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Introduction

1.1 Set Theory

Axiom 1.1.1 (Axiom of Choice)
Let F be a non-empty collection of non-empty sets

F = {Aλ : λ ∈ Λ}

where ∅ 6= Λ, Aλ.
There is a function

f : Λ →
⋃
λ∈Λ

Aλ

such that
f(λ) ∈ Aλ

for each λ ∈ Λ.

Definition 1.1.1 (Partial Order)
Let S be a set. A relation ≤ on S is a partial order if

(i) x ≤ x for all x ∈ S (reflexive)
(ii) x ≤ y, y ≤ x =⇒ x = y for all x, y ∈ S (anti-symmetry)
(iii) x ≤ y, y ≤ z =⇒ x ≤ z (transitive)

Definition 1.1.2 (Total Order)
A partial order such that for all x, y ∈ S either x ≤ y or y ≤ x.
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Definition 1.1.3 (Well-Ordered)
A poset (S,≤) is well-ordered if every non-empty subset has a ”smallest” element.
This means for ∅ 6= T ⊆ S, there is some x ∈ T such that

y ∈ T =⇒ x ≤ y

Theorem 1.1.1 (Well-Ordering Principle)
A consequence of the Axiom of Choice is that every set can be well-ordered.

Let (S,≤) be a poset.

Definition 1.1.4 (Upper Bound)
An upper bound for T ⊆ S is some s ∈ S such that s ≥ t for all t ∈ T .

Definition 1.1.5 (Maximal)
An element s ∈ S is maximal if whenever x ∈ S, x ≥ s then x = s.

Remark that maximal elements are not necessarily unique due to the fact that S is only
partially ordered.

Definition 1.1.6 (Chain)
A chain is a totally ordered subset of S.

Lemma 1.1.2 (Zorn’s Lemma)
Let (S,≤) be a non-empty poset in which every chain has an upper bound. Then S
has a maximal element.

Theorem 1.1.3
TFAE:

1. The Axiom of Choice
2. Zorn’s Lemma
3. The Well-Ordering Principle

Theorem 1.1.4
Every vector space has a basis.

10
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Proof
Let V be a vector space and let

S := {I ⊆ V : I is linearly independent}

Let C be an arbitrary chain in S. If we show that C has an upper bound with respect to
inclusion, then by Zorn’s Lemma, S has a maximal element.

Define Y :=
⋃

W∈C W . Clearly W ⊆ Y for all W ∈ C, so it suffices to show that Y ∈ S.

We claim Y is linearly independent. Let x1, . . . , xn ∈ Y and suppose there are αi such
that

∑n
i=1 αixi = 0. For every xi, there is some xi ∈ Wi ∈ C and thus by finiteness, once

such Wi is maximal. Call it W ∗.

We have Wi ⊆ W ∗ for all i ∈ [n]. But then xi ∈ W ∗ for all i ∈ [n] and αi = 0 for all
i ∈ [n] as desired since W ∗ is linearly independent.

Let M be a maximal element of S. We claim that M is a spanning set. Suppose there
is some x ∈ V \ spanM . However M ∪ {x} is then a larger linearly independent set
containing M , contradicting the maximality of M .

So M is a linearly independent spanning set and therefore a basis.

1.2 Riemann Integral

Recall the definition of the Riemann integral.

Definition 1.2.1 (Riemann Sum)
Let F : [a, b] → R be bounded. Moreover, let P : a = x0 < x1 < · · · < xn = b be a
partition of [a, b].
The upper and lower Riemann sums are:

U(f, P ) :=
n∑

i=1

sup f

∣∣∣∣
[xi−1,xi]

(xi − xi−1)

L(f, P ) :=
n∑

i=1

inf f

∣∣∣∣
[xi−1,xi]

(xi − xi−1)

Definition 1.2.2 (Refinement)
We say the partition Q is a refinement of P if Q contains P .

11
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Proposition 1.2.1
If Q is a refinement of P , then

U(f,Q) ≤ U(f, P ) ∧ L(f, P ) ≤ L(f,Q)

Proposition 1.2.2
Every upper sum for a fixed f dominates every lower sum.

Proof
If P1, P2 are any two partitions of [a, b] and Q is their common refinement.

U(f, P1) ≥ U(f,Q) ≥ L(f,Q) ≥ L(f, P2)

Definition 1.2.3 (Riemann Integrable)
If

inf{U(f, P ) : P is a partition} = inf{L(f, P ) : P is a partition}

we say f is Riemann integrable over [a, b] and write

R−
∫ b

a

f := inf
P
U(f, P ) = sup

P
L(f, P )

We will write R−
∫ b

a
f to emphasize that this is the Riemann integral.

The nice thing about Riemann integratioh is that a lot of important functions are integrable.
Namely, the continuous ones. In fact, even functions which have countably many discon-
tinuities are Riemann integrable. This includes the increasing functions as they only have
jump discontinuities and those are necessarily countable since each jump contains one unique
rational number.

Definition 1.2.4 (Characteristic Function)
Let A ⊆ X. The characteristic function of A is χA : X → {0, 1} given by

χA(x) :=

{
1, x ∈ A

0, x /∈ A

One limit of the Riemann integral is that the characteristic function of rationals is not
integrable. Another issue is that it performs poorly under limits. In other words, it is NOT
always true that if R−

∫ b

a
fn exists and fn → f pointwise, then R−

∫ b

a
f even exists.

12
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Idea of Lebesgue Integration

Lebesgue’s idea is to partition the range of the function.

Say ran f = [A,B]. Let A = y1 < · · · < yn = B and define Ei := f−1(yi−1, yi]. If the
partition is ”fine” enough we would roughly get

f ∼
∑
i

yiχEi

and so we can define the Lebesgue integral of f over its domain to be

lim
∑
i

yi”length” of Ei

13
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Part II

Lebesgue Integration
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Measure

2.1 Idea Properties

A key element of Lebesgue’s integral is an extension of the notion of interval lengths to much
more general sets. Ideally, we want

m : P(R) → [0,∞]

such that

1. m(∅) = 0

2. If I is an interval with endpoints a, b, then m(I) = b− a

3. If {En}n≥1 are disjoint, then m
⋃

n≥1En =
∑

n≥1mEn (σ-additivity)
4. If E ⊆ R, then mE = m(E + y) for all y ∈ R (translation invariance)

Notice that the properties above imply monotonicity. In otherwords, for A ⊆ B ⊆ R

m(B) = m(A) +m(B \ A) ≥ m(A)

2.1.1 Proof of Unattainability

Define a relation on R where x ∼ y if x− y ∈ Q.

Lemma 2.1.1
∼ is an equivalence relation.
Moreoever, each equivalence class [x] ∈ R/ ∼ is a translate of Q and hence is dence
in R.

17
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Theorem 2.1.2
No function m : P(R) → [0,∞] with the desired properties exist.

Proof
Suppose otherwise, and let m be such a function.

Consider R/ ∼ and use the axiom of choice to pick a representative of each equivalence
class in

[
0, 1

2

]
. Let E denote this collection of real numbers.

Remark that if x1, x2 are distinct rational numbers, E + x1, E + x2 are disjoint by the
definition of ∼.

By σ-additivity and translation invariance

m

(⋃
x∈Q

E + x

)
=
∑
x∈Q

m(E + x) =
∑
x∈Q

mE ∈ {0,∞}

Clearly, m(E) = 0 if and only if the sum is 0.

Now, let y be an arbitrary real number, so y ∼ e for some e ∈ E. It follows that y−e ∈ Q
and hence y = e+ x for some x ∈ Q. This shows that y ∈

⋃
x∈QE + x = R.

Therefore, the sum diverges and mE > 0. Enumerate Q∩
[
0, 1

2

]
= {ri}i≥1. Again, appying

σ-additivity and using mE > 0 gives

m

(⋃
i≥1

E + ri

)
=
∑
i≥1

m(E + ri) =
∑
i≥1

mE = ∞

But E ⊆
[
0, 1

2

]
! So monotonicty gives us

m

(⋃
i≥1

E + ri

)
≤ m[0, 1] = 1

By contradiction, m cannot exist.

2.1.2 A Compromise?

Which property are we willing to give up to obtain such a function m?

The only two properties which make some sort of sense would be σ-additivity and the choice
that m is defined for all subsets.

18
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As it turns out, even giving up countable but not finite additivity does not give the desired
function m. Thus, we will only work with nice subsets of R where a function with all the
desired properties exist.

2.2 Outer Lebesgue Measure

We will construct a function which relaxes the sigma additivity property and restrict it to
suitable subsets of R.

Denote by `(I) for the length of an interval `.

Definition 2.2.1 (Outer Lebesgue Measure)
Let A ⊆ R. Let C(A) := {{In}n≥1 : A ⊆

⋃
In, In is an open interval} be the set of

open interval covers of A.
Define

m∗(A) := inf

{
∞∑
n=1

`(In) : {In}n≥1 ∈ C(A)

}

Proposition 2.2.1
1. m∗∅ = 0,m∗{x} = 0

2. monotonicity
3. translation invariance

Proposition 2.2.2
m∗I = `(I) for all intervals I.

Proposition 2.2.3 (σ-sub-additivity)
For all Ak ∈ R we have

m∗

(
∞⋃
i=1

Ak

)
≤

∞∑
k=1

m∗A

Notice that we do not require the Ak’s to be disjoint.

Proof
Any union of covers of all Ak’s would cover their union.

The sum of lengths would then be at most the outer measures of all Ak’s.

19
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Corollary 2.2.3.1
If A = {xn}n≥1 is a countable set then

m∗(A) ≤
∑
n≥1

m∗{xn} = 0

Corollary 2.2.3.2
For any A ⊆ R, ε > 0 there is an open set O ⊇ A such that

m∗(O) ≤ m∗A+ ε

Proof
Pick an interval cover infinitely close to the outer measure of A in length. Take the union
of these intervals to be O.

2.3 Lebesgue Measure

The final step to obtain the Lebesgue measure is to restrict m∗ to a suitable class of subsets
of R.

Definition 2.3.1 (Lebesgue Measurable)
A ⊆ R is Lebesgue Measurable if for every E ⊆ R

m∗E = m∗(E ∩ A) +m∗(E ∩ Ac)

This is known as the Carathéodory definition of Lebesgue measurability. Notice that by
σ-sub-additivity

m∗(E) ≤ m∗(E ∩ A) +m∗(E ∩ Ac)

so to satisfy the definition above we only need to check the ≥ case.

Example 2.3.1
The following are Lebesgue measurable

1. R,∅
2. A ⊆ R,m∗A = 0

3. A ⊆ R such that Ac is Lebesgue measurable

Proposition 2.3.2
(a,∞) is Lebesgue measurable.

20
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Proof
Fix E ⊆ R. Let ε > 0 and choose an open interval cover {In} such that∑

n≥1

`(In) ≤ m∗(E) + ε

Define I+n := In ∩ (a,∞), I−n := In ∩ (−∞, a]. Notice that I+n , I−n are either intervals or
empty.

By the additivity of length

`(In) = `(I+n ) + `(I−n ) = m∗(I+n ) +m∗(I−n )

Since E ∩ (a,∞) ⊆
⋃

n≥1 In ∩ (a,∞) =
⋃

n≥1 I
+
n , monotonicity and σ-sub-additivity gives

m∗(E ∩ (a,∞)) ≤ m∗

(⋃
n≥1

I+n

)
≤
∑
n≥1

m∗(I+n )

Similarly, we get
m∗(E ∩ (−∞, a]) ≤

∑
n≥1

m∗(I−n )

Combining both results

m∗(E ∩ (a,∞)) +m∗(E ∩ (−∞, a]) ≤
∑
n≥1

m∗(I+n ) +m∗(I−n )

=
∑
n≥1

`(In)

≤ m∗E + ε

Since ε was arbitrary, this gives the desired inequality and concludes the proof.
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2.3.1 Measurable Sets

Definition 2.3.2 (σ-algebra)
Ω ∈ P(R) is a σ-algebra if

(i) ∅ ∈ Ω

(ii) {An}n≥1, An ∈ Ω then
⋃

n≥1An ∈ Ω (closed under countable union)
(iii) A ∈ Ω then Ac ∈ Ω (closed under complements)

As an immediate corollary of the definition, any intersection of σ-algebras is again a σ-
algebra.

Definition 2.3.3 (Borel σ-Algebra)
The intersection of all σ-algebras containing the open sets in R.

We say an element of the Borel σ-algebra is a Borel set.

Since any open set in R is the countable union of open intervals (take the largest interval
containing each rational element of the open set), we can also say that the Borel σ-algebra
is the smallest σ-algebra “generated” by the open sets (intervals).

Observe that we can “simply” the generator even further to sets of the form (a,∞). The
intersection operation can be expression using unions and complements. So any interval can
be form using the combination of unions and complements of {(a,∞) : a ∈ R}.

Theorem 2.3.3 (Carathéodory Extension)
The set of Lebesgue Measurable sets M, is a σ-algebra containing the Borel sets and
all sets of outter Lebesgue measure zero.
Moreoever, if An ∈ M are disjoint, then

m∗

(⋃
n≥1

An

)
=
∑
n≥1

m∗An

so m∗ is σ-additive on M.

Proof
We have already shown that the sets of outer measure 0 are measurable. The fact that M
contains the Borel sets comes for free once we prove M is a σ-algebra as we have alreay
shown that intervals of the form (a,∞) are Lebesgue Measurable.

We have already shown R and therefore ∅ is in M.
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We have also shown that M is closed under complementation.

It remains to check for closedness under countable unions.

Closedness under finite union We first show the result for finite unions by induction. It
suffices to show the case for A,B ∈ M arbitrary, then A ∪ B ∈ M . Choose X ⊆ R be
arbitrary. We have

m∗X = m∗(X ∩ A) +m∗(X ∩ Ac)

by definition. Since B ∈ M
m∗(X ∩ Ac) = m∗((X ∩ Ac) ∩B) +m∗((X ∩ Ac) ∩Bc)

σ-subadditivity then gives
m∗X = [m∗(X ∩ A) +m∗((X ∩ Ac) ∩B)] +m∗((X ∩ Ac) ∩Bc)

≥ m∗(X ∩ (A ∪B)) +m∗(X ∩ (A ∪B)c)

which is exactly the inequality desired.

Finite additivity of m∗ on M We now argue for finite disjoint Ei’s, m∗(X ∩ ∪̇N
n=1En) =∑N

n=1m
∗(X ∩ En). Again, we show the case only for A,B ∈ M disjoint since induction

solves the rest. Pick X ⊆ R arbitrarily so by definition
m∗(X ∩ (A ∪B)) = m∗(X ∩ (A ∪B) ∩B) +m∗(X ∩ (A ∪B) ∩Bc)

= m∗(X ∩B) +m∗(X ∩ A)

Closed under countable unions Now, for any countable {En} ⊆ M, we write HN :=⋃N
i=1En. Furthermore, define F1 := H1 and Fn := Hn \ Hn−1 for n ≥ 2. So each

HN = ∪̇N
n=1Fn disjoint.

Since we have shown M to be closed under finite union and complements, Fn ∈ M for
each n ≥ 1.

Remark that E =
⋃

n≥1En =
⋃

n≥1Hn =
⋃̇

n≥1Fn. Pick X ⊆ R.

m∗X = m∗(X ∩HN) +m∗(X ∩Hc
N)

= m∗(X ∩ (∪̇N
n=1Fn)) +m∗(X ∩Hc

N)

≥ m∗(X ∩ ∪̇N
n=1Fn) +m∗(X ∩ Ec) X ∩ Ec ⊆ X ∩Hc

N

=
N∑

n=1

m∗(X ∩ Fn) +m∗(X ∩ Ec)

Since m∗ is σ-sub-additive,
m∗(X ∩ E) = m∗(X ∩ ∪̇n≥1Fn)

≤
∑
n≥1

m∗(X ∩ Fn)
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Taking limits and combining the last two steps

m∗X ≥
∑
n≥1

m∗(X ∩ Fn) +m∗(X ∩ Ec)

≥ m∗(X ∩ E) +m∗(X ∩ Ec)

which shows us E ∈ M.

σ-additivity of m∗ on M Finally, we want to show that

m∗E =
∑
n≥1

m∗Fn

Simply let X = E in our work above

m∗E ≥
∑
n≥1

m∗(E ∩ Fn) +m∗(E ∩ Ec)

≥
∑
n≥1

m∗Fn

But the ≤ inequality comes directly from σ-sub-additivity so we have equality and con-
clude the proof. (We were lazy and did not specify an arbitrary set of collection of disjoint
Fi’s, but the Ei’s were arbitrary and that is enough)

2.3.2 Final Result

Definition 2.3.4 (Lebesgue Measure)
The function m : M → [0,∞] defined by

E 7→ m∗E

Example 2.3.4
The cantor set C is an uncountable set of Lebesgue measure zero.

