := min(Ta, Tb). Then Ex[τ ] <∞ and Px { τ <∞} = 1.

54



©Fel
ix

Zh
ou

Proof
First, we remark that

{ τ > 1 } = { ∀0 ≤ s ≤ 1, B(s) ∈ (a, b) } ⊆ {B(1) ∈ (a, b) } .

Thus
Px { τ > 1 } ≤ Px {B(1) ∈ (a, b) } = 1√

2π

∫ b

a

exp

(
−(y − x)2

2

)
dy.

The RHS is a continuous function of x ∈ [a, b], hence it reaches its maximum θ < 1, ie,

θ := max
y∈(a,b)

Py

{
∀0 ≤ s ≤ 1, B̂(s) ∈ (a, b)

}
< 1.

In similar fashion, using the fact that B(t) is Markov,

Px { τ > n }
= Px { ∀0 ≤ t ≤ n− 1, B(t) ∈ (a, b) ∧ ∀n− 1 ≤ s ≤ n,B(s) ∈ (a, b) }
= Px { τ > n− 1 ∧ ∀n− 1 ≤ s ≤ n,B(s) ∈ (a, b) }

= Px

{
τ > n− 1 ∧ ∀0 ≤ s ≤ 1, B(n− 1) + B̂(s) ∈ (a, b)

}
= Ex

[
1 { τ > n− 1 } · 1

{
∀0 ≤ s ≤ 1, B(n− 1) + B̂(s) ∈ (a, b)

}]
= Ex

[
Ex

[
1 { τ > n− 1 } · 1

{
∀0 ≤ s ≤ 1, B(n− 1) + B̂(s) ∈ (a, b)

}
| Fn−1

]]
= Ex

[
1 { τ > n− 1 } · Ex

[
1
{
∀0 ≤ s ≤ 1, B(n− 1) + B̂(s) ∈ (a, b)

}
| Fn−1

]]
= Ex

[
1 { τ > n− 1 } · Px

{
∀0 ≤ s ≤ 1, B(n− 1) + B̂(s) ∈ (a, b)

∣∣∣ B(n− 1)
}]

≤ Px { τ > n− 1 } · θ
≤ . . .

≤ θn.

Since τ is a non-negative random variable,

Ex[τ ] ≤
∑
n≥0

Px(X > n) ≤ 1

1− θ
<∞.

Note that this implies that τ
a.s.
< ∞ or else if there is any positive weight on events where

τ =∞, the expectation cannot be finite. 2

The next result gives the recurrence property of Brownian motion.
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Theorem 3.5.2
Let a, b ∈ R. The following hold for hitting times of Brownian motion.

(a) Pa {Tb <∞} = 1

(b) Pa {Ta <∞} = 1

Proof
Note that (a) implies (b) since

Pa {Ta <∞} ≥ Pa { Tb <∞}Pb { Ta <∞} = 1.

Thus it suffices to show (a).

By the previous result, either Ta, Tb occurs with probability 1. By symmetry,

P(a+b)/2 { Ta < Tb } =
1

2
.

Consider now
P0

{
T−(2n−1) < T1

}
.

Since the paths of Brownian motion are continuous, in order to reach −2n + 1, the path
must reach −1,−3, etc. Hence by the Markov property,

P0 { T−2n+1 < T1 }
= P0 { T−1 < T1 } · P−1 { T−3 < T1 } · · · · · P−2n−1+1 { T−2n+1 < T1 }

=
1

2n
.

Let An denote the event that Brownian motion hits −2n + 1 before 1. Then we showed
that P(An) = 2−n. Observe that An ⊆ An−1, thus

n⋂
i=1

Ai = An

and

P

(⋂
i≥1

Ai

)
= lim

n→∞
P(An) = lim

n
2−n = 0.

It follows that

P

(⋃
n≥1

Ac
n

)
= 1.

In other words, one of the events complementary to some An occurs a.s. so there is some
n such that Brownian motion hits 1 before it hits −2n + 1. Thus P0 {T1 <∞} = 1. 2
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We note that this fact can also be shown using the martingale property of Brownian motion.
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Brownian Motion Calculus

4.1 Itô Integral

We aim to define a notion of stochastic integral∫ T

0

X(t)dB(t),

also denoted
∫
XdB or X ·B. Firstly, we would like

∫ T

0
dB(t) = B(T )−B(0). More generally,

if X(t) is a simple function, say

X = c11(0,a] + c21(a,T ],

the integral should be the sum of integrals over the two subintervals.

4.1.1 Simple Processes

Let us first consider integrals for deterministic simple processes X(t). Let 0 = t0 < t1 <
· · · < tn = T be a partition of [0, T ]. Recall these are functions of the form

X(t) = c01{ 0 }(t) +
n−1∑
i=0

ci1(ti,ti+1](t).

The Itô integral is defined as a sum∫ T

0

X(t)dB(t) :=
n−1∑
i=0

ci[B(ti+1)−B(ti)].
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Remark that
∫
XdB(t) is a random variable. Moreover, by the independence increments of

Brownian motion, the integral is a Gaussian random variable with mean zero and variance

Var

[∫ T

0

X(t)dB(t)

]
= Var

[
n−1∑
i=0

ci[B(ti+1)−B(ti)]

]

=
n−1∑
i=0

Var [ci[B(ti+1)−B(ti)]]

=
n−1∑
i=0

c2i (ti+1 − ti).

By taking limits of simple deterministic processes, we can obtain more general but still deter-
ministic random variables as integrals. For instance, if X(t) is deterministic and “integrable”
under some conditions, ∫ T

0

X(t)dB(t) ∼ N
(
0,

∫ T

0

X2(t)dt

)
.

In order to integrate random processes, we allow the coefficients ci to be random variables ξi.
In order to obtain convenient properties of the integral, the random variable ξi’s are allowed
to depend on B(s) for s ≤ ti, but not future values. In other words, the integrand process
X(t) must be {Ft }-adapted where Ft = σ {B(s) : s ≤ t }.

Remark 4.1.1 If we wish to have more useful properties such as Fubini’s theorem, adapt-
edness is insufficient. We instead consider progressive processes, ie, for every t ∈ [0, T ],
X : [0, t] × Ft → R is measurable. Luckily, any adapted CADLAG process is progressive.
Thus if we restrict ourselves to CADLAG process (as we do), there is no need to consider
progressiveness.

Definition 4.1.2 (Simple Adapted Process)
A processX(t) is a simple adapted process if there are times 0 = t0 < t1 < · · · < tn = T
and random variables ξ0, ξ1, . . . , ξn−1 such that

X(t) = ξ0I10(t) +
n−1∑
i=0

ξi1(i,ti+1](t).

Here ξ0 is constant, ξi is Fti-measurable, and E[ξ2] <∞ for i = 0, . . . , n− 1.

For simple adapted processes, the Itô integral is defined as a random sum∫ T

0

X(t)dB(t) :=
n−1∑
i=0

ξi[B(ti+1)−B(ti)].
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When the ξi’s are random, the integral need not have a normal distribution.

Remark 4.1.3 Simple adapted processes are defined as left-continuous step functions. One
can also take right-continuous functions. However, when the stochastic integral is defined
with respect to general martingales rather than just Brownian motion, only left-continuous
functions are taken.

4.1.2 Properties of the Itô Integral for Simple Adapted Processes

We now establish the main properties of the Ito integral for simple processes which carry
over to the Itô integral of general processes.

1. (Linearity) If X(t), Y (t) are simple processes and α, β are constants,∫ T

0

(αX(t) + βY (t))dB(t) = α

∫ T

0

X(t)dB(t) + β

∫ T

0

Y (t)dB(t).

2. For the indicator function of an interval 1(a,b],∫ T

0

1(a,b](t)X(t)dB(t) =

∫ b

a

X(t)dB(t).

3. (Zero Mean) E[
∫ T

0
X(t)dB(t) ] = 0.

4. (Isometry)

E

[ (∫ T

0

X(t)dB(t)

)2
]
=

∫ T

0

E
[
X2(t)

]
dt.

The first two properties can be verified directly from the definition.

In order to show that the integral has zero mean, we first show that it has a mean.

E [ |ξi(B(ti+1)−B(ti))| ] ≤
√

E [ ξ2i ]E [ (B(ti+1)−B(ti))2 ] Cauchy-Schwartz

<∞.

This implies that

E
[ ∣∣∣∣∫ T

0

X(t)dB(t)

∣∣∣∣ ] ≤ n−1∑
i=0

E [ |ξi(B(ti+1)−B(ti))| ]

<∞.

This shows that the integral has expectation. By the martingale property and the fact that
ξi’s are Fti-measurable,

E [ ξi(B(ti+1)−B(ti)) | Fti ] = ξiE [B(ti+1)−B(ti) | Fti ] = 0.
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Thus taking an expectation over each summand yields 0 in total.

To show the isometry property, first expand the square

E

[ (∫ T

0

X(t)dB(t)

)2
]

=
n−1∑
i=0

E
[
ξ2i (B(ti+1)−B(ti))

2
]
+ 2

∑
i<j

E [ ξiξj(B(ti+1)−B(ti))(B(tj+1)−B(tj)) ] .

Using the martingale property of Brownian motion,

n−1∑
i=0

E
[
ξ2i (B(ti+1)−B(ti))

2
]
=

n−1∑
i=0

E
[
E
[
ξ2i (B(ti+1)−B(ti))

2
∣∣ Fti

] ]
=

n−1∑
i=0

E
[
ξ2i E

[
(B(ti+1)−B(ti))

2
∣∣ Fti

] ]
=

n−1∑
i=0

E
[
ξ2i
]
(ti+1 − ti)

=:

∫ T

0

E
[
X2(t)

]
dt.

By conditioning on Fj for i < j, we can show that

E [ ξiξj(B(ti+1)−B(ti))(B(tj+1)−B(tj)) ] = 0.

4.1.3 Adapted Processes

Definition 4.1.4 (Stochastic Integral)
Suppose Xn ↑ X in the sense that Xn are monotonically increasing and satisfy∫ T

0

E
[
|Xn(t)−X(t)|2

]
→ 0.

By the completeness of L2 and the isometry property,∫ T

0

Xn(t)dB(t)
2−→ J.

The random variable J is taken to be the integral of X(t).
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Remark 4.1.5 In the case that
∫ T

0
X2(t)dt is finite but

∫ T

0
E [X2(t) ] dt is not, we can still

approximate this process by taking limits in probability rather than mean squared. The
sequence of corresponding Itô integrals is a Cauchy sequence in probability and converges in
probability to a limit

∫ T

0
X(t)dB(t) which we take as the Itô integral.

Example 4.1.6 (
∫ T

0
B(t)dB(t))

Let 0 = tn0 < tn1 < · · · < tnn = T be a partition of [0, T ]. Define

Xn(t) :=
n−1∑
i=0

B(tni )1(tni ,t
n
i+1]

(t).

Then each Xn(t) is a simple adapted process. By the continuity of B(t) (uniform conti-
nuity on [0, T ]),

Xn(t)
a.s.−−→ B(t)

as n→∞ since δn → 0. The Itô integral of Xn(t) is given by∫ T

0

Xn(t)dB(t) =
n−1∑
i=0

B(tni )(B(tni+1)−B(tni )).

We claim that this sequence of integrals converge in mean squared to

J :=
1

2
B2(T )− 1

2
T.

By adding and subtracting B2(tni+1), we see that

B(tni )(B(tni+1)−B(tni )) =
1

2
[B2(tni+1)−B2(tni )− (B(tni+1)−B(tni ))

2]

and ∫ T

0

Xn(t)dB(t) =
1

2

n−1∑
i=0

(B2(tni+1)−B2(tni ))−
1

2

n−1∑
i=0

(B(tni+1)−B(tni ))
2

=
1

2
B2(T )− 1

2
B2(0)− 1

2

n−1∑
i=0

(B(tni+1)−B(tni ))
2.

By our computation of the quadratic variation of Brownian motion, the second sum
converges in mean squared to T . This concludes the proof.

We state the following remarks.

1. If X(t) is a function of finite variation, the stochastic integral can be defined using
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integration by parts:∫ T

0

X(t)dB(t) = X(T )B(T )−X(0)B(0)−
∫ T

0

B(t)dX(t).

However, this approach fails when X(t) depends on B(t).
2. Brownian motion has no derivative, but it has a generalized derivative as a Schwartz

distribution. It is defined by the following relation. For any smooth function g with
compact support, ∫

g(t)B′(t)dt = −
∫
B(t)g′(t)dt.

Again, this approach fails when g(t) depends on B(t).

Theorem 4.1.7
Let X(t) be a regular adapted process such that

∫ T

0
X2(t)dt

a.s.
< ∞. Then the Itô

integral
∫ T

0
X(t)dB(t) is well-defined and has the following properties.

1. Linearity

2.
∫ T

0
X(t)1(a,b]dB(t) =

∫ b

a
X(t)dB(t).

If
∫ T

0
E [X2(t) ] dt

a.s.
< ∞, the two following properties also hold.

3. (Zero Mean) The integral has mean 0.
4. (Isometry)

E

[ (∫ T

0

X(t)dB(t)

)2
]
=

∫ T

0

E
[
X2(t)

]
dt.

Note that the Itô integral need not have mean or variance but then it does, the mean is zero
and the variance can be computed using the isometry property.

Corollary 4.1.8
If X is a continuous adapted process, then the Itô integral

∫ T

0
X(t)dB(t) exists. In

particular,
∫ T

0
f(B(t))dB(t) is well-defined for any continuous f : R→ R.

Remark 4.1.9 It follows from the definition of the Itô integral that the sums approximate
the Itô integral

∫ T

0
X(t)dB(t).

n−1∑
k=0

X(tni )[B(tni+1)−B(tni )].

In an approximation of the Stieltjes integral by sums, the function on an interval [ti, ti+1] of
the partition is replaced by its value at some midpoint θi ∈ [ti, ti+1]. For the Itô integral, it
was important to choose the left endpoint, otherwise the process may not be adapted. It is
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possible to define anotehr integral by choosing θi := λti + (1 − λ)ti+1 for some λ ∈ (0, 1).
When λ = 1/2, the Stratonovich stochastic integral results.

Remark 4.1.10 The Itô integral does not have the monotonicity property. Indeed,∫ t

0

1 · dB(t) = B(1) ∼ N (0, 1),

which is negative with probability 1/2.

Example 4.1.11
Consider f(t) = exp(t). We have

E
[ ∫ 1

0

exp(2B(t))dt

]
=

∫ 1

0

E [ exp(2B(t)) ] dt

=

∫ 1

0

exp(2t)dt

=
1

2
(e2 − 1)

<∞.

Thus the stochastic integral has mean zero and variance (e2−1)/2.

Example 4.1.12
For f(t) = t, ∫ 1

0

E[B2(t) ] dt =

∫ t

0

tdt = 1/2 < 0.

Thus the integral
∫ 1

0
B(t)dB(t) has mean zero and variance 1/2.

Example 4.1.13
Take f(t) = exp(t2). It can be computed that

∫ 1

0
E [ exp(2B2(t)) ] dt = ∞. Thus we

cannot claim the Itô has finite moments. In fact, using martingale inequalities, it can be
shown that the expectation of the Itô integral does not exist.

Example 4.1.14
Let J :=

∫ 1

0
tḋB(t). Since

∫ 1

0
t2dt <∞, the Itô integral is defined. Since the integrand is

non-random,

E [ J ] = 0

E
[
J2
]
=

∫ 1

0

t2dt =
1

3
.
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Example 4.1.15
Consider

∫ 1

0
(1− t)−αdB(t). In order for the integral to be defined, we must have∫ 1

0

(1− t)−2αdt <∞.

This gives α < 1/2.

The following result is a consequence of the isometry property.

Theorem 4.1.16
Let X(t), Y (t) be regular adapted processes such that E[

∫ T

0
X2(t)dt ] < ∞ and

E[
∫ T

0
Y 2(t)dt ] <∞. Then

E
[ ∫ T

0

X(t)dB(t) ·
∫ T

0

Y (t)dB(t)

]
=

∫ T

0

E [X(t)Y (t) ] dt.

Proof
Write I1, I2 as the Itô integral of X,Y respectively. We have

E [ I1I2 ]

=
1

2
E
[
(I1 + I2)

2
]
− 1

2
E
[
I21
]
− 1

2
E
[
I22
]

=
1

2

∫ T

0

E
[
(X(t) + Y (t))2

]
dB(t)

+
1

2

∫ T

0

E
[
X2(t)

]
dB(t) +

1

2

∫ T

0

E
[
Y 2(t)

]
dB(t) isometry

=

∫ T

0

E [X(t)Y (t) ] dt. linearity 2

4.2 Itô Integral Process

Let X be a regular adapted process such that
∫ T

0
X2(s)ds

a.s.
< ∞. Thus

∫ t

0
X(s)dB(s) is

defined for any t ≤ T . We can then define the Itô integral process as

Y (t) =

∫ t

0

X(s)dB(s).

It is possible to show that there is a version of the Itô integral Y (t) with continuous sample
paths. We always assume the continuous version is taken. Moreover, we will see that the
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Itô integral process has positive quadratic variation but infinite variation.

4.2.1 Martingale Property

Itô integrals of simple processes are clearly adapted and continuous. Since Y (t) is a limit of
such integrals, it is itself adapted.

Suppose now that
∫ T

0
X2(s)ds

a.s.
< ∞ and in addition

∫ T

0
E[X2(s) ] ds < ∞. Then Y (t)

possesses the first two moments. It can be shown, first for simple processes and then in
general, that for s < t,

E
[ ∫ t

s

X(u)dB(u)

∣∣∣∣ Fs

]
= 0.

Hence

E [ Y (t) | Fs ] := E
[ ∫ t

0

X(u)dB(u)

∣∣∣∣ Fs

]
=

∫ s

0

X(u)dB(u) + E
[ ∫ t

s

X(u)dB(u)

∣∣∣∣ Fs

]
=

∫ s

0

X(u)dB(u)

= Y (s).

Therefore Y (t) is a martingale.

The second moments of Y (t) are given by the isometry property. In particular,

sup
t≤T

E
[
Y 2(t)

]
= sup

t≤T
E

[ (∫ t

0

X(s)dB(s)

)2
]

=

∫ T

0

E
[
X2(s)

]
ds

<∞.

Definition 4.2.1 (Square Integrable)
A martingale is square integrable on [0, T ] if its second moments are bounded.

In summary of the discussion above, we have the following result.

Theorem 4.2.2
Let X(t) be a regular adapted process such that

∫ T

0
E[X2(s) ] ds <∞. Then the Itô

integral process Y (t) is a continuous zero mean square integrable martingale.
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We note that if
∫ t

0
E[X2(s) ] ds = ∞, the Itô integral can fail to be a martingale, but it is

always a local martingale, which we will see later.

We now have a way to construct martingales.

Corollary 4.2.3
For any bounded function f with discontinuities of the first kind on R,∫ t

0

f(B(s))dB(s)

is a square integrable martingale.

