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2 The Axiom of Choice, Zorn’s Lemma, and Cardinal-

ity

2.1 Notation

Definition 2.1.1 (N)
The Natural Numbers NOT including 0

Definition 2.1.2 (Z)
The Integers

Definition 2.1.3 (Q)
The Rationals

Definition 2.1.4 (R)
The Reals

Definition 2.1.5 (subset)
For sets A, B we say A is a subset of B and write A C B if

a€A = ach

Definition 2.1.6 (strict subset)
We write A C B if
ACBANA#B

We will use the subset notation for most of this class and explicitly stating that A # B if

we require a strict subset.

Definition 2.1.7 (Power Set)

P(X) ={AlA c X}




Definition 2.1.8 (Union)

AUB={z|lr € AVz € B}

In general,

U Aa = {z[30,2 € A}

ael

Definition 2.1.9 (Intersection)

ANB={z|lr € ANz € B}

In general,

[) Ao = {z]Vo,z € A}

ael

Definition 2.1.10 (Complement)
Let A, B be sets, then
A\ B ={a€ Ala ¢ B}

Note that if B C A then
A\ B=A°

is the complement of A in B.

Theorem 2.1.1 (DeMorgan’s Law)

(UAa)c o

acl acl
(ﬂ AQ) = J ()
aecl acl

Proof
This follows from definition. If a is in the complement of a union of sets A,, then a ¢ A,
for all a.



Similarly, if a is in the complement of the intersection of sets A,, then a € A, for some
a.

2.2 Products and the Axiom of Choice

Definition 2.2.1 (Cartesian Product)
For sets X7, ..., X, define their (Cartesian) Product by

X1 X ...,Xn:HXZ':{(ZL‘l,...,l‘n|l‘i GXZ)}
i=1

We write X™ for the n-th product of the same set X.

Definition 2.2.2 (Finite Cardinality)
For a finite set X let
x1=2 1

zeX

Theorem 2.2.1
Let {X;} be a finite collection of finite sets, then

’HXi = [ [1xil

How do we determine the product of arbitrary sets?

Note each (z;) € [] X; defines a function

Now, given f: [n] — |JX; and f(i) € X;, we can define (x;) € [[ X; by

Here, f is a choice function.



Definition 2.2.3 (Arbitrary Product)
For a collection of sets {X,},a € I, define

HXa:{f:I—> UXa]f(a)eXa}

acl ael

The definition above then begs the question whether for an arbitrary collection of sets

{Xo.},a€elis
[[X.=2

Axiom 2.2.1 (Zermelo’s Axiom of Choice)
For an arbitrary collection of sets {X,}, o € [

[[X.#2
The above is equivalent to the Axiom of Choice, stated below.

Axiom 2.2.2 (Axiom of Choice)
For any nonempty set X there is a function

fiPX)\ o> X

such that for ever @ # A C X, f(A) € A

2.3 Relations & Zorn’s Lemma

Definition 2.3.1 (Relation)
Given sets X,Y, A relation is a subset R C X x Y. We normally write xRy if
(z,y) € R.

If X =Y, we say R determines a relation on X.

Definition 2.3.2 (Reflexive)
A relation R on X, is reflective if
xRz

for all z € X.

10



Definition 2.3.3 (Symmetric)
A relation R on X, is symmetric if

TRy — yRx

for all z,y € X.

Definition 2.3.4 (Anti-Symmetric)
A relation R on X, is reflective if

TRyNyRr — x =y

for all z,y € X.

Definition 2.3.5 (Transitive)
A relation R on X, is reflective if

TRy NyRz — xRz

for all z,y,z € X.

Definition 2.3.6 (Partial Order)
A relation R on a set X is a partial order of X if it is
1. reflexive

2. anti-symmetric

3. transitive

We say (X, R) is a partially ordered set or poset for short.

Definition 2.3.7 (Total Order)
If in addition to the definition above, we have for all x,y € X

xRy V yRx

then R is said to be a total order.

11



Definition 2.3.8 (Upper Bound)
Let (X, <) be a poset, A C X.
We say x € X is an upper bound of A, if

yz,VyecA

We refer to a toally ordered set as a chain for short.

Definition 2.3.9 (Supremum, Least Upper Bound)
If in addition to the definition above, x < z for all upper bounds z, then x is the least
upper bound of A, or the supremum of A.

We denote the supremum z of a set A with sup(A) and if € A, then with max(A).

Definition 2.3.10 (Lower Bound)

Definition 2.3.11 (Infimum, Greatest Lower Bound)

We denote the infimum x of a set A with inf(A) and if x € A, then with min(A).

Axiom 2.3.1 (Least Upper Bound)
Let (R, <) be the canonical chain.
If A C R has an upper bound, it must have a supremum.

Definition 2.3.12 (Maximal)
Let (X, <) be a poset.
zr € X is maximal if
r<y = =y

Proposition 2.3.1
Any finite non-empty poset has a maximal element.

12



Axiom 2.3.2 (Zorn’s Lemma)

Let (X, <) be a non-empty poset.

If every totally ordered subset of X has an upper bound, then the poset has a maximal
element.

Zorn’s Lemma is logically equivalent to the Axiom of Choice!

Definition 2.3.13 (Basis)
Let V be a non-zero vector space. Note that (V, C) is a poset ordered by inclusion.
Let

L :={A C V|A is linearly independent}

then a basis is simply a maximal element of L

Theorem 2.3.2
Every nonempty vector space has a basis.

Proof
Let C = {A,|a € I} be a chain in L

Let

A::UAa

ael

We claim A is linearly independent.

Indeed, suppose z1,...,x, € A and 3; € R such that
Zﬁixi =0

Now, for every x;, there is some «; € I such that

x; € Aai

But since the A,,’s are part of a coset, there is some j such that

Vi, Ag, C A,

But since A,, is linearly independent, so are the z;’s as they are included inside our
maximal element.

Now by Zorn’s Lemma, every chain must have an upper bound, so vector by definition
has a basis!

13



Definition 2.3.14 (Well-Ordered)
A poset is well ordered if every non-empty subset has a least element.

Axiom 2.3.3 (Well-Ordering Principle)
Every set X has a partial order < such that (X, <) is well-ordered.

Theorem 2.3.3
TFAE:
1. The Axiom of Choice

2. Zorn’s Lemma

3. Well Ordering Principle

Proof (3 — 1)
We can define a choice function on the powerset by taking the least element.

2.4 Equivalence Relations & Cardinality

Definition 2.4.1 (Equivalence Relation)
A relation ~ on a set X is an equivalence relation if it is
1. reflexive

2. symmetric

3. transitive

Given some x € X, we define
[z] :={y € X[y ~ z}

to be its equivalence class, for which x is a representative of the equivalence class.

Proposition 2.4.1
1. no equivalence classes are empty

2. any two non equal equivalence classes are mutually exclusive

3. the union of all equivalence classes is the set itself

14



Definition 2.4.2 (Partition)
A parition of a set X is a collection

P:={A, C X|a €}
such that
1. Va, Ay, # @
2. a#£pel = A,NAB=0
3. X =JA.

Note that this means any equivalence relation induces a partition!

Definition 2.4.3 (Equivalence)
We say two sets X, Y are equivalent if they are bijective and write X ~ Y.

Proposition 2.4.2
[n] is not equivalent to any subset of itself.

Corollary 2.4.2.1
Any finite set is then not equivalent to any subset of itself.

Note that the above is simply a restatement of the Pigeonhole Principle!

Definition 2.4.4 (Countable)
A set X is countable if | X| < |NJ, else it is uncountable.

Proposition 2.4.3
Every infinite set contains a countably infinite subset.

Proof
Axiom of Choice

Corollary 2.4.3.1
A set is infinite if and only if it is equivalent to a proper subset of itself.

Proof
Define a function which maps the countably infinite subset to its neighbour one down,
elsewise acting as the identity.

15



Informally, if there is an injective function f : X — Y, we write

X[ =Y

Theorem 2.4.4 (Cantor-Schroeder-Bernstein)
LetAQQAlngzA.
If A~ AQ, then Ao s Al'

Proof
Assume that ¢ : Ag — A, is bijective.

We can recursively define

An+2 = ¢<An)

We then have a sequence of {A,} such that
A= (Ag\A)U A\ A)U---UAL

Where . .
A= (VA ={)Ax
n=0 n=1

Note that A3 = ¢(A;) C Ay, since ¢p(A;) C ¢(Ap) = As.
This continues as Ay = ¢(Ay) C As, since ¢(Az) C ¢(A1) = As, etc.
Define

M = U A2k \ A2k+1
k=0

M, = U A2k \ A2k+1
k=1

Define the odd sequence to be
N = U Aot \ Agpyo
k=0
and the odd sequence similarly.
Note

Ay=MUNUA,
A =My UNUA,

16



By construction, we have that

(Ak \ Ak+1) ~ (Ak+2 \ Ak+3)

This is due to ¢.

We can now define

f ZAO — Al
o(x), xeM
flz) =<z, reN
X, x € As

It remains to show that f is bijective. It is certainly bijective when evaluated with
restriction to the odd sequences and A.,, we essentially shift the even sequences one
down, with ¢ and that is a bijection, so we also have a bijection with restriction to the
even sequences.

It follows that f is bijective and we are done by definition.

Corollary 2.4.4.1
Let A CA B CB,A~ B B~ A then

A~DB

Proof
Let f: A— By,g: B — A; be bijective.
Let A2 =go f(A) = g(Bl>

By Cantor-Schroeder-Bernstein, we have A; ~ A as

AggAlgA/\AQNA

But A; ~ B so the result follows.
Corollary 2.4.4.2

If |X] < |Y],|Y] < |X], then | X| = [Y].
Proof

if [X| < |V], 3 CV, X ~ V5.
Similary, 3X; C XY ~ Xj.

17



| The result follows from the previous corollary.

Corollary 2.4.4.3
An infinite set X is countably infinite if and only if there is an injection

f:X—=N

Proof
Assume X is countably infinite, there is a bijection and therefore injection by definition.

Elsewise, suppose there is a desired f. By our work prior, there must be a countably
infinite subset X; C X.

Define g(n) = z,, € X; for n € N.

Then, note that

So by CSB, we have X ~ N.

Proposition 2.4.5
Suppose there is a surjection g : X — Y, then there must be an injection

f:Yy—X
Note that this means |Y| < | X].
Proof
For all y € Y, we must have
g ({yh) #2
Then, by the Axiom of Choice, there is a choice function
h:P(X)—X
We can define
fvy—-X

y — h(g({y}))

18



Theorem 2.4.6
0, 1] is uncountable.

Proof
Cantor’s Diagnalization Argument.

Corollary 2.4.6.1
R is uncountable.

Proof
There is a bijection between [0, 1] and R given by

s
T +—> tan(mc — 5)

Theorem 2.4.7 (Comparability of Cardinals)
Given two sets X, Y, either

(X =YV Y] =]X]

Proof
Define

S ={(A,B,f)JACX,BCY,f:A— B is a bijection}
We can order S by

(AlaBbf) S (AQ,BQ,Q) — Al g A27B1 S BQ7f =g
Aq

Let C' = (Aq, Ba, fa),@ € I be a chain in S.

A::UAO(,B::UBO(

Let

and define f : A — B by
f(@) = fa(z)

if v € A,.
Note that this is well defined, since all the f, are equivalent under restriction.

We now claim that f is bijective.

19



To see injection, suppose = # y € A, we can fine z € A,,y € Ag, we can further assume
A, C Ag, this means

f(@) = fa(z) = fa(2) # fs(y) = f(y)

To see surjection, note that any y € B = da,y € B,. But f, is bijective so we are
done.

But then (A, B, f) is an upper bound for C, which by Zorn’s Lemma implies there is a
maximal element

(Ao, Bo, fo)

If either Ay = X or By =Y, then we are done.
Suppose otherwise, we have xy € X \ Ag,y0 € Y \ By. But then
f1 2A1 =XU {IO} — Bl =Y U {yg}
e X
xH{ﬂ@’x

Yo, T = To

is bijective with
(Ao, Bo, fo) < (A1, By, f1)

contradicting the maximality of our original maximum element, so we are done.

2.5 Cardinal Arithmetic
2.5.1 Sums of Cardinals

Note that for two disjoint sets X, Y, we have

(X UY[=[X[+]Y]

Definition 2.5.1 (Sum of Cardinals)
Let X,Y be disjoint sets, then

| X|+|Y]:=|XUY]

By the above definition, we will get that
Ng+ Ny =Ng,c+c=c

we say such cardinal numbers are idepotent.