Important Properties

The following properties of the Lebesgue measure and M are important.
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Proposition 2.3.5
1. mI = `(I) for all intervals I
2. translation invariance
3. σ-additivity for disjoint sets
4. σ-sub-additivity for all sets
5. finite additivity for disjoint sets
6. monotonicity
7. E ∈ M has measure zero if and only if for all ε > 0 there is an open interval cover

of arbitrarily small length
8. compact sets have finite measure

Proposition 2.3.6
E ∈ M, ε > 0 then there is an open set O such that

m∗(O \ E) < ε

Proof
If mE < ε, then simply get an open interval cover of length at most mE + ε. Then take
O to be the union of all such intervals.

If mE = ∞, decompose E =
⋃

n≥1E ∩ [−n, n] and apply step 1 for each n and ε
2n

(for
convergence).

Proposition 2.3.7 (Continuity of Measure)
If A1 ⊆ A2 ⊆ . . . ⊆

⋃
n≥1An =: A with An ∈ M, then A ∈ M with

mA = lim
n→∞

mAn

Proof
Split An’s into disjoint sets Bn and apply σ-additivity.

mAn =
n∑

i=1

mBi → mA

Proposition 2.3.8 (Downward Continuity of Measure)
If A1 ⊇ · · ·

⋂
n≥1An =: A with An ∈ M, and mAn <∞ for some n ≥ 1,

mA = lim
n→∞

mAn
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Proof
Let Bn := A1 \ An and apply the continuity of measure for B := A1 \ A.

mBn → mB =⇒ mA1 −mAn → mA1 −mA

Notice we use the fact that A1 has finite measure or else infinity minus infinity makes no
sense.

Lebesgue’s Criterion of Riemann Integrability

Theorem 2.3.9 (Lebesgue’s Criterion)
Let f : [a, b] → R be bounded. Then f is Riemann integrable over [a, b] if and only if

m{discontinuities of f} = 0
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Measurable Functions

3.1 Measurable Functions

Let X ⊆ R be a Lebesgue measurable set.

Definition 3.1.1 (Lebesgue Mesurable Function)
f : X → [−∞,+∞] is Lebesgue measurable if for every α ∈ R

{x ∈ X : f(x) < α} = f−1[∞, α)

is a Lebesgue measurable set.

Definition 3.1.2 (Lebesgue Measurable Function)
A complex-valued function f : X → C is Lebesgue measurable if both its real and
imaginary parts are Lebesgue measurable.

Notice that any continuous function is measurable since its pre-image of an open set is open.

Proposition 3.1.1
f−1[−∞, α) ∈ M for all α ∈ R if and only if

f−1(β,∞]

is measurable for all β ∈ R.

Proposition 3.1.2
If f is measurable, then f−1{∞} (and negative infinity) is a measurable set.
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Proposition 3.1.3
f = χE is measurable if and only if E ⊆ R is a measurable set.

Proof
f−1[−∞, α) ∈ {R, Ec,∅} depending on if α ∈ {(1,∞], (0, 1], [−∞, 0]}.

Definition 3.1.3 (Simple Function)
A function of the form

f =
N∑
i=1

aiχEi

for Ei ∈ R are measurable sets and ai ∈ R.

These are the function which take on finitely many real values. In the case the Ei’s are
intervals, the simple function is a step function.

Proposition 3.1.4
Every simple function is measurable.

3.2 Properties of Measurable Functions

Proposition 3.2.1
If f, g are real-valued, measurable functions with the same domain, then so are

f ± g, fg,
f

g

where the last one also requires g does not contain 0 in its range.

Proof
Observe that {x : (f + g)(x) < α} = {x : f(x) < α− g(x)}.

Moreoever, f(x) < α− g(x) if and only if there is some r ∈ Q with

f(x) < r < α− g(x)

Thus
{x : (f + g)(x) < α} =

⋃
r∈Q

{x : f(x) < r} ∩ {x : g(x) < α− r}

is the countable union of measurable sets and is therefore measurable.
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Similar, we can show f being measurable implies f 2 is measurable. The result for products
follow from the fact that

fg =
1

2

(
(f + g)2 − f 2 − g2

)
Finally, we can show if 0 /∈ ran g then 1

g
is measurable if and only if g is measurable. The

result for quotients follows from
f

g
= f · 1

g

Behavior Under Limits

Proposition 3.2.2
If {fn}n≥1 are measurable functions, then so are

sup
n
fn, inf

n
fn

If fn → f pointwise as n→ ∞, then f is measurable.

Proof
The set {x : supn fn > α} =

⋃
n≥1{x : fn > α} and is hence a countable union of

measurable sets.

Thus supn fn is a measurable function. The proof that infn fn is measurable is similar.

If fn → f , then

f = lim
n→∞

inf
k≥n

fk

= sup
n

(
inf
k≥n

fk

)
monotonically increasing sequence

and thus f is measurable.

The following theorem justifies using simple functions as the building blocks of the Lebesgue
integral.

Theorem 3.2.3
The positive, real-valued function f : R → [0,∞) is measurable if and only if there
are simple functions φn, n ≥ 1 such that

φn ≤ φn+1

and φn → f pointwise.
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Proof
( =⇒ ) Suppose f is measurable and we will see how to construct the functions φn.

For k = 0, 1, . . . , n2n − 1, let

En,k = f−1[k2−n, (k + 1)2−n)

= {x : k2−n ≤ f(x) < (k + 1)2−n}

These are all measurable sets. Moreoever, let En be the measurable set

En =
n2n−1⋃
k=0

En,k = f−1[0, n)

Put

φn(x) =

{
k2−n, x ∈ En,k

n, x /∈ En

=
n2n−1∑
k=0

k

2n
χEn,k

+ nχEc
n

The functions φn are simple and the choice of partitioning the range into subintervals of
width 2−n ensures the monotonicity.

It remains to check for point-wise convergence. Fix x and assume f(x) < N . Then x ∈ En

for all n ≥ N . So x ∈ En,k for some suitable choice of k.

The definitions ensure that

f(x) ∈ [k2−n, (k + 1)2−n), φn(x) = k2−n

and hence
|f(x)− φn(x)| < 2−n

for all n ≥ N which demonstrates pointwise convergence.

( ⇐= ) This direction is obvious as simple functions are measurable and pointwise limits
preserve measurability.
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3.3 Almost Everywhere

Definition 3.3.1
We say that f = g almost everywhere, and write f = h a.e. if

m{x : f(x) 6= g(x)} = 0

The idea is that two functions agree on all but a set which is “invisible” as far as the Lebesgue
measure is concerned. For example, χQ = 0 a.e.

Proposition 3.3.1
If f = 0 a.e., then f is measurable.
Moreoever f = g a.e. and f being measurable means g is measurable.

Proof
Remark that g = (g − f)− f where g − f = 0 a.e. so it suffices to show the first claim.

Let A be the subset of X with measure 0 where f 6= g. Since A is measurable

m(X \ A) = m(X)−m(X ∩ A) = m(X)

We claim

m
(
f−1[−∞, α)

)
= m

(
X \ f−1[α,∞]

)
=

{
0, α ≤ 0, X \ f−1[α,∞] ⊆ A

mX, α > 0,
(∗)

(∗) This is due to the fact that f−1[α,∞] ⊆ A and thus is measurable with measure 0.
Then

f−1[−∞, α) = X ∩ (R \ f−1[α,∞])

can be obtained from measurable sets and is thus measurable with

mX = m(f−1[−∞, α)) +m(f−1[α,∞])

= m(f−1[−∞, α))

as desired.
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The Lebesgue Integral

4.1 The Lebesgue Integral

Definition 4.1.1 (Standard Representation)
The unique expression of a simple function

N∑
k=1

akχEk

where the Ek’s are measurable, pairwise disjoint, and

N⋃
k=1

Ek = R

.

We will make the convention that
0 · ∞ = 0

so it is NOT and indeterminate.

Recall that for a step function

φ =
N∑
k=1

akχIk

where Ik are intervals and aj ∈ R

R−
∫ b

a

φ =
∑
k

ak`(Ik ∩ [a, b])
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This motivates the following definition.

Definition 4.1.2 (Lebesgue Integral)
Assume φ ≥ 0 is a simple function with standard representation

φ =
N∑
k=1

akχEk

The Lebesgue integral of φ over the measurable set E is∫
E

φ =
N∑
k=1

akm(Ek ∩ E)

Proposition 4.1.1
If φ also has a representation

φ =
M∑
j=1

bjχFj

with Fj’s measurable, then ∫
E

φ =
M∑
j=1

bjm(Fj ∩ E)

Proof
Remark that if A,B are not disjoint, we can write any αχA + βχB as

αχA\B + (α + β)χA∩B + βχB\A

with

αmA+ βmB = αm(A \B) + αm(A ∩B) + βm(B \ A) + βm(B ∩ A)
= αm(A \B) + (α + β)m(A ∩B) + βm(B \ A)

Thus it does not hurt to assume the Fj’s are disjoint.

Write

FM+1 := R \

(
M⋃
j=1

F

)
, bM+1 = 0

and notice φ =
∑M+1

j=1 bjχFj
.
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We have
M∑
j=1

bjm(E ∩ Fj) =
M+1∑
j=1

bjm(E ∩ Fj)

=
M+1∑
j=1

bj

N∑
k=1

m(E ∩ Fj ∩ Ek) σ-additivity

=
M+1∑
j=1

N∑
k=1

akm(E ∩ Fj ∩ Ek) φ

∣∣∣∣
Fj∩Ek

= ak = bj

=
N∑
k=1

akm(E ∩ Ek) σ-additivity

=

∫
E

φ

as desired.
Notice that the Riemann and Lebesgue integrals of step functions are identical.

Proposition 4.1.2
If φ = 0 a.e. then

∫
E
φ = 0 for any measurable set E.

Proof
Write

φ =
N∑
k=1

akχEk

for the standard representation.

Then ∫
E

=
N∑
k=1

akm(E ∩ Ek)

=
∑

k:mEk=0

akm(E ∩ Ek) +
∑

k:mEk>0

akm(E ∩ Ek)

=
∑

k:mEk=0

ak · 0 +
∑

k:mEk>0

0 ·m(E ∩ Ek)

= 0

In particular ∫
[a,b]

χQ = 0
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for any [a, b] ⊆ R.

Next, we define the Lebesgue integral of a non-negative measurable function.

Definition 4.1.3 (Lebesgue Integral)
Suppose f : E ⊆ R → [0,∞] is measurable and E is a measurable set. The Lebesgue
integral of f over E is∫

E

f := sup

{∫
E

φ : 0 ≤ φ ≤ f, φ is simple
}

This gives us two competing definitions for the Lebesgue integral of a positive simple function,
but it can be checked that they are equivalent.

Notice that if 0 ≤ f ≤ g are measurable functions, then

∫
E

f ≤
∫
E

g

as any φ ≤ f also satisfies φ ≤ g.

For f : E → R let

f+(x) = max(f, 0)

f−(x) = max(−f, 0)

Remark that

f = f+ − f−

Since we want the Lebesgue integral to be linear, we are forced to define

Definition 4.1.4 (Lebesgue Integral)
For measurable E and f : E → R, we let the Lesbesgue integral of f over E as∫

E

f =

∫
E

f+ −
∫
E

f−

(provided this is not a ∞−∞ form)

Remark that f being measurable implies f+, f− are both measurable, it follows that |f | =
f+ + f− is also measurable.
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Definition 4.1.5 (Integrable)
We say the measurable function f is integrable on E if∫

E

|f | <∞

Since f+, f− ≤ |f |, by the monotonicity of property of non-negative functions,
∫
E
f+,

∫
E
f−

are finite for any integrable function f and hence
∫
E
f is well-defined.

Definition 4.1.6 (Lebesgue Integral)
For f : E ⊆ R → C, we say f is integrable if both Re f, Im f are integrable functions
and define its Lebesgue integral over E to be∫

E

f =

∫
E

Re f + i

∫
E

Im f

4.2 Properties of the Lebesgue Integral

Proposition 4.2.1 (Monotonicity)
If 0 ≤ f ≤ g then ∫

E

f ≤
∫
E

g

So if |f | ≤M , then
∫
E
|f | ≤

∫
E
M =Mm(E).

Proposition 4.2.2
Assume f is measurable, non-negative or integrable, and E is a measurable set.∫

E

f =

∫
R
f · χE

This means there is no loss with assuming E = R and we can simply write
∫
f .

Proof
First observe that the measurability of E, f ensures fχE is measurable.
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Suppose f =
∑N

k=1 akχEk
. Then∫

E

f =
N∑
k=1

akm(Ek ∩ E)

=

∫
R

N∑
k=1

akχEk∩E

=

∫
R

(
N∑
k=1

akχEk

)
χE

=

∫
R
fχE

Observe it suffices to show the result for non-negative real-valued measurable functions
as the rest simply builds from this. Assume f : R → [0,∞] and φ is a simple function
with 0 ≤ φ ≤ f .

By inspection, φχE is a simple function with 0 ≤ φχE ≤ fχE. Thus∫
E

φ =

∫
R

φχE

≤ sup

{∫
R
ψ : 0 ≤ ψ ≤ fχE

}
=

∫
R
fχE definition

and thus ∫
E

f = sup

{∫
E

φ : 0 ≤ φ ≤ f

}
≤
∫
R
fχE

On the other hand, let ψ be a simple function with 0 ≤ ψ ≤ fχE. We also have 0 ≤ ψ ≤ f
and ψ = ψχE. Thus∫

R
ψ =

∫
R
ψχE

=

∫
E

ψ

≤ sup

{∫
E

φ : 0 ≤ φ ≤ f

}
=

∫
E

f definition

and ∫
R
fχE = sup

{∫
R
ψ : 0 ≤ ψ ≤ fχE

}
≤
∫
E

f
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We conclude
∫
R fχE =

∫
E
f and our proof by the initial remark.

Proposition 4.2.3
If m0 = 0, then

∫
E
f = 0.

Proof
The integral of any simple function is 0.

Proposition 4.2.4
For all α ∈ C ∫

αf = α

∫
f

Proof
It is true for α ≥ 0 by definition.

We can then iteratively show this for α = −1, α ∈ R, α = i, α ∈ C.

−f = −f+ + f−

if = − Im f + iRef

Proposition 4.2.5 (Triangle Inequality)
|
∫
f | ≤

∫
|f |.

Proof
Pick |α| = 1 such that ∣∣∣∣∫ f

∣∣∣∣ = α

∫
f
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Then ∣∣∣∣∫ f

∣∣∣∣ = ∫ αf

=

∫
Reαf + i

∫
Imαf

=

∫
Reαf components must match

≤
∫
|αf |

=

∫
|f |

Proposition 4.2.6
For all φ, ψ simple ∫

φ+ ψ =

∫
χ+

∫
ψ

Proof
Using the respective standard representations of φ, ψ, re-express them both using possibly
different scalars and the SAME finite set of characteristic functions.

The result follows by the fact that the integral does not depend on the choice of repre-
sentation.

Proposition 4.2.7 (Translation Invariance)∫
R f(x+ y)dx =

∫
R f(x)dx

Proof
First check that translation preserves measurability.

Then let φ =
∑N

k=1 akχEk
be any simple function. Using the translation invariance of the

Lebesgue measure ∫
R
φ(x+ y)dx =

N∑
k=1

akm(Ek − y)

=
N∑
k=1

akmEk

=

∫
R
φ

The results of non-negative, real-valued, complex-valued f then follow directly from this
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result.
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Convergence Theorems

5.1 Monotone Convergence Theorem

Recall one of the motivations for moving past the Riemann integral was that

lim
n→∞R

−
∫
fn = R−

∫
lim fn

does NOT hold in general.

Unfortunately, the equation above does not hold in general for Lebesgue integrals either.

Example 5.1.1
Let fn : [0, 1] → R be such that

fn(x) =

{
n, x ∈

(
0, 1

n

)
0, else

Then fn → 0 but ∫
[0,1]

fn = 1

for all n but ∫
[0,1]

lim fn = 0
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Lemma 5.1.2
Let φ ≥ 0 be a simple function and assume An, n ≥ 1 are measurable sets with
An ⊆ An+1 for each n. Put A =

⋃
n≥1An. Then

lim
n→∞

∫
An

φ =

∫
A

φ

Proof
Assume φ =

∑N
i=1 aiχEi

where the sets Ei are measurable. Then

∫
An

φ =
N∑
i=1

aim(Ei ∩ An)

For each i
Ei ∩ An ⊆ Ei ∩ An+1

and also ⋃
n≥1

(Ei ∩ An) = Ei ∩ A

By the continuity of measure

m(Ei ∩ An) → m(Ei ∩ A)

hence ∫
An

φ→
N∑
i=1

aim(Ei ∩ A)
∫
A

φ

This lemma is the special case of the Monotone Convergence theorem with

fn := φχAn , f = φχA

Theorem 5.1.3 (Monotone Convergence)
Suppose fn ≥ 0 are measurable and fn ≤ fn+1 for n ≥ 1. Moreoever, assume fn → f
pointwise. Then

lim
n→∞

∫
E

fn =

∫
E

lim
n→∞

fn =

∫
E

f

Remark that we allow the range of fn, f to contain ∞. The extra hypothesis here is that
the sequence fn converges up to f .
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Proof
Since each fn is measurable and f is the pointwise limit, f is also measurable.