Proof
X(t) := f(B(t)) is adapted and regular. Since |f | ≤ K ∈ R+,

∫ T

0
E[ f 2(B(s)) ] ds ≤ KT .

The result follows by the previous theorem. 2

4.2.2 Quadratic Variation & Covariation of Itô Integrals

The Itô integral Y (t) of X(t) is a random function of t which is continuous and adapted.
The quadratic variation of Y is thus defined

[Y, Y ](t) := lim
δn→0

n−1∑
i=0

[Y (tni+1)− Y (tni )]
2,

where the limit is taken in probability over all shrinking partitions.

Theorem 4.2.4
The quadratic variation of the Itô integral

∫ t

0
X(s)dB(s) is given by[∫ t

0

X(s)dB(s),

∫ t

0

X(s)dB(s)

]
(t) =

∫ t

0

X2(s)ds.

This result can be proven first for simple processes and then in general by approximations
for simple processes.

Example 4.2.5
The quadratic variation of the Itô integral for Brownian motion is given by[∫ t

0

B(s)dB(s)

]
=

∫ t

0

B2(s)ds.
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Corollary 4.2.6
If
∫ t

0
X2(s)ds

a.s.
> 0 for all t ≤ T , then the Itô integral has infinite variation on [0, t] for

all t ≤ T .

Proof
If its variation is finite, then its quadratic variation would be zero, which is a contradic-
tion. 2

Akin to Brownian motion, the Itô integral Y (t) is a continuous but nowhere differentiable
function of t. Suppose now that Y1, Y2 are Itô integrals of X1, X2, with respect to the same
Brownian motion B. Then the process Y1, Y2 is an Itô integral of X1 +X + 2 with respect
to B.

Definition 4.2.7 (Quadratic Covariation)
The quadratic covariation of the Itô integral Yi(t) :=

∫ t

0
Xi(s)dB(s) for i = 1, 2 is

defined by

[Y1, Y2] (t) :=
1

2
([Y1 + Y2, Y1 + Y2]− [Y1, Y1](t)− [Y2, Y2](t)) .

By our previous identity, it follows that

[Y1, Y2](t) =

∫ t

0

X1(s)X2(s)ds.

Remark that the quadratic covariation of Y1, Y2 is symmetric. Moreover, it can be shown
that the quadratic covariation is the limit in probability of products of increments of the
processes Y1, Y2 over shrinking partitions.

[Y1, Y2](t) = lim
δn→0

n−1∑
i=0

(Y1(t
n
i+1)− Y1(tni ))(Y2(tni+1)− Y2(tni )).

4.3 Itô Integral & Gaussian Processes

We have seen that the Itô integral of simple deterministic processes is a normal random
variable. It can be shown using moment generating functions that a limit in probability of
Gaussians is again Gaussian. This implies the following result.
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Theorem 4.3.1
If X(t) is a deterministic function such that

∫ T

0
X2(s)ds < 0, then its Itô integral

Y (t) is a Gaussian process with zero mean and covariance function

Cov [ Y (t), Y (t+ u) ] =

∫ t

0

X2(s)ds.

Moreover, Y (t) is a square integrable martingale.

Proof
Since the integrand is deterministic, we certainly have∫ t

0

E
[
X2(s)

]
ds =

∫ t

0

X2(s)ds <∞.

By the zero mean property, Y has zero mean. By computation,

Cov [ Y (t), Y (t+ u) ]

= E

[ (∫ t

0

X(s)dB(s)

)2
]
+ E

[ ∫ t

0

X(s)dB(s)E
[ ∫ t+u

t

X(s)dB(s)

∣∣∣∣ Ft

] ]
=

∫ t

0

E
[
X2(s)

]
ds isometry

=

∫ t

0

X2(s)ds. 2

A proof of normality of integrals of non-random processes will be done later using Itô’s
formula.

Example 4.3.2
J :=

∫ t

0
sdB(s) ∼ N (0, t3/3).

If Y (t) =
∫ t

0
X(t, s)dB(s) where X(t, s) can depend on the upper integration limit t, then

Y (t) need not be a martingale. However, it remains a Gaussian process.
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Theorem 4.3.3
For any t ≤ T , Let X(t, s) be a regular deterministic function with

∫ t

0
X2(t, s)ds <∞.

Then the process Y (t) :=
∫ t

0
X(t, s)dB(s) is a Gaussian process with zero mean and

covariance function

Cov [ Y (t), Y (t+ u) ] =

∫ t

0

X(t, s)X(t+ u, s)ds.

Proof (Sketch)
We omit the proof that the process is Gaussian. It can be seen by approximating X(t, s)
by functions of the form f(t)g(s).

Since the function is deterministic, the mean is zero and the covariance is computed as

Cov [ Y (t), Y (t+ u) ]

= E [ Y (t)Y (t+ u) ]

= E
[ ∫ t

0

X(t, s)dB(s)

∫ t

0

X(t+ u, s)dB(s)

]
+ E

[
E
[ ∫ t

0

X(t, s)dB(s)

∫ t+u

t

X(t+ u, s), dB(s)

∣∣∣∣ Ft

] ]
=

∫ t

0

X(t, s)X(t+ u, s)ds. 2

4.4 Itô’s Formula for Brownian Motion

Theorem 4.4.1
If g is a continuous function and { tni } forms a partition of [0, t], then for any θni ∈
(B(tni ), B(tni+1)), the limit in probability

lim
δn→0

n−1∑
i=0

g(θni )[B(tni+1)−B(tni )]
2 =

∫ t

0

g(B(s))ds.

Proof
We begin by assuming g has compact support. Intuitively, this suffices since Brownian
motion is bounded with high probability.

Take first θni = B(tni ) to be the left end of the interval. By the continuity of g(B(t)) and
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the definition of the Riemann integral,

n−1∑
i=0

g(B(tni ))[t
n
i+1 − tni ]→

∫ t

0

g(B(s))ds.

Define ∆Bn
i := B(tni+1)−B(tni ) and ∆tni := tni+1 − tni . We claim that

n−1∑
i=0

g(B(tni ))∆Bi −
n−1∑
i=0

g(B(tni ))∆ti
2−→ 0

so that the sum in question converges to 0 in mean squared as desired.

By conditioning, it can be shown that

E

 (n−1∑
i=0

g(B(tni ))[(∆B
n
i )

2 −∆tni ]

)2


= E

[
n−1∑
i=0

g2(B(tni )) · E
[ (

(∆Bn
i )

2 −∆tni
)2 ∣∣∣ Ftni

] ]

= 2E

[
n−1∑
i=0

g2(B(tni ))(∆ti)
2

]

≤ δn2E

[
n−1∑
i=0

g2(B(tni ))(∆ti)

]
→ 0.

The second equality can be computed as follows.

E
[ (

(∆Bn
i )

2 −∆ti
)2 ∣∣∣ Ftni

]
= E

[
(∆Bn

i )
4
]
− 2∆tiE

[
(∆Bn

i )
2
]
+ (∆ti)

2 ∆Bn
i ⊥ Fti

= 3(∆tni )
2 − 2(∆ti)

2 + (∆ti)
2.

This proves the claim.

Now for any valid choice of θni , as θn → 0,

n−1∑
i=0

[g(θni )− g(B(tni ))][B(tni+1)−B(tni )]
2

≤ max
i

[g(θni )− g(B(tni ))]
n−1∑
i=0

[B(tni+1)−B(tni )]
2

→ 0.
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The first term in the product converges to 0 a.s. by (uniform) continuity and the second
converges in mean squared to t, the quadratic variation of Brownian motion. Thus moving
from the left endpoint to and arbitrary point in the partition does not change the limit
in mean square.

Now for general g, take the stopping time

τ(L) := inf { s : |Bs| > L } .

Our work above shows that the function g(s)1 { s ≤ τ(L) } satisfies

lim
δn→0

n−1∑
i=0

g(θni )1 { θni ≤ τ(L) } [B(tni+1)−B(tni )]
2

=

∫ t

0

g(B(s))1 { s ≤ τ(L) } ds.

For any ε > 0, there is some Lε such that P { τ(Lε) < t } < ε. In such an event, we are
done.

Thus the a.s. convergence we derived above for functions of compact support is weakened
to convergence in probability for general continuous functions. 2

Theorem 4.4.2
Let B(t) be a Brownian motion on [0, T ] and f ∈ C2(R). For any t ≤ T ,

f(B(t)) = f(0) +

∫ t

0

f ′(B(s))dB(s) +
1

2

∫ t

0

f ′′(B(s))ds.

Proof
Note both integrals are well-defined since all functions in question are differentiable. Let
{ tni } be a partition of [0, t]. We have

f(B(t))

= f(0) +
n−1∑
i=0

[f(B(tni+1))− f(B(tni ))]

= f(0) +
n−1∑
i=0

f ′(B(tni ))[B(tni+1)−B(tni )]

+
1

2

n−1∑
i=0

f ′′(θni )[B(tni+1)−B(tni )]
2 θni ∈ (B(tni ), B(tni+1)).

Taking limits as δn → 0, the first sum converges in probability to the Itô integral
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∫ t

0
f ′(B(s))dB(s). By the previous theorem, the second converges in probability to

∫ t

0
f ′′(B(s))ds.2

Example 4.4.3
Let f(x) := xm,m ≥ 2. We have

Bm(t) = m

∫ t

0

Bm−1(s)dB(s) +
m(m− 1)

2

∫ t

0

Bm−2(s)ds.

For the specific case of m = 2, we have

B2(t) = 2

∫ t

0

B(s)dB(s) + t.

Rearranging recovers the stochastic integral of Brownian motion
∫ t

0
B(s)dB(s).

Example 4.4.4
Let f(x) = exp(x). We have

eB(t) = 1 +

∫ t

0

eB(s)dB(s) +
1

2

∫ t

0

eB(s)ds.

4.5 Itô Processes & Stochastic Differentials

4.5.1 Itô Processes

Definition 4.5.1 (Itô Process)
An Itô process has the form

Y (t) = Y (0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dB(s)

for t ∈ [0, T ]. Y (0) is F0-measurable and processes µ(t), σ(t) are Ft-adapted such
that ∫ T

0

|µ(t)|dt,
∫ T

0

σ2(t)dt
a.s.
< ∞,

It is said that an Itô process Y (t) has the stochastic differential

dY (t) = µ(t)dt+ σ(t)dB(t)

for t ∈ [0, T ].
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Remark 4.5.2 The stochastic differential only has meaning by way of integrals and no
other.

Note that the processes µ, σ may depend on Y (s), B(s), s ≤ t. For exampple, it can depend
on the maximum of Brownian motion.

Example 4.5.3
With Y (t) = B2(t), µ(s) = 1 and σ(s) = 2B(s), we can write

Y (t) = B2(t)

= t+ 2

∫ t

0

B(s)dB(s)

=

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dB(s).

In other words,
d[B2(t)] = 2B(t)dB(t) + dt.

Again, this only has meaning by the integral relation.
Remark 4.5.4 (Itô’s Formula for Stochastic Differentials) In differential notation, Itô’s
formula states that for any f ∈ C2(R),

df(B(t)) = f ′(B(t))dB(t) +
1

2
f ′′(B(t))dt.

Example 4.5.5
The following relations hold.

(a) deB(t) = eB(t)dB(t) + 1
2
eB(t)dt

(b) d sin(B(t)) = cos(B(t))dB(t)− 1
2
sin(B(t))dt

(c) d cos(B(t)) = − sin(B(t))dB(t)− 1
2
cos(B(t))dt

(d) deiB(t) = ieiB(t)dB(t)− 1
2
eiB(t)dt

The application of Itô’s formula to complex-valued functions formally means its applica-
tion to the real and complex parts of the function. At times, we can guess the result by
treating i as a constant.

4.5.2 Quadratic Variation of the Itô Process

Let Y (t) be an Itô process

Y (t) = Y (0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dB(s),
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where it is assumed that µ, σ are such that the integrals in question are defined. The following
hold.

1. Y (t) is continuous a.s.
2.
∫ t

0
µ(s)ds is a continuous function of t. Moreover, any Riemann integrable function

is continuous a.e. Thus the integral is differentiable a.e. and is therefore of finite
variation.

3.
∫ t

0
σ(s)dB(s) is continuous.

4. Y (t) is of finite variation if and only if
∫ t

0
σ(s)dB(s) is of finite variation.

Recall that the quadratic variation of Y defined by

[Y ](t) = [Y, Y ](t) = lim
δn→0

n−1∑
i=0

[Y (tni+1)− Y (tni )]
2.

Here the limit is taken in probability over shrinking partitions. By expanding the covariation
[Y, Y ](t), we have

[Y ](t)

=

[∫ t

0

µ(s)ds

]
(t) + 2

[∫ t

0

µ(s)ds,

∫ t

0

σ(s)dB(s)

]
(t) +

[∫ t

0

σ(s)dB(s)

]
(t)

=

[∫ t

0

σ(s)dB(s)

]
(t)

=

∫ t

0

σ2(s)ds.

The second equality follows from the fact that the covariation between a continuous function
and a function of finite variation is 0. The last equality follows from a previous result on the
quadratic variation of Itô integrals.

If Y (t), X(t) have stochastic differentials with respect to the same Brownian motion, then
Y (t)+X(t) also has a stochastic differential with respect to the same Brownian motion. We
can then define the covariation of X,Y on [0, t], similar to before by

[X,Y ](t)

=
1

2
[X + Y,X + Y ](t)− 1

2
[X,X](t)− 1

2
[Y, Y ](t)

=

∫ t

0

1

2
(σX(s) + σY (s))

2 − 1

2
σ2
X(s)−

1

2
σ2
Y (s)ds

=

∫ t

0

σX(s)σY (s)ds

=

[∫ t

0

σX(s)dB(s),

∫ t

0

σY (s)dB(s)

]
(t).
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Theorem 4.5.6
If X,Y are Itô processes and X is of finite variation, then

[X,Y ](t) = 0.

Example 4.5.7
Let X(t) := exp(t) and Y (t) = B(t). Then

[X,Y ](t) = 0.

We introduce a notation that allows formal manipulation with stochastic differentials.

dY (t)dX(t) := d[X,Y ](t)

(dY (t))2 := d[Y, Y ](t).

Again, recall that stochastic differentials only have meaning from the integral interpretation,

[X,Y ](t) =

∫ t

0

d[X,Y ](t) =

∫ t

0

dX(t)dY (t).

Example 4.5.8
Since X(t) := t is a continuous function of finite variation and Y (t) := B(t) is continuous
with quadratic variation t, the following hold.

dB(t)dt = 0

(dt)2 = 0

(dB(t))2 = d[B,B](t)

= dt.

4.5.3 Integrals with respect to Itô Processes

We have defined stochastic integrals with respect to Brownian motion. It is necessary to
extend integration with respect to processes obtained from Brownian motion. Let the Itô
process Y (t) :=

∫ t

0
X(s)dB(s) be defined for all t ≤ T , where X(t) is an adapted process

such that
∫ T

0
X2(s)ds

a.s.
< ∞.

Consider now an adapted process H(t) such that
∫ t

0
H2(s)X2(s)ds

a.s.
< ∞. The Itô integral

Z(t) :=
∫ t

0
H(s)X(s)dB(s) is also defined for all t ≤ T . By identifying dY (t) and X(t)dB(t),

we can formally define ∫ t

0

H(s)dY (s) :=

∫ t

0

H(s)X(s)dB(s).
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We note that integrals with respect to Y (t) can be defined in a direct way but the result
agrees with the definition above.

Moreover generally, we have the following definition.

Definition 4.5.9
If Y is an Itô process satisfying

dY (t) = µ(t)dt+ σ(t)dB(t)

and H is adapted and satisfies
∫ t

0
H2(s)σ2(s)ds

a.s.
< ∞ as well as

∫ t

0
|H(s)µ(s)|ds

a.s.
< ∞,

Then Z(t) =
∫ t

0
H(s)dY (s) is defined as∫ t

0

H(s)dY (s) :=

∫ t

0

H(s)µ(s)ds+

∫ t

0

H(s)σ(s)dB(s).

4.6 Itô’s Formula for Itô Processes

Theorem 4.6.1
Let X(t) have a stochastic differential

dX(t) = µ(t)dt+ σ(t)dB(t)

for 0 ≤ t ≤ T . Suppose f ∈ C2(R). Then Y (T ) := f(X(t)) has stochastic differential

df(X(t))

= f ′(X(t))dX(t) +
1

2
f ′′(X(t))d[X,X](t)

= f ′(X(t))dX(t) +
1

2
f ′′(X(t))σ2(t)dt

=

(
f ′(X(t))µ(t) +

1

2
f ′′(X(t))σ2(t)

)
dt+ f ′(X(t))σ(t)dB(t).

In integral notation, the above means

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))dX(s) +
1

2

∫ t

0

f ′′(X(s))σ2(s)ds.

The proof is similar to that of Itô’s formula for stochastic integrals and is omitted.
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Example 4.6.2
Let X(t) have stochastic differential

dX(t) = X(t)dB(t) +
1

2
X(t)dt.

Let us find a positive process X satisfying the above.

By Itô’s formula for lnX(t),

d lnX(t) =
1

X(t)
dX(t)− 1

2X(t)2
σ2
X(t)dt

=
1

X(t)

(
X(t)dB(t) +

1

2
X(t)dt

)
− 1

2X2(t)
X2(t)dt

= dB(t).

It follows that

lnX(t) = lnX(0) +B(t)

X(t) = X(0)eB(t).

We can verify that this choice of X(t) indeed satisfies the desired stochastic differential
through Itô’s formula.

4.6.1 Integration by Parts

We give a representation of the quadratic covariation [X,Y ](t) of two Itô processes X(t), Y (t)
in terms of Itô integrals. This representation gives rise to the integration by parts formula.
Note that the following section is not rigorous but can be made so by making the arguments
more precise, by using Itô’s formual for the function xy of two variables, or by approximations
by simple processes.

Quadratic covariation is a limit in probability over decreasing partitions of [0, t],

[X,Y ](t) = lim
δn→0

n−1∑
i=0

[X(tni+1 −X(tni ))][Y (tni+1)− Y (tni )].

79



©Fel
ix

Zh
ou

The RHS sum can be rewritten as follows.
n−1∑
i=0

[X(tni+1)Y (tni+1)−X(tni )Y (tni )]

−
n−1∑
i=0

X(tni )[Y (tni+1)− Y (tni )]−
n−1∑
i=0

Y (tni )[X(tni+1)−X(tni )]

= X(t)Y (t)−X(0)Y (0)

−
n−1∑
i=0

X(tni )[Y (tni+1)− Y (tni )]−
n−1∑
i=0

Y (tni )[X(tni+1)−X(tni )].

The last two sums converge in probability to the Itô integrals
∫ t

0
X(s)dY (s) and

∫ t

0
Y (s)dX(s),

respectively. This yields the integration by parts (stochastic product rule)

X(t)Y (t)−X(0)Y (0) =

∫ t

0

X(s)dY (s) +

∫ t

0

Y (s)dX(s) + [X,Y ](t).

In differential notation, this reads

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d[X,Y ](t).

Remark 4.6.3 This provides yet another representation for quadratic variation

[X,X](t) = X2(t)−X2(0)− 2

∫ t

0

X(s)dX(s).

Quadratic variation is non-decreasing in t and is thus of finite variation. By the formula
above, it must also be continuous. By the polarization identity, covariation is also continuous
and of finite variation.