20



Lemma 2.5.1
Every infinite set X can be decomposed as a union of pair-wise disjoint, countably
infinite subsets.

Proof
Let D be the set of all families of pair-wise disjoint, countably infinite sets of X.

Define a partial order by includion.
Now, let C := {C,|a € I} be a chain in D.
We claim ¢ := |, C, is an upper bound for C.

Indeed, it certainly is composed of countably infinite subsets of X, so it suffices to prove
pair-wise disjointedness.

Let ¢g,c1 € €, we must have ¢y € Cy,, 1 € Cy,.

Since C is a chain we assume C,, C C,,, but then cy,c; € C,, € C, so they must be
pair-wise disjoint.

We may conclude by Zorn’s Lemma that there is a maximal element .# in D.
Now, we claim we can modify .# so that its union includes X.

consider S := X \ |J ..

Note that S cannot be infinite, or else it contradicts maximality of .Z .

But any finite (or empty) set can be added to any element of .# and maintain countable
infiniteness.

This concludes the proof.

Lemma 2.5.2
Let X be an infinite set.
| X +]X] = [X]

Proof
Decompose X = |J.#, a family of countably infinite subsets of X.

We can then decompose each of these subsets into countably infinite subsets again by

21



enumerating them and taking the odd / even numbers for example. Indeed, we have

U2 = J{Cala € 1}
= | J{{caili € N}a € I}
=21 = J{caili € Nyiis odd}|a € I} U| | 2 = | J{{ca.li € N,i is even}|a € T}

We claim | X| = | 21| = |J 2| and it suffices to show the first equality.
Since |J #; C X, one side is trivial.

The other side consists of essentially showing that we can send the naturals to the odds,
which is trivial. Define the injection

h:X—)ngl

Cayi F7 Ca2i+1

Now we have

|X|:‘Uc@1

+’U%

= [X]+ [ X]

Theorem 2.5.3
If X is infinite, then we have

[ X[+ Y] = max{| X[, [Y]}

Proof
We have

max{[X|, [Y[} <[X]+[V] < max{[X], [Y]} + max{[X], [Y|} = max{| X[, [Y]}

By Cantor-Schroeder-Bernstein, the result follows.

2.5.2 Product of Cardinals

Definition 2.5.2
Let X,Y be sets
[ X|- Y] :=]|X xY]

22



Lemma 2.5.4
If A is an infinite set, then

A - 1Al = [A]

Proof
Let |A| = «
F={(X,/)|IX CA,f: X — X is a bijection}

with a partial order of

(X1, f1) < (Xo, o) <= X1 C Xy, fol =1

X1

Note that this is similar to the case of Comparability of Cardinals and we can also derive
a maximal element (Y g) using similar ways.

Now, |Y| = |Y]|-|Y], so we need only show that ¥ = A.
Suppose otherwise, we must have
Al = Y|+ [A\Y]

with |Y| < |A] = |A|=]4A\Y].

It follows that 37 C A\ Y with |Z| = |Y|.

So, the Cartesian Products below must be pair-wise disjoint!

(Y x Z2)U(ZxY)U(ZXxZ)|=|Y X Z|+|ZxY|+|Z x Z]

= Y- Y[+ Y- Y[+ Y] [Y]
= Y]
= 12|

This means there must be a bijection h: Z — (Y x Z)U(Z xY)U(Z x Z).

Define
m:YUZ—(YUZ)x (YUZ)

s g(x), ze€Y
h(z), ze€Z

But then m is a bijection so
Y.g)<s(YUZm)eF
which is a contradiction.

This terminates the proof.

23



Theorem 2.5.5
Let X,Y be infinite sets
| X[ - Y] = max{| X[, [Y]}

Proof
Define o := max{|X]|, |Y|}.

We certainly have
IX|-Y|<a-a=«

Conversely
a <X x Y| =|xX]-|Y]

so we are done.

2.5.3 Exponentiation of Cardinals

Recall that

zeX zeX

By fixing a certain Y, we can define

HYx::{f:X—> U Ylf@) ey,

}

Definition 2.5.3

Y¥X=J[y={f: x>V}

zeX

This naturally leads to the following definition

Definition 2.5.4
Let X,Y # &, we have
Y| = |v¥|

Theorem 2.5.6
Let X,Y, 7 # @&, then
1. |y|IXI ) |y|lZ| - |Y|IX|+|Z|

2 (V) =

24



Let A C X be arbitrary.

Definition 2.5.5 (Characteristic Function)

(2) = 1, z€A
AU 0, ¢ A

Note that the characteristic function is a choice function! Also note the following bijection
I:P(X)— {0,1}*
A— X A

This tells us that
P(X)| =2

We now show that the powerset is always greater than the set itself.

Theorem 2.5.7 (Russel’s Paradox)
For any set X
X < P(X)

Proof
Since we know the cardinals are comparable, it suffices to show that there are not surjec-
tions

X = P(X)
Suppose otherwise and let f be such a function. In addition, define

A=A{re X[z ¢ f(z)}

Since A is a subset of X, there must be some zy € X, f(x¢) = A.

But xg cannot be in A or else it would not be in A by the definition of A, nor can it not
be in A, or else it would be in A be the definition of A.

We have arrived at the desired contradiction and conclude the proof.

This shows us that Ny < c.

We now ask if there can be a set with cardinality in between the natural numbers and the
reals. This is not derivable from standard set theory so we instead include the following
axioms which are independent of but consistent with the previously introduced axioms.

25



Axiom 2.5.1 (Continuum Hypothesis)
If Xy < |X| <X ¢, then
|1 X]| =R VI|X|=c¢c

Axiom 2.5.2 (Generalized Continuum Hypothesis)
If | X| < |Y| < 2X] then
Y] = x| v [v] = 2

26



3 Normed Vector Spaces & Metric Spaces

3.1 Definitions & Basic Results

Definition 3.1.1 (Norm)
Let V be a vector space over {R,C}. A norm on V is a function

Il : V=R

which satisfies the following properties:
1. Vo € V,||v|| > 0 and |jv|]| =0 <= v =0 (positive definite)
2. Yo € V,a € R, ||av|| = |al||v]| (positive homogeneity)
3. Yo,w €V, ||lv+wl| < |v|| + ||w|| (triangle inequality)

Note if the first condition fails but the rest hold, it is called a seminorm.

The pair (V, ||-||) is a normed vector (linear) space.

Example 3.1.1
The Euclidean Norm on R”, C"

Example 3.1.2
Inner Product Spaces V' with Inner Product (-, -) induces a norm

[v]l2 == v/ (v, v)

Proof
positive definite, homogeneity are trivial.

To see the triangle inequality note that by the Cauchy Schwarz Inequality (|(u,v)| <

lulllfoll)

lu+v||* = (u+v,u+v)
= (u,u) + (U, v) + (v,u) + (v, v)
= (u,u) + 2Re({u,v)) + (v, v)
< lull? + 2[uf o]l + (o]

<|
= (Jlull + lloll)*

Example 3.1.3
If X C R" is closed and bounded, C(X), Cr(X) are the spaces of continuous C, R-valued
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functions with norm
[ flloo = supl|f(z)| < oo
reX

by the Extreme Value Theorem.

Example 3.1.4
If X € R", Cy(X) is the space of bounded continuous functions, ||-||~ is a norm

Example 3.1.5
2]l := Z?:l‘xzy on R™, C" is a norm

Theorem 3.1.6 (Minkowski’s Inequality)
Let 1 < p < oo and 21—7 &= % = 1. Then for all f, g € C([a,b]), we have

([l gxt)'pdt); <([v (”‘pdt); + (/ablfu)m);

with equality if and only if f, g lie on a ray.

Lemma 3.1.7
The polynomial ¢(x) = z? is convex for p > 1,z > 0 and strictly convex for p > 2

Proof

¢'(z) = pa? !

@(z)=pp—1)aP? > 0
7 (x) =plp— 1)z >

>if p > 2
Proof (Minkowski’s Inequality II, inequality)
Let f,g € LP(—00,00).
If f=0or g=0, then the result is trivial.

Elsewise, let

A= ||f||p >0
B:=|gll, >0

Define fo = f/A, 90 = g/B.
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Note that || foll, = Ilgoll, and

f+g _ Afo n By
A+ B A+ B A+ B

Now by convexity

If+gl\"_ 1 P
<A+B)"m+3y/”+m

A, B
“JlAarB T ax B
—— =

t 1-t
A
< P
< [rplhr+
A
<
~ A+ B
=1

p

/ol + lg0ll7

A+ B

7+l _
A+ B —
_ Alfolls , Bllgolls
A+ B A+ B

_ Al gl
A+B A+B

I1f+glle < 1 fllp+ llglls

Proof (Minkowski’s Inequality, Equality)
Consider the following line from the proof above

p

/ A fo+ b </‘/4|fV+ b |90[”
A+B T AxBP =) ax ol Ty g
|

t 1-t

By strict convexity, if fo! = go, then the inequality would also become strict.
This means that for equality to happen we must have

| fo(z)] = |go(x)| Asgn fo(x) = sgngo(z) = fo = go

But fo=g0 = f:%g€R+f'
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So we have equality if and only if one of f, g is the zero function, else if g € R, f.

Corollary 3.1.7.1
Minkowski’s Inequality = Minkowski’s Inequality for sequences

Proof
We will show that there is a linear map (isometry) 7" : [, — LP(R) such that

IT{xn o = [{zn} Iy

Note that the two norms are different and respectively for their normed vector spaces.

First, define ¢ : [0, 1] — R continuous such that ||¢||, = 1. Then, define ¢(0) = p(1) = 0.

Next, define ¢ to be linear with positive slope from [0, 2] and linear with negative slope

)
from (3, 1].

Define T : [, — LP(R)
(Ta)(t) = ) zaplt —n)

and note that (Tx)(t) is zero if t € N and elsewise nonzero only on (|¢],[t]). We are

essentially scaling ¢ up to the size of each element in the sequence x,, over the inverval
(n,n+1).

Then we have

(e, = [ et )| da

= lzal”llo(t — n)|bdx
n=0

= (l=ll»)?

Definition 3.1.2
Let (X, [|||x), (Y, ||I|ly) be normed linear spaces.
Let T': X — Y be linear.
Define
1T = sup{[|T(2)l[y[z € X, ||zl x <1}

We say that T is bounded if ||T']| < oo
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Definition 3.1.3 (Metric)
Let X be a set. A metric on X is a function

d: X xX —-R

which fulfills the following properties:
1. d(z,y) > 0forall z,y € X and d(z,y) =0 <= z =1y

2. d(z,y) = d(y,x) for all z,y € X (symmetry)
3. d(z,y) < d(x,z)+d(z,y) for all x,y, 2z € X (triangle inequality)

We say that the pair (X, d) is a metric space.

Example 3.1.8
Any normed vector space induces a metric space through the metric
dy(z,y) = llz —yll

Some of the most important metric spaces are vector spaces with abstract distance functions.

Example 3.1.9 (Discrete Metric)
Let X be any set and define

1, 2=y
ﬂ%wZ{O rty

Example 3.1.10 (Hamming Metric)
Let X = P([n]) for two subsets, define

d(A, B) = |AAB|
=[(AUB)\ (AN B)|

Proof

properties 1, 2 are trivial. We only need to show the triangle inequality.

To do this we claim

AAC C (AAB) U (BAC)
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Note that we can decompose A, B, C' into disjoint sets

A\ (BUC) (1)
B\ (AuQ) (2)
C\ (AUB) (3)
(ANB)\ C (4)
(BNCO)\ A (5)
(ANC)\ B (6)
ANnBNC (7)

Note that
ANC = J{(1),(3),(4), (5)}

which is a subset of
(AAB)U (BAC) = | J{(1),(2),(3),(4), (5)}

note that we actually count (3) twice in the actual computation of the Hamming Metric
but it suffices to show that even adding it once would fufill the example.

Example 3.1.11 (Geodesic Distance)
Consider X = S? or the surface of a ball in R3

then d(x,y) = shortest path from = — y is a metric.

Example 3.1.12 (Hadamard Distance)

Example 3.1.13 (Hausdorf Metric)
Fix a closed subset Y C R"

Let 22 (Y) be the set of closed and bounded (compact) subsets of Y.
Forae Ae #(Y),B € #(Y) define
(0, B) = jnfla b = la — bo|
for some by € B due to compactness.
then dg : H(Y) x (YY) - R
dy(A, B) = max{sup d(a, B),sup d(b, A)}
acA beB

is a metric.