By assumption, fn ≤ f for all n ≥ 1 and thus by monotonicity∫
E

fn ≤
∫
E

f

Since the sequence of integrals is also increasing, it must have a limit (allowing for ∞).
Hence

lim
n→∞

∫
E

fn ≤
∫
E

f

It remains to prove the other inequality. We will check that any simple function φ with
0 ≤ φ ≤ f we have ∫

E

φ ≤ lim
n→∞

∫
E

fn

and then appealing to the definition of the integral of a non-negative function.

Fix such a φ and take any α ∈ (0, 1). Let

An = {x ∈ E : fn(x) ≥ αφ(x)}
=
(
(fn − αφ)−1[0,∞]

)
∩ E

and remark it is a combination of measurable sets and thus measurable. Since fn ≤ fn+1,
we have An ⊆ An+1, n ≥ 1.

Suppose φ(x) 6= 0, then
αφ(x) < φ(x) ≤ f(x)

as α < 1. Since fn → f , we must have fn(x) ≥ αφ(x) eventually for all n ≥ Nx.

In any case x ∈
⋃

n≥1An. Since all An ⊆ E we have

E =
⋃
n≥1

An
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By monotonicity

α

∫
An

φ =

∫
An

αφ

≤
∫
An

fn choice of An

=

∫
fnχAn

≤
∫
fnχE monotonicity

=

∫
E

fn

≤ lim
n→∞

∫
E

fn monotonicity

Appealing to our lemma, we have

α

∫
E

φ = α lim
n→∞

∫
An

φ ≤ lim
n→∞

∫
E

fn

But
α

∫
E

f := sup
0≤φ≤f

α

∫
E

φ

thus
α

∫
E

f ≤ lim
n→∞

∫
E

fn

for all α < 1.

Letting α → 1 completes the proof.

We can actually weaken the conditions to that fn → f a.e. and the result still holds.

5.1.1 Consequences

Proposition 5.1.4
If f, g ≥ 0 are measurable, ∫

E

f + g =

∫
E

f +

∫
E

g

Proof
This holds for simple functions by our work prior. We have also seen that there are
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positive simple functions φn ↑ f, ψn ↑ g. Hence

φn + ψn ↑ f + g

Apply MCT to get ∫
E

f + g

= lim
n→∞

∫
φn + ψn

= lim
n→∞

(∫
E

φn +

∫
E

ψn

)
=

∫
E

f +

∫
E

g

Proposition 5.1.5
If f ≥ 0 and is measurable, then for any measurable set E∫

f =

∫
E

f +

∫
Ec

f

Proof
Use the previous proposition and∫

E

f =

∫
fχE,

∫
Ec

f =

∫
fχEc

Proposition 5.1.6
If f, g are integrable, then

∫
f + g =

∫
f +

∫
g.

Proof
First show that if f1, f2 ≥ 0 are integrable, and f = f1 − f2, then f is integrable with∫

f =

∫
f1 −

∫
f2

This allows us to split the complex case into the real case into the non-negative case and
apply our results from before.
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Example 5.1.7
For f ≥ 0 measurable ∫

[−n,n]

f →
∫
R
f

Fatou’s Lemma

Lemma 5.1.8 (Fatou)
For fn ≥ 0 measurable, we have∫

lim
n→∞

inf
k≥n

fk ≤ lim
n→∞

inf
k≥n

∫
fk

Proof
Let gn = infk≥n fn. Then gn is measurable and gn ≤ fk for all n ≤ k.

Thus
∫
gn ≤

∫
fk for all n ≤ k, implying∫

gn ≤ inf
k≥n

∫
fk

Moreoever, the sequence (gn)n≥1 is increasing in n. This means limn→∞ gn exists. Simi-
larly, the sequence

(
infk≥n

∫
fk
)
n≥1

is increasing in n and hence has a limit.

lim
n→∞

∫
gn ≤ lim

n→∞
inf
k≥n

∫
fk

Put
F (x) := lim

n→∞
inf
k≥n

fk(x)

Since gn ↑ F , then MCT gives

lim
n

∫
gn =

∫
F =

∫
lim
n→∞

inf
k≥n

fk

Example 5.1.9
Suppose fn → f pointwise, where fn are integrable with

∫
|fn| ≤ 1 for all n.
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By Fatou’s lema, ∫
|f | =

∫
lim
n→∞

inf
k≥n

|fk|

≤ lim
n→∞

inf
k≥n

∫
|fn|

≤ 1

so f is integrable.

5.2 Dominated Convergence Theorem

With Fatou’s lemma, we can prove another very important convergence theorem.

Theorem 5.2.1 (Dominated Convergence)
Suppose fn are measurable function with fn → f . Suppose there is an integrable
function g with

|fn(x)| ≤ g(x)

for all x and n.
Then ∫

f = lim
n→∞

∫
fn

In fact, ∫
|fn − f | → 0

The extra and critical hypothesis is the existence of the single function g which MUST be
integrable and dominates all the functions |fn|.

Proof
We will apply Fatou’s lemma to the sequence of functions

2g − |f − fn|

Since |fn| ≤ g we also have |f | ≤ g and thus

2g − |f − fn| ≥ 0
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It is clearly measurable thus∫
2g =

∫
lim
n

inf(2g − |f − fn|)

≤ lim
n

inf

∫
2g − |f − fn|

= lim
n

sup

∫
2g −

∫
|f − fn| linearity, previous corollary

=

∫
2g − lim

n
sup

∫
|f − fn| switch inf to sup due to sign

Since g is integrable, |
∫
2g| <∞, so we can subtract off

∫
2g from both sides to obtain

lim
n

sup

∫
|f − fn| ≤ 0

But then
0 ≤ lim

n
inf

∫
|f − fn| ≤ lim

n
sup

∫
|f − fn| ≤ 0

and we have equality throughout.

In particular
lim
n

∫
|fn − f | = 0

Since
∫
|fn(x)| ≤

∫
g(x) ≤ ∞, each fn is integrable so

∫
fn is well defined. Furthermore,

another application of Fatou’s lemma shows that∫
|f(x)| ≤ lim

n
inf

∫
|fn(x)|

≤
∫
g(x)

<∞

So also f is integrable and
∫
f is well defined. Finally, we note that∣∣∣∣∫ fn −

∫
f

∣∣∣∣ = ∣∣∣∣∫ fn − f

∣∣∣∣
≤
∫

|fn − f |

→ 0

thus ∫
fn →

∫
f
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5.3 Lebesgue & Riemann Integral

We have already observed the equivalence of the Lebesgue and Riemann integrals for step
function. We now see it for all cases.

Theorem 5.3.1
If f is Riemann integrable over [a, b], then f is Lebesgue integrable over [a, b] and
their Riemann and Lebesgue integrals coincide.

Proof
Recall that a Riemann integrable function is bounded |f | ≤ C and the measure of the set
of discontinuities is zero. Let E be the set discontinuities so

f = fχE + fχEc

The function fχE is measurable being equal to 0 a.e. The function is measurable being
continuous. Hence f is measurable.

Since ∫
[a,b]

|f | ≤
∫
[a,b]

C ≤ C(b− a)

f is Lebesgue integrable.

Take any partition of [a, b],

P : a = x0 < x1 < · · · < xn = b

and let

Mi = sup{f(x) : x ∈ [xi−1, xi]}
mi = inf{f(x) : x ∈ [xi−1, xi]}

Notice that the upper/lower Riemann sums are the Lebesgue integrals of related simple
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functions

U(f, P ) =
n∑

i=1

Mi(xi − xi−1)

=

∫
[a,b]

n∑
i=1

Miχ[xi−1,xi)

L(f, P ) =
n∑

i=1

mi(xi − xi−1)

=

∫
[a,b]

n∑
i=1

miχ[xi−1,xi)

We have
n∑

i=1

Miχ[xi−1,xi) ≥ f ≥
n∑

i=1

miχ[xi−1,xi)

and by the monotonicity of the Lebesgue integral∫
[a,b]

n∑
i=1

Miχ[xi−1,xi) ≥
∫
[a,b]

f ≥
∫
[a,b]

n∑
i=1

miχ[xi−1,xi)

Consequently, for all partitions P we have

U(f, P ) ≥
∫
[a,b]

f ≥ L(f, P )

By the definition of the Riemann integral

inf
P
U(f, P ) = sup

P
L(f, P ) = R−

∫ b

a

f

which gives

R−
∫ b

a

f =

∫
[a,b]

f

Our brand new shiny Lebesgue integral generalizes the Riemann integral. It follows that
any Lebesgue integrable function can be integrated using previous techniques given it is also
Riemann integrable. However, the Lebesgue integral can integrate a wider class of functions,
as well as having very useful limit theorems. These theorems can be applied to the Riemann
integral if all relevant functions are Riemann integrable.
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Lp Spaces

6.1 Definitions

Throughout, f will denote a measurable function defined on a measurable set E. Let 1 ≤
p <∞ and observe |f |p is measurable.

Definition 6.1.1
Define

‖f‖Lp(E) :=

(∫
E

|f |p
) 1

p

If E is clear we will write

‖f‖p

We want the above to be a norm. However, if ‖·‖p has any chance of being a norm, we need
it to be zero if and only if f = 0.

Define an equivalence relation ∼ on the set of mesurable functions defined on E

f ∼ g ⇐⇒ f − g = 0 a.e on E

Definition 6.1.2
Put

LP (E) := {equivalence classes of measurable functions f : E → C : ‖f‖Lp(E) <∞}
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Proposition 6.1.1
Lp(E) is a vector space.

Proof
Given α ∈ C, f, g ∈ Lp(E), we know αf + g is measurable with∫

|αf + g|p ≤
∫
(|αf |+ |g|)p ≤ 2p−1

∫
|α|p · |f |p + |g|p <∞

by the convexity of y = xp.

We will show that ‖·‖p is a norm on Lp(E) but the triangle inequality is quite involved.

Definition 6.1.3 (Essential Supremum)
Write

‖f‖L∞(E) := inf
A∈M:m(E\A)=0

{sup|f(x)| : x ∈ A}

Notice that if E = R

‖f‖L∞(R) = inf
m(Ac)=0

{sup|f(x)| : x ∈ A}

Observe that

‖f‖∞ ≤ sup
x∈E

|f(x)|

but the inequality can be strict.

The idea is to “forgive” what happens on a set of measure 0.

Proposition 6.1.2
If f = 0 a.e. then

‖f‖∞ = 0

Proposition 6.1.3
If f = g a.e. then

‖f‖∞ = ‖g‖∞

Proof
Let A := {x : f(x) = g(x)} so that m(E \ A) = 0.
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Pick B arbitrary such that m(E \B) = 0. But then

m(E \ (A ∩B)) = m(E ∩ (A ∩B)c)

= m(E ∩ (Ac ∪Bc))

= m((E ∩ Ac) ∪ (E ∩Bc))

= 0

Since A ∩B ⊆ B

sup
x∈A∩B

f(x) ≤ sup
x∈B

f(x)

inf
B∈M:m(E\B)=0

sup
x∈A∩B

f(x) ≤ inf
B∈M:m(E\B)=0

sup
x∈B

f(x)

=: ‖f‖∞

But since A ∩ B ∈ M and m(E \ (A ∩ B)) = 0, we are taking the infimum over a bigger
set in the essential norm and

‖f‖∞ ≤ inf
B∈M:m(E\B)=0

sup
x∈A∩B

f(x)

thus we have equality.

The same logic applies to g so

‖f‖∞ := inf
B∈M:m(E\B)=0

sup
x∈A∩B

f(x)

= inf
B∈M:m(E\B)=0

sup
x∈A∩B

g(x) f − g

∣∣∣∣
A

= 0

=: ‖g‖

as desired.

Proposition 6.1.4
If f is continuous on R, then

‖f‖∞ = sup
x
|f(x)|

Proposition 6.1.5
We have

‖f‖∞ = inf{α ∈ R : m|f |−1(α,∞] = 0}

Proof
The statement is trivial if mE = 0. We proceed assuming mE > 0.
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(≥) Suppose that m(E \ A) = 0 and supx∈A|f(x)| = α. Then

Bα := f−1(α,∞] ⊆ E \ A

so mBα = 0.

It follows that

inf{α ∈ R : m|f |−1(α,∞] = 0} ≤ inf
A∈M:m(E\A)=0

sup
x∈A

|f(x)| =: ‖f‖∞

(≤) Suppose now that for Cα := |f |−1[−∞, α] we have m(E \ Cα) = 0.

Then
sup
x∈Cα

|f(x)| ≤ α

It follows that

‖f‖∞ := inf
A∈M:m(E\A)=0

sup
x∈A

|f(x)| ≤ inf{α ∈ R : m|f |−1(α,∞] = 0}

Having shown both inequalities, we conclude equality.

Definition 6.1.4
Define

L∞(E) := {equivalence classes of measurable f : E → C : ‖f‖∞ <∞}

Definition 6.1.5 (Essentially Bounded)
f : E → C where it is bounded on all except a set of measure 0.

Proposition 6.1.6
‖f‖∞ = 0 implies f = 0 a.e.

Proof
By the previous proposition.
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Proposition 6.1.7
If mE <∞ and f ∈ L∞(E) then

‖f‖Lp(E) → ‖f‖L∞(E)

as p→ ∞.

6.2 Triangle Inequality

Our goal is to prove that ‖·‖p for 1 ≤ p ≤ ∞ satisfies the triangle inequality. Combined with
the positive-definite property given by the equivalence relation and the easy to see absolute
homogeneity, it would show Lp(E) is a normed vector space.

6.2.1 Hölder’s Inequality

Definition 6.2.1 (Conjugate Indices)
1 ≤ p, q ≤ ∞ such that

1

p
+

1

q
= 0

We understand that 1
∞ = 0.

Theorem 6.2.1 (Hölder’s Inequality)
Suppose p, q are conjugate indices. If f, g are measurable functions∫

|fg| ≤ ‖f‖p‖g‖q =
(∫

|f |p
) 1

p
(∫

|g|q
) 1

q

In particular, if f ∈ Lp and g ∈ Lq then

fg ∈ L1, ‖fg‖1 ≤ ‖f‖p‖g‖q

Observe that the case p = q = 2, Holder’s inequality gives the Cauchy Schwartz inequality.
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Proof
Case I: p = 1, q = ∞ Let A := {x : |g(x)| > ‖g‖∞}. Then mA = 0 and∫

|fg| =
∫
A

|fg|+
∫
Ac

|fg|

=

∫
Ac

|fg|

≤ ‖g‖∞
∫
Ac

|f |

≤ ‖g‖∞‖f‖1

Case I: 1 < p, q <∞ We first show that for all a, b ≥ 0

ab ≤ 1

p
ap +

1

q
bq

Observe the statement trivially holds if either a = 0 or b = 0. So assume otherwise.

To see this, choose s, t ∈ R such that

a = e
s
p , b = e

t
q

The convexity of the exponential gives

ab = exp

(
s

p

)
exp

(
t

q

)
= exp

(
1

p
s+

1

q
t

)
≤ 1

p
es +

1

q
et

=
1

p
ap +

1

q
bq

Now, if ‖f‖p = 0 or ‖g‖q = 0, then fg = 0 a.e. and the result is clear.

Similarly, if ‖f‖p = ∞ or ‖g‖q = ∞, the result is clear.

Assume otherwise.

We will apply our previous result with a = |f(x)|
‖f‖p and b = |g(s)|

‖g‖q . It follows that

|f ||g|
‖f‖p‖g‖q

≤ 1

p

(
|f |
‖f‖p

)p

+
1

q

(
|g|
‖g‖q

)q
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Since ‖f‖p, ‖g‖q are constants∫ (
|f |
‖f‖p

)p

=

∫ (
|g|
‖g‖q

)q

= 1

But then ∫
|f ||g|

‖f‖p‖g‖q
≤ 1

p
+

1

q
= 1

which gives the result.

Of course, if f ∈ Lp, g ∈ Lq the integral above is finite and thus

fg ∈ L1

as claimed.

Proposition 6.2.2
Pick p > 1.

(a) ‖f‖Lp[0,1] ≥ ‖f‖L1[0,1]

(b) Lp[0, 1] ⊂ L1[0, 1]

(c) replace [0, 1] with [a, b]

Theorem 6.2.3 (Riesz Representation)
Let 1 ≤ p <∞ and suppose q is the conjugate index. For any f ∈ Lp

‖f‖p = sup

{∣∣∣∣∫ fg

∣∣∣∣ : ‖f‖q ≤ 1

}

Proof
PMath 451.

6.2.2 Minkowski’s Inequality

This is the triangle inequality for Lp spaces and will allow us to show that ‖·‖p is indeed a
norm.
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Theorem 6.2.4 (Minkowski’s Inequality)
For f, g measurable

‖f + g‖p ≤ ‖f‖p + ‖g‖p
for all 1 ≤ p ≤ ∞.

Proof
Case I: p = ∞ Triangle inequality for the absolute value and the definition.

Case II: p = 1 Triangle inequality for the absolute value.

Case III: 1 < p <∞ Without loss of generality, f, g ∈ Lp or else the both sides of the
inequality is ∞ and the statement is trivial. Similarly, let us assume ‖f + g‖p > 0 or the
statement always holds.