If

dX(t) = µX(t)dt+ σX(t)dB(t)

dY (t) = µY (t)dt+ σY (t)dB(t),

then their covariation can be formally obtained by multiplying dX, dY ,

d[X,Y ](t) = dX(t)dY (t)

= σX(t)σY (t)(dB(t))2

= σX(t)σY (t)dt.

This leads to the formula

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + σX(t)σY (t)dt.

Note that if one of the processes is of finite variation, then the covariation term is zero. Thus
for such processes, the stochastic product rule is the same as usual.
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Example 4.6.4 (Stochastic Quotient Rule)
Let us compute the stochastic differential

d(X(t)/Y (t))

= X(t)d
1

Y (t)
+

1

Y (t)
dX(t) + d[X,Y −1(t)](t)

= X(t)
(
−Y −2(t)dY (t) + Y −3(t)d[Y, Y ](t)

)
+

1

Y (t)
dX(t)

+ dX(t)
(
−Y −2(t)dY (t) + Y −3(t)d[Y, Y ](t)

)
= − X(t)

Y 2(t)
dY (t) +

X(t)

Y 3(t)
d[Y, Y ](t) +

1

Y (t)
dX(t)− 1

Y 2(t)
d[X,Y ](t)

=
X(t)

Y (t)

(
1

X(t)
dX(t)− 1

Y (t)
dY (t)− 1

X(t)Y (t)
d[X,Y ](t) +

1

Y 2(t)
d[Y, Y ](t)

)
.

Example 4.6.5
Suppose X(t) has stochastic differential

dX(t) = B(t)dt+ tdB(t)

with the initial condition X(0) = 0.

Consider X(t) = tB(t). This satisfies the above equation by the integration by parts
formula. Thus X(t) is Gaussian, with mean zero, and covariance function

γ(t, s) = Cov [X(t), X(s) ]

= E [X(t)X(s) ]

= tsE [B(t)B(s) ]

= tsCov [B(t)B(s) ]

= tsmin(t, s).

Example 4.6.6
Let Y (t) have stochastic differential

dY (t) =
1

2
Y (t)dt+ Y (t)dB(t)

subject to Y (0) = 1. We have shown before that Y (t) = eB(t) satisfies the stochastic
differential above.

Let X(t) := tB(t). We find d(X(t)Y (t)). In order to apply the product rule, we need to
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determine d[X,Y ](t).

d[X,Y ](t) = dX(t)dY (t)

= (B(t)dt+ tdB(t))

(
1

2
Y (t)dt+ Y (t)dB(t)

)
=

1

2
B(t)Y (t)(dt)2 +

(
B(t)Y (t) +

1

2
tY (t)

)
dB(t)dt+ tY (t)(dB(t))2

= tY (t)dt.

The last equality follows since the covariation between a continuous function and a func-
tion of bounded variation is zero.

Thus we can apply the product rule

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d[X,Y ](t)

= X(t)dY (t) + Y (t)dX(t) + tY (t)dt.

By substituting the expressions for X and Y , the solution is obtained.

Example 4.6.7
Let f ∈ C2(R) andB(t) a Brownian motion. We find the quadratic covariation [f(B), B](t).

By heuristics,
d[f(B), B](t) = df(B(t))dB(t).

By Itô’s formula,

df(B(t)) = df ′(B(t))dB(t) +
1

2
f ′′(B(t))dt.

It follows that

d[f(B), B](t) = df(B(t))dB(t)

= f ′(B(t))(dB(t))2 +
1

2
f ′′(B(t))dB(t)dt

= f ′(B(t))dt.

This holds since (dB)2 = dt and dBdt = 0. Thus

[f(B), B](t) =

∫ t

0

f ′(B(s))ds.

In a more intuitive way, from the definition of the covariation, taking limits over shrinking
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partitions yields

[f(B), B](t) = lim
δn→0

n−1∑
i=0

[f(B(tni+1))− f(B(tni ))][B(tni+1)−B(tni )]

= lim
δn→0

n−1∑
i=0

[
f(B(tni+1))− f(B(tni ))

B(tni+1)−B(tni )

]
[B(tni+1)−B(tni )]

2

≈
n−1∑
i=0

f ′(B(tni ))[B(tni+1)−B(tni )]
2

=

∫ t

0

f ′(B(s))ds.

The last equality follows from a previous theorem.

Example 4.6.8
Let f(t) be an increasing differentiable function and let X(t) = B(f(t)). We compute
[X,X](t).

By taking limits over shrinking partitions,

[X,X](t) = lim
δn→0

n−1∑
i=0

[B(f(tni+1))−B(f(tni ))]
2

= lim
δn→0

n−1∑
i=0

[f(tni+1)− f(tni )]

[
B(f(tni+1))−B(f(tni ))√

f(tni+1)− f(tni )

]2

= lim
δn→0

n−1∑
i=0

[f(tni+1)− f(tni )]Z2
i

=: lim
δn→0

Tn.

Here Zi ∼iid N (0, 1).

For any n,

E [ Tn ] =
n−1∑
i=0

[f(tni+1)− f(tni )]

= f(t)

Var[Tn] = Var

[
n−1∑
i=0

[f(tni+1)− f(tni )]Z2
i

]

= 3
n−1∑
i=0

[f(tni+1)− f(tni )]2.
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Here we used the independence of the Zi’s and the fact that VarZ2 = 3. The last sum
converges to the quadratic variation of f , which is zero as f is of finite variation and
continuous. This implies that

Tn
2−→ f(t)

as desired.

4.6.2 Itô’s Formula for Functions of Two Variables

If two processes X,Y both posses a stochastic differential with respect to B(t) and f(x, y) ∈
C2(R2,R), then we claim f(X(t), Y (t)) also posseses a stochastic differential.

Indeed, consider the Taylor expansion of order two,

df(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy

+
1

2

(
∂2f(x, y)

(∂x)2
(dx)2 +

∂2f(x, y)

(∂y)2
(dy)2 + 2

∂2f(x, y)

∂x∂y
dxdy

)
.

We can then guess at the formula by using substituting dx← dX(t) and dy ← dY (t).

Theorem 4.6.9
Let f ∈ C2(R2,R) and X,Y be Itô processes. Then

df(X(t), Y (t))

=
∂f

∂x
(X(t), Y (t))dX(t) +

∂f

∂y
(X(t), Y (t))dY (t)

+
1

2

∂2f

(∂x)2
(X(t), Y (t))σ2

X(t)dt+
1

2

∂2f

(∂y)2
(X(t), Y (t))σ2

Y (t)dt

+
∂2f

∂x∂y
(X(t), Y (t))σX(t)σY (t)dt.

Example 4.6.10
If f(x, y) = xy, applying the theorem above yields the integration by parts formula.

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + σX(t)σY (t)dt.

An important case of Itô’s formula is for functions of the form f(X(t), t).

84



©Fel
ix

Zh
ou

Theorem 4.6.11
Let f(x, t) be twice continuously differentiable in x and continuous differentiable in
t. Suppose X(t) is an Itô process. Then

df(X(t), t) =
∂f

∂x
(X(t), t)dX(t) +

∂f

∂t
(X(t), t)dt+

1

2

∂2f

∂x2
(X(t), t)σ2

X(t)dt.

Example 4.6.12
We wish to find a stochastic differential of

X(t) = exp

(
B(t)− t

2

)
.

We apply Itô’s formula with f(B(t), t) where f(x, t) = exp(x− t/2).

dX(t) = df(B(t), t)

=
∂f

∂x
dB(t) +

∂f

∂t
dt+

1

2

∂2f

∂2x
dt

= f(B(t), t)dB(t)− 1

2
f(B(t), t)dt+

1

2
f(B(t), t)dt

= f(B(t), t)dB(t)

= X(t)dB(t).

4.7 Itô Processes in Higher Dimension

Let B̄(t) = (B1(t), . . . , Bd(t)) be Brownian motion in Rd, ie all coordinates Bi(t) are inde-
pendent one-dimensional Brownian motions. Let Ft be the σ-field generated by B̄(s), s ≤ t.
Define H̄(t) to be a regular adapted d-dimensional vector process, ie each coordinate is reg-
ular and adapted. If for each j,

∫ T

0
H2

j (t)dt
a.s.
< ∞, then the Itô integrals

∫ T

0
Hj(t)dBj(t) are

defined. If we require this condition to hold over all j ∈ [d], an equivalent condition is∫ T

0

‖H(t)‖2dt
a.s.
< ∞.

It is customary to use a scalar product notation

H̄(t) · dB(t) :=
d∑

j=1

Hj(t)dBj(t)

∫ T

0

H̄(t) · dB(t) :=
d∑

j=1

∫ T

0

Hj(t)dBj(t).
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If b(t) is an integrable function, then the process given by the stochastic differential

dX(t) = b(t)dt+
d∑

j=1

Hj(t)dBj(t)

is well-defined. Indeed, it is a scalar Itô process driven by a d-dimensional Brownian motion.

More generally, we can have any number n of processes driven by a d-dimensional Brownian
motion,

dXi(t) = bi(t)dt+
d∑

j=1

σij(t)dBj(t)

for i ∈ [n]. Here σ is a matrix-valued function, B̄ is a d-dimensional Brownian motion, and
x̄, b̄ are n-dimensional vector-valued functions. X̄ is referred to as an Itô process. In vector
form, we write

dX̄(t) = b̄(t)dt+ σ(t)dB̄(t).

The dependence of b̄(t), σ(t) on time t can be via the whole path of the process as well as
the path of B̄(s), both up to time t. The only restrictions are the following:

(i) For any i ∈ [n], bi(t) is adapted and
∫ T

0
|bi(t)|dt

a.s.
< ∞.

(ii) For any i ∈ [n], j ∈ [d], σij(t) is adapted and
∫ T

0
σ2
ij(t)dt

a.s.
< ∞.

Example 4.7.1 (Diffusion Process)
An important case of the dependence is of the form b(t) = b(X̄(t), t) and σ(t) = σ(X̄(t), t).
In this case, the stochastic differential is written as

dX̄(t) = b̄(X̄(t), t)dt+ σ(X̄(t), t)dB̄(t)

and X̄(t) is then a diffusion process.

Unsurprisingly, Itô’s formula extends to this setting. We need the quadratic variation of a
multi-dimensional Itô process. First, we check that that the quadratic covariation of two
independent Brownian motions is zero.

Theorem 4.7.2
Let B1(t), B2(t) be independent Brownian motions. Their covariation process exists
and is identically zero.
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Proof
Let { tni } be a partition of [0, t] and consider

Tn :=
n−1∑
i=0

[B1(t
n
i+1)−B1(t

n
i )][B2(t

n
i+1)−B(tni )].

By the independence of B1, B2, E[Tn ] = 0. Moreover, the variance of the sum is simply
the sum of variances

VarTn =
n−1∑
i=0

E
[ (
B1(t

n
i+1)−B1(t

n
i )
)2 ] · E [ (B2(ti+1)−B2(t

n
i ))

2 ]
=

n−1∑
i=0

(tni+1 − tni )2

≤ max
i

(tni+1 − tni )t

→ 0. δn → 0

Thus Tn
2−→ 0 as δn → 0. 2

It follows from the definition

dXi(t) = bi(t)dt+
d∑

j=1

σij(t)dBj(t)

that
d[Xi, Xj](t) = dXi(t)dXj(t) = aijdt

for i, j ∈ [n]. Here a = σσT is the diffusion matrix.

4.7.1 Itô’s Formula for Functions of Several Variables

If X̄(t) is a vector Itô process and f ∈ C2(Rn,R), then f(X̄(t)) is also an Itô process.
Moreover, its stochastic differential can be shown to be

df(X̄(t)) =
n∑

i=1

∂

∂xi
f(X̄(t))dXi(t) +

1

2

n∑
i,j=1

∂2

∂xi∂xj
f(X̄(t))d[Xi, Xj](t).

When there is only one Brownian motion, ie Bi = Bj, this formula is a generalization of
Itô’s formula for a function of two variables.

Remark 4.7.3 (Integration by Parts) LetX(t), Y (t) be two Itô processes that are adapted
to independent Brownian motions B1, B2. Take f(x, y) = xy and note that only one of the
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second partial derivatives, ∂2xy
∂x∂y

, can be non-zero, but the corresponding differential term
d[B1, B2](t) = 0 by independence. Thus the covariation of X(t), Y (t) is zero and we obtain
the equality

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t).

This is the usual integration by parts formula.
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Stochastic Differential Equations

Differential equations are used to describe the evolution of a system. Stochastic differential
equations (SDEs) arise when random noise is introduced into ODEs. We introduce two
concepts of solutions of SDEs: the strong solution and weak solution, but focus on the more
basic strong solution. We also give a connection between SDEs and random ODEs, solutions
to linear linear SDEs, stochastic exponential and logarithm, methods of solutions to some
SDEs, and results on existence and uniqueness of solutions.

5.1 Definitions

5.1.1 Ordinary Differential Equations (ODEs)

If x : R+ → R is a differentiable function of t ≥ 0, µ(x, t) : R×R+ → R is a function of x, t,
and the following relation is satisfied for all 0 ≤ t ≤ T ,

dx(t)

dt
= x′(t) = µ(x(t), t)

subject to initial conditions x(0) = x0, then x(t) is said to be a solution of the ODE µ with
initial condition x0.

Typically, we also require that x′(t) is continuous so we can interpret the differential equation
as an integral equation as well. The above equation can be written in other forms:

dx(t) = µ(x(t), t)dt

x(t) = x(0) +

∫ t

0

µ(x(s), s)ds. assuming x ∈ C1

Before we rigoriously define SDEs, we first show how they arise as randomly perturbed ODEs
and give a physical interpretation.
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5.1.2 White Noise & SDEs

Intuively, we imagine a white noise process ξ(t) as the “derivative” of Brownian motion

ξ(t) =
dB(t)

dt
= B′(t).

Of course, such a notion does not exist rigorously as a function of t in the standard calculus
sense, as Browian motion is nowhere differentiable a.s.

If σ(x, t) is the “intensity” of the noise at a point x and time t, it is agreed that∫ T

0

σ(X(t), t)ξ(t)dt :=

∫ T

0

σ(X(t), t)dB(t),

where the integral is the Itô integral.

SDEs can be obtained when the coefficients of ODEs are perturbed by white noise.

Example 5.1.1 (Black-Scholes-Mertons)
The Black-Scholes-Mertons model is designed for growth with uncertain rate of return.
Suppose x(t) is the value of $1 after time t, invested in a savings account, and r is the
interest rate. According to the definition of compound interest, x(t) satisfies the ODE

x′(t) = rx(t).

If there is uncertainty in the interest rate, we can model the uncertainty as perturbations
by noise, r + σξ(t), and the following SDE is obtained

dX(t)

dt
= (r + σξ(t))X(t)

dX(t) = rX(t)dt+ σX(t)dB(t).

The first equation is the substitution into the ODE and the second equation is the inter-
pretation of the equation.

We have already seen solutions to the SDE above, which is given by a geometric Brownian
motion

X(t) = exp ([r − σ2/2]t+ σB(t)) .

This solution can be verified by Itô’s formula.

Example 5.1.2 (Population Growth)
If x(t) denotes the population density, then it can be described by the ODE

dx(t)

dt
= ax(t)(1− x(t)).
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The growth is exponential with birth rate a when this density is small, and slows down
when the density increases. Random perturbation of the birth rate results in the SDE

dX(t)

dt
= [a+ σξ(t)]X(t)[1−X(t)]

dX(t) = aX(t)[1−X(t)]dt+ σX(t)[1−X(t)]dB(t).

5.1.3 A Physical Model of Diffusion & SDEs

Brownian motion was inspired by the movement of particles suspended in a fluid. Molecules
of the fluid move with various velocities and collide with the particle from every possible
direction. As a result of these collisions, the particle exhibits erratic movements. This
movement intensifies with an increase in the temperature of the fluid.

Heuristically, let X(t) denote the displacement of the particle in one dimension from its
initial position at time t. If σ(x, t) measures the effect of temperature at point x and time t,
the displacement due to colliding molecules in a small time interval [t, t+∆] is modelled as
σ(x, t)[B(t +∆)− (t)]. If the velocity of the fluid at point x and time t is µ(x, t), then the
displacement of the particle due to the movement of the fluid during [t, t + ∆] is µ(x, t)∆.
Thus the total displacement from its position x at time t is given by

X(t+∆)− x ≈ µ(x, t)∆ + σ(x, t)[B(t+∆)−B(t)].

From this approximation, we can guess that the mean displacement from x during a short
time ∆ is given by

E [X(t+∆)−X(t) | X(t) = x ] ≈ µ(x, t)∆.

The second moment of the displacement from x during time ∆ is given by

E
[
(X(t+∆)−X(t))2

∣∣ X(t) = x
]
≈ σ2(x, t)∆.

The above relations show that for small intervals of time, bot the mean and second moment
of the displacement of a diffusing particle at position x and time t are proportional to the
length of the interval, with coefficients µ(x, t) and σ2(x, t), respectively.

It can be shown that by taking ∆ → 0, these two requirements characterize diffusion pro-
cesses. Indeed, assuming µ(x, t) and σ(x, t) are smooth functions, the heuristic displacement
equation above also indicates that for small intervals of time ∆, diffusions are approximately
Gaussian processes. Given X(t) = x. That is, X(t +∆)−X(t) is approximately Normally
distributed, N (µ(x, t)∆, σ2(x, t)∆). Note this is only reasonable for “small” intervals. A
stochastic differential equation is obtained heuristically from the heuristic equation above
by replacing ∆ by dt, ∆B = B(t+∆)−B(t) by dB(t), and X(t+∆)−X(t) by dX(t).

dX(t) = µ(x, t)dt+ σ(x, t)dB(t).
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5.1.4 Stochastic Differential Equations

Definition 5.1.3 ((Diffusion) SDE)
Let B(t) be a Brownian motion. An equation of the form

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t)

where µ(x, t), σ(x, t) are given and X(t) is the unknown process, is called a (diffusion-
type) SDE driven by Brownian motion. The functions µ(x, t), σ(x, t) are known as
the drift and diffusion coefficients, respectively.

Definition 5.1.4 (Strong Solution)
A process X(t) is called a strong solution of an SDE if for all t > 0, the integrals∫ t

0
µ(X(s), s)ds and

∫ t

0
σ(X(s), s)dB(s) exist and

X(t) = X(0) +

∫ t

0

µ(X(s), s)ds+

∫ t

0

σ(X(s), s)dB(s).

Note that a strong solution is a function (functional) F ({B(s) : s ≤ t } , t) of the given Brow-
nian motion. More general SDEs have the form

dX(t) = µ({X(s) : s ≤ t } , t)dt+ σ({X(s), s ≤ t } , t)dB(t).

The only restriction on µ, σ is that they must be adapted processes, with respective integrals
defined. We will focus on diffusion-type SDEs.

Example 5.1.5
As a review, consider the SDE

dX(t) = X(t)dB(t).

By Itô’s formula,

d lnX(t) =
1

X(t)
dX(t)− 1

2X2(t)
σ2
X(t)dt

=
1

X(t)
[X(t)dB(t)]− 1

2X2(t)
X2(t)dt

= dB(t)− 1

2
dt.
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Hence a solution to the SDE above is given by

lnX(t) = lnX(0) +B(t)− 1

2
t

X(t) = X(0) exp

[
B(t)− 1

2
t

]
.