32



Proof (1)
Suppose dy(A,B) = 0, if a € A, 3{b,} C B,b, — a. This means that a € B by
closedness, and similarly for b € B.

This shows that A = B

Proof (2)
trivial

Proof (3)
Let A,B,C € J(Y) take a € A,b € B then

A(a,C) = inf o — c|
< - -
< inf (o — b + 16 )

= [la = bl + d(b, C)
< [la =] +d(B,C)

= d(a,B)d(B,C')

<d(A,B)+d(B,C)

supd(a,C) S d(A,B) +d(B,C)

a€A

supd(c, A) < d(A,B)+d(B,C) vice versa
ceC

(A, C) _ d(A, B) + d(B,C)

Example 3.1.14 (p-adic distance)
Let p € Z be prime, we will “put” a norm ||-||, on Q as follows:

Define ||0]|, = 0, else ||z||, = p~* where

T = pag,r, s,a € Z,ged(r,p) = 1,ged(s,p) =1

the metric is then
dp(a:,y) = Hx - pr
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Proof
The first two conditions are trivial, we need only prove the triangle inequality. We actually
claim that

dp(xa y) S max{dp(x, 2)7 dp(za y)}
Suppose x,y € Q with both non-zero, otherwise the proof is trivial.

T u
T=py = p”;m s,u,v,a,b € Z,ged(a, p) = 1, € {r, s,u,v}

Suppose without loss of generality that a < b so that

o (T b U “ rv—pb*asu
R ) B G

b

If a < b then consider rv — p°~%su = rv mod p. It follows that

dy(z,y) = p~* = ||zl = d(z,0)

Suppose elsewise that a = b, then there is some ¢ > 0 such that
rv — su = pw, ged(w, p) =1

Then
dp(z,y) =p < p* =z, = d(x,0)

If 2 € Q then

dp(z,y) = |z — yll,
=llz—2—=(—2)lp
:dp(ZE—Zay_Z)
< max{|lz — 2|, |y — 2|}

= max{dy,(z, 2),dp(y, 2)}
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4 'Topology

4.1 Topology of Metric Spaces

Definition 4.1.1 (Open Ball)

Let (X, d) be a metric space.

Let g € X, e > 0.

The open ball of radius € centered around xg is the set

B(zo,€) = {z € X|d(x,x) < €}

We can also write b,(z) for open ball.

Let (X, d) be a metric space.
Let g € X, e > 0.
The closed ball of radius € centered around zq is the set

Blxo, €] :={z € X|d(zo,z) < €}

We can also write b<,(x) for closed ball.

Definition 4.1.3 (Open)
We say U C X is open if every € X has a ball B(z,¢) € X for some ¢ > 0

Definition 4.1.4 (Closed)
We say C' C X is closed if C is open.

Definition 4.1.5 (Neighbourhood)
Let (X, d) be a metric space and = € X.
N C X is a a neighbourhood of z if x € int(N)

Definition 4.1.2 (Closed Ball) ‘

Note that a neighbourhood is not necessarily open but contains an open ball around single
point.

Proposition 4.1.1
b,(x) C (X, d) is open.

35



Proof
For any point y € b,(x)
br—d(ac,y) (y> - bT(x)

(triangle inequality)

Proposition 4.1.2
b<.(z) C (X,d) is closed.

Proof
We show the complement is open.

Note (b<,(x))¢ :={y € X|d(z,y) > r}.

For any y in the complement
ba(ay)—r < (b<r(2))"

Example 4.1.3
{(z,y) € R*|zy > 1} is open.

{(z,y) € R*|zy > 1} is closed.

Example 4.1.4
Consider (N, d), a metric space with the 2-adic metric.

0, n=m
278 n—m=22 /i

da(n,m) = {

by-r(n) = {m:d(n,m) < 27%}
= {m :d(n,m) < 27%}
= {m: 2""|m —n}

=n+2"'ZNN

Proposition 4.1.5
Let (X, d) be a metric space
1. X, o are open

2. If {U,|c € I} is an arbitrary collection of subsets of X, |, U, is open
3. If {U;]i € [n]} is a finite collection of subsets of X, [, U; is open
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Proposition 4.1.6
Let (X, d) be a metric space
1. X, are closed

2. If {U,|a € I} is an arbitrary collection of subsets of X, (1, U, is closed
3. If {U;]i € [n]} is a finite collection of subsets of X, |, U; is closed

Definition 4.1.6 (Topology)
A topology on a set X is a collection of sets 7 C X such that
1. X,oer

2. {Upetlael} = U, UaeT
3. {Uierlien]} = NiguUieT

We say the elements of 7 are 7-open sets or just open sets.
We call the pair (X, 7) a topological space.
If (X, 7) is a topological space, let 7, denote the topology consisting of subsets of X which

are open with respect to the metric d.

Proposition 4.1.7
Let (X, d) be a metric space
1. for any z € X, e > 0, B(x,¢€) is open

2. A subset is open if and only if it is the union of open balls
3. for any x € X, e > 0, B[z, €] is closed

4. Every finite subset is closed

Proof (2)
A union of open balls is clearly open.

To decompose a subset into a union of open balls, simply take the union of all open balls
around every member of the subset.

Proof (3)

We show the complement is open.

Let z € B[z, €], and r = d(z,x) — €.

We claim that B(z,r) C Blz, €.
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Suppose otherwise. Let w € B(z,1), B[z, €]°. It must be true that

d(Z, :C) S d(Z, ’U)) + d(’ll), 1'0)
<r <

<d(z,x)

which is clearly a contradiction.

Theorem 4.1.8
Let I C R be open, then it is the countable union of disjoint open intervals.

Proof (sketch)
Partition I by having two members being equivalent if the closed interval between then
is a subset of 1.

Note that every equivalence class is necessarily non-empty and in particular not a singleton
as there is an open ball around every member of I.

We can label all equivalent classes by choosing a rational inside the interval defined by
the equivalence class.

Since the rationals are countable, so are the equivalence classes.

So we can decompose every open set as a union of countable intervals, but how about closed
sets?

Example 4.1.9 (Cantor Set)

Let P, = [0, U [2,1]

Recusively define P, for n > 1 by removing the middle third from each of the 27! closed
intervals from P,_;.

1. P, is closed

1

2. P, contains no interval of length greater than

Let P :=(;2, P, this is referred to as the Cantor (Ternary) Set.

l.z€P < z=73 7, % witha, =0,2
2. P is uncountable as it is essentially all ternary strings with no digits being 1

3. P contains no intervals of positive length

Example 4.1.10 (Discrete Metric)
Let (X, d) be a metric space and d be the discrete metric.
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Note that each singleton is open since

{z} = B(z,1)

But then every set is open as

X2U = | J{z}

zeU

It follows that every set is also closed

We know that R, & are both open and closed in R, are there any other such sets?

4.2 Convergence of Sequences & Topology in a Metric Space

Definition 4.2.1 (Sequential Limit)
Let (X, d) be a metric space and {z,} C X be a sequence in X.
We say the sequence converges to a point xy € X if

Ve > 0,3IN € N,Vn > N, d(zg, z,) < €

and write

lim z,, = zg
n—oo

Proposition 4.2.1 (Uniquess of the Limit)
Let (X, d) be a metric space and {z,} C X be a sequence in X.
If yo = lim,, o x,, = xo then zy = yo

Proof
Suppose d(xg, yo) # 0.

Let 0 < € = d(yo, o)
There is some N € N such that

d(.TO, xN)a d(yo; xn) <

DO ™

But then by the Triangle Inequality:

d(zo,yo) < d(xo, xn) +d(zn,yo) < €

which is impossible.
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Definition 4.2.2 (Limit Point)
Let A C X. We say 2o € X is a limit point of A if there is some {z,} C A with
Ty — L.

We denote the set of all limit points of A by Lim(A).

Limit points are also referred to as cluster points.

Definition 4.2.3 (Accumulation Point)
xo € X is an accumulation point of A C X if there is some seqeuence {a,} C A of
distinct points such that

a, — T

Definition 4.2.4 (Isolated Point)
xg € X is an isolation point of A C X if there is some 7 > 0 such that

br(l‘o) N A = {ZL‘()}

We now state a very important result which shows that the topology of a metric space is
determined by the converging sequences.

Proposition 4.2.2
A C X is closed if and only if Lim(A) C A.

Proof
Suppose A is closed and {z,} — o be a sequence in A converging to some point.

If zp € A° then there is a ball of nonzero radius B(xg,e) C A° which contradicts the
definition of a converging sequence.

Conversely, suppose A is not closed, so A€ is not open.

There is some point xy € A° such that for every k

bi(zo) NA# @

1
k
Let 24 € b1 (x9) N A and notice this defines a sequence in A converging to xy ¢ A. So

Lim(A) Z A

as desired.
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Definition 4.2.5 (Boudary Point)
Let (X, d) be a metric space, x € X, and A C X.
x is a boundary point of A if for every neighbourhood N of z

NNA£BANNA £ @

We denote the set of all boundary points with bdy(A).

Proposition 4.2.3
Let (X, d) be a metric space, x € X, and A C X.

x € bdy(A)
—
Ve > 0,B(z,e)NA# &, B(x,e) NA° # @

Proposition 4.2.4
Let A C (X,d)
A is closed if and only if bdy(A) C A.

Proof
First, suppose A is closed. Consider z € A¢, we will show that z ¢ bdy(A).

By openness, there is a ball B(z,¢) C A° = B(z,¢) N A =@ so x ¢ bdy(A). So no
point in the boundary can be outside of A.

Conversely, suppose that bdy(A) C A, we will show that A° is open.

Let x € A° then x ¢ bdy(A). This means that there is a ball B(z,¢) N A = @ meaning
that the ball sits inside the complement. This satsfies the definition of openness.

Definition 4.2.6 (Sequential Limit Point)
A point zg is a limit point of the sequence {x,} if there is a subsequence

Tn,, — Zo

We denote the set of all limit points of a sequence lim *{z,} and note that in general

Lim{z,} C limx{x,}

Example 4.2.5
The constant sequence {1,1,1,...}
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We close this section with a remark about the discrete metric.

Let (X, d) be a metric space with the discrete metric.

Assume ,, — g, there is some N € N with n > N = d(z,, 7o) < 3.
But the only points which satisfy this definition is {z¢}.

It follows that the only converging sequences are the ones which constant after a finite
amount of terms.

4.3 Boundaries, Interiors, & Closures of a Set

Definition 4.3.1 (Closure)
Let (X, d) be a metric space, the closure of a subset A C X is

A= ﬂ{F C X|AC F,F is closed}

In other words, the closure is the “smallest” set containing A which is closed.

Proposition 4.3.1
Let A C (X,d), then A is equivalent to the following
(1) AU{z € X : x is an accumulation point}

(2) {x € X : z is a limit point of A}

(3) {x € A: xis an isolated point} U {x € X : a is an accumulation point}
The proof essentially requires us to show that the set of limit points of A, A are the same.

Proof
We first note that all three sets are actually equivalent so it suffices to show the closure
is the set of limit points of A.

Since A is a closed set containing A, it must contain A and by closedness, contain all the
limit points of A. This shows that

Lim(A4) C A

Conversely, let {a, }n,>1 — = be a sequence of limit points of A (ie a sequence in A).

This means for each n, there is a sequence

a,(cn) € A, lim a,(gn) =a,
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For each n € N choose k,, such that

1
d (n) n) < —
(akn Q) n
This defines a sequence of A.
Let € > 0, choose N; such that
2
— <
N =€
No, choose N, such that for n > Ns
d( ) < !
Up, T) < —
M

Then, for n > N := max(N;, Ny) we have

d(al”, z) < d(a™, a,) + d(an,z) < = < e

2
N
This shows that x is indeed a limit point of A and that

A C Lim(A)

All in all, the closure is the set of limit points of A.

Proposition 4.3.2
A= AUbdy(A).

Proof
We first show that F' := AU bdy(A) C A, from our work prior, it suffices to show that
bdy(A) C A.

But since the closure is closed it must contain the boundary by part 1 so we are done.
Now it remains to show that F' is closed which means A C F.

Let z € F° so x is neither in the boundary or A. This means that there is a ball
B(z,e)N A = @. Note that no point z € B(x,€) can be inside the boundary as the ball is
a neighbourhood of z. Elsewise, B(x,€¢) N A # @, which is a contradiction. It follows that
B(z,€) C F°, demonstrating openness of the complement and therefore the closedness of
F.
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Definition 4.3.2 (Interior)
Let (X, d) be a metric space, the interior of a subset A C X is

int(A) := U{F C X|F C A, F is open}

So the interior is the “biggest” open subset of A.