Let q be the conjugate index of p and observe that

1 +
p

q
= p

p+ q = pq

p = q(p− 1)

Now, remark that

(‖f + g‖p)p =
∫
|f + g|p

=

∫
|f + g|p−1|f + g|

≤
∫
|f + g|p−1(|f |+ |g|)

By Hölder’s inequality ∫
|f + g|p−1|f | ≤ ‖|f + g|p−1‖q‖f‖p

Moreoever (
‖|f + g|p−1‖q

)q
=

∫
|f + g|(p−1)q definition

=

∫
|f + g|p (p− 1)q = p

= (‖f + g‖p)p

<∞ Lp is a vector space
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Taking q-th root on both sides gives

‖|f + g|p−1‖q ≤ (‖f + g‖p)
p
q

Substituting back into our result from Hölder’s inequality, we get∫
|f + g|p−1|f | ≤ ‖f + g‖

p
q
p ‖f‖p

and similarly ∫
|f + g|p−1|g| ≤ ‖f + g‖

p
q
p ‖g‖p

thus

‖f + g‖pp ≤ ‖f + g‖
p
q
p (‖f‖p + ‖g‖p)

‖f + g‖
p− p

q
p ≤ ‖f‖p + ‖g‖p

‖f + g‖p ≤ ‖f‖p + ‖g‖p p− p

q
= 1

as required.

Corollary 6.2.4.1
For 1 ≤ p ≤ ∞, Lp is a normed linear space and hence a metric space.

Proof
We have already seen that Lp is a linear (vector) space.

Minkowski’s inequality shows that ‖·‖p satisfies the triangle inequality. By taking equiv-
alence classes of function equal a.e. we obtain the absolute homogeneity. The scalar
multiplication property of norms is easily seen.

Lp is a metric space since every norm gives rise to a metric

d(f, g) = ‖f − g‖p

where f, g are any representative of their respective equivalence classes.

6.3 Completeness

Definition 6.3.1 (Banach Space)
A NLS which is complete with respect to the induced metric.
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6.3.1 Riesz-Fisher Theorem

Definition 6.3.2 (Uniformly Cauchy)
A sequence of functions fn : S → (X, d) from the set S to a metric space is uniformly
Cauchy if for all ε > 0 there is N0 ∈ N where

d(fn(x), fm(x)) < ε

for all x ∈ S and n,m ≥ N .

Proposition 6.3.1
A uniformly Cauchy sequence converges uniformly to a function S → (X, d).

Theorem 6.3.2 (Riesz-Fisher)
Lp is Banach space for all 1 ≤ p ≤ ∞.

Proof
Case I: p = ∞ For this choice of p, the proof relies upon properties of uniformly Cauchy
sequences.

Let (fn) be a Cauchy sequence in L∞ and for k, n,m ∈ N set

Ak := {x : |fk(x)| > ‖fk‖∞}
Bn,m := {x : |fn(x)− fm(x)| > ‖fn − fm‖∞}

and observe they are all sets of measure zero. Let E be their countable union, which again
has measure 0.

Thus the sequence (fn) is uniformly Cauchy on Ec.

sup
x∈Ec

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ → 0

as n,m→ ∞.

We know uniformly sequences of real or complex-valued functions always converge uni-
formly by the completeness of C,R. So there is some f defined on Ec such that

sup
x∈Ec

|fn(x)− f(x)| → 0

Define f(x) = 0 on E so that

‖fn − f‖∞ ≤ sup
x∈Ec

|fn(x)− f(x)| → 0
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as mE = 0.

This shows fn → f under the norm of L∞. To see that f ∈ L∞, pick N such that

sup
x∈Ec

|fN(x)− f(x)| ≤ 1

Since AN ⊆ E, the usual triangle inequality gives

sup
x∈Ec

|f(x)| ≤ sup
x∈Ec

(|fN(x)− f(x)|+ |fN(x)|)

≤ 1 + ‖fN‖∞

and as mE = 0, this suffices to show that

‖f‖∞ ≤ 1 + ‖fN‖∞ <∞

which gives f ∈ L∞.

Case I: p <∞ Let (fn) be a Cauchy sequence in Lp, meaning that for every ε > 0 there
is some N such that if n,m ≥ N

‖fn − fm‖ < ε

We will a subsequence (fnk
) converges, which suffices to show the claim as the original

Cauchy sequence necessarily converges to the same limit.

Choose a subsequence (fni
) such that

‖fni+1
− fni

‖ < 2−i

and set

gk :=
k∑

i=1

|fni+1
− fni

|

g :=
∞∑
i=1

|fni+1
− fni

|

The triangle inequality gives

‖gk‖p ≤
k∑

i=1

‖fni+1
− fni

‖p

≤
k∑

i=1

2i

≤ 1
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for all k.

Now, the sequence of non-negative functions gk increases to g. Thus for each p, gpk ↑ gp.
The monotone convergence theorem hence implies

‖g‖pp =
∫
gp

= lim
k

∫
gpk

= lim
k
‖gk‖pp

≤ 1

and g ∈ Lp.

Since ‖g‖p < ∞, g(x) < ∞ for almost every x, say for all except x ∈ A where mA = 0.
Thus for all x ∈ Ac

∞∑
i=1

|fni+1
(x)− fni

(x)|

is absolutely convergent and thus
∑∞

i=1 fni+1(x) − fni
(x) converges.

Define the function f on Ac as the pointwise limit

f(x) := lim
k

(
fn1(x) +

k∑
i=1

(fni+1
(x)− fni

(x))

)
= lim

k
fnk

(x)

For x ∈ A, we simply define f(x) = 0. The function f is measurable since f
∣∣
Ac is

measurable being the pointwise limit of measurable functions, and f
∣∣
A

is measurable
since this function equals 0 a.e.

Moreoever

|f(x)| ≤ |fn1(x)|+
∞∑
i=1

|fni+1
(x)− fni

(x)|

= |fn−1(x)|+ g(x)

and as both fn1 and g belong to Lp, so does f .

It remains to show that ‖fnk
− f‖p → 0. We have already seen that this is the case for

all x ∈ Ac. This means |fnk
− f | → 0 a.e. Also on Ac we have

|fnk
− f | ≤

∞∑
i=k

|fni+1
− fni

| ≤ g
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so |fnk
− f |p ≤ gp ∈ L1(Ac) since g ∈ Lp.

Appealing to the dominated convergence theorem, we have

lim
k

∫
Ac

|fnk
− f |p =

∫
Ac

lim
k
|fnk

− f |p

= 0

Since mA = 0, we deduce that ‖fnk
− f‖p → 0 as desired.

As any convergent sequence is Cauchy, we get the following corollary.

Corollary 6.3.2.1
If fn → f in Lp for 1 ≤ p <∞, there is a subsequence fnk

that converges to f pointwise
almost everywhere.

Proof
The proof of the theorem shows that there is a subseqeuence fnk

→ f ′ pointwise a.e. and
‖fnk

− f ′‖p → 0.

But
lim
k
‖fnk

− f‖p = lim
n
‖fn − f‖p = 0 = lim

k
‖fnk

− f ′‖p

so by the uniqueness of limits
f = f ′ = lim

k
fnk

almost everywhere.

65



©Fel
ix

Zh
ou

66



©Fel
ix

Zh
ouChapter 7

Lusin’s Theorem & Fubini’s Theorem

7.1 Lusin’s Theorem

We saw that L∞[a, b] ⊆ Lp[a, b] for all p <∞. We want to explore the relation of continuous
functions within Lp.

Specifically, we wish to formalize the second of Littlewood’s 3 principles.

1. Every measurable set is “nearly” a finite union of intervals
2. Every measurable function is “nearly” continuous
3. Every pointwise convergence sequence of measurable functions is “nearly” uniformly

convergent.

7.1.1 Egoroff’s Theorem

This is a formal version of the third principle.

Theorem 7.1.1 (Egoroff)
AssumemE <∞. Let (fn) be a sequence of measurable functions on E that converges
pointwise on E to the real-valued function f .
For each ε > 0, there is a closed set F ⊆ E for which

fn → f

uniformly on F and m(E \ F ) < ε.
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7.1.2 Lusin’s Theorem

Lemma 7.1.2
C[a, b] is not dense in L∞[a, b].

Proof
Consider the function

f(x) :=

{
−1, x ∈

[
a, a+b

2

]
1, x ∈

(
a+b
2
, b
]

We claim that if g = f a.e., then g is not continuous. To see this, suppose the opposite
holds. Let E be the set upon which f, g do not disagree. If E = ∅ there is nothing to
prove, so assume otherwise.

Write x0 := a+b
2

. For all k ≥ 1 both(
x0 −

1

k
, x0

)
,

(
x0, x0 +

1

k

)
6⊆ E

so there is some xk ∈
(
x0 − 1

k
, x0
)
, zk ∈

(
x0, x0 +

1
k

)
such that

g(xk) = f(xk) = −1, g(zk) = f(zk) = 1

Clearly xk, zk → x0 so by sequential continuity

−1 = lim g(xk) = g(limxk), 1 = lim g(zk) = g(lim zk)

which is a contradiction as g(lim zk) = g(x0) = 1 6= −1.

Thus the equivalence class in L∞ which contains f does not contain ANY continuous
functions!

Suppose there is some sequence fn → f where fn ∈ C[a, b]. Then fn is cauchy with respect
to the essential supremum, which by continuity means they are cauchy in the supremum
norm.

But C[a, b] under the supremum norm is continuous, which means fn converges to a
continuous function g. Since the supremum and essential supremum norm coincide on
continuous functions

‖fn − g‖L∞[a,b] = sup
x∈[a,b]

|fn(x)− g(x)| → 0

So fn → g under the supremum norm as well.

But limits in metric spaces are unique! Hence f = g a.e. This is a clear contradiction by
our initial remark.
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Proposition 7.1.3
C[a, b] is a closed subset of L∞[a, b].

Proof
All convergent sequence converge to continuous functions.

The following is a formal version of Littlewood’s first principle.

Lemma 7.1.4
Suppose mE < ∞. Then for every δ > 0, there is a finite union of open intervals U
such that

m(U \ E) +m(E \ U) < δ

Proof
Choose {In}n≥1 open intervals whose union contains E and for which∑

n

`(In) < mE +
δ

2
<∞

Thus
m
(⋃

In \ E
)
<
δ

2

Choose N such that
∞∑

n=N+1

`(In) <
δ

2

and put

U :=
N⋃

n=1

In

It is clear that
m(U \ E) ≤ m

(⋃
In \ E

)
<
δ

2

But
E \ U ⊆

⋃
n≥N+1

In

so
m(E \ U) ≤ δ

2

as well.

This suffices to prove the claim.
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Lemma 7.1.5
Let f : [a, b] → R be measurable. Fix ε > 0.
There is a continuous functions h such that

m{x ∈ [a, b] : |f(x)− h(x)| ≥ ε} < ε

Furthermore, if m ≤ f ≤M , then we can choose h with m ≤ h ≤M .

Proof
Step I: We argue there is N such that

m{x ∈ [a, b] : |f(x)| ≥ N} < ε

3

Indeed, for each n ∈ N, let

An := {x ∈ [a, b] : |f(x)| ≥ n}

The sets An are decreasing and

mA1 ≤ b− a <∞

Thus by the downward continuity of measure

0 = m∅ = m

(⋂
n

An

)
= lim

n
mAn

Step II: Now we show that for ε > 0 and N ∈ N, there is a simple function φ such that

|f(x)− φ(x)| < ε

assuming |f(x)| < N .

Furthermore, if m ≤ f ≤M , then we can choose φ with

m ≤ φ ≤M

To see this first pick k ∈ N with 1
k
< ε. Partition [−N,N) into subintervals of width 1

k
.

Call these
Ij := [aj, bj)

for j = 1, 2, . . . , 2Nk.
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Let
Ej := f−1(Ij) ∈ M

and define φ(x) = aj for a ∈ Ej. Then

|f(x)− φ(x)| ≤ 1

k
< ε

To see the second claim holds, we need only partition [m,M) instead of [−N,N).

Step III: We claim that given any simple function φ defined on [a, b], there is a step
function g on [a, b] such that

g(x) = φ(x)

except on a set of measure at most ε
3
. Again, if m ≤ φ ≤ M , we can choose g such that

m ≤ g ≤M .

Assume that φ has the standard representation

φ =
K∑
i=1

akχEk

where Ek ⊆ [a, b] are measurable sets. For each k, appeal to our previous lemma with Ek

and δ = ε
k
, to obtain sets Uk where each of which is a finite union of open intervals.

Put

g :=
K∑
k=1

akχUk

As the Uk’s are finite unions of intervals, g is a step function. By construction φ = g
except on

K⋃
i=1

(Uk \ Ek) ∪ (Ek \ Uk)

This shows the first claim. To see the second, notice the only issue may arise on sets
Uk \ Ek. Express

g =
L∑

`=1

α`χV`

in standard representation.

By construction α` can only exceed M or fail to exceed m if

V` ⊆
n⋃

k=1

Uk \ Ek
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But that set has measure at most ε
3
. So we can take

g′ :=
L∑
`

min(max(α`,m),M)χV`

without violating the result of the first statement while satisfying the second statement.

Step IV: Now we show that given any step function g and ε > 0, there is a continuous
function h such that g = h except on a set of measure at most ε

3
. Furthermore, if

m ≤ g ≤M , we can choose m ≤ h ≤M .

To see this express

g =
K∑
k=1

akχIk

where Ik’s are consecutive intervals which partition [a, b].

Suppose Ik has endpoints `k, rk, we ignore the endpoints purposely here.

Set δ = ε6K. Consider the function h. For each 1 < k < K let

h

∣∣∣∣
(`k+δ,rk−δ)

= ak

The exception is k = 1, K where we apply the same construction except on

[`1, `1 − δ), (`K + δ, `K ]

Then on (rk − δ, `k+1 + δ), let h be linear.

Clearly h is continuous. Moreoever, except on at most 2K sets each with measure δ = ε
6K

,
h = g.

This shows the claim.

Step V: Now we bring everything together.

Pick N as in step I. Then choose φ, g, h.

By construction g = h exception on the union of the sets

{x : φ(x) 6= g(x)}, {x : g(x) 6= h(x)}, {x : |f(x)| ≥ N}

where union of these sets have measure at most ε.
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Theorem 7.1.6 (Lusin)
The continuous functions are dense in Lp[a, b] for 1 ≤ p < ∞, but NOT dense in
L∞[a, b].

Proof
By our previous lemma, we need only show the density of C[a, b] in Lp[a, b] for p <∞.

Clearly |f | <∞ except on a set of measure zero. Thus by choosing a member of the same
equivalence class, we can assume f is complex-valued.

It suffices to approximate each of Re f, Im f , so without loss of generality, we assum
f : [a, b] → R.

Case I: f is bounded Say |f | ≤ N .

Pick ε > 0 and put

δ := min

(
ε

(2N)p
,

ε

b− a
, 1

)
Obtain a continuous function h as in our previous lemma with δ as the approximation
error. Let

A := {x : |f − h| ≥ δ}
so that

mA < δ.−N ≤ h ≤ N

Now consider ‖f − h‖p. We will write Ac = [a, b] \ A.∫
[a,b]

|f − h|p =
∫
A

|f − h|p +
∫
Ac

|f − h|p

≤
∫
A

(|f | − |h|)p + δp
∫
Ac

1

≤ (2N)pmA+ δp(b− a)

≤ δ((2N)p + b− a)

≤ 2ε

Case II: f is unbounded Put

fn(x) :=

{
f(x), |f(x)| ≤ n

0, else

Observe that fn → f a.e. and

|fn − f |p ≤ |f |p ∈ L1

73



©Fel
ix

Zh
ou

Hence by the dominated convergence theorem∫
|fn − f |p → 0

Choose N such that ‖fN − f‖p < ε. As fN ∈ Lp is bounded, the previous paragraphs
show there is a continuous function h such that

‖fN − h‖p < 2ε

Minkowski’s inequality gives

‖f − h‖p ≤ ‖f − fN‖p + ‖fN − h‖p < 2ε

Corollary 7.1.6.1
The polynomials are dense in Lp[0, 1] for 1 ≤ p <∞.

Proof
Approximate f ∈ Lp[0, 1] with a continuous functions g. Then apply the Stone-Weirstrauss
theorem to obtain a polynomial which approximates g.

The supremum norm upper bounds the essential supremum upper bounds the Lp[0, 1]
norm. An essential ingredient is that m[0, 1] = 1.

Proposition 7.1.7
Lp[0, 1] is separable for 1 ≤ p <∞, but not L∞[0, 1].