Example 5.1.6
Let a(t) be a deterministic and differentiable function. Consider the SDE

dX(t) = a(t)dB(t).

Clearly X(t) = X(0) +
∫ t

0
a(s)dB(s).

We can explicitly represent this as a function of the Brownian motion through integration
by parts.

d(a(t)B(t)) = a(t)dB(t) +B(t)da(t)

= a(t)dB(t) +B(t)a′(t)dt

= dX(t) +B(t)a′(t)dt

X(t) = X(0) + a(t)B(t)−
∫ t

0

B(s)a′(s)ds.

Example 5.1.7
Consider the SDE

dX(t) = µX(t)dt+ σX(t)dB(t), X(0) = 1.

Again, by applying Itô’s formula to lnX(t), we can show that one solution is given by

X(t) = X(0) exp [(µ− σ2/2)t+ σB(t)] .

Example 5.1.8 (Langevin Equation & Ornstein-Uhlenbeck Process)
Consider the SDE

dX(t) = −αX(t)dt+ σdB(t)

for some α, σ > 0. Note we cannot apply the previous example since the drift coefficient
is not constant.

Consider the process Y (t) = X(t) exp(αt). Note that the covariation of exp(αt) with X(t)
is zero since it is differentiable. By the product rule,

dY (t) = exp(αt)dX(t) + α exp(αt)X(t)dt

= exp(αt)(−αX(t)dt+ σdB(t)) + α exp(αt)X(t)dt

= σ exp(αt)dB(t).
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This yields the solutions

Y (t) = Y (0) +

∫ t

0

σ exp(αs)dB(t)

X(t) = exp(−αt)
[
X(0) +

∫ t

0

σ exp(αs)dB(s)

]
.

The process X(t) is known as the Ornstein-Uhlenbeck (OU) process.

We can find the explicit functional dependence of the solution on the Brownian motion
path by performing integration by parts on Y (t).

X(t) = exp(−αt)X(0) + σB(t)− σα
∫ t

0

exp(−α(t− s))B(s)ds.

More generally, consider the SDE

dX(t) = [β − αX(t)]dt+ σdB(t),

with the solution

X(t) =
β

α
+ exp(−αt)

(
X(0)− β

α
+

∫ t

0

σ exp(αs)dB(s)

)
.

This can be verified with Itô’s formula.

Example 5.1.9
Consider the SDE

dX(t) = B(t)dB(t).

We have X(t) = X(0) +
∫ t

0
B(s)dB(s) which can be explicitly computed by Itô’s formula

X(t) = X(0) +
1

2
[B2(t)− t].

5.1.5 SDEs & Random ODEs

Consider an SDE with a unit diffusion coefficient

X(t) = X(0) +

∫ t

0

µ(X(s), s)ds+B(t).

Let Y (t) := X(t)−B(t). Then Y (t) satisfies the following equation

Y (t) = Y (0) +

∫ t

0

µ(Y (s) +B(s), s)ds.
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This is simply an ODE, albeit involving Brownian motion!
dY (t)

dt
= µ(Y (t) +B(t), t).

Thus if Y (t) solves the above random ODE, then X(t) = Y (t) +B(t) solves the SDE. Some
SDEs with more general diffusion coefficients σ(x) can be transformed into the equation with
unit diffusion coefficient and the above method can then be applied. This transformation is
related to the so-called Doss-Sussman method.
Remark 5.1.10 Only some classes of SDEs (ie linear SDEs) admit a closed form solution.
When a closed form solution is difficult to find, existence and uniqueness results are important
as otherwise, it si unclear what exactly the equation means. When a solution exists and is
unique, then numerical methods can be used to approximate it.

5.2 Stochastic Exponential & Logarithm

5.2.1 Stochastic Exponential

Definition 5.2.1 (Stochastic Exponential)
Let X have a stochastic differential and U satisfy

dU(t) = U(t)dX(t) U(0) = 1

U(t) = 1 +

∫ t

0

U(s)dX(s).

Then U is the stochastic exponential of X and is denoted by E(X).

If X is of finite variation, we will see that E(X) = exp(X(t)−X(0)).

Theorem 5.2.2
If X has a stochastic differential, then its stochastic exponential is uniquely given by

E(X)(t) := exp

(
X(t)−X(0)− 1

2
[X,X](t)

)
.

Proof
The proof of existence consists of applying Itô’s formula to verify. Write U(t) = exp(V (t)),
where

V (t) = X(t)−X(0)− 1

2
[X,X](t).
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By Itô’s formula,

dU(t) = d(exp(V (t))) = exp(V (t))dV (t) +
1

2
exp(V (t))d[V, V ](t).

Now, the quadratic covariation is invariant under scalar multiplication. Moreover,

[X, [X,X]](t) = 0

since [X,X](t) is of finite variation (increasing) and X(t) is continuous. It follows that

[V, V ](t) = [X,X](t).

By substituting the definition of V along with the computation for [V, V ] into the expres-
sion above, we arrive at the following conclusion.

dU(t) = exp(V (t))

(
dX(t)− 1

2
d[X,X](t)

)
+

1

2
exp(V (t))d[X,X](t)

= U(t)dX(t).

Hence E(X) = U by definition.

To see uniqueness, consider another process U1 satisfying the definition of the stochastic
exponential. We claim that

d
U1(t)

U(t)
= 0.

This would conclude the proof since Itô integrals are unique up to a set of measure zero.
Indeed, recall the stochastic quotient rule states that

d(X(t)/Y (t))

=
X(t)

Y (t)

(
1

X(t)
dX(t)− 1

Y (t)
dY (t)− 1

X(t)Y (t)
d[X,Y ](t) +

1

Y 2(t)
d[Y, Y ](t)

)
.

Plugging in X = U1, Y = U2 and using the assumptions that

dU(t) = U(t)dX(t)

dU1(t) = U1(t)dX(t),

we have that

d(U1(t)/U(t))

=
U1(t)

U(t)

(
1

U1(t)
U1(t)dX(t)− 1

U(t)
U(t)dX(t)

− 1

U1(t)U(t)
U1(t)U(t)d[X,X](t) +

1

U2(t)
U2(t)d[X,X](t)

)
=
U1(t)

U(t)
(dX(t)− dX(t)− d[X,X](t) + d[X,X](t))

= 0. 2
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Thus if U satisfies
dU(t) = U(t)dX(t)

for some arbitrary U(0), then the solution is given by

U(t) = U(0)E(X)(t).

Remark 5.2.3 Unlike the usual exponential exp(f)(t) := exp(f(t)), the stochastic expo-
nential E(X) requires the knowledge of the all the values of the process upt to time t, as it
involves the quadratic variation term [X,X](t).

Example 5.2.4
The stochastic exponential of Brownian motion B(t) is given by

E(B)(t) = exp

(
B(t)− 1

2
t

)
.

Example 5.2.5 (Stock Process & Return Process)
Let S(t) denote the price of a stock and assume that it is an Itô process. The process of
its return R(t) is defined by the relation

dR(t) =
dS(t)

S(t)

dS(t) = S(t)dR(t).

Thus the stock price is the stochastic exponential of the return. Returns are typically
easier to mdoel from first principles. For instance, the Black-Scholes model assumes that
returns over non-overlapping time intervals are independent and have finite variance. This
assumption leads to the model for the retur process

R(t) = µt+ σB(t).

The stock price is then given by

E(R)(t) = S(0) exp

(
R(t)−R(0)− 1

2
[R,R](t)

)
= S(0) exp ((µ− σ2/2)t+ σB(t)) .

5.2.2 Stochastic Logarithm

If U = E(X), the process X is called the stochastic logarithm of U , denoted L(U). For
example, B(t) is the stochastic logarithm of exp(B(t)− t/2).
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Theorem 5.2.6
Let U have a stochastic differential be a.s. non-zero. Then the stochastic logarithm
X = L(U) of U satisfies the SDE

dX(t) =
1

U(t)
dU(t), X(0) = 0.

Moreover,

L(U)(t) = ln

(
U(t)

U(0)

)
+

∫ t

0

1

2U2(s)
d[U,U ](s).

Proof
By definition, X = L(U) means that U = E(X) and

dU(t) = U(t)dX(t) U(0) = 1

dX(t) =
1

U(t)
dU(t) X(0) = 0

The initial condition X(0) = 0 enforces that U(0) = 1.

Consider the process

X(t) = lnU(t)− lnU(0) +
1

2

∫ t

0

1

U2(s)
d[U,U ](s).

By Itô’s formula, it has a stochastic differential

dX(t) =
1

U(t)
dU(t)− 1

2U2(t)
d[U,U ](t) +

1

2U2(t)
d[U,U ](t)

=
1

U(t)
dU(t). 2

Example 5.2.7
Let U(t) := exp(B(t)). By computation,

d[U,U ](t) = exp(2B(t))d[B,B](t)

= exp(2B(t))dt.
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We can apply our formula to conclude that

L(U)(t) = lnU(t)− ln(1) +

∫ t

0

exp(2B(s))

2 exp(2B(s))
ds

= B(t) +

∫ t

0

1

2
ds

= B(t) +
1

2
t.

5.3 Solutions to Linear SDEs

Linear SDEs form a class of SDEs that can be solved explicitly. Consider a general linear
SDE in one dimension.

dX(t) = [α(t) + β(t)X(t)]dt+ [γ(t) + δ(t)X(t)]dB(t).

Here α, β.γ, δ are given adapted processes, and are continuous functions of t.

5.3.1 Stochastic Exponential SDEs

Consider the simpler case where α, γ ≡ 0. The SDE can be expressed in the form

dU(t) = β(t)U(t)dt+ δ(t)U(t)dB(t)

dU(t) = U(t)dY (t)

dY (t) = β(t)dt+ γ(t)dB(t).

This is in the form of the stochastic exponential SDE and so

U(t)

= U(0)E(Y )(t)

= U(0) exp

(
Y (t)− Y (0)− 1

2
[Y, Y ](t)

)
= U(0) exp

(∫ t

0

β(s)ds+

∫ t

0

δ(s)dB(s)− 1

2

∫ t

0

δ2(s)ds

)
= U(0) exp

(∫ t

0

[
β(s)− 1

2
δ2(s)

]
ds+

∫ t

0

δ(s)dB(s)

)
.
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5.3.2 General Linear SDEs

Intuitively, our first attemp at finding a solution for general linear SDEs should involve
tweaking stochastic exponential SDEs to include the extra terms α, γ.

We look for a solution of the form

X(t) = U(t)V (t)

dX(t) = U(t)dV (t) + V (t)dU(t) + d[U, V ](t),

where

dU(t) = β(t)U(t)dt+ δ(t)U(t)dB(t)

dV (t) = a(t)dt+ b(t)dB(t).

Substituting this into the differential of the product yields

dX(t) = U(t) (a(t)dt+ b(t)dB(t))

+ V (t) (β(t)U(t)dt+ δ(t)U(t)dB(t))

+ δ(t)U(t)b(t)dt

= a(t)U(t)dt+ b(t)U(t)dB(t)

+ β(t)X(t)dt+ δ(t)X(t)dB(t)

+ δ(t)U(t)b(t)dt

It is then clear that we can choose coefficients a, b such that the relation X(t) = U(t)V (t)
holds. Indeed, the desired coefficients must satisfy

b(t)U(t) = γ(t)

a(t)U(t) = α(t)− δ(t)γ(t).

Without loss of generality, set U(0) = 1, V (0) = X(0). We have already solved U and thus
a, b are determined. We have

X(t) = U(t)V (t)

= U(t)

(
X(0) +

∫ t

0

α(s)− δ(s)γ(s)
U(s)

ds+

∫ t

0

γ(s)

U(s)
dB(s)

)
.

5.3.3 Langevin-Type SDE

Let X(t) satisfy
dX(t) = a(t)X(t)dt+ dB(t),
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where a(t) is a given adapted and continuous process. When a(t) = −α, the equation reduces
to the Langevin equation. We can solve this problem using general solution to linear SDEs.

The coefficients are β(t) = a(t), γ(t) = 1, and α(t), δ(t) = 0. We first solve the stochastic
exponential SDE

dU(t) = a(t)U(t)dt,

which yields the solution

U(t) = exp

(∫ t

0

a(s)ds

)
.

The solution to X(t) is then given by

X(t) = U(t)

(
X(0) +

∫ t

0

1

U(s)
dB(s)

)
= exp

(∫ t

0

a(s)ds

)(
X(0) +

∫ t

0

exp

(
−
∫ s

0

a(u)du

)
dB(s)

)
.

Note that we can also directly solve this SDE through integration by parts similar to how
we solved the Langevin equation.

5.3.4 Brownian Bridge

The (pinned) Brownian Bridge is a solution to the following SDE

dX(t) =
b−X(t)

T − t
dt+ dB(t)

for t ∈ [0, T ] and X(0) = a. We remark that it is a lienar SDE with coefficients

α(t) =
b

T − t

β(t) = − 1

T − t
γ(t) = 1

δ(t) = 0.

Again, we first solve the stochastic exponential SDE

dU(t) = − 1

T − t
U(t)dt.
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This is solved by a deterministic process

U(t) = exp

(∫ t

0

− 1

T − s
ds

)
= exp

(∫ T−t

T

1

u
du

)
u = T − s, du = −ds

= exp (ln(T − t)− ln(T ))

=
T − t
T

.

We can then plug this into our general formula for X(t).

X(t) =

(
T − t
T

)(
a+

∫ t

0

T
b/T−s

T − s
ds+

∫ t

0

T

T − s
dB(s)

)
=

(
T − t
T

)(
a+ bT

∫ t

0

1

(T − s)2
ds+ T

∫ t

0

1

T − s
dB(s)

)
=

(
T − t
T

)(
a+ b

t

T − t
+ T

∫ t

0

1

T − s
dB(s)

)
= a

(
1− t

T

)
+ b

t

T
+ (T − t)

∫ t

0

1

T − s
dB(s)

for t ∈ [0, T ]. From the expression we derived above, we see that the Brownian bridge is a
warped Brownian motion with fixed values at each end of the interval [0, T ] with X(0) = a
and X(T ) = b.

Remark that for any t < T , ∫ t

0

1

(T − s)2
ds <∞.

Thus the process
∫ t

0
1/(T−s)dB(s) is a martingale. Moreover, the function under the Itô

integral is deterministic. This means that X(t) is a Gaussian process on [0, T ] with initial
value X(0) = a. The final value X(T ) = b is determined by continuity, which we will see
below. All in all, from our work before on Itô integral processes, a Brownian bridge is a
continuous Gaussian processon [0, T ] with mean function a(1 − t/T) + bt/T , and covariance
function

Cov [X(t), X(t+ u) ] =

∫ t

0

T − t
T − s

· T − t− u
T − s

ds

= [T − t][T − (t+ u)]

∫ t

0

1

T − s
ds

= [T − t][T − (t+ u)] · t

T (T − t)

= t− t(t+ u)

T
.
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Lemma 5.3.1
For any continuous function g(s),

lim
t↑T

(T − t)
∫ t

0

g(s)

(T − s)2
ds = g(T ).

Proof
By u-substitution,

1

L

∫ T−1/L

0

g(s)

(T − s)2
ds

=
1

L

∫ L

1/T

g(T − 1/u)du. u =
1

T − s
, du =

1

(T − s)2
ds

From elementary calculus,

g(T ) =
1

L

∫ L

0

g(T )ds.

We can thus write∣∣∣∣g(T )− 1

L

∫ L

1/T

g(T − 1/u)du

∣∣∣∣ ≤ ∣∣∣∣ 1

LT
· g(T )

∣∣∣∣+ ∣∣∣∣ 1L
∫ L

1/T

g(T )− g(T − 1/u)du

∣∣∣∣.
Fix ε > 0. For some δ > 0, |t − T | ≤ δ implies that |g(t) − g(T )| < ε. Since continuous
functions are bounded on compact (closed and bounded) sets, g is M -uniformly bounded
on [0, T ] for some M > 0. It follows that∣∣∣∣g(T )− 1

L

∫ L

1/T

g(T − 1/u)du

∣∣∣∣
≤
∣∣∣∣ 1

LT
· g(T )

∣∣∣∣+
∣∣∣∣∣ 1L
∫ 1/δ

1/T

g(T )− g(T − 1/u)du

∣∣∣∣∣+
∣∣∣∣ 1L
∫ L

1/δ

g(T )− g(T − 1/u)du

∣∣∣∣
≤
∣∣∣∣ 1

LT
· g(T )

∣∣∣∣+ 1

L
· 2M

(
1

δ
− 1

T

)
+
L− 1/δ

L
· ε.

Choosing L sufficiently large ensures the estimate above is at most a constant fraction of
ε, concluding the proof. 2

Proposition 5.3.2
The following holds.

lim
t↑T

(T − t)
∫ t

0

1

T − s
dB(s)

a.s.
= 0.
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Proof
We apply integration by parts, which is the same as the standard formula since the
covariation between a deterministic term and Brownian motion is zero. For any t < T ,∫ t

0

1

T − s
dB(s) =

1

T − t
B(t)−

∫ t

0

1

(T − s)2
B(s)ds

(T − t)
∫ t

0

1

T − s
dB(s) = B(t)− (T − t)

∫ t

0

1

(T − s)2
B(s)ds.

By the lemma above, the expression above tends to 0 as t ↑ T . 2

5.4 Existence & Uniqueness of Strong Solutions

In this section, we consider the general diffusion-type SDE

dX(t) = µ(X(t), t) + σ(X(t), t)dB(t).

We begin with some sufficient conditions to guarantee the existence and uniquess of strong
solutions on [0, T ].

Theorem 5.4.1 (Existence & Uniqueness)
Suppose the following conditions hold.

(i) (Locally Lipschitz in x, uniformly over t) For every T, L > 0, there is a constant
K∗

T,L > 0 depending only on T, L such that for all x, y ∈ [−L,L] and t ∈ [0, T ],

|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| ≤ K∗
T,L|x− y|.

(ii) (Linear growth condition) For some KT > 0 depending on T , the coefficients
satisfy

|µ(x, t)|+ |σ(x, t)| ≤ KT (1 + |x|)

for all t ∈ [0, T ].
(iii) X(0) is independent of {B(t) : t ∈ [0, T ] }.
(iv) E[X2(0) ] <∞.

Then there is a unique strong solution X(t) of the SDE with continuous paths on
[0, T ]. Moreover, there is a constant CT,KT

> 0 depending only on T,KT such that

E

[
sup

t∈[0,T ]

X2(t)

]
≤ CT,KT

(
1 + E

[
X2(0)

])
.

104



©Fel
ix

Zh
ou

The weaker version of this theorem where the constant KT,L ← KT depends only T can be
proven similarly to Picard’s theorem for the existence and uniqueness for solutions to ODEs,
ie through Picard iterations

ξm+1(t) := X(0) +

∫ t

0

µ(ξm(s), s)ds+

∫ t

0

σ(ξm(s), s)dB(s).

Remark 5.4.2 The local Lipschitz condition holds if we assume partial derivatives ∂µ
∂x
(x, t)

and ∂σ
∂x
(x, t) are bounded for all x ∈ [−L,L] and t ∈ [0, T ]. This is in turn true if the

derivatives are continuous.