Proposition 4.3.3
int A = A°° where A~ = A.

Proof
A D A¢is closed, so A€ is open and disjoint from A€, which means it is contained in
int A.

Conversely, if = € int A, there is a ball of radius 7 such that b,(z) C A.

This means that {y : d(z,y) > r} O A° and is closed, meaning it must contain A", so
A7 D b.(x). As a result, we have A°~¢ D int A.

All in all, A7 ¢ = int A.
Proposition 4.3.4
Let ACBCX

1. ACB
2. int(A) C int(B)
3. A¢ = int(A°)
4. int(A) = A\ bdy(A)

Proposition 4.3.5
1. AUB=AUB

2. int(AN B) = int(A) Nint(B)

Proof (1)
Since AU B is closed and contains A U B, we have

AUBCAUB

Next, Since A U B is closed and contains A,

ACAUB

and vice versa for B so we are done.



Proof (2)
Since int(A) Nint(B) is open and contained in AN B we have

int(A) Nint(B) C int(AN B)

Likewise, since the open set int(AN B) C AN B is contained in A, we have

int(AN B) Cint(A)

and likewise for B so we are done

Let (X, d) be a metric space and z € X. Now, the question falls upon whether

Blz, €] = B(x,€)

Definition 4.3.3 (Dense)
We say a proper subset A C X is dense in X if

A=X

Note that this essentially means that no smaller subset of X is closed and contains A. To
show that this subset does not exist, we need only prove that the complement of A has no

open balls.

Definition 4.3.4 (Seperable)

non-seperable.

A metric space (X, d) is seperable if it contains a countably dense subset, else it is

Example 4.3.6
R™ is seperable due to Q"

Proposition 4.3.7
[ is seperable

Proof (sketch)

all m € N.

approximating the first something numbers.
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Since all series converge in our space, the tails of any series are arbitrarily small.

This means we can approximate any series with an element in our subset by appropriately



Proposition 4.3.8
l is not seperable.

Proof
Consider the collection of disjoint balls of size % centered around points whose elements
are defined by the characteristic function of the subsets of N.

Any dense subset of the metric space must have at least one element in each subset of the
collection.

There are uncountable disjoint balls as it is essentially the powerset of the natural numbers.

Proposition 4.3.9
(C(R),||"||ls) is not seperable (due to £,)
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5 More Topology

5.1 Continuity

Definition 5.1.1 (Pointwise Continuity)
Let (X,dx), (Y,dy) be metric spaces and f: X — Y.
f is continuous at xy € X if

Ve > 0,30 > 0,dx(z,29) <6 = dy(f(z), f(z0)) <€

elsewise it it discontinuous at that point.

Definition 5.1.2 (Function Continuity)
We say f is continuous it if continuous at every point of its domain.

Definition 5.1.3
Let (X,dx), (Y,dy) be metric spaces and f: X — Y.
f is sequentially continuous at zo € X if whenever {z,} C X — xy, we have

f(@n) = f(z0)

Theorem 5.1.1 (Sequential Characterization of Continuity)
Let (X,dy), (Y,dy) be metric spaces and f: X — Y.
f is continuous at xy € X if and only if it is sequentially continuous.

Proof (=)
First assume f is continuous at z.

Let € > 0, there is some ¢ > 0 such that

dx(z,70) <0 = dy(f(z), f(w0)) <€

Let {x,} — xo be some converging sequence.
By definition there is some N € N such that n > N = dx(z,,x0) < 9.

This means
Vn > N,dy(f(z), f(z0)) <€

But then f(z,) — f(zo) by definition.
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Proof ( <)
Now suppose that f is not continuous at z.

There is some €y > 0 such that for every n € N there is a point z,, with

dx (Tn, o) < %adY(f(xn);f(l’O)) > €

This defines a sequence {z,} such that

Tn = 0, f(2n) 7 f(0)

concluding our proof.

Definition 5.1.4 (Pullback)
Every function f : X — Y induces a function

f1:PY) = P(X)
B {x € X|f(z) € B}

The map f~! is referred to as the pullback of f.

We now establish continuity in terms of pullbacks and continuous sequences.

Theorem 5.1.2
Let (X,dx), (Y,dy) be metric spaces and f: X — Y.
f is continuous at zy € X if and only if:

If W is a neighbourhood of yy = f(zg) then V := f~1(W) is a neighbourhood of z.

Proof
First, suppose f is continuous at xy. Let W be as in the statement of the theorem.

By definition of a neighbourhood, there is some €y > 0 such that B(yo,€) C W.

By the definition of continuity there is some dy > 0 such that
S B(x(),éo) - f(.l’) S B(yo,Eo)

This means that B(xg,d) € V which in turn means that x¢ is in the interior of V' and
that V' is indeed a neighbourhood of x by definition.

Conversely, let € > 0 be arbitrary. Then W := B(yo,€) is a neighbourhood of yy. Let
V := (W), which is by assumption a neighbourhood of z.
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In particular there is some &y > 0 such that B(zg,dp) C V. So
x € B(x0,00) = dy(f(wo), f(z)) <e

which satisfies the definition of continuity.

Theorem 5.1.3
Let (X, d), (Y, p) be metric spaces and f: X — Y. TFAE:

(1) f is continuous
(2) If {z,} is a sequence in X with x,, — x¢, then f(z,) = f(zo) in Y

(3) If W is an open set in Y, then V := f~!(¥) is an open set in X
Note that the third is a topological condition which only refers to the open sets of
X, Y.

Proof (1 < 2)
This is precisely the sequential characterization of continuity.

Proof (1 = 3)
Let V CY beopen and X € f~1(V). As V is open, there must be some € such that

be(f(x)) SV

By continuity, there is some ¢ > 0 such that

fbs(2)) C be(f(x)) SV
Proof (3 — 1,2)
Let {z,} CX —z € X.

Let € > 0 and take
V =b(f(x))

By (3), f~%(V) is open, so for any x € f~*(V), there is some § > 0 such that
this shows (1).

To see (2), since x, — z, there is some N € N such that n > N means

d(zn,x) <0 = p(f(xn), f(z)) <€
this is precisely (2).
We conclude the proof.
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Proof (-1 = -2)
If f is not continuous at z € X, then there is some ¢, such that

f(bs(x)) £ b, (f(2))

for any ¢ > 0.

For each § = <, pick x,, € bs(x) such that

p(f(x), f(xn)) = €
so sequential continuity does not hold.

Example 5.1.4
Consider a metric space (X, d) with the discrete metric.

Since any subset of X is open, any function on f : (X, d) — (Y, dy) is continuous.

Definition 5.1.5 (isometry)
Let (X, d), (Y, p) be metric spaces.
We say X is isometric to Y if there is an isometry

f: X—=Y

which is a function with
p(f(x), f(2)) = d(z,2)

for all z,2' € X.

Definition 5.1.6 (Lipschitz)
f is Lipschitz if there is some ¢ € R such that

p(f(z), f(2)) < cd(z, 2')

for all z, 2’ € X.

Definition 5.1.7 (Bi-Lipschitz)
f is Bi-Lipschitz if there is some ¢,C € R, such that

ed(z,2') < p(f(x), f(a')) < Cd(x,a)

for all z,2' € X.
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Definition 5.1.8 (Uniform Continuity)
f is uniformly continuous if for all € > 0 there is some ¢ such that

d(z,2) <0 = p(f(z), f(@') <e

Definition 5.1.9 (Homeomorphism)
f is said to be a homeomorphism if it is bijective and ¢, ¢! are both continuous.
We say X, Y are homeomorhic if there is such an f.

Proposition 5.1.5
Let (X, d), (Y, p) be metric spaces.
If f: X — Y is Bi-Lipschitz and surjective, then f is a homeomorphism.

Lemma 5.1.6
Lipschitz functions are uniformly continuous.

Proof
We show that f is injective.

Suppose = # x’ € X, then
0 < cd(z,2’) < p(f(2), f(2'))

so f(x) # f(z').
Next, we claim f~! is Lipschitz.
Let y,y' € Y,y = f(z),y = f(2') so that
cd(z,2") < p(f(x), f(2))
A )W) < -

p(y,y')

Note that if we define
do(z,y) = p(f(2), f(y))

then d, is an equivalent metric of X by construction.
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Definition 5.1.10 (Continuity on a Set)
Given a function f: X — Y and a subset A C X. The restriction of f(z) to A is the
function

fl A=Y
A
z— f(z)

We say f is continuous on A if f ’ 1 Is continuous on the metric space (A, da).

Note that the sequential characterization of continuity applies with sequences in the subset.

5.2 Complete Metric Spaces: Cauchy Sequences

If we wish to test for convergence of a sequence by definition, we must have a limit in
mind. This leads to the question whether there is some simpler test for the convergence of
sequences.

Definition 5.2.1 (Cauchy Sequence)
Let (X, dx) be a metric spaces.
A sequence {z,} in X is said to be Cauchy if for all € > 0 there is some N € N such
that
n,m>N = d(x,,T,) <Ee€

Definition 5.2.2 (Complete)
We a metric space is complete if every cauchy sequence converges within it.

Is every cauchy sequence convergent?

The answer is no. Consider X = (0,1) with the Euclidean Metric. Then {z,} does not
converge.

Proposition 5.2.1

If sequence {x,} in a metric space (X, d) converges, then it is cauchy

Proof
Suppose x, — T
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Let € > 0 be arbitrary and N € N be such that

n,m>N = d(x,, o), d(xmn, xo) <

[NRINe

So then
d(xp, ) < d(Tp, x0) + d(xp, x0) < €

and {z,} is cauchy by definition.

Definition 5.2.3 (Bounded)
Let (X, d) be a metric spaces.
A subset A C X is bounded if there is some z¢y € X, M € R such that

A g B[$0,M]

Proposition 5.2.2
Assume a cauchy sequence has a subsequence {z,, } — zo € X, then {z,,} — z¢

Proof
Let € > 0 there is some N; € N such that

n,m >N, = d(x,,zy) <

N

By the convergence of the subsequence, there is some K € N such that

k>K = d(x,,, %) <

N ™

Now let N := max(ng, N;) we have
n>N = d(z,,x0) < d(Tn, Tny) + d(xp,, 20) < €

SO T, — xg by definition.

Example 5.2.3
Let (X, d) be a metric spaces with the discrete metric.

Every cauchy sequence is eventually constant so (X, d) is complete.

Example 5.2.4
R, R™ is complete.
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We first bound z,, then subdivide to find sequences of monotonically decreasing and
increasing endpoints which contain infinite elements of the sequence.

Then, by the Squeeze Theorem, z,, — L which is the limit of both endpoint sequences.

Proposition 5.2.5
Every cachy sequence is bounded.

Proof
Let {z,} be cauchy, there is some N € N such that

n,m>N = d(x,,z,) <1

In particular, for all n > N, d(zn,x,) < 1.
Next, take
M = max{d(zy,x1),...,d(zNn,xN_1),1}

We certainly have
{.Tn} Q B[l‘o, M]

Theorem 5.2.6 (Least Upper Bound / Greatest Lower Bound)
Take (R, |-|) with its normal metric.
Let S C R be a bounded subset, then S has a LUB / GLB.

Proof
There is a greatest integer lower bound K and a witness K +1 > sg € S.

In general, there is k,, € {1,2,...,9} such that

is a lower bound but not

Let

and note that M < S.
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But s, — M <107 so

lim s, =M
n—o0
this shows that
M =inf S

Corollary 5.2.6.1
Let z, € R with z; < x;,; < M for some M € R.
Then the limit exists.

Proof
Let L = sup{z,}, e > 0 and note that

is not an upper bound.

So there is some xy > L — ¢, foralln > N
L—e<aony<zx,<L

so0<L—x,<e

We conclude z,, — L.

5.3 Completeness of R,R", [,

Theorem 5.3.1 (Bolzano-Weierstrass)
Every bounded sequence in R has a converging subsequence.

Proof
Math 147

Theorem 5.3.2 (Completeness of R)

By our work prior, every cauchy sequence is bounded.

By Bolzano-Weierstrass, every such sequence has a converging subsequence.
By a previous proposition, this means the original sequence converges.

Lemma 5.3.3
{Z,} € R" is cauchy if and only if each component-wise sequence is cauchy.
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Proof
Suppose {Z,} is cauchy, but

| Ty — T < || T — 21| <€

Conversely, we can bound the overall norm by the max of the component-wise norms.