7.2 Fubini’s Theorem

Definition 7.2.1 (Borel Set)
A Borel set in R2 is any set in the σ-algebra of subset of R2 generated by the open
sets in R2.
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Theorem 7.2.1 (Fubini)
Suppose f : R2 → R and

f−1(U)

is a Borel set in R2 for all open sets U ⊆ R.
Assume that ∫

R

(∫
R
|f(x, y)|dx

)
dy <∞

Then ∫
R

(∫
R
f(x, y)dx

)
dy =

∫
R

(∫
R
f(x, y)dy

)
dx
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Part III

Fourier Analysis
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Hilbert Spaces

8.1 Inner Products

Definition 8.1.1 (Inner Product)
Let V be a (complex) vector space. An inner product on V is a map 〈·, ·〉 : V ×V → C
such that

(i) 〈αf, g〉 = α〈f, g〉
(ii) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉
(iii) 〈f, g〉 = 〈g, f〉
(iv) 〈f, f〉 ≥ 0 and 〈f, f〉 = 0 ⇐⇒ f = 0

Proposition 8.1.1
(i), (ii), (iii) implies

〈f, βg〉 = β̄〈f, g〉

and
〈f, g + h〉 = 〈f, g〉+ 〈f, h〉

Example 8.1.2
The most important example for this course is

L2[0, 1]

with
〈f, g〉 =

∫ 1

0

fḡ
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Theorem 8.1.3 (Cauchy-Schwartz Inequality)
For all f, g ∈ V

|〈f, g〉| ≤ ‖f‖‖g‖

Proof
If g = 0 then the result trivially holds. Suppose now that g 6= 0 and let

λ :=
〈f, g〉
‖g‖2

We have

0 ≤ ‖f − λg‖2

= 〈f − λg, f − λg〉
= 〈f, f〉 − λ〈g, f〉 − λ̄〈f, g〉+ λλ̄〈g, g〉
= ‖f‖2 − λ〈f, g〉 − λ̄〈f, g〉+ λλ̄‖g‖2

= ‖f‖2 − |〈f, g〉|2

‖g‖2
− |〈f, g〉|2

‖g‖2
+

|〈f, g〉|2

‖g‖2

= ‖f‖2 − 〈f, g〉2

‖g‖2

Proposition 8.1.4
Every inner product gives rise to a norm

‖f‖ =
√

〈f, f〉

Proof
Positive-definiteness and absolute scalability comes from the inner product.

The triangle inequality follows from the Cauchy Schwartz inequality

‖f + g‖2 = 〈f + g, f + g〉
= 〈f, g〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉
= ‖f‖2 + 2Re〈f, g〉+ ‖g‖2

≤ ‖f‖2 + 2‖f‖‖g‖+ ‖g‖2 Cauchy-Schwartz
= (‖f‖+ ‖g‖)2
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Definition 8.1.2 (Hilbert Space)
A Hilbert space is Banach space where the norm comes from an inner product.

Lemma 8.1.5
Fix z ∈ H. Then map T : H → C given by

T (y) = 〈y, z〉

is a continuous linear map.

Proof
Linearity comes from the inner product. To see continuity, let yn → y in H.

|T (yn)− T (y)| = |〈yn − y, z〉|
≤ ‖yn − y‖‖z‖
→ 0

8.2 Orthogonality

An important property of Hilber spaces is that they have a “geometry” in the same spirit as
Euclidean geometry. In particular, there is a sense of orthogonality.

Definition 8.2.1 (Orthogonal Vectors)
We say x, y ∈ H are orthogonal if

〈x, y〉 = 0

We write

x⊥y

to indicate orthogonality.

Proposition 8.2.1
In any Hilbert space

x⊥x ⇐⇒ x = 0
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Definition 8.2.2 (Orthogonal Set)
We say S ⊆ H is orthogonal if

∀x 6= y ∈ S, x⊥y

Definition 8.2.3 (Orthonormal Set)
We say S ⊆ H is orthonormal if it is orthogonal and in addition

‖x‖ = 1

for all x ∈ S.

Example 8.2.2
Suppose H = `2

{en : n ≥ 1}

is an orthonormal set.

They are referred to as the standard coordinate vectors for `2.

Theorem 8.2.3 (Pythagorean)
If {xn}Nn=1 is orthogonal ∥∥∥∥∥

N∑
n=1

xn

∥∥∥∥∥
2

=
N∑

n=1

‖xn‖2

Proof
Inspect the proposition which constructed a norm from the inner product. In particular,
the term 2Re〈xi, xj〉 is 0 for all i 6= j. The rest follows by induction.

Corollary 8.2.3.1
Orthogonal sets are linearly independent.

Proof
If {xn}Nn=1 are orthogonal and non-zero vectors with

N∑
i=1

αixi = 0
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Then

0 =

∥∥∥∥∥
N∑

n=1

αixi

∥∥∥∥∥
2

=
N∑
i=1

|αi|2‖xi‖2

But the non-negative sum is zero if and only if all αi are 0.

So {xn}Nn=1 is a linearly independent set!

8.2.1 Bessel’s Inequality

Here are some important facts about orthogonal sets.

Proposition 8.2.4
Let {xk}k≥1 ⊆ H be orthogonal vectors. Let SN be the partial sum up to N .
Then (SN)N≥1 converges if and only if∑

k≥1

‖xk‖2 <∞

Proof
Let N > M and consider

SN − SM =
N∑

k=M+1

xk

The Pythagorean theorem implies

‖SN − SM‖2 =

∥∥∥∥∥
N∑

k=M+1

xk

∥∥∥∥∥
2

=
N∑

k=M+1

‖xk‖2

Thus SN is Cauchy if and only if the partial sum of norms is Cauchy.
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Proposition 8.2.5
Let {ek}k≥1 ⊆ H be an orthonormal set and let βk ∈ C with∑

k≥1

|βk|2 <∞

Then there is some x ∈ H such that

〈x, ek〉 = βk

for all k and
‖x‖ = ‖(βk)k≥1‖`2

Proof
By orthonormality, we have ∑

k≥1

‖βkek‖2 =
∑
k≥1

|βk|2 <∞

and hence by the previous proposition∑
k≥1

βkek → x ∈ H

Thus

‖x‖2 = lim
N

∥∥∥∥∥
N∑
k=1

βkek

∥∥∥∥∥
2

=
∞∑
k=1

|βk|2

= ‖(βk)k≥1‖2`2

It remains to check that 〈x, ek〉 = βk. For this define

xN :=
N∑
k=1

βkek

The orthonormality of the vectors {ek} means that

βj = 〈xN , ej〉

whenever N ≥ j. Thus this in particular holds under the limit by the continuity of the
map 〈·, ej〉.
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Theorem 8.2.6 (Bessel’s Inequality)
If {ek}k≥1 is an orthonormal set and x ∈ H, then

∞∑
k=1

|〈x, ek〉|2 ≤ ‖x‖2

In particular. the sequence
(〈x, ek〉)k≥1 ∈ `2

Proof
Define

xN :=
N∑
j=1

〈x, ej〉ej

If N ≥ k, then

〈x− xN , ek〉 = 〈x, ek〉 − 〈xN , ek〉
= 〈x, ek〉 − 〈x, ek〉〈ek, ek〉
= 0

and x− xN⊥ek for all k ≤ N .

But then means x− xN is orthogonal to xN , since we can expand the inner product

〈x− xN , xN〉 =
N∑
j=1

〈x− xN , 〈x, ej〉ej〉 = 0.

Thus

‖x‖2 = ‖x− xN‖2 + ‖xN‖2

≥ ‖xN‖2

=
N∑
k=1

|〈x, ek〉|2

Passing to limits completes the proof.
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8.3 Bases

8.3.1 Algebraic Bases

Definition 8.3.1 (Algebraic Basis)
Linear independent spanning set.

Proposition 8.3.1
An orthonormal set cannot span an infinite dimensional Hilbert space.

Proof
Suppose {en}n≥1 is an orthonormal set. Then

x :=
∑
n≥1

1

n
en ∈ H

since its norm is the p-series with p > 1.

Suppose x ∈ span{en}, say

x =
n∑

k=1

αkek

We have 〈
N∑
k=1

αkek, eN+1

〉
= 0

but

〈x, eN+1〉 =

〈∑
n≥1

1

n
en, eN+1

〉
=

1

N + 1

which is a contradiction. Notice that we subtly used the continuity of the inner product
in the first argument here.

Now consider a non necessarily countably infinite orthonormal set Λ and select a countable
subset {en}n≥1. Form x as above and suppose x ∈ spanΛ. Say

x =
M∑
j=1

βjfj

for fj ∈ Λ.

Choose eN ∈ {en}n≥1 such that

eN /∈ {f1, . . . , fM}
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Arguing as above, we again obtain a contradiction

Thus Λ cannot span H.

The proof of the proposition essentially constructs a countable linear combination of or-
thonormal vectors, but not a FINITE linear combination.

8.3.2 Complete Orthonormal Sets

Since orthonormal sets are so easy to work with, we modify the definition of a basis for
Hilbert spaces.

Definition 8.3.2 (Complete)
An orthonormal set S ⊆ H is complete if whenever 〈x, s〉 = 0 for every s ∈ S, then

x = 0

Definition 8.3.3 (Basis)
A complete orthonormal set.

A complete orthonormal set is a maximal orthonormal set as we cannot adjoin any additional
elements to the set and maintain orthonormality.

Proposition 8.3.2
If H is a finite dimensional Hilbert space, then any complete orthonormal set is an
algebraic basis.

Proof
First notice that any orthonormal set is linearly independent.

If it does not span, we can grab a vector outside of its span and use the Gram-Schmidt
process to augment the orthonormal set.

<++>
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Theorem 8.3.3
If {ek}k≥1 is a complete orthonormal set and x ∈ H, then

x =
∞∑
k=1

〈x, ek〉ek

and therefore
H = span{ek}k≥1

Moreoever if S ⊆ H is orthonormal and H = span(S), then S is complete.

Proof
Part I: Let x ∈ H. By Bessel’s inequality∑

k≥1

|〈x, ek〉|2 ≤ ‖x‖2 <∞

Thus
y =

∑
k≥1

〈x, ek〉ek ∈ H

Note that
〈y, ek〉 = 〈x, ek〉

for all k, hence
y − x⊥ek

for all k.

As {ek}k≥1 is complete
y = x

as desired.

Part II: Suppose that x ∈ H is orthogonal to all vectors in S. By linearity

〈x, y〉 = 0

for all y ∈ span(S).

But x ∈ span(S), hence
x = lim

n
xn

where each xn ∈ span(S).

Thus
0 = 〈xn, x〉 = 0 → 〈x, x〉
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and thus x = 0.

By definition S is complete.

Corollary 8.3.3.1
Let {en}n≥1 be orthonormal. Then {en} is complete if and only if

‖x‖2 =
∑
k≥1

|〈x, ek〉|2

for all x ∈ H.
In other words, Bessel’s inequality is an equality.

Proof
( =⇒ ) Assume {en} is complete. By part I of the previuos theorem

x =
∑
k≥1

〈x, ek〉ek

and by the Pythgorean theorem

‖x‖2 =
∑
k≥1

‖〈x, ek〉ek‖2 =
∑
k≥1

|〈x, ek〉|2

(¬ =⇒ ¬) Suppose now that {en} is not complete, there must be some x 6= 0 with

〈x, ek〉 = 0

for all k.

If we assume
‖x‖2 =

∑
k≥1

|〈x, ek〉|2

then we must have x = 0, a contradiction.

Corollary 8.3.3.2
The orthonormal set {en}n≥1 is complete if and only if the linear map T : H → `2 given
by

T (x) := (〈x, ek〉)k≥1

is injective.
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Proof
Assume {en} is complete and suppose Tx = Ty. Then

〈x, ek〉 = 〈y, ek〉

for all k, so
(x− y)⊥ek

for all k.

This implies that x = y.

The converse is similar.
Suppose that {en} from above is complete. It can be shown that T is in fact isometric and
surjective. Thus H ∼= `2.

Theorem 8.3.4
Every Hilbert space has a basis.
If H is separable, then any orthonormal set is countable or finite.

Proof
Let S be the collection of all orthonormal sets from H.

Define the partial order by inclusion on S. Let C ⊆ S be an arbitrary chain. Then
consider

X :=
⋃
C∈C

C

To see it is in S, take any x 6= y ∈ X and remark that since C is a chain, there must be
some C ∈ C which contains both x, y. Thus

‖x‖ = ‖y‖ = 1, 〈x, y〉 = 0

so X is an orthonormal set.

By Zorn’s lemma, S has a maximal element A.

If A is not complete, then there is some x ∈ H such that 〈x, a〉 = 0 for all a ∈ A. But
then

A ⊂ A ∪
{

x

‖x‖

}
is orthonormal which violates the maximality of A.

Hence A is a complete orthonormal set and a basis by definition.

Now suppose that H is a separable Hilbert space and that {eα}α∈Λ is an uncountable
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orthonormal set. Pick a countably dense subset

{fn}n≥1 ⊆ H

For each α ∈ Λ, there is some n ≥ 1 with

eα ∈ B

(
fn,

1

2

)
Since there are only countably many such balls and uncountably many eα’s, some ball
B
(
fN ,

1
2

)
must contain uncountably many eα’s.

In particular, there is a pair e1, e2 ∈ B
(
fn,

1
2

)
. By the Pythagorean theorem, we have

‖e1 − e2‖2 = ‖e1‖2 + ‖e2‖2 = 2

But
√
2 = ‖e1 − e2‖
≤ ‖e1 − fn‖+ ‖fn − e2‖

≤ 1

2
+

1

2
= 1

which is a contradiction.

Corollary 8.3.4.1
Every separable infinite dimensional Hilbert space is isometrically isomorphic to `2.

The isometry T can in fact be chosen to have the property that

〈x, y〉 = 〈Tx, Ty〉

for all x, y ∈ H where the first inner product is the inner product on H and the second inner
product is the inner product on `2. We call such a map is inner product preserving.
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Fourier Analysis on the Circle

9.1 Notation

Fourier analysis can be studied in a variety of settings. We will work with the circle

T := {z ∈ C : |z| = 1}

By identifying z with eit we can identify T with

T = [0, 2π]

or alternatively by identifying z = e2πit, we can view T as

T = [0, 1]

We give T the topology it inherits from C and hence it is compact.

T is a group under addition mod 2π when viewed as [0, 2π] or under multiplication when
viewed as a subset of C.

Functions defined on [0, 2π] must satisfy f(0) = f(2π) and hence have a unique 2π-periodic
extension to all of R.

We denote the continuous function defined on T by

C(T)

We write m to denote the Lebesgue measure restricted to [0, 2π) and normalized so that
m(T) = 1. Notice that m is still translation invariant where addition is understood to be
mod 2π.
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With this notation ∫
T
fdm =

1

2π

∫
[0,2π]

f(x)dx

For 1 ≤ p <∞, we will put

‖f‖Lp(T) = ‖f‖p :=
(

1

2π

∫
[0,2π]

|f(x)|pdx
) 1

p

and ‖f‖∞ the L∞ norm on T.

The notation Lp(T) will mean the space of equivalence classes of measurable functions on T
with ‖f‖p <∞. We have

C(T) ⊆ L∞(T) ⊆ LP (T) ⊆ L1(T)

for 1 < p <∞.

It can be showed that Hölder’s inequality gives∣∣∣∣ 12π
∫
[0,2π]

fg

∣∣∣∣ ≤ ‖f‖p‖g‖q

where p, q are conjugate indices. In the special case of p = q = 2, we have that L2(T) is a
Hilbert space with inner product

〈f, g〉 = 1

2π

∫
[0,2π]

fḡ

Proposition 9.1.1
C(T) is dense in Lp for p <∞.
L2 is dense in L1.

9.2 Fourier Series & Fourier Coefficients

Proposition 9.2.1
The set of functions

{exp(inx) : n ∈ Z}

is an orthonormal family of continuous functions on T.
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Proof
To see normality

1

2π

∫
[0,2π]

|einx|2dx =
1

2π

∫
[0,2π]

cos2 nx+ sin2 nxdx

= 1

for all n ∈ Z.

For orthogonality

1

2π

∫
[0,2π]

einxeimxdx =
1

2π

∫
[0,2π]

einxe−imxdx

= 0

given that n 6= m.

Definition 9.2.1 (Trigonometric Polynomial)
A continuous function of the form

p(x) :=
N∑

n=−M

ane
inx

Definition 9.2.2 (Frequencies)
The set of integers n where an 6= 0 are known as the frequencies of p.

Definition 9.2.3 (Degree)
The maximum |n| such that an 6= 0.

Write write
Trig(T) := span{einx : n ∈ Z}

for the set of all trigonometric polynomials.

Theorem 9.2.2
Trig(T) is dense in C(T) in the supremum norm and hence in Lp(T) in the Lp norm
for p <∞.

Proof
Density in C(T) is a direct consequence of the Stone-Weirstrauss theorem. Trig(T) is an
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algebra in C(T) that contains the constant functions and so does not vanish. It separates
points since s 6= t implies

eis 6= eit.

Finally, it is is closed under conjugation.

Now, C(T) is dense in Lp(T) for p <∞ and

‖·‖p ≤ ‖·‖∞

thus the trigonometric polynomials are also dense in Lp(T).

Corollary 9.2.2.1
Trig(T) is a basis of L2.

Proof
The span of {einx : n ∈ Z} is dense in L2(T). By our previous work with general Hilbert
spaces, it is consequently a basis for the Hilbert space L2(T).

Remark that if the choice T = [0, 1] is made, then

{exp(i2πnx) : n ∈ Z}

is a complete orthonormal set.