5.4.1 Less Stringent Conditions for Uniquness of Strong Solutions

The next result is specific for uniqueness of solutions for one-dimensional SDEs. We state
if for the case of time-independent coefficients. A similar result holds for time-dependent
coefficients.

Theorem 5.4.3 (Yamada-Watanabe)
Suppose µ(x) is Lipschitz and σ(x) is Hölder continuous of order α ≥ 1/2, ie

|σ(x)− σ(y)| ≤ K|x− y|α.

Then if a strong solution exists, it is unique.

Example 5.4.4 (Girsanov’s SDE)
Consider the SDE

dX(t) = |X(t)|rdB(t)

where X(0) = 0 and r ∈ [1/2, 1]. Note that |x|r is Hölder continuous but not Lipschitz.

By inspection, X(t) ≡ 0 is a strong solution. The previous theorem tells us that this is
in fact the only solution.

5.5 Markov Property of Solutions

Recall that a process is Markov if the following property holds: If Ft is the σ-field generated
by the process up to time t, then for any 0 ≤ s < t,

P {X(t) ≤ y | Fs }
a.s.
= P {X(t) ≤ y | X(s) } .

Suppose X(t) is a solution to some SDE. Intuitively, for small ∆, given X(t) = x, X(t+∆)
depends on B(t+∆)− B(t) which is independent of the past. We state but not prove this
result.
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Theorem 5.5.1
Let X(t) be a solution to a diffusion-type SDE. Then X(t) has the Markov property.

5.5.1 Transition Function

Markov processes are characterized by their transition probability function, denoted by

P (A, t, x, s) := P {X(t) ∈ A | X(s) = x } .

We may also write P (y, t, x, s) in the case that A = (−∞, y]. Note that P should be
measurable function of x and for any fixed t, x, s, it should be a probability measure in A.

By the law of total probability, by conditioning on all possible values z of the process at time
u for u ∈ (s, t), we obtain that the transition probability function satisfies the Chapman-
Kolmogorov equation

P (A, t, x, s) =

∫ ∞

−∞
P (A, t, z, u)P (dz, u, x, s)

for any u ∈ (s, t).

In the case that a transition density p(y, t, x, s) exists, ie

P (A, t, x, s) =

∫
A

p(z, t, x, s)dz,

then the Chapman-Kolmogorov equation can be interpreted as

p(y, t, x, s) =

∫ ∞

−∞
p(y, t, z, u)p(z, u, x, s)dz

for every u ∈ (s, t).

Example 5.5.2
Suppose we have a transition density

p(y, t, x, s) =
1√

2π(t− s)
exp

(
(y − x)2

2(t− s)

)
,

which is the density function of N (x, t− s). Then the corresponding diffusion process is
Brownian motion. Indeed, Brownian motion is Markov and the conditional distribution
of B(t) | B(s) = x is precisely N (x, t− s).
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Example 5.5.3
Let X(t) solve the SDE

dX(t) = µX(t)dt+ σX(t)dB(t)

for some µ, σ ∈ R. We have seen that

X(t) = X(0) exp ([µ− σ2/2]t+ σB(t))

X(t) = X(s) exp ([µ− σ2/2][t− s] + σ[B(t)−B(s)]) .

Using the independence of B(t)−B(s) and X(s), we compute the transition probability
function

P (y, t, x, s) := P {X(t) ≤ y | X(s) = x }
= P { x exp ([µ− σ2/2][t− s] + σ[B(t)−B(s)]) ≤ y }
= P { exp ([µ− σ2/2][t− s] + σ[B(t)−B(s)]) ≤ y/x }

= Φ

(
ln(y/x)− (µ− σ2/2)(t− s)

σ
√
t− s

)
.

We introduce a useful notation

Xx
s (t) := X(t) | X(s) = x.

This is the value of the process at time t when it takes on value x at time s ≤ t. For
0 ≤ s < t, we have the identity

Xx
0 (t) = XXx

0 (s)
s (t).

The Markov property states that conditional on Xx0
s (t) = x, the processes Xx0

s (u) for some
s ≤ u ≤ t and Xx

t (v) for v ≥ t are independent.

Let τ be any finite {Ft }-stopping time. Recall that a process has the strong Markov property
if

P {X(τ + t) ≤ y | Fτ }
a.s.
= P {X(τ + t) ≤ y | X(τ) }

for every such τ . Solutions to SDEs also have the strong Markov property.

If an SDE has a strong solution X(t), then X(t) has a transition probability function which
can be found as a solution to the Kolmogorov forward-backward equations as we will soon
see.

A transition probability function may exist for SDEs without a strong solution which uniquely
determines a Markov process (all finite-dimensional distributions). This process is known as
a weak solution to an SDE. In this way, we will see that one can definie a solution for an
SDE under less stringent conditions on its coefficients.
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5.6 Weak Solutions to SDEs

The concept of weak solutions give meaning to an SDE when strong solutions do not exist.
Weak solutions are solutions in distribution. They can be realized on some other probability
space and exist under less stringent conditions on the coefficients of the SDE.

Definition 5.6.1 (Weak Solution)
Consider the SDE

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t)

with initial distribution X(0). Suppose there is some (possibly different) filtered
probability space and a Brownian motion B̂(t), process X̂(t), both adapted to the
filtration. If X̂(0)

d
= X(0), the integrals below are defined for all t, and X̂(t) satisfies

X̂(t) = X̂(0) +

∫ t

0

µ(X̂(s), s)ds+

∫ t

0

σ(X̂(s), s)dB̂(s),

then X̂(t) is a weak solution of the SDE.

We say a weak solution is unique if any two solutions (on possibly different probability
spaces) are equivalent in distribution. In other words, any two solutions have the same finite
dimensional distributions.

By definition, a strong solution is also a weak solution. It can be shown that uniqueness of
the strong solution (pathwise uniqueness) implies uniqueness of the weak solution.

Next, we see an SDE where no strong solution exists, but a weak solution exists and is
unique.

Example 5.6.2 (Tanaka’s SDE)
Consider the SDE

dX(t) = sign(X(t))dB(t),

where

sign(x) :=

{
1, x ≥ 0

−1, x < 0.

Since σ := sign is not continuous, it cannot be Lipschitz so the conditions we know for the
existence of strong solutions fail. It can be shown that a strong solution to Tanaka’s SDE
does not exist. We show that Brownian motion is the unique weak solution to Tanaka’s
SDE.
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Let X(t) be some Brownian motion. Consider the process

Y (t) :=

∫ t

0

1

sign(X(s))
dX(t) =

∫ t

0

sign(X(s))dX(t).

This is well-defined continuous martingale since sign(X(t)) is adapted and∫ T

0

sign2(X(s))ds = T <∞.

Moreover,

[Y, Y ](t) :=

∫ t

0

sign2(X(s))d[X,X](s) =

∫ t

0

ds = t.

By Lévy’s characterization of Brownian motion, Y (t) must be a Brownian motion.

Example 5.6.3 (Girsanov’s SDE)
We have shown that the SDE

dX(t) = |X(t)|rdB(t)

has a strong solution X ≡ 0 for r > 0, t ≥ 0. If r ≥ 1/2, this is the only strong solution
by a previous theorem. In this case, there cannot be any non-zero weak solutions. It is
interesting to consider the ODE version of Girsanov’s SDE

dx(t) = 2|x(t)|
1
2dt,

which has two solutions x(t) = 0, t2.

For 0 < r < 1/2, it can be shown that the SDE has infinitely many solutions.

5.7 Construction of Weak Solutions

In this section, we state results on the existence and uniqueness of weak solutions to SDEs
of the form

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t).

Theorem 5.7.1
If µ(·, t), σ(·, t) ∈ Cb for every t > 0, then the SDE has at least one weak solution
starting at any point x and time s.
Moreover, if µ(·, t), σ(·, t) ∈ C2

b , then the SDE has a unique weak solution starting at
any point x and time s.
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Even better conditions are available.

Theorem 5.7.2
Suppose σ(x, t) is positive, continuous and for any T > 0, there is some KT > 0 such
that

|µ(x, t)|+ |σ(x, t)| ≤ KT (1 + |x|)

for any x ∈ R, t ∈ [0, T ]. Then there exists a unique weak solution to the SDE starting
at any point x and time s. Moreover, the solution has the strong Markov property.

5.7.1 Canonical Space for Diffusions

Weak solutions to SDEs or diffusions can be realized on the probability space of continuous
functions. We indicate

(a) how to define probabilities on this space through transition functions,
(b) how to find the transitions function from a given SDE, and
(c) how to verify that the constructed process indeed satisfies the given SDE.

5.7.2 Probability Space

Weak solutions can be constructed on the canonical space Ω = C[0,∞). The Borel σ-field on
Ω is the one generated by the open sets according to some metric. For instance, the distance
between two continuous functions ω1, ω2 can be taken as

d(ω1, ω2) :=
∑
n≥1

1

2n
supt∈[0,n]|ω1(t)− ω2(t)|

1 + supt∈[0,n]|ω1(t)− ω2(t)|
.

Convergence of the elements of Ω in this metric is the uniform convergence of functions on
bounded closed intervals [0, T ]. Diffusions on finite intervals can be realized with the infinity
norm for simplicity.

The canonical process X(t) is defined by X(t, ω) = ω(t). It is known that the Borel σ-field
F on C[0,∞) is given by σ {X(t) : t ∈ [0,∞) }. The filtration is defined by the σ-fields
Ft := σ {X(s) : s ∈ [0, t] }.

5.7.3 Probability Measure

We now outline the construction of probability measures from a given transition function
P (y, t, x, s). For any fixed x ∈ R, s ≥ 0, a probability measure P = Px,s on (Ω,F) can be
constructed by using the following properties.
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(i) P {X(u) = x : u ∈ [0, s] } = 1.
(ii) P {X(t2) ∈ B | Ft1 } = P (B, t2, X(t1), t1).

The second property asserts that for any Borel sets A,B ⊆ R,

Pt1,t2(A×B) = P {X(t1) ∈ A,X(t2) ∈ B }

=

∫
A

∫
B

P (dy2, t2, y1, t1)Pt1(dy1).

Here Pt1(C) := P {X(t1) ∈ C }. This extends to the n-dimensional cylinder sets Jn ⊆ Rn by

Pt1,...,tn+1(Jn+1) =

∫
Jn+1

P (dyn+1, tn+1, yn, tn)Pt1,...,tn(dy1 × · · · × dyn).

These probabilities yield the finite dimensional distributions. Consistency of these proba-
bilities is a consequence of the Chapman-Kolmogorov equation for the transition function.
Consequently, Kolmogorov’s extension theorem states that P can be uniquely extended to
all F . This probability measure P = Px,s corresponds to the Markov process started at point
x and time s, denoted earlier by Xx

s (t). Thus any transition function defines a probability
so that the canonical process is a Markov process.

5.7.4 Transition Function

Under appropriate conditions on the coefficients µ(x, t), σ(x, t), we will see that P (y, t, x, s)
is determined from a PDE

∂u

∂s
(x, s) + Lsu(x, s) = 0

known as the Kologorov backward equation. Here the second order differential operator Ls is
given by

Lsf(x, s) :=
1

2
σ2(x, s)

∂2f

∂x2
(x, s) + µ(x, s)

∂f

∂x
(x, s).

5.7.5 Weak Solutions & the Martingale Problem

We now consider an equivalent definition of the a weak solution to the SDE

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t).
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Definition 5.7.3 (Martingale Problem)
The martingale problem for the coefficients µ(x, t), σ(x, t), or the operator Ls, is as
follows.
For each x ∈ R, s > 0, find a probability measure Px,s on Ω,F such that

(a) Px,s {X(u) = x, u ∈ [0, s] } = 1.
(b) For any f ∈ C2 supported on a finite interval, the following process is a mar-

tingale under Px,s with respect to Ft:

f(X(t))−
∫ t

s

(Luf)(X(u))du.

In the case there is a unique solution to the martingale problem (in distribution), it is said
that the martingale problem is well-posed.

Remark 5.7.4 If a function vanishes outside a finite interval K, its derivatives also vanish
outside that interval. Thus for f ∈ C2

K , Lsf exists, is continuous, and vanishes outside the
interval K. Thus ensures that

E
[
f(X(t))−

∫ t

s

(Luf)(X(u))du

]
exists and the martingale problem is well-defined.

If we consider f ∈ C2
b , then Lsf exists but may not be bounded and the expectation above

may not exist. In this case, one seeks solutions to the local martingale problem, and any such
solution makes the process above into a local martingale.

Theorem 5.7.5
The definition of a weak solutions is equivalent to the definition of a solution to a
martingale problem.

Extra concepts of local martingales and their integrals are required to prove the claim rig-
orously.

Proof (Sketcha)
Without loss of generality, suppose processes begin at time s = 0.

Let X(t) ∼ Px,s be a solution to the martingale problem. Then

f(X(t))−
∫ t

0

(Luf)(X(u))du

is a martingale for f(x) = x and f(x) = x2 (or approximations by C2
K functions on a
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finite interval). It follows that the following are martingales

X(t)−
∫ t

0

µ(X(u), u)du =: Y (t)

X2(t)−
∫ t

0

[σ2(X(u), u) + 2µ(X(u), u)]du.

Intuitively, Y (t) corresponds to the Itô integral portion of the Itô process since we have
subtracted the drift portion. We have

Y (t) =

∫ t

0

σ(X(u), u) · dY (u)

σ(X(u), u)
.

Here we avoid defining dY . Thus it suffices to show that

B(t) :=

∫ t

0

dY (u)

σ(X(u), u)

is a Brownian motion. This can be accomplished by using the martingale relations above
to compute the quadratic variation [B,B](t) = t and invoking Lévy’s characterization of
Brownian motion.

Conversely, let X(t) be a weak solution so that there is a space supporting a Brownian
motion B(t) such that

X(t) = X(s)︸ ︷︷ ︸
=x

+

∫ t

s

µ(X(u), u)du+

∫ t

s

σ(X(u), u)dB(u).

Let f ∈ C2
K . By Itô’s formula,

f(X(t)) = f(X(s)) +

∫ t

s

(Luf)(X(u))du

+

∫ t

s

f ′(X(u))σ(X(u), u)dB(u)

f(X(t))−
∫ t

s

(Luf)(X(u))du = f(X(s)) +

∫ t

s

f ′(X(u))σ(X(u), u)dB(u).

By assumption, f ′(X(u)) is bounded. From our work with Itô integrals, the integral on
the RHS is a martingale in t for t ≥ s. We conclude that the martingale problem has a
solution. 2

ahttp://localwww.math.unipd.it/~fischer/Didattica/MarkovMP.pdf
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Example 5.7.6
Since B(t) =

∫ t

0
1 · dB(s), the theorem above implies that

f(B(t))−
∫ t

0

1

2
f ′′(B(s))ds

is a martingale for any f ∈ C2
K . In other words, Brownian motion is a solution to the

martingale problem for the Laplace operator L = 1
2

d2

dx2 . Since Brownian motion exists and
is uniquely determined by its distribution, the martingale problem for L is well-posed.

5.8 Backward & Forward Equations

In many applications such as physics, engineering, and finance, the importance of diffusions
lies in their connection to PDEs. In these cases, diffusions are often specified by a PDE
known as the Fokker-Planck equation (forward equation). Although PDEs are difficult to
solve analytically, they can typically be solved numerically. In practice, it often suffices to
check for existence and uniqueness of solutions and then the solution can be computed by a
PDE solver.

This section outlines how to obtain the transition function that determines the weak solution
to an SDE

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t), t ≥ 0

as well as the connection to PDEs

Recall the differential operator Ls, s ∈ [0, T ] given by

Lsf(x, s) =
1

2
σ2(x, s)

∂2f

∂x2
(x, s) + µ(x, s)

∂f

∂x
(x, s).

114



©Fel
ix

Zh
ou

Definition 5.8.1 (Fundamental Solution)
A fundamental solution of the (backward) PDE

∂u

∂s
(x, s) + Lsu(x, s) = 0

is a non-negative function p(y, t, x, s) with the following properties:
(i) p(y, t, x, s) is continuous and twice continuously differentiable in x.
(ii) p(y, t, ·, ·) satisfies the PDE above.
(iii) For any g ∈ Cb, t > 0,

u(x, s) :=

∫
R
g(y)p(y, t, x, s)dy

is bounded, satisfies the PDE above, and lims↑t u(x, s) = g(x) for every x ∈ R.

Theorem 5.8.2 (Forward-Backward Equations)
[Backward Equation] Suppose σ(x, t), µ(x, t) ∈ Cb satisfy
(A1) (Uniform Ellipticity) σ2(x, t) ≥ c > 0.
(A2) µ(x, t), σ2(x, t) are Hölder continuous. Thus there is some K > 0 such that for

all x, y ∈ R, s, t > 0,

|µ(y, t)− µ(x, s)|+ |σ2(y, t)− σ2(x, s)| ≤ K(|y − x|α + |t− s|α).

Then the PDE
∂u

∂s
(x, s) + Lsu(x, s) = 0

has a fundamental solution p(y, t, x, s) which is unique and strictly positive.
[Forward Equation] If in addition µ(x, t), σ(x, t) have two partial derivatives with
respect to x which are bounded and Hölder continuous with respect to x, then q(y, t) =
p(y, t, x, s) also satisfies the PDE

−∂q
∂t

(y, t) +
1

2

∂2

∂y2
(
σ2(y, t)q(y, t)

)
− ∂

∂y
(µ(y, t)q(y, t)) = 0.

Note that the SDE from the definition of a fundamental solution is with respect to the
backward variables x, s and hence we refer to it as the backward equation. On the other
hand, the second PDE in the theorem is with respect to the forward variables y, t and hence
its name.
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Theorem 5.8.3
Suppose the coefficients of Ls satisfy conditions (A1), (A2) of the previous theorem.
Then the backward PDE has a unique fundamental solution p(y, t, x, s). This uniquely
defines a transition probability

P (A, t, x, s) =

∫
A

p(y, t, x, s)dy

when interpreted as a transition density. Moreover, for any f ∈ C2,1
b (R× [0, t]),

E [ f(X(t), t)− f(x, s) | X(s) = x ] = E
[ ∫ t

s

(
∂

∂u
+ Lu

)
f(X(u), u)du

∣∣∣∣ X(s) = x

]
for all 0 ≤ s < t, x ∈ R.

The transition density p(y, t, x, s) in the above theorem uniquely defines a Markov process
X(t) called a diffusion. The differential operator Ls is called its generator. The

5.8.1 Deriving the Forward-Backward Equations

Intuitively, assuming the drift and diffusion coefficients are sufficiently well-behaved, the
transition density of a weak solution to a diffusion-type SDE necessarily follows the forward-
backward equations.

Let us sketch how one might derive the Kolmogorov forward-backward equations ii. Consider
a diffusion-type SDE of the form

dX(t) = σ(X(t), t)dB(t) + µ(X(t), t)dt.

Throughout, we will assume that µ, σ are sufficiently “nice” so that a weak solution with
transition density exists.