Corollary 5.3.3.1 (Completeness of R™)

Proof
If 2} is cauchy, limy_, T = & where z;,; — ;.

Proposition 5.3.4

If (X,d) is complete then every (Y,d) where Y C X is complete if and only if Y is
closed.

Proof
If (Y,d) is complete, then any converging sequence is cauchy and converges in Y by
definition to Y is certainly closed.

Else if Y is closed any cauchy sequence in Y is also in X so converges by completeness of
X. But by closedness of YV is also converges in Y so (Y, d) is complete by definition.

Definition 5.3.1 (Banach Space)
A complete normed linear space.

Lemma 5.3.5

{Z,} C 7 is cauchy if and only if each component-wise sequence is cauchy.

Proposition 5.3.6 (Completeness of (I, ||:||))
Let 1 < p < o0, then every cauchy sequence of sequences in (I, ||||,) converges.

Proof (p = o0)
Let {x,} be a cauchy sequence in the proposed metric space.

Since each component sequence is cauchy, they converge so we can define

ZTo; = lim z,;
’ n—oo
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We claim z,, — z¢ € [
To see this, let € > 0.

Since the original sequence is cauchy there is come Ny € N such that for all k,m > N

€
ka - meoo < 2

Fix a k > Ny then for every component i and every m > N,
€

Tk — Tl < [Tk, Tinlloo < 5

So then )
|wk,i - $o,i| = lim |IB1“ — atmz| < =-<e€
m—00 2

It follows that {x); —x0,}32, € [, and since we are in a normed linear space, then zy € ,,.

Convergence follows trivially.

Proof (1 < p < o)
Let {x} be a sequence in the proposed sequence space.

For similar reasons, we can define

Zo,i = lim Tk
k—ro00

We now claim z, — z¢ € [,,.

Indeed, let € > 0, there is some Ny € N such that k, m > Ny means

€
s =l <

Fix a k > Ny. For all j € N, all m > N, we have

j z )
(lem - xm,i|p> < llaw = 2mlly < 5
=1

It follows that for all partial sums up to j

. 1 .

J P J

g |zp; — zoiP | = lim g |Tk; — xmal? | <
— m—oo
1=

i=1

3=

DN ™
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By the arbitrary choice of j the series must also be bounded

As before, this suffices to show z;, — ¢ € [,,.

Example 5.3.7
Cla, b] with the LP norm with 1 < p < oo is not complete.

Consider
O, x € [ +b]
gn(z) := < linear, =z € (%b’ ath | %]

gn — f where

but f ¢ Cla,b].

5.4 Completeness of the Dual Space

Definition 5.4.1 (Dual Space)
Let V be a normed vector space

V*:={p € L(V,F) : ¢ is continuous}

Proposition 5.4.1
Let ¢ € L(V,F). The following are equivalent
(1) ¢ is continuous

(2) ¢ is continuous at 0

(3) ¢ is Lipschitz with Lipschitz Constant

lplls == sup |p(v)] < oo
el <1

Proof (1 = 2)
Continuity is by definition point-wise continuity over the entire domain.
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Proof (-3 = -2)
We first claim ¢ is Lipschitz if and only if ||¢]|. is a Lipschitz constant.

Suppose @ is Lipschitz, so there is some ¢ such that
o(v)] < cflv]

So
[l = sup [p(v)| <supC-1=C

lvll<1

and [|¢||« is the optimal Lipschitz constant.
Conversely, suppose ||¢||« is not a Lipschitz constant. Note that

v
v= ol

o]
so if ||¢||« is finite, then
v
()] = llvll{e )| = lll«llll

which contradicts our assumptions.

So we must have ||¢l[. = +00. We can pick

vn €V, lunll < Lo ()| > 0

But

SO %vn — 0. But clearly

so ¢ is discontinuous at v = 0 as desired.

Proof (3 — 1)
Lipschitz continuity implies uniform continuity implies continuity.

Theorem 5.4.2
Let V be a normed vector space over .
(V*,|I-|l+) is a banach space.
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Proof
We first show that ||-||« is a norm.

(1) llells =0 <= ¢=0
(2) ¢l = supyy<i[Ae(v)] = [Allle]l -

(3) pv eV
le+ Il = HSlulgll(so +19)(v)|
< ||Sl||l£>1|<P(U)| + [ (v)]
< sup [p(v)] + sup |p(v)|
el <1 Jell<1
= [lell« + Il

Then let {¢,}n>1 be cauchy, for all € > 0, there is some N such that m,n > N means
that

lon — Pmlls <€
Fix v € V,||[v|| < 1, we have

|on (V) = m (V)] < [[on = @mll«|v]] <ellv]
hence ¢, (v) is also cauchy and converges as F is complete.

Let
p(v) == lim ¢, (v)

m—r0o0

under |-|.
Let m — oo we have

lon(v) — @(v)| < €lv]|
lon — @« <€

Now, it only remains to show that ¢ € V.

Ifn>N
lolls < llenll« + €

so ¢ is Lipschitz (ie continuous) and so resides in V*. Linearity simply follows from the
fact that each ¢, is linear and the limit is also linear.
Since € > (0 was arbitrary

lim ¢, =¢p e V"

n—oo

on [|-[f..

By definition, V* is complete.
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Definition 5.4.2 (Equivalent)
(X, d), (X, p) have equivalent metrics if there is 0 < C' < D < 0o

Cd(z,y) < p(z,y) < D(z,y)

for all z,y € X.

Definition 5.4.3 (Equivalent)
(X, 1D, (XS D have equivalent norms if there is 0 < C' < D < 0o

Cllzll < flllll < Di]l

for all z € X.

Proposition 5.4.3

(X,d), (X, p) equivalent metrics or (X, [|]|), (X, [||-]l|) equivalent norms.

Then the metric spaces are complete if and only if the other is complete as well.
Likewise for the normed vector spaces.

Proof
Trivial.

Theorem 5.4.4
V = F" then all norms on V' are equivalent.

Proof
We need only show any arbitrary norm is equivalent to the Euclidean Norm.

Let ||-||2, |||-]]| be the Euclidean and another arbitrary norm.
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llzlll =

n
E Zi€;
i=1

n
< Z [[[seql] triangle inequality
i=1

= > lail -l
i=1
1 1
n 2 n 2
< (Z xz> <Z|||el|||2) Cauchy-Schwartz
i=1 i=1
—_———

=:D

= Dllz[

This in fact shows that
f(x) = |||l

is continuous with respect to ||-||.

Let S:={x € V : ||z|]a = 1} be the unit sphere which is closed, bounded, and therefore
compact.

By the Extreme Value Theorem, f attains its minimum on S.

There is some xy € S such that

Jolls = 1, laoll = inf [l
but zo # 0 so |||xol|| # 0.
If v eV then i€ 5.
v
||| = ol
|

lolll = [llzolll -[[1]2

All in all
Cllvllz < [[vlll < Dllz[2

so all norms on F™ are equivalent, so (F"|||-|||) is complete and has the same topology as
F" with the regular Euclidean Norm.
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5.5 Compactness

Definition 5.5.1 (Open Cover)
Let A C (X,d), an open cover of A is a collection

{U/\}AeA

of open sets such that A is in the union of the collection.

Definition 5.5.2 (Subcover)
{U)\})\GA/ Where A/ g A.
A subcover is finite if A’ is finite.

Definition 5.5.3 (Compact)

A C (X,d) is compact if all open covers of A have a finite subcover.

Definition 5.5.4 (Sequentially Compact)
All sequences {a,} C A C (X, d) have a converging subsequence.

Definition 5.5.5 (Finite Intersection Property)
A collection of closed sets {F)}xea has the FIP if

M €A = | B\ #2

1<i<n

Definition 5.5.6 (Totally Bounded)
A C (X, d) is totally bounded if for every ¢ > 0 there are

Ti,. .., Tp, AC Ube(a:i)

=1

__——ﬁ_

Example 5.5.1
Finite sets are compact.

Example 5.5.2
N, R are not compact.
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Proposition 5.5.3
If A C (X,d) is nonempty and compact, it is bounded.

Proof
Take the open cover

AC | ba(xo)

neN
around any point zo € A.

Any finite subcover necessarily bounds A.

Proposition 5.5.4
If AC (X,d) is sequentially compact, then A is closed.

Proof
Forall z € X \ A,a € A,d(a,x) > 0.

Take the open cover

By compactness

where r := max{n;}.

So b.(x) N A= @ so X \ A is open, which means A is closed.

Proposition 5.5.5
If AC (X,d) is sequentially compact, it must be closed.

Proof
Else, there is a sequence converging outside of A which means any subsequence necessarily
converges outside of A.

Remark that closed and boundedness is insufficient to guarantee compactness.

Example 5.5.6
Let X be an infinite set with the discrete metric d.
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Then
diam(X) = supd(z,y) =1

x?y

X =Jb() = J{=}

zeX

while

However, any finite subcover makes for a finite set which cannot possibly cover X.

Theorem 5.5.7 (Borel-Lebesgue)
Let (X, d) be a metric space, then TFAE

(1) X is compact

(2) If {F)\}aea has the FIP, then (| F) # &
(3) X is sequentially compact
(

)
)
)
4)

X is complete and totally bounded

Proof (1 = 2)
Suppose (X, d) is compact.

Let {Fy}xea be a collection of closed sets with the FIP.
If
(=2

UFC:X

then

is an open cover of X.

However any
N
() # 2
i=1

so any finite subcover
N
Ur #x
i=1

and the space cannot be compact.

Proof (2 = 3)
Let {x,} be a sequence in (X, d) and define

F,={xy:k>n}
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vy € N E,,
where N := max{n;}.
So {F,} is a collection of closed sets with FIP.
By assumption, 3z¢ € () F},.
We have zg € F} so there is some my such that
d(xpm,, ) < 1

We can do this since if 2o ¢ F; then it is a limit point, else we can literally just take
T, = T itself.

For each k£ > 2 we have zy € F,,,, ,+1 so there is some my, > mj_; such that

d(zpm,,, o) <

T =

Thus z,,, — 29 € X and we are done.
Proof (3 = 4)
Suppose (X, d) is sequentially compact and let {z,} C X be cauchy.

By sequential compactness, it has a converging subsequence
{tp,} 22X

as x, is cauchy, we must also have x,, — z so (X, d) is certainly complete.

Now, suppose for a contradiction that X is NOT totally bounded. There is some € > 0
such that X is not a finite union of b.(x;) for each z; € X.

This, if z4,...,2, € X with d(z;,z;) > € for i # j then
X # | Jbe(xs)
so we may choose x, .1 outside of the finite union.

Note that d(x,41, ;) > € for each 1 <i <n.

Repeate the procedure and get a sequence which every subseqeuence is not cauchy and
therefore cannot converge.
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Definition 5.5.7 (e-net)
Let {z;} C (X,d) be such that

X = Jbe(xs)

then {x;} is an e-net of X.

Proof (4 — 1)
Suppose (X, d) is complete and totally bounded.

Let {Ux}ea be some open cover of X.
For each k, let y1, ..., Tk, be a 27%-net of X.
If each closed ball by-1(x1,) has a finite subcover, then X has a finite subcover.

Indeed, suppose that

by1 (1) C Um]

then
P1 ny
XCU%M“_UUMW
=1 i=17=1
——
finite

This means that there is some 4; such that by-1(z1,,) has no subcover.

But note that
p2

52—1(951,11) = b2—1(21717i1) N U b2—2 (1'271‘)

=1

v @ (bg_l(xl,il) N bz—z(ifu))

But if there is a finite subcover of each of the intersections, then there is a finite subcover
of bgfl (xl,h)-

So there must be some 75 such that
A2 = bgfl (ml,h) N b272 ($2712)

has no subcover.

Continuing this argument, we can always get i1, ..., %, such that

An = m bgfk (xk’zk)
k=1
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has no finite subcover.

So

Pn+1

A= (b (i) Ny (@2,0))

=1

has no subcover with

diam (m) <2 =927 40

2n+1

We claim (z,,;, )72, is cauchy.