Definition 9.2.4 (Fourier Coefficient)
The n-th Fourier Coefficient of f ∈ L2(T) is

f̂(n) := 〈f, einx〉 = 1

2π

∫
[0,2π]

f(x)e−inxdx

Definition 9.2.5 (Fourier Series)
The formal series

∞∑
n=−∞

f̂(n)einx

is known as the Fourier series of f .
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9.2.1 Parseval’s Theorem

Proposition 9.2.3
Let f ∈ L2 and put

SNf(x) :=
N∑

n=−N

〈f, einx〉einx =
N∑

n=−N

f̂(n)einx

This is a trigonometric polynomial of degree at most N .
We have

‖f − Snf‖2 → 0

Proof
Trig(T) is a basis of T.

Proposition 9.2.4 (Uniqueness of Fourier Coefficients)
If f, g ∈ L2 and f̂(n) = ĝ(n), then f = g a.e.

Proof
If h ∈ L2 and ĥ(n) = 0 for all n ∈ Z then h = 0 a.e. from the definition of a basis.

Thus if f, g have the same Fourier coefficients

f̂ − g(n) = f̂(n)− ĝ(n) = 0

for all n thus f − g = 0 a.e. and f = g a.e.

97



©Fel
ix

Zh
ou

Theorem 9.2.5 (Parseval I)
For all f ∈ L2

‖f‖2 =
(

1

2π

∫
[0,2π]

|f |2
) 1

2

=

(
∞∑

n=−∞

∣∣〈f, einx〉∣∣2) 1
2

=

(
∞∑

n=−∞

∣∣∣f̂(n)∣∣∣2) 1
2

=
∥∥∥(f̂(n))

n

∥∥∥
`2

Thus the L2 norm of f and the `2 norm of the sequence of Fourier coefficients of f
coincide.

Proof
Bessel’s inequality is an equality from the completeness of Trig(T) as an orthonormal set.

Another way to state this is that the map T : L2(T) → `2 given by

T (f) := (f̂(n))n∈Z

is an isometric isometry.

From now on `2 indicates the square summable sequences indexed by Z rather than by N.

Theorem 9.2.6 (Parseval II)
T is inner product preserving.
So

〈f, g〉 = 〈T (f), T (g)〉`2

and
1

2π

∫
[0,2π]

fḡ =
∞∑

n=−∞

f̂(n)ĝ(n)

for all f, g ∈ L2.

Observe that taking g = f proves the first statement of Parseval’s Theorem.
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9.3 Fourier Coefficients in L1(T)

We have previously discussed the fact that L2 ⊆ L1. However, if f ∈ L1 we can still define

f̂(n) :=
1

2π

∫
[0,2π]

f(x)e−inxdx

for n ∈ Z. We continue to call this the n-th Fourier Coefficient of f .

Similarly, we define the Fourier series of f ∈ L1 as the formal sum

S(f) :=
∞∑

n=−∞

f̂(n)einx

9.3.1 Alternative Form of Fourier Series

Using the relation
einx = cosnx+ i sinnx

together with
cos(−nx) = cosnx,− sin(−nx) = sinnx

we can rewrite
∞∑

n=−∞

ane
inx =

A0

2
+

∞∑
n=1

An cosnx+Bn sinnx

where

An := an + a−n =
1

π

∫
[0,2π]

f(x) cosnxdx

Bn := i(an − a−n) =
1

π

∫
[0,2π]

f(x) sinnxdx

Observe that if f is real-valued, then the An, Bn’s are real-valued. However, this is not
necessarily the case if f takes on imaginary values.

9.3.2 Basic Properties

Let f, g ∈ L1(T) and n ∈ Z
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Proposition 9.3.1
We have

f̂ + g(n) = f̂(n) + ĝ(n)

and
α̂f(n) = αf̂(n)

for α ∈ C.

Proof
Linearity of the integral.

Proposition 9.3.2

̂̄f(n) = f̂(−n)

Proof
Prove it iteratively for simple functions, real-valued functions, etc.

Proposition 9.3.3
Let t ∈ T and define

ft(x) := f(x− t)

Then
f̂t(n) = e−intf̂(n)

Proof
Since einx = e−in(x−t)e−int, we have

f̂t(n) =
1

2π

∫
[0,2π]

ft(x)e
−inxdx

=
1

2π

∫
[0,2π]

f(x− t)e−inxdx

=
e−int

2π

∫
[0,2π]

f(x− t)e−in(x−t)dx

=
e−int

2π

∫
[0,2π]

f(x)e−inxdx

= e−intf̂(n)

100



©Fel
ix

Zh
ou

Proposition 9.3.4
We have

(f̂(n))n∈Z ∈ `∞

and ∥∥∥(f̂(n))∥∥∥
`∞

≤ ‖f‖1

Proof
|f̂(n)| ≤ ‖f‖1 since

|f̂(n)| =
∣∣∣∣ 12π

∫
[0,2π]

f(x)e−inx

∣∣∣∣
≤ 1

2π

∫
[0,2π]

|f(x)e−inx|

=
1

2π

∫
[0,2π]

|f(x)| · |e−inx|

=
1

2π

∫
[0,2π]

|f(x)|

=: ‖f‖1

Compare this with the L1(T) case when we knew the sequence is square-summable and even
converges to 0! At least we still know the sequence is bounded.

Proposition 9.3.5
If fk → f in L1 then f̂k(n) → f̂(n) for all n ∈ Z (even uniformly in n).

Proof
We have

|f̂k(n)− f̂(n)| = |f̂k − f(n)|
≤ |fk − f |1
→ 0

Proposition 9.3.6
‖ft‖p = ‖f‖p for all t ∈ T and p ≥ 1.

Proposition 9.3.7
‖f(x+ t)− f(x)‖p → 0 as t→ 0 for 1 ≤ p <∞.
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Proof
Continuous case first. Then use the density of continuous functions in Lp.

9.3.3 Riemann-Lebesgue Lemma

Lemma 9.3.8 (Riemann-Lebesgue)
Let f ∈ L1(T)

lim
n→±∞

f̂(n) = 0

Proof
Pick ε > 0. Since Trig(T) is dense in all Lp, p <∞, we can choose p ∈ Trig(T) such that

‖f − p‖1 < ε

Let N = deg p. Then p̂(n) = 0 for all |n| > N . Consequently for all |n| > N

|f̂(n)| ≤ |f̂(n)− p̂(n)|+ |p̂(n)|
≤ ‖f − p‖1
< ε

Corollary 9.3.8.1
The sequence (f̂(n))n actually belongs to the subspace of `∞

c0 := {(xn)n : |xn| → 0}

Corollary 9.3.8.2
If f ∈ L1(T) then

lim
n→∞

∫
[0,2π]

f(x) sinnxdx = 0 = lim
n→∞

∫
[0,2π]

f(x) cosnxdx

Proposition 9.3.9
If f ∈ L1(T) then for all β ∈ R

lim
n→∞

∫
[0,2π]

f(x) sin(nx+ β)dx = 0
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Fourier Series

10.1 Dirichlet Kernel

Our goal here is to “rebuild” a function given a Fourier series.

Definition 10.1.1 (Dirichlet Kernel)
The N -th Dirichlet kernel is the function

DN(t) :=
N∑

n=−N

eint = 1 + 2
N∑

n=1

cosnt ∈ Trig(T)

The N -th Dirichlet kernel is an even, real-valued degree N trigonometric polynomial.

Proposition 10.1.1
DN(0) = 2N + 1 = supt|DN(t)|.

Proposition 10.1.2
D̂N(n) = 1 if |n| ≤ N and 0 otherwise.

Lemma 10.1.3
Let t ∈ T \ {0}

DN(t) =
sin
[(
N + 1

2

)
t
]

sin t
2

This also holds for limDN(t) as t→ 0.
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Proof
A telescoping sum argument gives(

sin
t

2

)
DN(t) =

(
eit/2 − e−it/2

2i

) N∑
n=−N

eint

=
N∑

n=−N

(
ei(n+1/2)t − ei(n−1/2)t

2i

)
=

(
ei(N+1/2)t − ei(−N−1/2)t

2i

)
= sin

(
N +

1

2

)
t

Corollary 10.1.3.1
For t ∈ (δ, 2π − δ)

|DN(t)| ≤
1

|sin δ
2
|
.

Remark that this bound is independent of the choice of N .

To see the motivation behind the Dirichlet kernel, observe that for f ∈ L1

SNf(x) =
N∑

n=−N

f̂(n)einx

=
N∑

n=−N

(
1

2π

∫
T
f(t)e−intdt

)
einx

=
1

2π

∫
T
f(t)

N∑
n=−N

ein(x−t)dt

=
1

2π

∫
T
f(t)DN(x− t)dt

=
1

2π

∫
T
f(t)DN(t− x)dt DN is even

=
1

2π

∫
T
f(t+ x)DN(t)dt translation invariance
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10.2 Functional Analysis

Our goal in this section is to show the existence of a continuous function whose Fourier series
diverges at a point and an L1 function whose Fourier series diverges in the L1 norm.

Definition 10.2.1 (Linear Map)
Let X,Y be Banach spaces.
A map F : X → Y is linear if

F (αx+ y) = αF (x) + F (y)

for all x, y ∈ X and scalars α.

Definition 10.2.2 (Operator Norm)
Given a linear map F , we define

‖F‖op = sup
‖x‖X≤1

‖F (x)‖Y

Definition 10.2.3 (Bounded Linear Map)
We say F : X → Y linear is bounded if

‖F‖op <∞

Proposition 10.2.1
For any linear map F , F (0) = 0.
Furthermore

‖F‖op = sup
x 6=0

‖F (x)‖Y
‖x‖X

.

Proof
If x 6= 0, normalize it so

‖F‖op ≥
∥∥∥∥F ( 1

‖x‖X
x

)∥∥∥∥
Y

On the other hand for all ‖x‖X ≤ 1

‖F (x)‖
‖x‖X

≥ ‖F (x)‖
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But then
sup
x 6=0

‖F (x)‖
‖x‖X

≥ sup
‖x‖X≤1

‖F (x)‖Y
‖x‖X

≥ sup
‖x‖X≤1

‖F (x)‖Y

Thus
‖F‖op‖x‖X ≥ ‖F (x)‖Y

for all x.

Proposition 10.2.2
A linear map is bounded if and only if it is continuous.

Proof
=⇒ Suppose F is bounded and let xn → x. Then

‖F (xn)− F (x)‖ = ‖F (xn − x)‖
≤ ‖F‖op‖xn − x‖
→ 0

⇐= Suppose that F is continuous at 0. Then for every ε > 0, there is some δ > 0 such
that

‖x‖ ≤ δ =⇒ ‖F (x)− F (0)‖ < ε.

Apply this with ε = 1 and the corresponding δ. If ‖x‖ ≤ 1, then ‖δx‖ ≤ δ so

δ‖F (x)‖ = ‖F (δx)‖ < 1.

Hence ‖F (x)‖ ≤ 1
δ

whenever ‖x‖ ≤ 1 which implies

‖F‖op ≤ 1

δ
.

Example 10.2.3
The linear map F : L1(T) → C given by

f 7→ f̂(n)

satisfies
‖F‖op = 1.

Example 10.2.4
The isometry F : L2 → `2 given by

f 7→ (f̂(n))n≥1
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satisfies
‖F‖op = 1.

Proposition 10.2.5
Take SN : L1 → L1 given by

SN(f)(x) =
N∑

n=−N

f̂(n)einx =
1

2π

∫
T
f(t+ x)DN(t)dt.

Then
‖SN‖op = ‖DN‖1 <∞

Proof (Sketch)
By Fubini’s Theorem and some computation

‖SNf‖1 ≤ ‖DN‖1‖f‖1.

Take
fk =

χ(
− 1

k
, 1
k

)
m
(
− 1

k
, 1
k

)
and observe that ‖fk‖1 = 1.

It suffices to show that ‖SNfk‖1
‖fk‖1

→ ‖DN‖1 so

‖SN‖op ≥ ‖SNfk‖1
‖fk‖1

→ ‖DN‖1.

The key point of attack is the fact that DN is uniformly continuous as it is continuous
on a compact set and that multiplying 1 · ‖fk‖1 = 1

2π

∫
T fk(t)dt anywhere does not change

identities.
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10.2.1 Uniform Boundedness Principle

Theorem 10.2.6 (Uniform Boundedness Principle)
Suppose X,Y are Banach spaces. Let F be a family of bounded linear maps from
X → Y .
If for every x ∈ X

sup
F∈F

‖F (x)‖Y <∞

then
sup
F∈F

‖F‖op <∞.

Consequently, if supF∈F‖F‖op = ∞, then there is some x ∈ X such that

sup
F∈F

‖F (x)‖Y = ∞.

Divergent Fourier Series

Proposition 10.2.7
There is some C > 0 such that

‖DN‖1 ≥ C logN

for all N .

Theorem 10.2.8
There is some f ∈ L1 such that∥∥∥∥∥

N∑
n=−N

f̂(n)einx

∥∥∥∥∥
1

→ ∞.

In other words, f has a divergent Fourier series.

Proof
Take X = Y = L1(T) and consider the family

F := {SN : L1 → L1, N ∈ N}.

We already know that
‖SN‖op = ‖DN‖1.
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By the previous proposition

sup
SN∈F

‖SN‖op ≥ ‖DN‖1 ≥ C logN → ∞.

Hence by the uniform boundedness principle there is some f ∈ L1 such that supN‖SNf‖1 =
∞.

In particular ∥∥∥∥∥
N∑

n=−N

f̂(n)einx

∥∥∥∥∥
1

→ ∞.

Divergent Fourier Series of a Continuous Function

Theorem 10.2.9
There is a continuous function f with

(Sn(f)(0))n≥1

being a divergent sequence.

Proof (Sketch)
We wish to apply the uniform boundedness principle with X = C(T) and Y = C. Define
TN : C(T) → C by

f 7→ SN(f)(0)

and put
F := {TN : N ∈ N}.

Clearly each TN is linear. Pick any f ∈ C(T) such that

‖f‖∞ ≤ 1.

Then

|TN(f)| = |SN(f)(0)|

=

∣∣∣∣ 12π
∫ 2π

0

f(d)DN(t)dt

∣∣∣∣
≤ ‖f‖∞

1

2π

∫ 2π

0

|DN(t)|dt

≤ ‖f‖∞‖DN‖1
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so ‖TN‖op ≤ ‖DN‖1 and these are bounded maps.

We claim that ‖TN‖op ≥ 1
2
‖DN‖1. This claim combined with an application of the uniform

boundedness principle suffices to prove the theorem.

Our plan of attack is to construct a sequence of continuous functions gn with ‖gn‖∞ = 1
and |Sn(gn)(0)| ≥ 1

2
‖DN‖1. Since

‖Tn‖op ≥ |Tn(gn)| = |Sn(gn)(0)|

this will complete the proof.

The idea is to choose
gn ≈ sgnDn

so that
1

2π

∫ 2π

0

gn(t)Dn(t) ≈
1

2π

∫ 2π

0

|Dn(t)|dt = ‖Dn‖1.

We cannot make gn exactlyDn since we want gn to be continuous. However, Dn has finitely
many zeroes being a non-zero trigonometric polynomial. If we keep |g| ≤ 1 everywhere
and arrange for the sum of the lengths of intervals to be “small enough”, then

|Sn(gn)(0)| ≈ ‖Dn‖1.

It is in fact possible to make these theorems constructive. However, we will need to develop
more Fourier analysis.

10.3 A Divergent Construction

We now give a construction of a continuous function whose Fourier series diverges at 0.

10.3.1 Background

Recall that we constructed a sequence of continuous functions gn such that ‖gn‖∞ = 1 and

|Sn(gn)(0)| ≥
1

2
‖Dn‖1 ≥ C log n

for some C > 0.
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10.3.2 Building Blocks

Put
fn := σ2n2(gn) = F2n2 ∗ gn

where Fk is the k-th Fejér kernel.

This is a trigonometric polynomial of degree at most 2n2 satisfying

‖fn‖∞ = ‖F2n2gn‖∞ ≤ ‖F2n2‖1‖gn‖∞ ≤ 1.

10.3.3 The Construction

Define nk := 23
k and put

f(t) :=
∞∑
k=1

1

k2
fnk

(nkt).

The choice of nk is not critical. We require only that the sequence diverges rapidly.

10.3.4 Proof of Divergence

Since ‖fn‖∞ ≤ 1
|Gk(0)| = |fnk

(0)| ≤ ‖fnk
‖∞ ≤ 1

and
|f̂nk

(0)| ≤ ‖fnk
‖∞ ≤ 1.
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Summability Kernels

11.1 Convolution

L1 is not closed under pointwise multiplication. However, there is a binary operation ∗ on
L1 which makes it an algebra.

Definition 11.1.1 (Convolution)
For f, g ∈ L1

f ∗ g := 1

2π

∫
T
f(t)g(x− t)dt.

Remark that

f ∗ einx :=
1

2π

∫
T
f(t)ein(x−t)

= einxf̂(n).

Thus convolution with a trigonometric polynomial yields a trigonometric polynomial.

Proposition 11.1.1
∗ is commutative.
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Proof
Use the change of variables t 7→ −t, t 7→ t− x and we have

f ∗ g(x) = 1

2π

∫
T
f(−t)g(x+ t)dt

=
1

2π

∫
T
f(x− t)g(t)

=: g ∗ f(x)

as desired.