Suppose X(t) is a solution to the SDE above and u(x, t) ∈ C2,1. By Itô’s formula,

du(X(t), t) = (∂t + Lt)u(X(t), t)dt+ ∂xu(X(t), t)σ(X(t), t)dB(t).

By the definition of a stochastic integral, we can compute the value of X(t) given X(s) = x.

u(X(t), t)− u(x, s)

=

∫ t

s

(∂v + Lv)u(X(v), v)dv + martingale

iihttps://cims.nyu.edu/~holmes/teaching/asa19/handout_Lecture10_2019.pdf
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The conditional expectation of X(t) is thus

E [ u(X(t), t)− u(x, s) | X(s) = x ]

= E
[ ∫ t

s

(∂v + Lv)u(X(v), t)dv

∣∣∣∣ X(s) = x

]
.

Note that taking the conditional expectation given X(s) = x eliminates the zero-mean
martingale.

Backward Equation

Consider an arbitrary test function f ∈ C2
K and define

u(x, s) := E [ f(X(t)) | X(s) = x ] =

∫
R
f(y)p(y, t, x, s)dy, s ≤ t.

Using the previous identity and differentiating, we extract

0 = lim
t↓s

1

t− s
E [ u(X(t), t)− u(x, s) | X(s) = x ]

= lim
t↓s

E
[

1

t− s

∫ t

s

(∂v + Lv)u(X(v), v)dv

∣∣∣∣ X(s) = x

]
= ∂su(x, s) + Lsu(x, s). mean-value theorem

Assuming the conditions for Leibniz integral rule holds, we expand the definition of u to see
that

0 = (∂s + Ls)u(x, s)

= (∂s + Ls)

∫
R
f(y)p(y, t, x, s)dy

=

∫
R
f(y)(∂sp(y, t, x, s) + Lsp(y, t, x, s))dy.

But the test function f was arbitrary, hence we conclude p follows the backward PDE in the
variables x, s

∂sp(y, t, x, s) + Lsp(y, t, x, s) = 0 .

If in addition, we enforce the initial condition u(x, t) = f(x), the density also satisfies the
condition p(y, t, x, t) = δ(x− y).
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Foward Equation

Consider now the formal adjoint L∗
t of Lt defined by∫

(Ltf)(y, t) · g(y, t)dy =

∫
f(y, t) · (L∗

tg)(y, t)dy.

It can be shown that

(L∗
tg)(y, t) =

1

2

∂2

∂y2
(
σ2(y, t)g(y, t)

)
− ∂

∂y
(µ(y, t)g(y, t)) .

Consider an arbitrary test function f ∈ C2
K . By the identity we computed above,

E [ f(X(t))− f(x) | X(s) = x ] = E
[ ∫ t

s

(Lvf)(X(v), v)dv

∣∣∣∣ X(s) = x

]
.

Rewriting in terms of the transition density,∫
R
f(y)p(y, t, x, s)dy − f(x) =

∫ t

s

∫
R
(Lvf)(y, v) · p(y, v, x, s)dydv

=

∫ t

s

∫
R
f(y) · (L∗

vp)(y, v, x, s)dydv.

Again, assuming the conditions to apply Leibniz integral rule holds,∫
R
f(y) · ∂tp(y, t, x, s)dy =

∫
R
f(y) · (L∗

vp)(y, v, x, s)dy.

By the arbitrary choice of f , we conclude that the forward (Fokker-Planck) equation holds

∂tp(y, t, x, s) = (L∗
tp)(y, t, x, s) ,

with the initial condition p(y, s, x, s) = δ(x− y).

If X(t) has density ρ(·, t), then ρ also satisfies the forward Kolmogorov equation. Indeed,

ρ(y, t) =

∫
R
p(y, t, x, s)ρ0(x)dx

and one can integrate both sides of the forward Kolmogorov equation against ρ0.

∂tρ(y, t) =

∫
R
∂tp(y, t, x, s)ρ0(x)dx

=

∫
R
(L∗

tp)(y, t, x, s)ρ0(x)dx

= L∗
tρ(y, t).
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5.9 Stratonovich Stochastic Calculus

Stochastic integrals in aplication are often taken in the sense of Stratonovich calculus. This
calculus is designed in such a way that its basic rules like the chain rule and integration by
parts are the same as in standard calculus.

Although the rules of manipulations are the same, the calculi are still different. The processes
need to be adapted, just as in Itô calculus. Since Stratonovich stochastic integrals can be
reduced to Itô integrals, the standard SDE theory can be used for Stratonovich SDEs. Note
also that the Stratonovich integral is more suited to generalizations of stochastic calculus on
manifolds.

A direct definition of the Stratonovich integral, denoted
∫ t

0
Y (s)∂X(s) to distinguish from

Itô integrals, is done as a limit in mean square of Stratonovich approximating sums

n−1∑
i=0

1

2
[Y (tni+1) + Y (tni )][X(tni+1)−X(tni )]

as partitions become finer. Note that we used the average value of Y on the interval [tni , tni+1]
for Stratonovich calculus as compared to the left most value of Y in the Itô integral.

Alternatively, we use the machinery we already developped for Itô integrals in order to define
the Stratonovich integral.

Definition 5.9.1 (Stratonovich Integral)
Let X,Y be continuous adapted procsses such that the Itô integral

∫ t

0
Y (s)dX(s) is

defined. The Stratonovich integral is defined by∫ t

0

Y (s)∂X(s) :=

∫ t

0

Y (s)dX(s) +
1

2
[Y,X](t).

The Stratonovich differential is defined by

Y (t)∂X(t) := Y (t)dX(t) +
1

2
d[Y,X](t).
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5.9.1 Integration by Parts: Stratonovich Product Rule

Theorem 5.9.2
Provided all terms below are defined,

X(t)Y (t)−X(0)Y (0) =

∫ t

0

X(s)∂Y (s) +

∫ t

0

Y (s)∂X(s),

∂(X(t)Y (t)) = X(t)∂Y (t) + Y (t)∂X(t).

Proof
The proof is a direct application the stochastic product rule.

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d[X,Y ](t)

= X(t)∂Y (t) + Y (t)∂X(t). 2

5.9.2 Change of Variables: Stratonovich Chain Rule

Theorem 5.9.3
Let X be continuous and f ∈ C3. Then

f(X(t))− f(X(0)) =

∫ t

0

f ′(X(s))∂X(s),

∂f(X(t)) = f ′(X(t))∂X(t).

Proof
We wish to show that

f ′(X(t))∂X(t) = df(X(t))

where the RHS is the Itô differential. By Itô’s formula,

df(X(t)) = f ′(X(t))dX(t) +
1

2
f ′′(X(t))d[X,X](t)

df ′(X(t)) = f ′′(X(t))dX(t) +
1

2
f ′′′(X(t))d[X,X](t).

Hence

d[f ′(X), X](t) = df ′(X(t))dX(t)

= f ′′(X(t))dX(t)dX(t)

= f ′′(X(t))d[X,X](t)
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and

f ′(X(t))∂X(t) := f ′(X(t))dX(t) +
1

2
d[f ′(X), X](t)

= f ′(X(t))dX(t) +
1

2
f ′′(X(t))d[X,X](t)

= df(X(t))

as desired. 2

Example 5.9.4
If B(t) is a Brownian motion, then the Stratonovich and Itô differentials below are

∂B2(t) = 2B(t)∂B(t)

dB2(t) = 2B(t)dB(t) + dt.

5.9.3 Conversion of Stratonovich SDEs into Itô SDEs

Theorem 5.9.5
Suppose that X(t) satisfies the following SDE in the Stratonovich sense

dX(t) = µ(X(t))dt+ σ(X(t))∂B(t),

where σ ∈ C2. Then X(t) satisfies the Itô SDE

dX(t) =

(
µ(X(t)) +

1

2
σ′(X(t))σ(X(t))

)
dt+ σ(X(t))dB(t).

Thus the diffusion coefficient remains the same in both types of calculi, but the Stratonovich
drift coefficient of µ(x) is transformed to µ(x) + 1

2
σ′(x)σ(x).

Proof
By the definition of the Stratonovich integral,

dX(t) = µ(X(t))dt+ σ(X(t))dB(t) +
1

2
d[σ(X), B](t).
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Consider the term d[σ(X), B](t). By Itô’s formula,

dσ(X(t)) = σ′(X(t))dX(t) +
1

2
σ′′(X(t))d[X,X](t)

d[σ(X), B](t) = dσ(X(t))dB(t)

= σ′(X(t))dX(t)dB(t)

= σ′(X(t))d[X,B](t)

= σ′(X(t))σ(X(t))dB(t)dB(t)

= σ′(X(t))σ(X(t))dt.

Substituting this value into the definition above concludes the proof. 2
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Martingales

Martingales play a central role in the modern theory of stochastic processes and stochastic
calculus. The following useful properties all hold under reasonable conditions: (i) Martingales
arise from Itô integrals and from diffusions. (ii) Martingales have a constant expectation,
which remains the same under random stopping. (iii) Moreover, martingales converge almost
surely.

6.1 Definitions

Definition 6.1.1 (Martingale)
A stochastic process M(t) where t is continuous (t ∈ [0, T ] or t ∈ R+) or discrete
(t = 0, 1, . . . , T , or t ∈ N), adapted to a filtration F = {Ft }, is a martingale if

(i) M(t) ∈ L1 for each t.
(ii) E[M(t) | Fs ]

a.s.
= M(s) for every 0 ≤ s < t.

Similarly, we can define super and submartingales.

Definition 6.1.2 (Supermartingale)
A stochastic process M(t) adapted to a filtration F is a supermartingale if

(i) M(t) ∈ L1 for each t.

(ii) E[M(t) | Fs ]
a.s.

≤ M(s) for every 0 ≤ s < t.

M(t) is said to be a submartingale if −M(t) is a supermartingale.

The mean of a supermartingale is non-increasing with t and vice versa for submartingales.
We can test is a supermartingale is a true martingale by checking if the mean remains
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constant.

Theorem 6.1.3
A supermartingale M(t), t ∈ [0, T ] is a martingale if and only if E[M(T ) ] = E[M(0) ].

Proof
The condition is certainly necessary. To see that it is sufficient, assume towards a contra-
diction that for some s < t we have

E [M(t) | Fs ] < M(s)

on a set of positive probability. By taking expectation, we obtain that

E [M(t) ] < E [M(s) ] .

Since the expectation of a supermartingale is non-increasing, we see that

E [M(T ) ] ≤ E [M(t) ] < E [M(s) ] ≤ E [M(0) ] .

This contradicts the condition, concluding the proof. 2

From hereonforth, we assume that we work with CADLAG versions of supermartingales.
Recall these versions always exist, roughly speaking if we assume the mean function is right-
continuous.

6.1.1 Square Integrable Martingales

Square integrable martingales play a role in the theory of integration.

Definition 6.1.4 (Square Integrable Process)
A process X(t) for t ∈ [0, T ] or t ∈ R+ is said to be square integrable if

sup
t

E
[
X2(t)

]
<∞.

Example 6.1.5
Brownian motion B(t) on a finite interval t ∈ [0, T ] is a square integrable martingale,
since E[B2(t) ] = t < T <∞. Similarly, B2(t)− t is a square integrable martingale.

However, neither processes are square integrable over t ∈ R+.
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Example 6.1.6
Suppose f ∈ Cb(R). Then Itô integrals of the form

∫ t

0
f(B(s))dB(s) and

∫ t

0
f(s)dB(s)

are square integrable martingales on any finite time interval t ∈ [0, T ]. Indeed, suppose
|f | ≤ K.

E

[ (∫ t

0

f(B(s))dB(s)

)2
]
= E

[ ∫ t

0

f 2(B(s))ds

]
≤ K2t

≤ K2T

<∞.

Moreover, if
∫∞
0
f 2(s)ds < ∞, then

∫ t

0
f(s)dB(s) is a square integrable martingale on

t ∈ R+.

6.2 Uniform Integrability

In order to appreciate the definition of uniform integrability of a process, let us first recall
that a random variable X is integrable if E[ |X| ] <∞.

Proposition 6.2.1
A random variable X is integrable if and only if

lim
n→∞

E [ |X| · 1 { |X| > n } ] = 0.

Proof
If X is integrable, then the statement of the theorem holds by the dominated convergence
theorem. Indeed, we have the pointwise limit

lim
n→∞
|X| · 1 { |X| > n } = 0,

as well as the inequality |X| · 1 { |X| > n } ≤ |X|.

Conversely, let N be sufficiently large so that

E [ |X| · 1 { |X| > n } ] <∞.

Then
E [ |X| ] = E [ |X| · 1 { |X| > N } ] + E [ |X| · 1 { |X| ≤ N } ] <∞

as desired. 2
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We now state the definition of uniform integrability for a stochastic process.

Definition 6.2.2 (Uniform Integrability)
A process X(t) is uniformly integrable if

lim
n→∞

sup
t

E [ |X(t)| · 1 { |X(t)| > n } ] = 0.

Here the supremum is taken over [0, T ] in finite time and R+ if the process is considered
on R+.

Proposition 6.2.3
If X(t) is uniformly integrable, then

sup
t

E [ |X(t)| ] <∞.

The proof is by an identical argument to the case of random variables.

The remainder consists of sufficient conditions of uniform integrability. In particular, we will
show that martingales uniformly integrable on any finite time interval.

Theorem 6.2.4
If the process X is dominated by an integrable random variable, say |X(t)| ≤ Y
for every t such that E[Y ] < ∞, then it is uniformly integrable. In particular, if
E [ supt|X(t)| ] <∞, then it is uniformly integrable.

Proof
The proof is as one might expect.

sup
t

E [ |X(t)| · 1 { |X(t)| > n } ] ≤ E [ |Y | · 1 { |Y | > n } ]→ 0

as n→∞. 2

There are uniformly integrable processes which are not dominated by an integrable random
variable, thus the theorem above is sufficient but not necessary. Another sufficient condition
for uniform integrability is provided below.
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Theorem 6.2.5 (de la Vallée Poussin)
X(t) is uniformly integrable if and only if for some positive, increasing, convex func-
tion G : (0,∞)→ R such that limx→∞ G(x)/x =∞, we have

sup
t

E [G(|X(t)|) ] <∞.

Proof (Sketcha)
First suppose such function G exists. Fix ε > 0. By assumption, there is some xε > 0
such that for every x ≥ xε,

G(x)

x
≥ 1

ε
⇐⇒ x ≤ εG(x).

It follows that

sup
t

E [ |X(t)| · 1 { |X(t)| > n } ]

≤ sup
t
εE [G(|X(t)|) · 1 { |X(t)| > n } ] n ≥ xε

≤ ε sup
t

E [G(|X(t)|) ]

→ O(ε). n→∞

By the arbitrary choice of ε > 0, we conclude that X(t) is indeed uniformly integrable.

Now suppose that X is uniformly integrable. Then for every m ≥ 1, there is some
xm ≥ max(xm−1,m) such that

sup
t

E [ |X(t)| · 1 { |X(t)| > xm } ] ≤ 2−m.

Note we can replace 2−m by any summable sequence in m. Consider the function

G(x) :=
∑
m≥1

(x− xm)+

where (·)+ := max(0, ·). This function is positive, increasing, and convex. Furthermore,

lim
x→∞

G(x)

x
= lim

x→∞

∑
m≥1

(
1− xm

x

)
+

→
∑
m≥1

1

=∞.
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Finally, for any t,

E [G(|X(t)|) ]

= E

[∑
m≥1

(|X(t)| − xm)+

]

≤ E

[∑
m≥1

|X(t)| · 1 {X(t) } > xm

]
=
∑
m≥1

E [ |X(t)| · 1 {X(t) } > xm ] Monotone Convergence Theorem

≤
∑
m≥1

2−m

= 1. 2

ahttps://djalil.chafai.net/blog/2014/03/09/de-la-vallee-poussin-on-uniform-integrability/

In practice, this result above is applied with G(x) = xp for some p > 1 and uniform inte-
grability is checked by using moments. For second moments r = 2, this yields the following
result.

Corollary 6.2.6
If X(t) is uniformly square integrable, ie supt E[X2(t) ] <∞, then it is uniformly inte-
grable.

The following result provides a construction of uniformly integrable martingales.

Theorem 6.2.7 (Doob-Lévy Martingale)
Let Y be an integrable random variable, ie E[ |Y | ] <∞, and define

M(t) := E [ Y | Ft ] .

Then M(t) is a uniformly integrable martingale.

Recall that if τ is a stopping time, then Fτ is the set of events observed before or at time T .

Fτ = { A ∈ F : ∀t, A ∩ { τ ≤ t } ∈ Ft } .

Proof
The martingale property can be checked using properties of conditional expectation. We
demonstrate uniform integrability for the case of Y ≥ 0. The general case follows by
considering Y + and Y −.
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We claim that M∗ := suptM(t)
a.s.
< ∞. Indeed, consider the sequence of stopping times

τn := inf { t ≥ 0 :M(t) > n }

where the infimum of an empty set is taken to be ∞. Observe that

{M∗ =∞} ⊆
⋂
n

{ τn <∞} .

Now, if P {M∗ =∞} > 0, then we have

E [M(τn) ] ≥ n · P { τn <∞} ≥ nP {M∗ =∞} .

Thus E [M(τn) ] can be make arbitrarily large by varying n. However,

E [M(τn) ] = E [ E [ Y | Fτn ] ] = E [ Y ] ≤ E [ |Y | ] <∞

which is a contradiction.

Having established the claim, we proceed by computation.

E [M(t) · 1 {M(t) > n } ] := E [ E [ Y | Ft ] · 1 {M(t) > n } ]
= E [ Y · 1 {M(t) > n } ]
≤ E [ Y · 1 {M∗ > n } ] .

The last expression does not depend on t and tends to 0 as n→∞ since Y is integrable
and M∗ a.s.

< 0. 2

Recall that Doob’s martingale is closed by Y . An immediate corollary follows.

Corollary 6.2.8
Any martingale M(t) on a finite time interval t ∈ [0, T ] is uniformly integrable and is
closed by M(T ).

We will soon see that a uniformly integrable martingale on R+ is also closed by some random
variable denoted M(∞), such that the martingale property holds for all 0 ≤ s < t ≤ ∞.

6.3 Martingale Convergence

In this section, we consider martingales on the infinite time interval R+.
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Theorem 6.3.1 (Martingale Convergence)
If M(t), t ∈ R+ is an integrable martingale (supermartingale or submartingale), ie
supt E[ |M(t)| ] <∞, then there is some integrable random variable Y such that

lim
t→∞

M(t)
a.s.
= Y.

The proof of this theorem is non-trivial and omitted.

Remark 6.3.2 If M(t) is a martingale, then the integrability condition

sup
t

E [ |M(t)| ] <∞

is equivalent to any of the following conditions:

1. limt→∞ E[ |M(t)| ] <∞. This holds as |x| is a convex function, which we have seen im-
plies |M(t)| is a submartingale. But the expectation of a submartingale is an increasing
function of t, and hence the supremum is the same as the limit.

2. limt→∞ E[M+(t) ] <∞. Since martingales have constant expectation, say E[M(t) ] =
E[M+(t) ] − E[M−(t) ] = c ∈ R, we can conclude that E[ |M(t)| ] = 2E[M+(t) ] − c
also has a finite limit in t.