Indeed, for € > 0, there is some N such that 2=V < e. If n > m > N, then

b2*" (xn,in) N b2*m (xm,im) 2 An 7é %)

This means there is some y € A,, and

1
ATy Trmsin,) < ATz, y) + Ay, Tin,,) < 22_1\/ <e€

By the completeness of (X, d)
Tni, — To € X

Choose some \j such that zy € U,,. There is some r > 0 such that
br('rO) g UAO
Find N such that 22%, < 7 and that for n > N

d(zp,, o) <

[\

This means that .
2 <N o =
2
If S b2—n (xn,zn)
1 r T
d(z,x0) < d(x, T 4,) + d(Tn,, To) < o + 5 < 25 =T

So
ba-n(Tni,) C br(wg) C Uy,

and in particular,
AN C by~ (zny) © Uy

So there is a finite subcover of some finite 27"-net. By definition, (X, d) is compact.
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Remark that the first two conditions for compactness clearly only depend on the topology
of X.

If we phrase the convergence of a sequence as the follows, then the third condition also only
depends on the topology of the X.

Definition 5.5.8 (Topological Sequential Convergence)
If for all open sets U with xq € U, there is some N € N such that for n > N

x, €U

Then z,, — xg

On the otherhand, the fourth condition is tied to the metric.

Consider the following example

Example 5.5.8

R is homeomorphic to (0, 1) so in a sense, they have the same open sets.

Consider the bijection
arctan(x) +

SE]

fz) =

7

However, R is complete but not totally bounded while (0,1) is not complete but totally
bounded.

So completeness and total boundedness does not correlate with the topology of a set.
Proposition 5.5.9
If AC (X,d) then A is a compact subset of X if and only if (A, d) is compact.

Proof (=)
If A is compact subset of X and {U,} is a collection of open sets open in A which cover

A.
We wish to find {V,} open in X such that

VaNA=U,

If x € U,, there is some r, > 0 with

bl C U,
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Let

Vo= | b ()

CEEUa

and note that it is open in X.
But then
Van A= (@) nA) = Jor () = U,
So then by the compactness of A in X, we know get extract a finite subcover of {V,},
which induces a finite subcover of {U,}.
By definition (A, d) is compact as desired.
Proof (<)
Suppose (A, d) is compact.
Let {V,}aeca be an open cover of A.

Define
U, =ANV,

and note that U, is open in (A, d) with

AcJU.

But then the existence of a finite subcover is evident.

The proposition above shows that compactness is an intrinsic property of a set and NOT
the larger ambient universe.

Theorem 5.5.10 (Heine-Borel)
A C R"” is compact if and only if it is closed and bounded.

Proof
The forward direction is trivial.

We know that R"™ is complete and A being closed implies A is complete in R".

Define

R := sup||z|]2 < o0
z€A

which exists by boundedness.

It suffices to show that [—R, R]" is totally bounded.

Let € > 0,0 := .
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Consider

1
(k18 kb, . kn6) €R™ : ks € Z, |i] < RT+

Note that forx € A

Then
2 = (K16, knd)|n =) | — kad| < nd =€

Although we used 1-norm, all norms in R" are equivalent so we are done.

Proof (alternative)
Apply Bolzano-Weierstrass theorem repeatedly to get sub"sequence which converges by
component-wise convergence.

Proposition 5.5.11
If (X,d) is compact with A C X closed, then A is compact.
Proof
If {U,} is an open cover of A, then
{UN} U A°

is an open cover of X.

The rest is trivial.

5.6 More on Compactness

Definition 5.6.1 (Lebesgue Number)
Let (A, d) be compact and {U,} be an open cover.
Define the lebesgue number as

U} = gigrelgsup{r >0:b.(x) CU,}

Theorem 5.6.1

Let (A, d) be compact and {U,} be an open cover.
Then §({\}) > 0.
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Proof
Let x € A, there is some A(x) such that x € Uy.

By definition there is some r(x) > 0 such that

briz) (@) C U
Now
{by(:c) cx € A}
is an open cover of A.

there is a subcover

Let r := min{r(gi)} > 0.

For all x € A there is some x;

If y € b.(x) then
r(z)
d(y,z;) < d(y,x) +d(z,z;) <r+ 5 < r(x;)

This shows that

By the arbitrary choice of x
6({Ux}) >0

as desired.

Definition 5.6.2 (Product Space)
The product space of (X, d), (Y, p) is

(X x Y, D)
where D is defined as

D((x1,91), (22, ¥2)) := max{d(z1, T2), p(y1,¥2)}

Note that
br(z,y) = by(z) x by (y)
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Theorem 5.6.2
Let (X, d), (Y, p) be compact metric spaces. Then

(X x Y, D)

is compact.

Proof
Let {Wy}xea be an open cover of X x Y.

Fixay, €Y.

For each x € X there is an indice A(z) such that

(l’,yo) € W)\(:L")

By definition, there is some r(x) > 0 such that

br(2) (@, Yo) = bra) (%) X br(z) (o) € Wi

By construction {b, : * € X} is an open cover of X. By compactness, we can extract
a finite subcover
{br(xi)(xi)}

for 1 <i < n(yo).
n(yo)

X C m br(zi,yo)('x@yO)

i=1
Define
r(yo) == min{r(z; ) : 1 <i<n(yo)}

By construction

br(yo)(mi,yoayo) = br(yo)(xi,yo) X br(yo)(?JO)
- bT(mi,yO)(xiﬂlm? yO)
C Wi

For each yo get r(yo) and X X by(y,)(y0) is covered by a finite set
Wi@1y9)s -+ W(

xn(yo)yyo)

So
{bryo)(W0) : vo € Y}
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is an open cover of Y.

Again by compactness, we can extract a finite subcover
brtun) (Y1) -+ br(ym) (Ym)

So X X by, (y;) is covered by

W@y s Wi

Overall
X xY S| Wi, s 1 <5 <m 1 <i<n(y)}

and by definition X x Y is compact.

Definition 5.6.3 (Dense)
A subset S C (X,d) is dense if S = X.

Definition 5.6.4 (Seperable)
A subset S C (X, d) is seperable if it has a countable, dense subset.

Proposition 5.6.3
If (X, d) is compact, then it is seperable.

Proof
For n > 1, get

CCn’l RN xn,i(n)

a 27 "-net of X and take their union
S={z,;:n>11i<i(n)}
which is certainly countable.

S is also dense by construction since every point lies in some 27" ball of some point xy, j()
by the definition of a net.

Example 5.6.4
R™ is seperable by Q".

Example 5.6.5
l,,1 < p < oo is seperable.
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We approximate each sequence with one with a finite head and tail of zeros.
Then, we approximate the sequence above with Q".

Theorem 5.6.6 (Cantor for N)
[P(N)| > |N]

Proof
Attempt to enumerate P(N) with Ej, Es, ... and consider

F={n:n¢E,}

If m € E,,, then m ¢ F and if m ¢ Ey; then m € F. So F # E,, for any m and it is not
in the enumeration.

Example 5.6.7
[ is not seperable.

For £ C N define

1, nekFE
e =10 ¢ E

Then £ # F = d(zg,zp) = 1.
There are also 2V such sequences which is certainly not countable.
This means that if any S C I, with S = I, then there are uncountably many points since

there must be at least one within % of every zg.

Theorem 5.6.8
(X,d) is compact and f : (X, d) — (Y, p) is continuous means
(1) f(X) is compact

(2) f is uniformly continuous

Proof (1)
We have f(X)CY.

Let {V)\} be an open cover of X.

Define
Uy:= ')

and note that it is open by continuity of f.
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Then {U,} is an open cover of X.

Get a finite subcover

and note that

By definition, f(X) is compact.

Proof (2)
Let € > 0. For z € X, by continuity, there is d, > 0 such that

dx.a') <8, = p(f(). J()) < 5

Then

{bai x € X}

2

is an open cover of X.
Extract a finite subcover

bowy s bony,

2 2
and define 5 5
§:=min | —-,...,—= ) >0
min ( 5 g )
If 21, 29 € X such that d(z1, z2) <, by the definition of a subcover, there is an x; with
)
d(Zl, xz) < 5

Thus we have

d(Zz7 SL’l) S d(ZQ, Zl) + d(Zl, xl)

T

<9
+2

<4,

So



Corollary 5.6.8.1 (Extreme Value Theorem)
(X,d) is compact and f: (X,d) — (Y, p) is continuous means f attains its extrema on

f(X).

Proof
f(X) is compact which means it is closed and bounded.
So
sup f(X) = L

exists.
By definition

L e f(X)
but then by closedness

L e f(X)

Proposition 5.6.9
Suppose (X, d) is compact and f : (X,d) — (Y, p) is continuous.
If f is bijective then f~! is continuous (a homeomorphism).

Proof
f~!is a function as f is bijective.

Show if U open in X, (f~!)~(U) = f(U) is open in Y.

Let U be open in X, U is a closed subset of X and therefore compact. So f(U¢) is
compact and also closed.

But f is bijective so
FU9) = fU)

is open.

By definition f~! is continuous.

5.7 Completeness of (Cy(X),||]|c0)

For (X,d), C3(X) denotes the set of bounded, continuous, and real-valued functions from
X - F e {R,C}.

Note that if X is compact, the its image is necessarily bounded so we can just write C'(X).
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Definition 5.7.1 (Pointwise Convergence)

Let (X,dx), (Y,dy) be metric spaces and {f, : X — Y} be a sequence of functions
from X to Y

We say f, — fo on X point-wise if for every x € X

Definition 5.7.2 (Uniform Convergence)
We say f,, — fo uniformly on X if for every e > 0 there is some N € N such that

n2N = d(fu(2), fo(z)) <€

Clearly uniform convergence implies point-wise convergence. However, the converse need
not hold!

Consider f, : [0,1] — [0, 1], fu(z) = 2™. We have f,, — fo point-wise where

fo(z) = {(1)7 zi[lo’ D

However since every f, is continuous while f is not (specifically at 0), we can always get
infinitely close to 1 (f(1 — ) =~ 1) and away from fy(1 —d) = 0 no matter the value of n.

We will now show that uniform convergence preserves continuity.

Theorem 5.7.1

Let (X,dx), (Y,dy) be metric spaces and {f, : X — Y} be a sequence of functions
from X to Y.

Suppose f, — fo uniformly and each f,, is continuous at xy € X, then fj is continuous
at xy

Proof
Let € > 0.

By uniform convergence, there must be some N € N such that for all n > N we have

€

Ay (fala), fo(@) < §

By continuity, there is some ¢ > 0 such that € B(z, ) means we have

dy (fx(x), fn(x0)) <

Wl ™
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But then for all z € B(x,0)

dy (fo(x), fo(xo)) < dy (fo(x), fn(x)) + dy (fn(x), fn (o)) + dy (fn(20), folwo)) <€

Definition 5.7.3 ((Cp(X), ||*|lco0))
Let (X, d) be a metric space and

Co(X) :={f: X — R: f is continuous and bounded}
Define the norm on C(X)

[-lloo = Co(X) = R
f = supf|f(z)] : v € X}

Then (Cyp(X), ||||oo) is @ normed linear space.

Theorem 5.7.2 (Completeness of (Cyp(X), ||*||o0))
(Co(X), ||]|oo) is complete.
This is the same as saying the uniform limit of functions are continuous.

Proof
Suppose { f,} is cauchy in (Cp(X), ||-[|s) and let zy € X.

Clearly, {f.(zo)} is a cauchy sequence in R.
Now, define

foZX%R
z+— lim f,(x) €T

n—o0

note the limit is in F by completeness of the field.
We claim f,, — fo uniformly on X.

To see this let € > 0, there is some N € N such that n,m > N implies

€
n— Jmlleo < 3
Ifo = flloo < 5

Let n > N and z € X, we have
Fule) = fo(a)] = Tim [ (@) — fiu(o)



This shows uniform convergence.
It only remains to show that f; is in the proposed space, or equivalently, it is bounded.
Since {f,} is cauchy, it must be bounded, say by M € R.

By uniform convergence there is some N € N such that

v (z) = fo(@)lleo < 1

It follows that
folz) < fy(z)+1=M+1

for all z € X.
Note that if we let X = N and give it the discrete metric, then

(Co(X), [-llo0) = (lso, [I-1o0)
5.8 Space-Filling Curves

Theorem 5.8.1
Let (X, d) be compact.
There is a continuous surjection from the cantor set C' onto X.

Example 5.8.2
X =10,1],C = {0.(2¢1)(2¢2)(2€3) - - - : ¢; € {0,1}}

We can take
f(il') = 0.6162 .

Proof
X is compact and therefore has a finite %—net

1 1
O
Without loss of generality, n(1) > 2.

Split C' into disjoint clopen subsets.

o el diam(CY) <

Wl

Moreoever, define f; : C' — X by




This is the base case.
Suppose at the k-th stage, we get a 2 F-net of X

k k
o,

a partition of C' consisting of disjoint clopen sets
k K g k 1

and fi : C' — X defined by
@
c®)

which is locally constant and therefore continuous.