Proposition 11.1.2
For f, g ∈ L1

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 <∞.

Proof
We first need to show that t 7→ f(x)g(x− t) is measurable.

Then an application of Fubini’s theorem yields the result.

1

2π

∫
T
|f ∗ g(x)|dx =

1

2π

∫
T

∣∣∣∣ 12π
∫
T
f(x)g(x− t)dt

∣∣∣∣dx
≤ 1

2π

∫
T
|f(t)|

(
1

2π

∫
T
|g(x− t)|dt

)
dx

=
1

2π

∫
T
|f(t)| · ‖g‖1dx

= ‖f‖1‖g‖1 <∞.

Proposition 11.1.3
If f ∈ L∞, g ∈ L1

f ∗ g ∈ L∞.

Proof
We have

|f ∗ g(x)| ≤ 1

2π

∫
T
|f(t)g(x− t)|dt

≤ ‖f‖∞
2π

∫
T
|f(x− t)|dt

= ‖f‖∞‖g‖1
<∞.
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Proposition 11.1.4
SN(f)(x) = f ∗DN(x).

Proposition 11.1.5
For all f, g ∈ L1 and n ∈ Z

f̂ ∗ g(n) = f̂(n)ĝ(n).

Proof
By definition

f̂ ∗ g(n) = 1

2π

∫
T
f ∗ g(x)e−inxdx

=
1

2π

∫
T

(
1

2π

∫
T
f(t)g(x− t)

)
e−inxdtdx

=
1

2π

∫
T
f(t)e−int

(
1

2π

∫
T
g(x− t)e−in(x−t)dx

)
dt Fubini’s theorem

= f̂(n)ĝ(n).

Observe that this means there is no identity element for this binary operation since any
candidate g ∈ L1 necessarily satisfies ĝ(n) = 1 for all n. this contradicts the Riemann-
Lebesgue lemma.

Proposition 11.1.6
If f ∈ Lp, g ∈ Lq for conjugate indices p, q, then

f ∗ g ∈ L∞.

11.2 Summability Kernels

There are “approximate” identities under ∗.

Definition 11.2.1 (Summability Kernel)
A summability kernel (bounded approximate identity) is a sequence (Kn)n≥1 ⊆ L1

which satisfies
(i) K̂n(0) = 1 = 1

2π

∫
TKn(t)dt

(ii) There is some M such that 1
2π

∫
T|Kn(t)|dt ≤M for all n

(iii) For every 0 < δ < π we have limn→∞
∫ 2π−δ

δ
|Kn(t)|dt = 0

115



©Fel
ix

Zh
ou

Definition 11.2.2 (Positive Summability Kernel)
A summability kernel where

Kn(t) ≥ 0

for all t, n.

Observe that the second condition is now redundant as the first condition implies the second
with M = 1.

11.3 Uniform Convergence

Summability kernels have excellent convergence properties.

Theorem 11.3.1
Let f ∈ C(T) and assume that (Kn) is a summability kernel.
Then

Kn ∗ f → f

uniformly.

Proof
We want

sup
x∈T

|Kn ∗ f(x)− f(x)| → 0

as n→ ∞.

Using the definition of convolution and the fact that
∫
Kn = 1, we can write

|Kn ∗ f(x)− f(x)| =
∣∣∣∣ 12π

∫
T
Kn(t)f(x− t)dt− f(x)

1

2π

∫
T
Kn(t)dt

∣∣∣∣
=

∣∣∣∣ 12π
∫
T
Kn(t)[f(x− t)− f(x)]dt

∣∣∣∣
≤ 1

2π

∫
T
|Kn(t)| · |f(x− t)− f(x)|dt

Fix ε > 0 and choose δ > 0 from the uniform continuity of f to give

|x− y| ≤ δ =⇒ |f(x)− f(y)| < ε

M
.

Pick N such that
n ≥ N =⇒ 1

2π

∫ 2π−δ

δ

|Kn(t)| ≤
ε

2‖f‖∞
.
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This exists by the definition of a summability kernel.

Split the integral in question into the ranges

[−δ, δ], [δ, 2π − δ].

If t ∈ [−δ, δ], then

|(x− t)− x| ≤ δ =⇒ |f(x− t)− f(x)| ≤ ε

M
.

So

1

2π

∫ δ

−δ

|Kn(t)||f(x− t)− f(x)| ≤ ε

2πM

∫ δ

−δ

|Kn(t)|

≤ ε

2πM

∫
T
|Kn(t)|

≤ ε.

Now for n ≥ N

1

2π

∫ 2π−δ

δ

|Kn(t)||f(x− t)− f(x)| ≤ 1

2π

∫ 2π−δ

δ

|Kn(t)|(‖f‖∞ + ‖f‖∞)

= 2‖f‖∞
1

2π

∫ 2π−δ

δ

|Kn(t)|

≤ ε.

Hence for all n ≥ N and x ∈ T

|Kn ∗ f(x)− f(x)| ≤ 2ε.

11.4 Fejér Kernel

The Dirichlet kernel is not a summability kernel since it is not bounded over all N .

Definition 11.4.1 (Fejér Kernel)
The N -th Fejér kernel is the degree N trigonometric polynomial

FN(t) =
N∑

n=−N

(
1− |n|

N + 1

)
eint.
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By Euler’s formula

FN(t) = 1 + 2
N∑
j=1

(
1− j

N + 1

)(
eijt + e−ijt

2

)

= 1 + 2
N∑
j=1

(
1− j

N + 1

)
cos jt.

Observe that FN is an even function and satisfies F̂N(0) = 1. Moreover∫
T
einx =

{
2π n = 0

0, n 6= 0

so property (i) of positive summability kernels is satisfied.

Proposition 11.4.1
FN = 1

N+1

∑N
n=0Dn.

Lemma 11.4.2
For all t ∈ [0, 2π]

FN(t) =
1

N + 1

(
sin (N+1)t

2

sin t
2

)2

where the case t = 0 should be interpreted as the limit.

Proof
Observe that

sin2 t

2
= −1

4
(eit − 2 + e−it).

We can then write

sin2 t

2

N∑
n=−N

(
1− |n|

N + 1

)
eint

= −1

4
(eit − 2 + e−it)

N∑
n=−N

(
1− |n|

N + 1

)
eint

=
1

N + 1

(
−1

4
e−i(N+1)t +

1

2
+−1

4
ei(N+1)t

)
telescoping sum

=
1

N + 1
sin2 (N + 1)t

2
.
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Observe that
FN(0) = N + 1.

Moreover
|FN(t)| ≤ FN(0).

So
‖FN‖∞ = N + 1.

Corollary 11.4.2.1
(FN) is a positive summability kernel.

Proof
The lemma shows that FN ≥ 0.

We have already noted the first condition.

Property (iii) is satisfied since if δ > 0 and t ∈ [δ, 2π − δ]∣∣∣∣sin t2
∣∣∣∣ ≥ sin

δ

2
.

Thus ∫ 2π−δ

δ

|FN(t)|dt ≤
1

N + 1

∫ 2π−δ

δ

sin2(N + 1)t/2

sin2 δ/2

≤ 1

(N + 1) sin2 δ/2

∫ 2π

0

sin2 ξ + cos2 ξ ξ :=
(N + 1)t

2

=
1

(N + 1) sin2 δ/2

∫ 2π

0

1

=
2π

(N + 1) sin2 δ/2

→ 0 N → ∞

and (FN) is indeed a positive summability kernel.

From now on, we write

σN(f) := FN ∗ f =
N∑

n=−N

(
1− |n|

N + 1

)
f̂(n)eint.

Proposition 11.4.3
(σN(f)) → f uniformly for all f ∈ C(T).
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Proof
The Fejér kernel is a positive summability kernel.

Observe that this gives a constructive proof that Trig(T) is dense in C(T) with respect to
the sup norm.

Proposition 11.4.4
If

(SN(f)(x0)) → L

then so does
(σN(f)(x0)).

Consequently. if f ∈ C(T) and (SN(f)) converges pointwise, then

SN(f)(x) → f(x)

for all x.

11.5 L1 Convergence

Theorem 11.5.1
If f ∈ L1(T) and (KN) is a summability kernel, then

‖KN ∗ f − f‖1 → 0.

Proof
Get g ∈ C(T) such that ‖f − g‖1 < ε

M
where M ≥ 1 satisfies property (ii) of the

summability kernel.

We can choose N such that ‖Kn ∗ g − g‖1 ≤ ‖Kn ∗ g − g‖∞ < ε for all n ≥ N .

Then

‖Kn ∗ f − f‖1 ≤ ‖Kn ∗ f −Kn ∗ g‖1 + ‖Kn ∗ g − g‖1 + ‖g − f‖1
≤ ‖Kn ∗ (f − g)‖1 + ε+

ε

M

≤ ‖Kn‖1‖f − g‖1 + ε+
ε

M

≤M
ε

M
+ ε+

ε

M
≤ 3ε

for all n ≥ N .

120



©Fel
ix

Zh
ou

Corollary 11.5.1.1
For all f ∈ L1

‖σn(f)− f‖1 → 0.

Moreover, a subsequence σnj
(f) → f pointwise a.e.

Theorem 11.5.2 (Uniqueness)
If f ∈ L1 and f̂(n) = 0 for all integers n, then

f = 0

almost everywhere.

Proof
σn(f) → 0 for all n. But

σn(f) → f ∈ L1

thus f = 0 in the L1 sense (a.e.).

Proposition 11.5.3
Suppose f ∈ Lp(T) for 1 ≤ p <∞ and (Kn) is a summability kernel, then

‖Kn ∗ f − f‖p → 0.
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More Fourier Series

12.1 A Divergent Construction

We now give a construction of a continuous function whose Fourier series diverges at 0.

12.1.1 Background

Recall that we constructed a sequence of continuous functions gn such that ‖gn‖∞ = 1 and

|Sn(gn)(0)| ≥
1

2
‖Dn‖1 ≥ C log n

for some C > 0.

12.1.2 Building Blocks

Put

fn := σ2n2(gn) = F2n2 ∗ gn

where Fk is the k-th Fejér kernel.

This is a trigonometric polynomial of degree at most 2n2 satisfying

‖fn‖∞ = ‖F2n2gn‖∞ ≤ ‖F2n2‖1‖gn‖∞ ≤ 1.
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By computation

|(Sn(fn)− Sn(gn))(t)| =

∣∣∣∣∣
n∑

j=−n

(f̂n(j)− ĝn(j))e
ijt

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=−n

(F̂2n2(j)ĝn(j)− ĝn(j))e
ijt

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=−n

(
|j|

2n2 + 1
ĝn(j)− ĝn(j)

)
eijt

∣∣∣∣∣
≤

n∑
j=−n

|j||ĝn(j)|
2n2 + 1

≤ 2‖gn‖1
2n2 + 1

n∑
j=1

|j|

≤ 2

2n2 + 1
· n(n+ 1)

2

≤ 1.

Thus
|Sn(fn)(0)| ≥ |Sn(gn)(0)| − 1 ≥ C ′ log n

for C ′ > 0 and n sufficiently large.

12.1.3 The Construction

Define nk := 23
k and put

f(t) :=
∞∑
k=1

1

k2
fnk

(nkt).

The choice of nk is not critical. We require only that the sequence diverges rapidly.

Each fnk
is continuous. Moreover, the sup norm of each term is at most 1

k2
. This is a

converging series and thus by the Weierstrass M -test,

f ∈ C(T).

We have

fnk
(t) =

2n2
k∑

j=−2n2
k

f̂nk
(j)eijt
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thus putting Gk(t) := fnk
(nkt) gives

Gk(t) =

2n2
k∑

j=−2n2
k

f̂nk
(j)eijnkt

and
f(t) =

∑
k≥1

Gk(t).

Observe that
Ĝk(jnk) = f̂nk

(j)

and Ĝk(m) = 0 if m /∈ nkZ.

In particular it is zero for all m ∈ (−nk, nk) \ {0}. This means that if N < nk, then SN(Gk)
is the constant function

Ĝk(0) = f̂nk
(0).

Also, Gk is trigonometric polynomial of degree at most 2n3
k.

If k ≥M + 1, then
n2
M = 22·3

M

< 23
M+1 ≤ 23

k

= nk

hence
Sn2

M
(Gk)(t) = Ĝk(0) = f̂nk

(0).

It follows by linearity that

Sn2
M
(f)(t) =

∑
k≥1

1

k2
Sn2

M
(Gk)(t)

=
M∑
k=1

1

k2
Dn2

M
∗Gk(t) +

∞∑
k=M+1

1

k2
f̂nk

(0).

For any k ≤M − 1, we have

n2
M = 22·3

M

> 23
M+1 ≥ 23

k+1+1 = 2n3
k.

As Gk is of degree at most 2n3
k, we know that

Dn2
M
∗Gk = Gk

for all k ≤M − 1.
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For the case when k =M , we have

Dn2
M
∗Gk(t) = Dn2

M
∗GM(t)

=

n2
M∑

j=−n2
M

ĜM(j)eijt.

But ĜM(j) 6= 0 only when j ∈ nMZ, thus evaluating at t = 0 gives

Dn2
M
∗GM(0) =

nM∑
j=−nM

ĜM(jnM)

=

nM∑
j=−nM

f̂nM
(j)

= DnM
∗ fnM

(0)

= SnM
(fnM

)(0).

Putting everything together yields

Sn2
M
(f)(0) =

M−1∑
k=1

1

k2
Gk(0) +

Dn2
M
∗GM(0)

M2
+

∞∑
k=M+1

1

k2
f̂nk

(0)

=
M−1∑
k=1

1

k2
Gk(0) +

SnM
(fnM

)(0)

M2
+

∞∑
k=M+1

1

k2
f̂nk

(0).

12.1.4 Proof of Divergence

Since ‖fn‖∞ ≤ 1
|Gk(0)| = |fnk

(0)| ≤ ‖fnk
‖∞ ≤ 1

and
|f̂nk

(0)| ≤ ‖fnk
‖∞ ≤ 1.

But then

|Sn2
M
(f)(0)| ≥ |SnM

(fnM
)(0)|

M2
−

M−1∑
k=1

1

k2
|Gk(0)| −

∞∑
k=M+1

1

k2

∣∣∣f̂nk
(0)
∣∣∣

≥ |SnM
(fnM

)(0)|
M2

−
∞∑
k=1

1

k2

≥ C1 log nM

M2
− C2.
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But
log nM = log 23

M

= 3M log 2 >> M2.

Consequently ∣∣∣Sn2
M
(f)(0)

∣∣∣→ ∞

as M → ∞.

This completes our construction.

12.2 Pointwise Convergence

Despite the fact that the Fourier series of even continuous functions need not converge, there
are many circumstances under which the Fourier series is well behaved.

12.2.1 Differentiable-Like Functions

Theorem 12.2.1
Suppose f ∈ L1(T) is differentiable at a ∈ T.
Then

Sn(f)(a) → f(a).

Proof
Use the trick that

∫
Dn = 1 to write

|Sn(f)(a)− f(a)| =
∣∣∣∣ 12π

∫
T
f(a− t)Dn(t)dt− f(a)

∣∣∣∣
=

∣∣∣∣ 12π
∫
T
[f(a− t)− f(a)]Dn(t)dt

∣∣∣∣
=

∣∣∣∣ 12π
∫
T

f(a− t)− f(a)

sin t/2
sin(n+ 1/2)tdt

∣∣∣∣
Observe that t→ 0 gives

g(t) :=
f(a− t)− f(a)

sin t/2
=
f(a− t)− f(a)

t
· t

sin t/2
→ −f ′(a) · 2.

Thus we can pick δ > 0 sufficiently so that

|t| ≤ δ =⇒ |g(t)| ≤ 2|f ′(a)|+ 1.
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But then

1

2π

∫
T
|g| = 1

2π

∫
[−δ,δ]

|g|+ 1

2π

∫ 2π−δ

δ

|g|

≤ 2δ(2|f ′(a)|+ 1)

2π
+

1

2π

∫ 2π−δ

δ

∣∣∣∣f(a− t)− f(a)

sin t/2

∣∣∣∣
≤ C1 +

1

2π
· 1

sin δ/2

∫ 2π−δ

δ

|f(a− t)|+ |f(a)|dt

≤ C1 + C2(‖f‖1 + |f(a)|)
<∞.

Thus g ∈ L1 and the Riemann-Lebesgue lemma implies∫
T
g(t) sin(n+ 1/2)tdt→ 0

as n→ ∞.

It follows that
|Sn(f)(a)− f(a)| → 0.

Corollary 12.2.1.1
Suppose f ∈ L1(T) is constant on some open interval I, say f

∣∣
I
= c.

Then
Sn(f)(x) → c

for all x ∈ I.

Definition 12.2.1 (Lipschitz Condition)
We say f satisfies a Lipschitz condition of order α ≥ 0 at the point a if there is a
constant c and δ > 0 such that if |t| ≤ δ, then

|f(a− t)− f(a)| ≤ c|t|α.

We write

f ∈ Lipα

for short.

For α = 0, it is only required that f is bounded near a.

If f ∈ Lipα for α > 0, then f is continuous at α.
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Proposition 12.2.2
If f is differentiable at a, then

f ∈ Lip 1

at a.