3. limt→∞ E[M−(t) ] <∞. Similar.

Now, if M(t) is a submartingale, it suffices to ask that supt E[M−(t) ] <∞, and in the case
of supermartingales that sup−tE [M−(t) ] <∞.

Corollary 6.3.3
The following hold.

(a) Uniformly integrable martingales converge a.s.
(b) Square integrable martingales converge a.s.
(c) Positive martingales converge a.s.
(d) Submartingales bounded from above (negative) converge a.s.
(e) Supermartingales bounded from below (positive) converge a.s.

The expectation E[M(t) ] may or may not converge to the expectation of the limit E[Y ].
In fact, the above holds if and only if M(t) is uniformly integrable.
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Theorem 6.3.4
If M(t) is a uniformly integrable martingale, then it converges to a random variable Y
a.s. and in L1. Conversely, if M(t) is a martingale that converges in L1 to a random
variable Y , then M(t) is uniformly integrable and converges a.s. to Y . In any case,

M(t) = E [ Y | Ft ] .

The following example illustrates the theorem above.

Example 6.3.5 (Exponential Martingale of Brownian Motion)
Consider M(t) := eB(t)−t/2. We have shown that M(t), t ∈ R+ is a martingale. Since it is
positive, it converges a.s. to some limit Y . By the law of large numbers, B(t)/t converges
a.s. to zero. Thus it must be that

M(t) = et(
B(t)/t−1/2) a.s.−−→ 0 = Y

as t → 0. This is only possible if M(t) is not uniformly integrable, as E[Y ] = 0 6= 1 =
E[M(t) ].

Example 6.3.6
Let f(s) be deterministic such that

∫∞
0
f 2 < ∞. We show that M(t) :=

∫ t

0
f(s)dB(s)

is a uniformly integrable martingale, and find a representation for the closing random
variable.

Consider
Y :=

∫ ∞

0

f(s)dB(s).

Since supt E[M2(t) ] < ∞ by the isometry property and assumption, M(t) is uniformly
integrable and converges a.s. to some limit Y . Convergence also holds in L1 since the
mean is also zero. It follows that Y must be the closing variable. Indeed, from the
martingale property of Brownian motion,

E [ Y | Ft ] = E
[ ∫ ∞

0

f(s)dB(s)

∣∣∣∣ Ft

]
=

∫ t

0

f(s)dB(s) + 0

=M(t).
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Example 6.3.7
Let f, Y be as in the previous example. Then consider the bounded positive martingale

N(t) := E [ 1 { Y > 0 } | Ft ]

= P { Y > 0 | Ft }

= P
{ ∫ ∞

t

f(s)dB(s) +

∫ t

0

f(s)dB(s) > 0

∣∣∣∣ Ft

}

= Φ

 ∫ t

0
f(s)dB(s)√∫∞
t
f 2(d)ds

 .

The last equality is due to the normality of the Itô integral for a deterministic function.
In particular, the conditioning makes reduces the randomness to the integral on [0,∞).

By taking f(s) := 1[0,T ](s), we obtain that

Φ

(
B(t)√
T − t

)
is a positive bounded martingale on [0, T ].

6.4 Optional Stopping

Recall that a random time τ is a stopping time if for any t > 0, the sets { τ ≤ t } ∈ Ft. In
this section, we consider results on stopping martingales at random times.

Theorem 6.4.1 (Basic Stopping Equation)
Let M(t) be a martingale and τ a stopping time. The stopped process M(τ ∧ t) is also
a {Ft }-martingale. Moreover,

E [M(τ ∧ t) ] = E [M(0) ] .

We refer the equation of expectations in the theorem above as the basic stopping equation.

Note that the process M(τ ∧ t) is also an {Fτ∧t }-martingale.

Example 6.4.2 (Exit Time of Brownian Motion)
For a Brownian motion B(t), let

τ := inf { t : B(t) = a, b } .

By the basic stopping equation,

E [B(t ∧ τ) ] = B(0) = x.
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Since |B(t ∧ τ)| ≤ max(|a|, |b|), dominated convergence applies and by taking t→∞, we
observe that E[B(τ) ] = x. However, B(τ) only takes on values a, b, say with probability
1− p, p. From these equations we deduce that

p =
x− a
b− a

.

In the example above, we have E[M(τ) ] = E[M(0) ]. However, it is unrealistic to expect this
to hold for all stopping times. We now give some sufficient conditions for optional stopping
to hold.

Theorem 6.4.3 (Optional Stopping)
Let M(t) be a martingale and τ a stopping time such that any of the below hold.

(i) τ is a bounded stopping time, say τ ≤ K <∞.
(ii) M(t) is uniformly integrable.

Then E[M(τ) ] = E[M(0) ].

Interpreting the result above in the context of gambling, there is no loss or gain on average
when betting on a martingale, even if a clever stopping rule is used, provided optional
stopping holds.

A similar result holds for finite stopping times.

Theorem 6.4.4
Let M(t) be a martingale and τ a finite stopping time. If E[ |M(τ)| ] <∞ and

lim
t→∞

E [M(t)1 { τ > t } ] = 0,

then E[M(τ) ] = E[M(0) ].

Proof
Write

M(τ ∧ t) =M(t)1 { τ > t }+M(τ)1 { τ ≤ t } .

By the basic stopping equation, E[M(τ ∧ t) ] = E[M(0) ]. It follows that

E[M(0) ] = E[M(τ ∧ t) ]
= E [M(t)1 { τ > t } ] + E [M(τ)1 { τ ≤ t } ]
→ 0 + E [M(τ) ] . t→∞

The limit is justified by dominated convergence since

|M(τ)|1 { τ ≤ t } ≤ |M(τ)|. 2
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Recall that for a moment generating function GX(u) of a random variable X,

GX(0) =

∫
R
e0·xdPX(x) = P {X ∈ R } .

Example 6.4.5 (Hitting Time of Brownian Motion)
We derive the Laplace transform of hitting times, which also shows that they are finite.
For a Brownian motion starting at 0, consider

Tb := inf { t ≥ 0 : B(t) = b }

for some b > 0.

The exponential martingale Mu(t) of Brownian motion stopped at Tb is also a martingale.
Hence for u > 0, the basic stopping equation yields

E [Mu(t ∧ Tb) ] = E
[
exp

(
uB(t ∧ Tb)− (t ∧ Tb)

u2

2

) ]
= 1.

Now, |Mu(t∧τ)| is bounded above by eub. Assume for now that Tb
a.s.
< ∞. Then dominated

convergence applies and
E
[
eub−Tbu

2/2
]
= 1.

Setting u←
√
2u and rearranging yields the Laplace transform

ψ(u) := E
[
e−uTb

]
= e−b

√
2u.

It remains to show the finiteness of Tb, which turns out to be no easier than computing
ψ(u) itself. Indeed, it suffices to compute limu↓0 ψ(u). We have

1

= E [Mu(t ∧ Tb) ]

= E
[
eub−Tbu

2/21 { Tb ≤ t }
]
+ E

[
euB(t)−tu2/21 { Tb > t }

]
→ E

[
eub−Tbu

2/21 { Tb <∞}
]
+ 0 t→∞

= E
[
eub−Tbu

2/2
]

E
[
eub−Tbu

2/21 { Tb =∞}
]
= 0

It follows that E[ e−Tbu
2/2 ] = e−ub and taking the limit as u ↓ 0 concludes the proof.

Note that we have previously considered the distribution of Tb.
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Theorem 6.4.6
Let X(t), t ≥ 0 be such that for any bounded stopping time τ , X(τ) is integrable and
E[X(τ) ] = E[X(0) ]. Then X(t), r ≥ 0 is a martingale.

Proof
The proof consists of applying the assumption with appropriate stopping times. Firstly,
X(t) is integrable since τ = t is a stopping time. Without loss of generality, suppose that
X(0) = 0. In order to check the martingale property, it suffices to show for any s < t and
B ∈ Fs,

E [X(t)1B ] = E [X(s)1B ] .

Consider the stopping time
τ := s1B + t1Bc .

We have by assumption that

E [X(τ) ] = E [X(s)1B ] + E [X(t)1Bc ] .

But E [X(τ) ] = 0 so
E [X(s)1B ] = −E [X(t)1Bc ] .

The RHS is the same for all s ≤ t, so the desired property holds. 2

The following result is sometimes known as the optional sampling theorem.

Theorem 6.4.7 (Optional Sampling)
Let M(t) be a uniformly integrable martingale and τ1 ≤ τ2 ≤ ∞ be two stopping
times. Then

E [M(τ2) | Fτ1 ]
a.s.
= M(τ1).

6.4.1 Discrete Time Martingales

A useful application of optional stopping is discrete time martingales such as ones arising
from a random walk.

Consider the classic example of Gambler’s ruin. You and an opponent begin with x, b dollars
respectively and flip a coin each round. The game is zero sum and you win $1 if the coin
yields heads and lose the same amount on tails. Let Sn denote the amount of money after
the n-th round. Then Sn is a random walk.

Consider the first case of the fair coin. Then Sn is a martingale. Let τ be the time when the
game stops, ie either Sn = 0, x+ b. Let u denote the probability Sτ = 0. Assuming optional
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stopping holds, we would have
E [ Sτ ] = S0 = x.

It follows that
x = (x+ b)(1− u) + 0 · u ⇐⇒ u =

b

x+ b
.

We now justify the application of optional stopping. Sn is a martingale and τ is a stopping
time. Thus the stopped process Sn∧τ is also a martingale. It is non-negative and bounded
above by x+ b, hence Sn∧τ is a uniformly integrable martingale. Thus it has an L1 (and a.s.)
limit Y = Sτ with E[ |Y | ] = x <∞. If τ

a.s.
< ∞, then we also satisfy the condition

E [M(t)1 { τ > t } ]→ 0

since M(t) is bounded in the event τ > t.

It remains now only to check that τ is finite. We know that S2
n − n is a martingale, and so

is S2
n∧τ − n ∧ τ . By the basic stopping equation,

E
[
S2
n∧τ
]
= E [ n ∧ τ ] + E

[
S2
0

]
.

By dominated convergence, the LHS has a finite limit Y 2. But then E [ n ∧ τ ] ≥ nP { τ > n }
must also have a finite limit. This implies that P { τ > n } → 0 and P { τ <∞} = 1.

Note that the standard proof of finiteness of τ is done using the theory of Markov chains, ie
recurrence states in a random walk.

In the case when the random walk is biased, ie walks left with probability p and right with
probability q for some p 6= q. In this case, the exponential martingale of the random walk
Mn = (q/p)Sn is used. Stopping this martingale, we obtain the ruin probability

(q/p)b+x − (q/p)x

(q/p)b+x − 1
.

Justification of the equation E [Mτ ] =M0 is similar to the previous case.

Proposition 6.4.8
Let M(t) be a discrete time martingale and τ a stopping time such that E[ |M(τ)| ] <∞.
The following hold.

1. If E[ τ ] <∞ and |M(t+1)−M(t)| ≤ K for some constant K > 0, then E[M(τ) ] =
E[M(0) ].

2. If E[ τ ] < ∞ and E[ |M(t+ 1)−M(t)| | Ft ] ≤ K for some K > 0, then
E[M(τ) ] = E[M(0) ].
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Proof
We show the first statement. By assumption,

M(t) =M(0) +
t−1∑
i=0

M(i+ 1)−M(i)

≤ |M(0)|+
t−1∑
i=0

|M(i+ 1)−M(i)|

≤ |M(0)|+Kt.

For simplicity, assume that M(0) is deterministic. Then

E [M(t)1 { τ > t } ]
≤ |M(0)|P { τ > t }+KtP { τ > t }
≤ |M(0)|P { τ > t }+KE [ τ1 { τ > t } ]
→ 0. t→∞

The limit is justified by dominated convergence. Thus the condition of optional stopping
is satisfied and the result follows.

The second statement can be proved similarly. 2

6.5 Localization & Local Martingales

As we know, Itô integrals
∫ t

0
X(s)dB(s) are martingales under the condition that E[

∫ t

0
X2(s)ds ] <

∞. In general, stochastic integrals with respect to martingales are only local martingales.
This invites the introduction of local martingales.

A property of a stochastic process X(t) is said to hold locally if there is a sequence of stopping
times τn, called a localization sequence, such that τn

a.s.

↑ ∞ as n → ∞, and for each n, the
stopped process X(t ∧ τn) has this property.

Example 6.5.1 (Locally Uniformly Integrable)
Recall that a martingale which converges in L1 is uniformly integrable. Let M(t) be any
martingale and consider the localization sequence τn := n. Then M(t ∧ τn)

1−→ M(n) as
t→∞ and so the uniform integrability property holds for all martingales locally.

local martingales are defined by localizing the martingale property.
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Definition 6.5.2 (Local martingale)
An adapted proces M(t) is a local martingale if there is a localization sequence τn
such that M(t ∧ τn) is a uniformly integrable martingale in t for every n ≥ 1.

Any martingale is a local martingale. However, the converse does not hold in general.

Example 6.5.3 (Itô Integrals)
Consider

M(t) :=

∫ t

0

eB
2(s)dB(s), t >

1

4
.

Here B(t) is a one-dimensional Brownian motion with B(0) = 0. Define

τn := inf
{
t > 0 : eB

2(t) = n
}
.

Then for t ≤ τn, the integrand is bounded above by n and M(t∧τn) is a martingale in t for
any n. Moreover, it converges in L1 to the constant n which implies uniform integrability.
Finally, τn

a.s.

↑ ∞ since B2(t)
a.s.

↑ ∞ and so M(t) is a local martingale.

To see that M(t) is not a martingale, note that for t > 1/4, E[ e2B2(t) ] =∞ so M(t) cannot
be a martingale.

Remark 6.5.4 It is not sufficient for a local martingale to be integrable if order to be a true
martingale. For instance, positive local martingales are integrable, but in general they are
not martingales and only supermartingales. Even uniformly integrable local martingales may
not be martingales. However, if a local martingale is dominated by an integrable random
variable, then it is a martingale.

Theorem 6.5.5
Let M(t), t ∈ R+ be a local martingale such that |M(t)| ≤ Y for some E[Y ] < ∞.
Then M is a uniformly integrable martingale.

Proof
To see that M(t) is a martingale, fix a localization sequence τn. Then for any n and s < t,

E [M(t ∧ τn) | Fs ] =M(s ∧ τn).

M is certainly integrable, since E[ |M(t)| ] ≤ E[Y ] < ∞. By dominated convergence of
conditional expectations, we have

lim
n→∞

E [M(t ∧ τn) | Fs ] = E [M(t) | Fs ] .

Thus the martingale property holds by considering the local martingale property and
taking limits in n.
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To see uniform integrability, recall that if a martingale is dominated by an integrable
random variable, then it is uniformly integrable. 2

Corollary 6.5.6
Let M(t), t ∈ R+ be a local martingale such that for all t,

E
[
sup
s≤t
|M(s)|

]
<∞.

Then M(t) is a martingale and as such, is uniformly integrable on any finite interval
[0, T ]. If in addition,

E
[
sup
t≥0
|M(t)|

]
<∞,

then M(t) is uniformly integrable on R+.

Positive local martingales occur in financial applications.

Theorem 6.5.7
A non-negative local martingale M(t), t ∈ [0, T ] is a supermartingale.

Proof
Let τn be a localization sequence. Then since M(t ∧ τn) ≥ 0, Fatou’s lemma states that

E
[
lim inf
n→∞

M(t ∧ τn)
]
≤ lim inf

n→∞
E [M(t ∧ τn) ] .

Since the limit exists by the definition of a localization sequence, we have

E [M(t) ] = E
[
lim inf
n→∞

M(t ∧ τn)
]

≤ lim inf
n→∞

E [M(t ∧ τn) ]

= lim inf
n→∞

E [M(0 ∧ τn) ]

= E [M(0) ] .

Thus M(t) is integrable.

To see the supermartingale property, we follows similar steps. By Fatou’s lemma for
conditional expectations,

E
[
lim inf
n→∞

M(t ∧ τn)
∣∣∣ Fs

]
≤ lim inf

n→∞
E [M(t ∧ τn) | Fs ]

= lim inf
n→∞

M(s ∧ τn)

and we obtain
E [M(t) | Fs ]

a.s.

≤ M(s). 2
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From the theorem above and elementary martingale theory, we obtain the following result.

Theorem 6.5.8
A non-negative local martingale M(t), t ∈ [0, T ] is a martingale if and only if

E [M(T ) ] =M(0).

6.5.1 Dirichlet Class (D)

For a general local martingale, a necessary and sufficient condition to be a uniformly inte-
grable martingale is described in terms of the property of Dirichlet class (D). This class of
processes also arises in other areas of calculus and is given in the following section.

Definition 6.5.9 (Dirichlet Class)
A process X is of Dirichlet class (D) if the family

{X(τ) : τ is a finite stopping time }

is uniformly integrable.

Any uniformly integrable martingale M is of class (D). Indeed, any such martingale is closed
by some Y =M(∞) and M(τ) = E[Y | Fτ ]. Thus the family is indeed uniformly integrable.
The converse can be shown using localization, leading to the following result.

Theorem 6.5.10
A local martingale M is a uniformly integrable martingale if and only if it is of class
(D).

Proof
Suppose M is a local martingale of class (D). Then there is a localization sequence τn.
such that M(t ∧ τn) is uniformly integrable martingale in t. For any s < t,

M(s ∧ τn) = E [M(t ∧ τn) | Fs ] .

Since τn → ∞, M(s ∧ τn)
a.s.−−→ M(s). By construction, s ∧ τn is a finite stoppping time.

Since M is in (D), the sequence of random variables

{M(s ∧ τn) }n

is uniformly integrable. It follows that M(s∧ τn)
1−→M(s). But then by the properties of
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conditional expectation,

E [ |E [M(t ∧ τn) | Fs ]− E [M(t) | Fs ]| ]
= E [ |E [M(t ∧ τn) ]− E [M(t) | Fs ]| ]
≤ E [ E [ |M(t ∧ τn)−M(t)| | Fs ] ]

= E [ |M(t ∧ τn)−M(t)| ]
→ 0 n→∞

The martingale property thus follows by considering the local martingale property and
taking limits in n.

To see the uniform integrability property, apply the definition of (D) with all deterministic
stopping times n.

We have already shown the converse, concluding the proof. 2

6.6 Quadratic Variation of Martingales

Recall the quadratic variation of a process X(t) is defined as a limit in probability

[X,X](t) := lim
n∑

i=1

[X(tni )−X(tni−1)]
2

where the limit is taken over shrinking partitions.

Recall that if M(t) is a martingale and f(M(t)) is integrable for some convex function f ,
then f(M(t)) is a submartingale. In particular, M2(t) is a submartingale so its mean is
non-decreasing. By compensating M2(t) by some non-decreasing process, it is possible to
make it into a martingale. It turns out that the quadratic variation process of M is precisely
the compensating process. It can be shown that quadratic variation of martingales always
exist and is characterized by the above property.

Theorem 6.6.1
Let M(t) be a martingale with finite seconds moments for all t. Then its quadratic
variation process [M,M ](t) exists. Moreover, M2(t)− [M,M ](t) is a martingale.