Fix 1 <4 < n(k) and note that we can find a 2=**!_net of brk(x«k))

)

(k+1,i) (k+1,3)
] s Tyt

Furthermore, we can split C’Z»(k) into disjoint clopen subsets

Oty el diam O < gD

Apply this to all $§k), Cl-(k) and define fr.1: C — X by

k+1,
Jr+1 = xg )
kL)
J

Note that fr,1 is again locally constant and therefore continuous.

We claim that )

Il fi = frtilloo < ok

Indeed, let y € CJ(kH’i) - C'Z-(k). We have

Jer1(y) € by—r fr(y)

SO .
| frr — fell < oF

as desired.
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By construction,

Z”fk—i—l — filloo < 00

k=1
hence for € > 0 there is some N such that forn >m > N

1fn = fallos < Z||fk+1 — el <
k=N
so f, is cauchy.
But f,(z) is then cauchy in X for any fixed x € X so
Jn= f
point-wise.

However, for € > 0, there is some N such that for m,n > N
. €

||fn - f”oo = lim “fn N fm”oo <5 <e
m—oo 2

so f, — f uniformly, demonstrating the continuity of f by our prior work.

It remains to show that f is surjective.
(1)

Let x € X there is some x;,

c "
i1
similarly, there is some xf’il) such that
PRI NN I
»n — 4a C(_Zil)
J
Recursively, find C’i(ll) D C’i(f) D ... such that
_ 2 ga® gy < L
fk' C(k) w’tk 7d('1:zk 7m) — 2k

'k

By construction

. k
lim $§ L
n—oo F

Let -
ye (O # o
n=1
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which is possible by the FIP and compactness.
Note that diam = 0 so there is only one point! So

fuly) = 2 = f(y) = lim 2 = &

k—o0

Definition 5.8.1 (path)
The continuous image of [0, 1] in a metric space.

Definition 5.8.2 (Peano/Space Filling Curve)
A path in R™ with n > 2 such that the image (path) has interior.

Theorem 5.8.3
Let X be a compact, convex subset of a normed vector space (V, ||-|])-
There is a continuous surjective path 7 : [0,1] — X.

Proof
By the previous theorem, df : C' — X which is continuous and surjective mapping the
cantor set onto X.

Write .
0,1]\ C = (@, bn)

as the disjoint union of intervals.

Note
b, —a, — 0

since we are essentially taking the middle third that is being removed at every iteration
of the construction of the Cantor set.

Define f : [0,1] — X by

Fla) - {f(”“’)’ ree
Ef(an) + (1= ) f(ba), @ = tan+ (1= )by € (an,bn), 1 € (0,1)

Notice that f([0,1]) € X as X is convex and it is surjective by construction.

To see continuity let € > 0 there is some ¢’ > 0 such that for z,y € C
€

o =yl <& = |If(@) = fFWll < 3
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Let F':={n: b, —a, > ¢} and note that it is finite by a previous observation.

Define
€

o

D i= max||f (b) — f(an) | = max{max|| (b.) — f(an)]. 5

Furthermore, let
L :=minb, — a,,d := ming ¢’ cL
T nel " e ’ 3D

Let x,y € [0, 1] such that |z —y| < 0.
Case L z,y € Cso || f(«) = f(y)ll < §
Case Il z,y € [a,,by],n € F then

176) — Fll = 2= 70) — ol < - P = &

Case III z,y € [an,by],n & F so b, —a, < so

Case IV z € C,y € (an,b,) WLOG z < a,, (the argument is symmetric otherwise)

1F(@) = F) < 1 (@) = Flan)ll + 1 (an) = FW)
€ €
37 3
—~— —~—
xvanec7‘x_a"‘<6 anyye[anybn]vlan_y‘<6

Case V x € (an,by),y € (am, by),n > m WLOG b, < a,,. (relabel otherwise)