Proof
By definition

lim
t→0

|f(a− t)− f(a)|
|t|

= |f ′(a)|.

Thus there is some δ > 0 such that for all |t| ≤ δ

|f(a− t)− f(a)| ≤ |t|(|f ′(a)|+ 1).

Proposition 12.2.3
If I is an open interval and f : I → R such that

f ∈ Lipα

for α > 1 at each a ∈ I, then f is constant on I.

Proof
f ∈ Lipα for α > 0 implies differentiability.

Observe that if f ∈ Lipα for some α > 0

|g(t)| =
∣∣∣∣f(a− t)− f(a)

t
· t

sin t/2

∣∣∣∣
≤ C

|t|α

|t|

∣∣∣∣ t

sin t/2

∣∣∣∣
≤ C1|t|α−1.

Thus choosing a suitable t allows us to split the integral and show g ∈ L1.

Proposition 12.2.4
If f ∈ L1 and f ∈ Lipα for some α > 0,

Sn(f)(a) → f(a).
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Definition 12.2.2 (Right/Left Hand Derivative)
We say f has a right hand derivative at a if

lim
t→0+

f(a+ t)− f(a+)

t

exists.
Here

f(a+) := lim
t→0+

f(a+ t).

A piecewise differentiable function has left and right hand derivatives.

Proposition 12.2.5
If f ∈ L1 is continuous at a and has a right and left hand derivative at a, then

Sn(f)(a) → f(a).

Proof
We have

f ∈ Lip 1

at a.

12.2.2 Discontinuous Functions

Theorem 12.2.6 (Fejér)
Let f be integrable. Fix a ∈ T and assume

lim
t→0+

f(a+ t) + f(a− t)

2
=: L

exists.
Then

σn(f)(a) → L.
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Proof
Remark that Fn is an even function, thus we have

σn(f)(a) =
1

2π

∫ π

0

f(a− t)Fn(t)dt+
1

2π

∫ 0

−π

f(a− t)Fn(t)dt

=
1

π

∫ π

0

f(a− t)Fn(t)ddt.

Similarly
1 =

1

2π

∫ π

−π

Fn(t)dt =
1

π

∫ π

0

Fn(t)dt.

Fix ε > 0, there is some δ > 0 such that 0 < t < δ implies∣∣∣∣f(a− t) + f(a+ t)

2
− L

∣∣∣∣ < ε.

Write

|σn(f)(a)− L| =
∣∣∣∣ 12π

∫ π

0

(f(a− t) + f(a+ t))Fn(t)dt−
L

π

∫ π

0

Fn(t)dt

∣∣∣∣
≤ 1

π

∣∣∣∣∫ π

0

(
f(a− t) + f(a+ t)

2
− L

)
Fn(t)dt

∣∣∣∣
≤
∫ δ

0

· · ·+
∫ π

δ

. . .

:= I + J.

It is clear that
I ≤ 1

π

∫ δ

0

εFn(t)dt ≤ ε.

To bound J observe that for δ ≤ t ≤ π

Fn(t) =
1

n+ 1

(
sin(n+ 1)t/2

sin t/2

)2

≤ 1

n+ 1
· 1

sin2 δ/2
.

Thus there is some constant C such that

J ≤ 1

π(n+ 1) sin2 δ/2

∫ π

δ

∣∣∣∣f(a− t) + f(a+ t)

2
− L

∣∣∣∣
≤ C

n+ 1
(‖f‖1 + |L|)

< ε

for n sufficiently large.

The result follows by the arbitrary choice of ε.
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Corollary 12.2.6.1
If f is continuous at a, then

σn(f)(a) → f(a).

Corollary 12.2.6.2
If

lim
t→0+

f(a+ t) = f(a+)

and
lim
t→0−

f(a+ t) = f(a−)

exist, then

L :=
f(a+) + f(a−)

2

and
σn(f)(a) → L.

Observe that if f has a jump discontinuity at a, then σn(f)(a) converges to the “average of
the jump discontinuity”.

Corollary 12.2.6.3
If f is increasing, then

σn(f)(a) →
f(a+) + f(a−)

2
.

Corollary 12.2.6.4
Suppose f ∈ L1(T) is either continuous at a or has a jump discontinuity at a.
If (Sn(f)(a))n converges, then

Sn(f)(a) →
f(a+) + f(a−)

2
.

Here are some results ensuring the convergence of (Sn(f)(a))n.

Theorem 12.2.7 (Jordan)
Suppose f is integrable, has a jump discontinuity at a, and there are constants c and
δ > 0 such that

|f(a+ t)− f(a+)|, |f(a− t)− f(a−)| ≤ c|t|

for all 0 < t < δ.
Then

Sn(f)(a) →
f(a+) + f(a−)

2
.
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This can be shown using the Riemann-Lebesgue lemma in the same spirit as previous proofs.

Theorem 12.2.8 (Hardy Tauberian)
Let f be integrable and assume there is a constant c such that∣∣∣f̂(n)∣∣∣ ≤ c

|n|

for all n 6= 0.
The sequence

(Sn(f)(a))n

converges if and only if the sequence

(σn(f)(a))n

converges.
Furthermore, if (σn(f))n converges on some interval, so does (Sn(f))n.

12.3 Pointwise Convergence within Lp

We now prove the remarkable fact that the Fourier series of an Lp function converges in Lp

norm for every 1 < p <∞.

12.3.1 The Hilbert Transform

Definition 12.3.1 (Hilbert Transform)
The Hilbert transform H : Trig(T) → Trig(T) acts on the trigonometric polynomial
f such that

Ĥ(f)(n) = (−i) sgn(n)f̂(n).

Observe that Hf is the trig polynomial of the same degree as f given by

Hf(t) :=
−1∑

j=−∞

if̂(j)eijt +
∞∑
i=1

−if̂(j)eijt.

Since computing Fourier coefficients is a linear operation, so is the Hilbert transform.
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Proposition 12.3.1
We have

f + iHf = f̂(0) + 2
∞∑
j=1

f̂(j)eijt.

There is a natural extension of H to a linear operator on L2 with Parseval’s theorem implying

‖Hf‖2 ≤ ‖f‖

with equality if f̂(0) = 0. This us because the Fourier series of an L2 function is square-
summable. Thus H : L2 → L2 is a bounded map.

Remark that

eiNtf(t) = eiNt

∞∑
j=−∞

f̂(j)eijt

=
∞∑

j=−∞

f̂(j)ei(j+N)t

=
∞∑

j=−∞

f̂(j −N)eijt.

This yields the equality

H(eiNtf) =
−1∑

j=−∞

if̂(j −N)eijt +
∞∑
j=1

−if̂(j −N)eijt.

Similarly,

e−iNtH(eiNtf) =
−N−1∑
j=−∞

if̂(j)eijt +
∞∑

j=−N+1

−if̂(j)eijt

eiNtH(e−iNtf) =
N−1∑
j=−∞

if̂(j)eijt +
∞∑

j=N+1

−if̂(j)eijt.

Hence

SN−1(f) =
−1

2i

(
−

N−1∑
−N

if̂(j)eijt −
N∑

j=−N+1

if̂(j)eijt + if̂(N)eiNt + if̂(−N)e−iNt

)

=
−1

2i

(
e−iNtH(eiNtf)− eiNtH(e−iNtf)

)
+

−1

2i

(
if̂(N)eiNt + if̂(−N)e−iNt

)
.
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For all functions F , ‖eiNtF‖p = ‖F‖p. Thus assuming H : Lp → Lp is a bounded operator,

‖SN−1(f)‖p ≤
1

2

(
‖eiNtH(eiNtf)‖p + ‖eiNtH(e−iNtf)‖p

)
+
∣∣∣f̂(N)

∣∣∣+ ∣∣∣f̂(−N)
∣∣∣

≤ 1

2
(2‖H‖op‖f‖p + 2‖f‖p)

≤ (1 + ‖H‖op)‖f‖p.

This is relevant due to the following lemma.

Lemma 12.3.2
‖SN(f)− f‖p → 0 for all f ∈ Lp if and only if there is some C such that

‖SN(f)‖p ≤ C‖f‖p

for all N and f ∈ Lp.

Proof
( =⇒ ) If ‖SN(f)− f‖p → 0, then for each f ∈ Lp we have

sup
N

‖Sn(f)‖p <∞.

By the uniform boundedness principle, there we have

C := sup
N

‖SN‖op <∞.

Thus
‖SN(f)‖p ≤ C‖f‖p

for every N and f ∈ Lp as desired.

( ⇐= ) Suppose now that there is some

‖SN(f)‖p ≤ C‖f‖p

for all N, f .

We have

‖SN(f)− f‖p ≤ ‖SN(f)− SN(FN ∗ f)‖p + ‖SN(FN ∗ f)− f‖p
≤ ‖SN(f − FN ∗ f)‖p + ‖FN ∗ f − f‖p degFN ∗ f = N

≤ C‖f − FN ∗ f‖p + ‖FN ∗ f − f‖p
≤ (C + 1)‖FN ∗ f − f‖p → 0. N → ∞

Here the limit is justified as FN is a summability kernel.
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Corollary 12.3.2.1
If H : Lp → Lp is a bounded operator on Lp, then SN(f) → f in Lp norm for all f ∈ Lp.

12.3.2 p is an Even Integer

Note that as L2k ⊆ L2 for all k ≥ 1, the action Hf is defined for f ∈ L2k.

Theorem 12.3.3
Let k ∈ N. There is a constant Ck such that

‖Hf‖2k ≤ Ck‖f‖2k

for all f ∈ L2k.

Proof
By taking g(x) := f(x)− f̂(0) if necessary, we may assume without loss of generality that

f̂(0) = 0.

Notice that Hg = Hf since ĝ(n) = f̂(n) for all n 6= 0. Moreover, ‖g‖p ≤ 2‖f‖p.

There is also no loss in assuming f is real-valued, since if the result holds for the real-
valued functions,

‖H(Re f + i Im f)‖p ≤ ‖H Re f‖p + ‖H Im f‖p
≤ Ck(‖Re f‖p + ‖Im f‖p)
≤ 2Ck‖|f |‖p
= 2Ck‖f‖p.

Recall that ˆ̄f(n) = f̂(−n). Hence for f real-valued, we have f̂(n) = f̂(−n).

From the definition of H, we have

Hf :=
∞∑
j=1

if̂(j)eijt +
∞∑
j=1

−if̂(j)eijt

= 2Re

(
∞∑
j=1

−if̂(j)eijt
)

so Hf is real.
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Recall also that we computed

f + iHf = 2
∞∑
j=1

f̂(j)eijt.

Since all coefficients in this sum are positive, the product

(f + iHf)2k

does not contain the term f̂(0). Taking powers of infinite series is justified here through
through the convergence of the Fourier series.

It follows that ∫
T
(f + iHf)2k = 0

= Re

∫
T
(f + iHf)2k

=

∫
T
Re(f + iHf)2k.

The binomial expansion yields

(f ++iHf)2k =
2k∑
n=0

(
2k

n

)
fn(iHf)2k−n.

So

Re(f + iHf)2k =
k∑

m=0

(
2k

2m

)
f 2m(i)2k−2m(Hf)2k−2m

=
k∑

m=0

(
2k

2m

)
f 2m(−1)k−m(Hf)2k−2m.

Since
∫
R Re(f + iHf)2k = 0, we must have∫ k∑

m=1

(
2k

2m

)
f 2m(−1)2k−2m(Hf)2k−2m = (−1)k−1

∫
(Hf)2k.

But Hf is real so ∫
(Hf)2k =

∫
|Hf |2k

≤
∫ k∑

m=1

(
2k

2m

)
|f |2m|Hf |2k−2m.
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Applying Hölder’s inequality with p = 2k
2m

and dual index q = 2k
2k−2m

and applying standard
computations

‖Hf‖2k2k ≤
k∑

m=1

(
2k

2m

)
‖f‖2m2k ‖Hf‖2k−2m

2k .

Dividing through by ‖f‖2k2k yields(
‖Hf‖2k
‖f‖2k

)2k

≤
k∑

m=1

(
2k

2m

)(
‖Hf‖2k
‖f‖2k

)2k−2m

.

Put
Rk :=

‖Hf‖2k
‖f‖2k

so that we can view this as

R2k
k ≤

k∑
m=1

(
2k

2m

)
R2k−2m

k .

If Rk ≤ 1, then we are done. Observe that any constant bounding Rk would be the desired
constant.

Otherwise,

R2k
k ≤ R2k−2

k

k∑
m=1

(
2k

2m

)
R2k−2m

k ≤ R2k−2
k

≤ 22kR2k−2
k .

Thus
R2

k ≤ 22k.

Observe that this is independent of the choice of f . Taking square roots yields the desired
result.

12.3.3 1 < p <∞

Let us now extend the result to all 1 < p <∞.
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Proposition 12.3.4
For any p <∞, constant C, and F ∈ Lp,

m{|f | > C} ≤
‖F‖pp
Cp

.

Proposition 12.3.5
For all p <∞

‖f‖pp = p

∫ ∞

0

tp−1m{|f | > t}dt.

Proof
Fubini’s Theorem.

Theorem 12.3.6
For every 1 < p <∞, there is a constant C such that

‖Hf‖p ≤ Cp‖f‖p

for all f ∈ Lp.

Proof
We have already done the proof for positive even integers.

Case I: p > 2 Pick an integer k such that p < 2k. Let f ∈ Lp. For α > 0, define

fα(x) :=

{
f(x) |f(x)| ≥ α

2

0, else
.

as well as
fα(x) := f − fα.

We have

‖fα‖2k2k =
∫

|fα|2k

=

∫
{|f |<α/2}

|f |2k−p|f |p

≤
(α
2

)2k−p

‖f‖pp
<∞.
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as well as

‖fα‖22 =
∫
{|f |≥α/2}

|f |2−p|f |p

≤
(α
2

)2−p

‖f‖pp 2− p < 0

<∞.

We know that H : L2k → L2k is a bounded operator, hence a previous proposition shows

m{|Hfα| > α/2} ≤ ‖Hfα‖22
(α/2)2k

≤ Ck

α2k
‖fα‖2k2k.

Similarly

m{|Hfα| > α/2} ≤ ‖Hfα‖22
(α/2)2

≤ C

α2
‖fα‖22.

Put

Eα := {|Hf | > α}
E1,α := {|Hfα| > α/2}
E2,α := {|Hfα| > α/2}.

Then Eα ⊆ E1,α ∪ E2,α so that mEα ≤ mE1,α +mE2,α.

Another previous proposition shows that

‖Hf‖pp = p

∫ ∞

0

αp−1mEαdα

≤ p

∫ ∞

0

αp−1

(
Ck

α2k
‖fα‖2k2k +

C

α2
‖fα‖22

)
. mE1,α + E2,α

An application of Fubini’s theorem shows

p

∫ ∞

0

αp−1 Ck

α2k
‖fα‖2k2kdα = C(p)

∫ ∞

0

αp−1−2k

(∫
T
|fα(x)|2kdm

)
dα

= C(p)

∫ ∞

0

αp−1−2k

(∫
{|f |≤α/2}

|fα(x)|2kdm
)
dα

= C(p)

∫
T
|f |2k

(∫ ∞

2|f(x)|
αp−1−2kdα

)
dm. (∗)

= C(p)

∫
T
|f |2k

(
αp−2k

p− 2k

∣∣∣∣∞
2|f(x)|

)
dm

140



©Fel
ix

Zh
ou

(∗) Here we fix x and integrate over α then integrate over x.

Since p < 2k, evaluating the inner integral yields

p

∫ ∞

0

αp−1 Ck

α2k
‖fα‖2k2k ≤ C1(p)

∫
T
|f |2k+p−2k = C1(p)‖f‖pp.

Here C1(p) is a new constant depending only on p.

A similar argument shows that

p

∫ ∞

0

αp−1 C

α2
‖fα‖22 ≤ C2(p)‖f‖pp

and therefore
‖Hf‖pp ≤ C(p)‖f‖pp.

This shows the result for p > 2. To see the result for 1 < p < 2, we rely upon another
result from Functional Analysis.

We can define a bounded linear operator H∗ : Lp → Lp by the rule that H∗f is the
function with the property that ∫

H∗fḡ =

∫
fHg

for all q ∈ Lq where q is the dual index to p.

Moreover, the operator norm of H∗ coincides with the operator norm of H when viewed
as a map Lq → Lq. The latter is bounded since 1 < p < 2 implies 2 < q <∞.

For all trigonometric polynomials f, g, Parseval’s theorem gives∫
−Hfḡ =

∑
n

−̂Hf(n)ḡ(n)

=
∑
n

i · sgn(n)f̂(n)ĝ(n)

=
∑
n

f̂(n)(−i) sgn(n)ĝ(n)

=
∑
n

f̂(n)Ĥg(n)

=

∫
fHg.

It follows that
H∗ = −H

and ‖−H‖op = ‖H‖op <∞.
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The Hilbert transform is an important operator used in the study of many problems of
Fourier analysis.

Corollary 12.3.6.1
For every 1 < p <∞,

SN(f) → f

in Lp for all f ∈ Lp.
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