Proof (Sketch)
First we observe that

E [M(t)M(s) ] = E [ E [M(t)M(s) | Fs ] ]

= E [M(s)E [M(t) | Fs ] ]

= E
[
M2(s)

]
.
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Using this property, we obtain the equality

E
[
(M(t)−M(s))2

]
= E

[
M2(t)

]
− E

[
M2(s)

]
.

This enables us to write

E
[
M2(t)−M2(s)

∣∣ Fs

]
= E

[
(M(t)−M(s))2

∣∣ Fs

]
= E

[
n−1∑
i=0

(M(ti+1)−M(ti))
2

∣∣∣∣∣ Fs

]
,

where { ti } is a partition of [s, t]. Taking the limit over shrinking partitions, it is possible
to show that

E
[
M2(t)−M2(s)

∣∣ Fs

]
= E [ [M,M ](t)− [M,M ](s) | Fs ] .

Rearranging yields the martingale property of M2(t)− [M,M ](t). 2

Recall local martingales are locally square integrable. Thus the following result follows.

Theorem 6.6.2
If M(t) is a local maritngale, then [M,M ](t) exists. Moreover, M2(t)− [M,M ](t) is
a local martingale.

Remark 6.6.3 As part of the proof, we showed that

E
[
(M(t)−M(0))2

]
= E

[
M2(t)

]
− E

[
M2(0)

]
.

Recall that E [M2(t) ] ≥ E [M2(0) ] Thus M2 cannot be a martingale on [0, t] unless M(t) =
M(0), ie M is constant on [0, t].

Theorem 6.6.4
Let M be a martingale with M(0) = 0. Then [M,M ](t) = 0 if and only if M(s)

a.s.
= 0

for all s ≤ t. The result also holds for local martingales.

The proof follows by the fact that the quadratic variation compensates the submartingale
M2(t). It also follows that M, [M,M ] have the same intervals of constancy. Remarkably,
we can now show that a non-constant continuous martingale has infinite vriation on any
interval.

Theorem 6.6.5
Let M be a continuous local martingale and fix t. If M(t) is not identically equal to
M(0), then M has infinite variation over [0, t].
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Proof
M(t)−M(0) is a martingale, takes on zero at t = 0, and with value at time t that is not
identically zero. By the previous theorem, M has positive quadratic variation on [0, t]. By
then a continuous process of finite variation on [0, t] has zero quadratic over this interval.
It follows that M must have infinite variation over [0, t]. 2

Corollary 6.6.6
If a continuous local martingale has finite variation over an interval, then it must be a
constant over that interval.

Remark 6.6.7 Note that there are martingales with finite variation, but by the previous
result, they cannot be continuous. An example of such a martingale is the Poisson process
martingale N(t)− t.

6.7 Martingale Inequalities

Let M(t) be a martingale or local martingale on the [0, T ] or R+.

Theorem 6.7.1
If M(t) is a martingale or positive submartingale, then for p ≥ 1,

P
{
sup
s≤t
|M(s)| ≥ a

}
≤ a−p sup

s≤t
E [ |M(s)|p ] .

If p > 1,

E
[
sup
s≤t
|M(s)|p

]
≤
(

p

p− 1

)p

E [ |M(t)|p ] .

The case of p = 2 is known as Doob’s inequality for martingales:

E
[
sup
s≤T

M2(s)

]
≤ 4E

[
M2(T )

]
.

Consequently, if for some p > 1,

sup
t≤T

E [ |M(t)|p ] <∞,

then M(t) is uniformly integrable.
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Theorem 6.7.2
If M(t) is a locally square integrable martingale with M(0) = 0,

P
{
sup
t≤T
|M(t)| > a

}
≤ a−2E [ [M,M ](T ) ] .

Theorem 6.7.3 (Davis Inequality)
There are constants c > 0 and C <∞ such that for any local martingale M(t) where
M(0) = 0,

cE
[ √

[M,M ](T )
]
≤ E

[
sup
t≤T
|M(t)|

]
≤ CE

[ √
[M,M ](T )

]
.

Theorem 6.7.4 (Burkholder-Gundy Inequality)
Suppose 1 ≤ p < ∞. There are constants cp, Cp depending only on p, such that for
any local martingale M(t) where M(0) = 0,

cpE
[
[M,M ]

p/2(T )
]
≤ E

[ (
sup
t≤T
|M(t)|

)p ]
≤ CpE

[
[M,M ]

p/2(T )
]
.

Moreover, if M(t) is continuous, then the result also holds for 0 < p < 1.

The above inequalities also hold when T is a stopping time. Proofs of these inequalities
involve concepts of stochastic calculus for general processes. We use these inequalities to
give sufficient conditions for a local martingale to be a true martingale.

Theorem 6.7.5
Let M(t) be a local martingale where M(0) = 0.

(a) If E[
√

[M,M ](t) ] <∞ for all t. Then M(t) is a uniformly integrable martingale
on [0, T ] for any finite T .

(b) If E[ [M,M ](t) ] <∞ for all t, then M(t) is a martingale where

E
[
M2(t)

]
= E [ [M,M ](t) ] <∞.

(c) If supt<∞ E[ [M,M ](t) ] <∞, then M(t) is a square integrable martingale.
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Proof
(a) By Davis’ inequality, supt≤T |M(t)| is an integrable random variable since

E
[
sup
t≤T
|M(t)|

]
≤ CE

[ √
[M,M ](T )

]
<∞.

Thus M(t) is dominated by an integrabl random variable on any finite time interval. We
have see that this implies it is a uniformly integrable martingale.

(b) The condition that E[ [M,M ](t) ] <∞ implies the previous condition E
[ √

[M,M ](t)
]
<

∞. This is because for X ≥ 0,

E [X ] ≥
(
E
[√

X
])2

,

as Var[
√
X] ≥ 0.

Alternatively, an application of the Burkholder-Gundy inequality for p = 2 shows that
M(t) is square integrable for each t. We have previously seen that if M(t) is a martingale
with E[M2(t) ] <∞, then M2(t)− [M,M ](t) is a martingale. In particular, for any finite
t,

E
[
M2(t)

]
= E [ [M,M ](t) ]

as desired.

(c) Notice that both sides of the equation above is non-decreasing and as such have a
limit. But then by assumption,

sup
t

E
[
M2(t)

]
= sup

t
E [ [M,M ](t) ] <∞

and so M(t) is a square integrable martingale by definition. 2

6.7.1 Application to Itô Integrals

Let X(t) =
∫ t

0
H(s)dB(s). Being an Itô integral, X is a local martingale and its quadratic

variation is given by

[X,X](t) =

∫ t

0

H2(s)ds.

The Burkholder-Gundy inequality with p = 2 yields

E
[
sup
t≤T

X2(t)

]
≤ CE [ [X,X](T ) ] = E

[ ∫ T

0

H2(s)ds

]
.

145



©Fel
ix

Zh
ou

If E[
∫ T

0
H2(s)ds ] <∞, then X(t) is a square integrable martingale. Thus from the previous

theorem, we recover the fact that

E
[
X2(t)

]
= E

[ ∫ t

0

H2(s)ds

]
.

The Davis inequality further gives

E
[
sup
t≤T

∣∣∣∣∫ t

0

H(s)dB(s)

∣∣∣∣ ] ≤ CE

√∫ T

0

H2(s)ds

 .
Thus the condition

E

√∫ T

0

H2(s)ds

 <∞
is a sufficient condition for the Itô integral to be a martingale and in particular, have zero
mean. Note that this condition does not however assure second moments exist.

6.8 Continuous Martingales - Change of Time

It can be shown that Brownian motion is the basic continuous martingale from which all
continuous martingales can be constructed in one of two ways. The first way is through
stochastic integration which we will soon see. This section explores the second way: a
random change of time.

6.8.1 Lévy’s Characterization of Brownian Motion

Theorem 6.8.1 (Lévy)
A process M with M(0) = 0 is a Brownian motion if and only if it is a continuous
local martingale with quadratic variation [M,M ](t) = t.

Proof (Sketch)
If M is a Brownian motion, then the statement holds.

Suppose now that M is a continuous local martingale with M(0) = 0 and [M,M ](t) = t.
It follows that [uM, uM ](t) = u2t. Using the general theory of stochastic exponential
martingales, it can be shown that

U(t) := euM(t)−u2t/2 = euM(t)−[uM,uM ](t)/2
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is a martingale. It follows that

E
[
euM(t)−u2t/2

∣∣∣ Fs

]
= euM(s)−u2s/2

E
[
eu[M(t)−M(s)]

∣∣ Fs

]
= e

u2(t−s)/2.

Taking expectation of the above yields

E
[
eu[M(t)−M(s)]

]
= e

u2(t−s)/2.

This is the moment generating function of a normal distribution with mean zero and
variance t− s. To see independent increments, we compute

E
[
eu[M(t)−M(s)]evM(s)

]
= E

[
E
[
eu[M(t)−M(s)]evM(s)

∣∣ Fs

] ]
= E

[
E
[
eu[M(t)−M(s)]

∣∣ Fs

]
evM(s)

]
= E

[
e
u2(t−s)/2+vM(s)

]
= E

[
eu[M(t)−M(s)]

]
E
[
evM(s)

]
.

But then the moment generating function of the product is merely the product of moment
generating functions, implying the independence of increments. 2

Example 6.8.2 (Tanaka’s SDE)
Any weak solution of Tanaka’s SDE

dX(t) = sign(X(t))dB(t), X(0) = 0

is a Brownian motion. Indeed, X(t) =
∫ t

0
sign(X(s))dB(s) is an Itô integral and thus a

(local) martingale. It is continuous and its quadratic variation is given by

[X,X](t) =

∫ t

0

sign2(X(s))ds = t.

Thus is is a Brownian motion.

6.8.2 Change of Time for Martingales

The main result below states that a continuous martingale M is a Brownian motion with a
change of time, where time is measured by the quadratic variation [M,M ](t). Namely, there
is a Brownian motion B(t) such that M(t) = B([M,M ](t)). This B(t) is constructed from
M(t): Define

τt := inf { s : [M,M ](s) > t } .

Note that if [M,M ](t) is strictly increasing, then τt is its inverse.
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Theorem 6.8.3 (Dambis-Dubins-Schwarz)
Let M(t),M(0) = 0 be a continuous martingale such that [M,M ](t) ↑ ∞ and

τt := inf { s : [M,M ](s) > t } .

Then the process B(t) := M(τt) is a Brownian motion with respect to the filtration
Fτt . Moreover, [M,M ](t) is a stopping time with respect to this filtration and the
martingale M can be obtained from the Brownian motion B by the change of time
M(t) = B([M,M ](t)).
This result also holds when M is a continuous local martingale.

Proof (Sketch)
Let M(t) be a local martingale. Then each τt is a finite stopping time since [M,M ](t) ↑ ∞.
Thus each Fτt is well-defined.

Note that
{ [M,M ](s) ≤ t } = { τt ≥ s } .

This implies that [M,M ](t) are stopping times for Fτt .

Since [M,M ](s) is continuous, we must have [M,M ](τt) = t. We claim that X(t) :=
M(τt) is a continuous local martingale. Indeed, the map t 7→ τt can only have jump
discontinuities when [M,M ](t) takes on constant values over an interval. However, we
have shown that M, [M,M ] has the same intervals of constancy so that the composition
t 7→M(τt) is continuous. The local martingale property can also be verified.

By the characterizing property of quadratic variation of (local) martingales, ie X2(t) −
[X,X](t) is a local martingale, we obtain

E
[
X2(t)

]
= E [ [X,X](t) ] = E [ [M,M ](τt) ] = t.

Hence X is a Brownian motion by Lévy’s characterization theorem.

The converse can be proven using the observation that

X([M,M ](t)) =M(τ[M,M ](t)) =M(t).

This once again relies on M, [M,M ] having the same intervals of constancy. 2

Example 6.8.4
Let M(t) =

∫ t

0
f(s)dB(s), with f continuous and deterministic. Then M is a Gaussian

martingale and its quadratic variation is given by

[M,M ](t) =

∫ t

0

f 2(s)ds.
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For example with f(s) = s, we have M(t) =
∫ t

0
sdB(s) and

[M,M ](t) =

∫ t

0

s2ds =
t3

3
.

for this particular example, [M,M ](t) is deterministic and increasing, therefore yielding
a an inverse

τt = (3t)
1/3.

Let

X(t) :=M(τt) =

∫ 3√3t

0

sdB(s).

It is clear that X(t) is continuous as it is a composition of continuous functions. It is also
a martingale with quadratic variation τ3t/3 = t. Hence by Lévy’s theorem, it is indeed a
Brownian motion. The previous theorem also guarantees that

M(t) = X(t3/3).

Example 6.8.5
If

M(t) =

∫ t

0

H(s)dB(s)

is an Itô integral, then it is a local martingale with quadratic variation

[M,M ](t) =

∫ t

0

H2(s)ds.

If
∫∞
0
H2(s)ds =∞, then

M(t) = B̂

(∫ t

0

H2(s)ds

)
,

where B̂(t) is a Brownian motion that can be recovered from M(t) with an appropriate
change of time.

Example 6.8.6 (Brownian Bridge)
The solution for Brownian bridge can be written as

X(t) = a

(
1− t

T

)
+ b

t

T
+ (T − t)

∫ t

0

1

T − s
dB(s).

Let Y (t) be the result of the Itô integral term. Since for any t < T , Y is a continuous
martingale with quadratic variation

[Y, Y ](t) =

∫ t

0

1

(T − s)2
ds =

t

T (T − t)
,
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it follows by the DDS theorem that

Y (t) = B̂

(
t

T (T − t)

)
for some Brownian motion B̂. Therefore the SDE above has the following representation:

X(t) = a

(
1− t

T

)
+ b

t

T
+ (T − t)B̂

(
t

T (T − t)

)
for t ∈ [0, T ].

In this representation, t = T is allowed and understood by continuity since the limit of
tB(1/t)→ 0 as t→ 0 by the law of large numbers of Brownian motion.

6.8.3 Change of Time in SDEs

We use the DDS theorem for constructing weak solutions of some SDEs. Let

X(t) =

∫ t

0

√
f ′(s)dB(s)

where f(t), f(0) = 0 is an adapted, positive, increasing, and differentiable process. X(t) is a
local martingale with quadratic variation

[X,X](t) =

∫ t

0

f ′(s)ds = f(t).

Thus τt = f−1(t), the inverse of f , and according to the DDS theorem, the processX(f−1(t)) =:
B̂(t) is a Brownian motion with respect to Fτt and X(t) = B̂(f(t)). This is summarize in
the following result.

Theorem 6.8.7
Let f(t) be an adapted, positive, increasing, differentiable process, and consider

dX(t) =
√
f ′(t)dB(t).

Then the process X(f−1(t)) =: B̂(f(t)) is a weak solution.

We can express the conclusion of the theorem above as

dB̂(f(t)) =
√
f ′(t)dB(t).

In the case of non-random change of time in Brownian motion B(f(t)), it can be directly ver-
ified that M(t) = B(f(t)) is a martingale with respect to the filtration Ff(t). The quadratic
variation of B(f(t)) is

[M,M ](t) = [B(f), B(f)](t) = f(t)
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and can be calculated directly.

Example 6.8.8 (Ornstein-Uhlenbeck)
Let

f(t) :=
σ2(e2αt − 1)

2α
.

The process B(σ2e2αt−1/2α) is a weak solution to the SDE

dX(t) = σeαtdB(t).

Next we construct a weak solution to SDEs of the form

dX(t) = σ(X(t))dB(t)

for some σ(x) > 0 such that

G(t) :=

∫ t

0

1

σ2(B(s))
ds

is finite for any t ≥ 0 but G(t) a.s.−−→ ∞ as t → ∞. Then G(t) is adapted, continuous, and
strictly increasing to G(∞) :=∞. Thus it has an inverse

τt := G−1(t).

Note that for each fixed t, τt is a stopping time as it is the first time the process G(s) hits
t. Moroever, τt is increasing.

Theorem 6.8.9
Let σ(x) > 0 be such that

G(t) :=

∫ t

0

1

σ2(B(s))
ds

is finite for any t ≥ 0 but G(t) a.s.−−→∞ as t→∞. Define

τt := G−1(t).

The process X(t) := B(τt) is a weak solution to the SDE

dX(t) = σ(X(t))dB(t).

Proof
We have

X(t) = B(τt) = B(G−1(t)).

By the previous theorem with f = G−1,

dB(G−1(t)) =
√
(G−1)′(t)dB̂(t)
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for some Brownian motion B̂(t).

By the inverse function theorem,

(G−1)′(t) =
1

G′(G−1(t))

=

(
1

σ−2(B(G−1(t)))

)−1

= σ2(B(τt)).

It follows that
dX(t) = dB(τt) = σ(B(τt))dB̂(t) = σ(X(t))dB̂(t)

as desired. 2

An application of the DDS theorem yields a result on the uniqueness of the solution. This
result is weaker than that of Engelbert-Schmidt.

Theorem 6.8.10
Let σ(x) ≥ δ for some fixed δ > 0. Then the SDE

dX(t) = σ(X(t))dB(t)

has a unique weak solution.

Proof (Sketch)
Let X(t) be such a weak solution. Then X(t) is a local martingale and there is a Brownian
motion β(t) such that X(t) = β([X,X](t)). Now,

[X,X](t) =

∫ t

0

σ2(X(s))ds =

∫ t

0

σ2(β([X,X](s)))ds.

Thus [X,X](t) is a solution to the ODE

da(t) = σ2(β(a(t)))dt.

It can be shown that the solution to this ODE is unique, the solution to the SDE in
question is also unique. 2

Let us now consider a more general change of time for diffusion-type SDEs.
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Theorem 6.8.11
Consider the following SDE

dX(t) = µ(X(t))dt+ σ(X(t))dB(t).

Let g(x) be a positive function for which

G(t) :=

∫ t

0

g(X(s))ds

is finite for all t ≥ 0 but G(t) a.s.−−→∞ as t→∞. Furthermore, define

τt := G−1(t).

Let X(t) be a weak solution to the SDE above and define

Y (t) := X(τt).

Then Y (t) is a weak solution to the SDE

dY (t) =
µ(Y (t))

g(Y (t))
dt+

σ(Y (t))√
g(Y (t))

dB(t), Y (0) = X(0).

Example 6.8.12 (Lamperti’s Change of Time)
Let X(t) satisfy Feller’s branching diffusion SDE

dX(t) = µX(t)dt+ σ
√
X(t)dB(t), X(0) = x > 0.

Here µ, σ > 0 are some positive constants. Lamperti’s change of time is given by

G(t) =

∫ t

0

X(s)ds,

so with g(x) = x as the identity function. Then Y (t) := X(τt) satisfies the SDE

dY (t) =
µY (t)

Y (t)
dt+

σ
√
Y (t)√
Y (t)

dB(t)

= µdt+ σ.dB(t) Y (0) = x

It follows that
Y (t) = x+ µt+ σB(t).

Thus with a random change of time, the branching diffusion is a Brownina motion with
drift. Note the other direction is also true: A banching diffusion can be obtained from a
Brownian motion with drift.
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We have now seen two main methods for solving SDEs: change of variables (Itô’s formula)
and change of time. There is another method known as the change of measure.
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Part III

Applications
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