1F (@) = FI < M1 (@) = FOl + £ (Ba) = Flam)ll + 1 (am) = F®)]
< 3 + 3

~~~ ~~~
Z,bn E[an,bp],Case II, III  bp,an€C,Case I  Case II, 11T

5.9 Compactness of C'(X)

We ask ourselves when is K C C'(X) where (X, d) is compact, also compact.

(i) K must be closed (uniform convergence preserves continuity) and bounded (X is com-
pact)
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(ii) C(X) is complete

This tells us that K must be complete and we only need total boundedness.

Example 5.9.1 (C(0,1))

1
1, x:%
GaRR R

fn is continuous but

“fn - fm” =

n m
so {fn :m > 1} is closed, bounded, but NOT totally bounded.

(f2)52, has no convergence subsequence.

Definition 5.9.1 (Equicontinuous)
F C C(X) is equicontinuous if for all x € X, e > 0 there is some ¢ > 0 such that

VieF dzy) <d = [fx) = fly) <e

Lemma 5.9.2
If K C C(X) is totally bounded, then K is equicontinuous.

Proof
We know K is totally bounded.

Let x € X,e >0
Let fi,..., fn be a finite £-net for K.

By the continuity of f;, there is some §; > 0 such that

d(z,y) <6 = [fi(z) — fily)] < g

Define

d :=min{d;} >0
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Let f € K,d(z,y) < 0. There is some 4y such that || f — fi || < §

[f(2) = F)l < [f(2) = fio (@) + [ fio(2) = fio )] + [ fio (2) = F(y)]

< + <

€
3
If=figll<g  comtinuity |If—fi;||<5

Theorem 5.9.3 (Arzela-Ascoli)
Let (X, d) be compact.
K C C(X) is compact if and only if it is closed, bounded, and equicontinuous.

Proof (- <= -)
Straightforward.

Proof (<)
Suppose that K is closed, bounded, and equicontinuous.

We have K C C(X), which is complete. Combined with the closedness, K is complete.
We shows that K is totally bounded.

Let € > 0. Since K is equicontinuous, for all x € X there is some J, such that

d([E,y) <6m = |f(x>_f(y)| <€
for all f € K.

Now, {bs,(z) : © € X} is an open cover, so there is a finite cover by compactness.

bgml (.731), e ’b51n (IL’n)

Define the linear function 7": C'(X) — F" by

and note that TK is bounded in F" as K is bounded in C'(X).

But bounded subsets of F" are totally bounded! We can choose

fly‘--afm

such that
Tf,....,Tfm

form an e-net of TK.
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We claim that fi,..., f,, are an e-net for K.
Indeed, let f € K,y € X. Choose j such that

ITf =Tl <e

SO
|flz:) = fi(z)| <e,1<i<n

Choose i such that y € b, (z;)

1F () = L) < 1F(y) = Fl)l + 1 () = f3(z)l + [f3(z:) = f3(y)]

< 3¢

I.f = fille = sup|f(y) — fi(v)]

yeX
< 3e
< 4e

Proof ( <= alternative)
Suppose K is closed, bounded, and equicontinuous. We show K is sequentially compact.

Let (fx)72, be a sequence in K.
Pick €; > €5 > ... such that ¢, — 0.
Let x € X, there are §; such that

dw,y) < 0 — |f(x) ~ fW)] < e
for all f € K.
Since X is compact, there is some finite ;-net

Tity- - Tin,

Consider the sequence

Y1,Yg, " = 1’171,...,l’l,nl,$271,...,I’Q,nQ,...,Ii71,...7$i7ni7...

Note that (fi(x;;)),—, is a bounded sequence in F, so it has a convergent subsequence.

fii, fis oo, fl,k,ljingo fig(yy) =a1 €F

f2,17 f2,27 cee f2,k7 ]}g][olo f2,k(y2) =ay el subsequence of fl,k
fins fizsoos fiks klggo fik(y;) =a; € F subsequence of f;_j
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Take the diagonal subsequence
(fjvj );il
and note that fjx(y;) — a; exists for all j > 1.
We claim fj, is cauchy in C(X).
Fix € > 0, pick ¢; < ¢, so we have equicontinuity with §; > 0.

The d;-net z; 1, ..., 2;,, is in the original sequence.

But limy_o0 fix(2;;) exists for 1 < j < mn;. There is some N such that for all k£, > N

| frk(ig) — fralwig)| < e

Now, for y € X, there is some j such that y € bs,(z; ;)

| fer (V) = fu)] < [frx(¥) = fep(mig)| + | fer(@is) — fralzig)] + | frilzig) — fiu(y)]

< 3e

So || fe.x — fiillo < 3€ and by definition it is cauchy.

Now, by the completeness of C'(X) and closedness of K,

ek — fEK
Example 5.9.4
Let f, € C*(R) defined as
0, r<n
falz)=<x—n, n<z<n+1
1, n+l1<z

and let
K :={f,:n>1}
Note that ||f, —fmllcc = 1 if m > n. K is discrete so it is closed.
Also, || fullso = 1 so K is bounded.
Since f, is either constant or linear with slope 1 it is Lipschitz. K is also equicontinuous.

But K is not compact as all subsequences are not cauchy. This construction is possible
as (R, |-]) is not bounded.
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5.10 Induced Metric & the Relative Topology

Let (X, d) be a metric space and Y C X. (Y,d) is a metric space.
Every open set U C Y has the form V NY for some V C X open.

Let y € U, there is some r, > 0 such that b}fy (y) CU. We can take
be
V=
by

Note that in the Cantor set C

1 1
recnful] —en (1)

so (' is open AND closed.

Definition 5.10.1 (Induced Metric)
Let (X, d) be a metric space and A C X.

dy: Ax AR
z,y = d(x,y)

is then a metric on A which we call the induced metric.

Definition 5.10.2 (Relative Topology)
If we let
Ta = {W C AW = U N A, for some open set U C X}

this is the relative topology on A inherited from 7, on X

We now show that the relative topology is the natural topology obtained from the induced
metric d4.

Theorem 5.10.1
Let (X, d) be a metric space and A C X.
Let 74 and 74, be the relative topology and metric topology on A respectively, then

TA = Tdy

Proof
Firstly, let W C A be in 74. There must be some open set U C X such that W = U N A.
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ButzelU =— Je>0

By(z,e) :={y € X|d(z,y) < e} CU
By, (z,€) :={y € Alda(z,y) <e} C A

So W is in fact open in A and therefore z € 74,

Conversely, suppose W C A be in 74,. By openness, for each x € W there is some €, > 0
such that

W = U B, (z,€;)

zeW

U= U By(z,€;)

zeW

By our work prior, U isopenin X and W =UNAso W € 14

5.11 Connectedness

Definition 5.11.1 (disconnected)
A C (X,d) if there are U,V C X open such that
(i) ACUUV

(i) UNV =2
(i) UNA£@#AVNA

Definition 5.11.2 (Connected)
Not disconnected.

Example 5.11.1
[0,1] U [2, 3] is disconnected.

Example 5.11.2
Q is a disconnected subset of R

Q= (—o0,m) U (m,00)

Note that on the relative topology (metric restricted to a subset), VN A, U N A are open in
A. In addition,
VNA=A\U=An U°
~

closed
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so V is closed as well in A (vice versa for U).

This means that disconnected subsets contain clopen subsubsets.

Definition 5.11.3 (Interval in R)
I C R such that
a<bel — Vea<ec<b = cel

Theorem 5.11.3
Subsets of R are connected if and only if they are intervals.

Proof (- <— -)
If I is not an interval, there is some a < ¢ < b where a,b € I, ¢ I.

Then
I = (—00,c)U(c,00)

Proof ( <)
Let I be an interval.
Suppose there are U,V C R which disconnect I.
Fix a € I # @ and suppose without loss of generality that a € U.
Take

c:=sup{x €1 :[a,x) CU},b:=inf{z el:(x,a] CU}

Suppose for a contradiction that b € I. Then it cannot be in either U or V since neither
can contain an open ball around b. This is due to the fact that we either contradict the
fact ¢ is the supremum or that [a,z — €] C U for every € > 0. Similarly for c.

So I C (¢,b) C U which is a contradiction as we force I NV = @.

Theorem 5.11.4
If A is connected, f : A — Y is continuous, then f(A) is connected.

Proof (- <— )
If f(A) is not connected, there are disjoint, open, nonempty sets U,V C Y which discon-
nect Y.

By continuity, f~1(U), f~}(V) are both open, disjoint, and nonempty sets whose union
contains A. It follows that A is disconnected which is a contradiction.
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Corollary 5.11.4.1 (Intermediate Value Theorem)

If f:]a,b] - R is continuous and f(a)f(b) < 0 (so one is positive and one is negative),
then there is some a < ¢ < b such that

fle)=0

Proof

[a, b] is connected, and f is continuous, so f([a,b]) is connected and therefore an interval
in R.

This means that 0 € f([a, b]) as desired.

Proposition 5.11.5
If {X,}aca are a collection of connected sets and zy € X, for all o € A,

X::UXa

is connected.

Proof

If X CUUV with U,V disjoint, open, and having non-empty intersections with X, then
without loss of generality xy € U.

By similar reasoning as before, X, C U for every a so X C U, which is a contradiction.

Definition 5.11.4 (Connected Component)
The connected component containing z is

U*.

where each X, contains zy and is connected.
This is the biggest connected subset containing x.

Example 5.11.6
The components of Q,C' where C' is the cantor set are points.
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Definition 5.11.5 (Path-Connected)
A is path-connected if for any a,b € A there is a path

f:[0,1] - A
such that f(0) =a, f(1) = b and

fl0,1] C A

Proposition 5.11.7
Path connectedness implies connectedness

Proof
Fix a € A and consider for any b € A

v = fo([0,1])

the image of the path connecting a, b.

But the continuous image of a connected set (interval) is connected and unions preserve
connectedness as long as the unions share a point so

A:U%

is connected.

Example 5.11.8 (Topologist’s Since Curve)
path-connected but not connected.

f:R — R? given by

5.12 Total Disconnectedness

Definition 5.12.1 (Totally Disconnected)
A C (X,d) is totally disconnected if all connected components are single points.
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Definition 5.12.2 (Perfect)
A closed set A is perfect if it has no isolated points.

Note that perfect sets only have accumulation points.

We will show the Cantor Set is “representative” of compact, perfect, and totally disconnected
metric spaces.

Theorem 5.12.1
If X is a non-empty, compact, perfect, and totally disconnected metric space, then
X is homeomorphic to C.

Classifying equivalence classes of compact, countable sets up to homeomorphisms is much
more complicated.

Lemma 5.12.2

If X is compact and totally disconnected, with € X and r > 0, then there is a
clopen set U such that © € U C b,(x) so that the topology is generated by clopen
sets.

Proof (lemma)
Let
y€B:={y:d(z,y) =r}
Remark that B is compact, as it is a closed subset of a compact set space X.

Then x,y are contained in different components, so there exist disjoint, nonempty, open
U,V such that
X=UuUVzelUyeV

Note that U is also closed since X \ U = V is open and vice versa for V.

Then
{V,:y€ B}

covers the compact subset B C X.

By compactness, there is a finite subcover

Vi -0 Vy

n

Then

reU =V
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where U is clopen and disjoint from (J V), O B.

This shows that
U C B°=1b.(x)

Corollary 5.12.2.1
Remark if W C X is open, then for each z € W, there is a r, > 0 such that

b, (x) CW
so there exists U, clopen with
reU, Cb. () CW

SO

w=|Ju

zeW

Corollary 5.12.2.2
If (X, d) is compact, totally disconnected and € > 0, then there are finitely many clopen

sets
Uy,...,U,

pairwise disjoint such that
diam(U;) < €, X = U U;

Proof (corollary)
For each € X, take clopen U, such that
r €U, Cbx)
by the previous lemma.
These form a clopen cover of a compact space, so a finite subcover

Usyyoo o, Uy,

exists.

Then

Vs = (U, N[ US : S C[n]
ics j¢Ss

are the clopen, disjoint, sets with diam(Vs) < €, and cover X.
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We can view the Vg as partitions of X by “how many times” a point is covered by some U,,.

Proof (theorem)
Tile X with a finite number of nonempty, disjoint, clopen sets of 0 < diam < % Say

Xl;"'7X’rL17n1 Z 2

Notice that we can take subsets with positive diameter as X is perfect and therefore has
no isolated points.

Split C' into the same number of disjoint clopen sets (combine sets if necessary)

Cl, cee 70711’ dlam(Cz) S

Wl =

L

Repeat this argument on each X; with finitely many disjoint clopen sets with diam < .

In addition, split each C; with the same number of disjoint clopen sets of diam < 3%

Again, this is possible due to the perfectness of X: any non-empty closed set has no
isolated points and can therefore be split further into subsets of infinite cardinality (ie the
“fractal” nature of the tree holds).

Do this recursively and build two “partition” trees of clopen sets. Each level is pariwise
disjoint, and each set’s diameter is less than 27",

For each path down the X tree, this determines a unique x € X by the FIP, compactness,
and diam — 0 (A2). Similarly for C.

More rigorously, at the n-th level, we have

(n) () A (n)
XMLxm el el

Pick xz(-n) € Xi(n), c§") € C’i(n) and define f,, : X — C, g, : C'— X by the following

o

I

x™

Note that both f,, g, are continuous since they are locally constant. Furthermore
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Let Ix be the identity function on X

nO fn— Ix|leo = max sup dx,xgn)
Jon© o=l =, sy sup de.al")

= max diam(Xi(n) )
1<i<k(n)
<27 =0
and similarly for ||f, o g, — I¢||-

But in addition, we have

1o = Fatalloo = Jnax | _max (y; ',y ) < diam(C3™) < 3 0

and similarly for ||g, — gn11]|-

Since Y 27" > 37" < oo we have that

(fn), (gn)
are Cauchy. It follows by completeness of C(X,C),C(C, X) that

f:=1lim f,,g:=limg,
exist.

In addition, we have

gof=limg,of,=1Ix,fog=lmf,o0g =Ic

So f, g are continuous, bijective, and inverses of each other, demonstrating the homeo-
morphic nature of X, C.

Example 5.12.3 (Knaster Kuratowski Fan, Cantor’s Triangle)
Let z € C, the Cantor Set and L(c) be a line segment from

11
e
©0 -~ (33)
Let p = {(%, %)} Next, if ¢ € C has finite ternary expasion we let
Xe{(z,y) € L(c) - y € Q}

Otherwise, ¢ € C' has infinite ternary expansion, get

Xe = {($7y) € L(C) ‘Y ¢ Q}
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Define
F:=pU U Xe

ED)

5.13 Baire Category Theorem

F' is connected but

is totally disconnected.

Note that this has nothing to do with Category Theory.

Definition 5.13.1 (Nowhere Dense)

A C (X,d) such that int(A) = @.

Example 5.13.1
The Cantor Set is nowhere dense in R.

Definition 5.13.2 (First Category)
A C (X, d) such that
A=|]4,
i=1

a countable union of nowhere dense sets A,,.

Definition 5.13.3 (Residual Sets)
B C (X,d) if X \ B is first category.

Lemma 5.13.2
Let A be a nowhere dense subset of (X,d) and z € X,r > 0.

bi(2)\ A% 2

and is open.

Proof
The deletion cannot be empty as A does not contain any open sets.
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To see that the deletion is still open, let any y be in the ball. Then suppose every open
ball around y contains a point of A;. Then y € A; and so it was removed.

Theorem 5.13.3 (Baire Category Theorem)
A complete metric space (X, d) is not first category.
In fact, X \ U;2; A, is dense for any countable union of nowhere dense subsets A,,.

Proof
Let A,, be nowhere dense and let x € X, r > 0.

By the lemma

and is open.

Pick any x1,0 <71 < § such that

byy(z1) € B C by ()

Recursively, pick z,,0 <, < 57 such that

brn (xn) g brn,1 (xn—l) \ An

By the completeness of X, and since
diam(b,, (z,)) < 2r, — 0

with the nestedness of the balls, we get

()b (20) # @

(A2).
Take

[e.o]
Ty = nhjEO T, € ﬂ by, (T,)
i=1
and note that by construction
Zo ¢ An

as we escaped A,, in the n-th iteration.

So .
i ¢ U An
i=1
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By the arbitrary choice of x,r, since there will always be some x( € b%(:c),
x\ A,
n=1
is dense as desired.

Example 5.13.4
Q = U,eq{q} is first category (but also dense) in R.

Corollary 5.13.4.1
If X is a complete metric space and U,,n > 1 are dense, open subsets, then

o0
Vs
n=1
is dense.

Proof

U, dense means that A, = U¢ is closed and nowhere dense

r€int A, = z¢U,

Hence
(U =X\ (U An>
n=1 n=1

is dense by the BCT.

Corollary 5.13.4.2
If (X, d) is complete and A,,,n > 1 are closed sets such that

there is some n, such that

Proof
If all A,, are nowhere dense, its union cannot be all of X by the BCT.
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Theorem 5.13.5
The set
F :={f € Cla,b] : fis not differentiable at any point}

is a dense in Cfa, b].

Lemma 5.13.6
Differentiable functions are locally Lipschitz.

Proof (lemma)
For all y € [a, b] the Newton Quotient

fly) = f(z)

li = f
i — fi(x)
exists.
So there is some § > 0 such that
y—

Hence, for y, |y — x| < § we have

[f(y) = f@) < (1f ()] + Dy — =]

Elsewise, if |y — x| > 0 then

) - Sl < 201 < (2= 1y o

Taking )
C = max{|f’($)\ +1, —HJ;HOO}

is a local Lipschitz consant at z.

Proof (theorem)
Let

A, ={f €Cla,b] : 3z € [a,b], f is locally at Lipschitz at x with constant at most n}

We claim that A, is closed and nowhere dense. If we show this, then (|~ 4,)¢, the
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complement of the set containing all functions that are differentiable at at least one
point, is residual, which completes the proof as it is a subset of the continuous nowhere
differentiable functions on [a, b].

To see the claim we first show that A, is closed. Let f, fi € A,, such that

||fk_f||oo_>0

There is some zj, € [a, b] such that

[fe(y) = fuz)| < nly — x|

By the compactness of [a, b], there is a subsequence xy, — .

Now

1f(y) = flzo)l < 1F(y) = fes W]+ [fr. () = Fo (@) | + [ o (2r,) = fro(@0)] + | fri (20) — f(2o)]

= n|y — x|

so we indeed have f € A,,.

Finally, we show that A, has empty interior. Let f € A,,,e > 0. We construct a g ¢ A,
such that || f — glle < €.

To do this, we find h piece-wise linear such that

€

I = hll < 5

By uniform continuity, there is a 4 > 0 such that

y—al <8 = f(@) = fW)] < ]

Let a = zp < 21 < --- < x, = b such that

Tip1 —X; < )

Let h(z;) = f(x;) and linear in between (check that ||h — f||. < §5). Now, h is certainly
Lipschitz with constant L equal to the maximum slope between x;, x;,1.

Let M > 37 (L 4 n). Define
g:=h+ g sin(Mx)
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and note that
19— flloo <1lg = hlloo + I1h = flloo =€

It remains to show that g ¢ A,. Let T € [a,b] and pick y such that

2m
ly —z| < i within one period of sin

and
1 in Mz <0
sin(My) =4 7
—1, sinMz >0
We have
i €, . ) _ _
19(y) = 9(x)| 2 5 lsin My — sin Mz| — [h(y) — h(z)]
Zgl—Lw—ﬂ
eM
=551y~ = Lly - 1|
em B
= (E) |?/ - I|
>nly — 7|

and hence g ¢ A,,, completing the proof.
.14 Weierstrauss’ Nowhere Differentiable Function

Theorem 5.14.1 (Weierstrauss M-test)
If f, € C(X) and > 2| full < co then

P
=1

converges uniformly.

Proof
Let Sy(s) :== SN | fu(x) and € > 0.
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There is some Ng such that » 7\ || filloo < € by convergence. For M, N > N

> fulx)

k=N+1

k=N+1

[Sm () = Sy ()] =

So fi is cauchy, and by the completeness of C*(R), it converges uniformly to some con-
tinuous bounded function.

Our construction is a specific case of Weierstrauss’ original construction and avoids checking
the general case for simplicity sake.

Definition 5.14.1 (Weierstrauss Function)
f € C*(R) given by

f(z) = i 27" sin(10" )
n=1

where f,(x) = 27" sin(10"7z) is continuous and 1-periodic.

Notice that || fn]lcc = 27" and so

[e.e]
D lfalloo < 00
i=1

Proposition 5.14.2
f is nowhere differentiable.

Proof
Since f is 1-periodic, it suffices to check that it is not differentiable on [0, 1].

Let x = 0.x125 - - - € [0, 1], and consider the decimal expansion.

Forn > 1, let
Yn = 02122 ... 2,
Zn = Yn + 107"
Now,

W(yn) = 27"sin(10"y,) = 27(—1)10"vn€eN = 49-n
fo(Yn) Y o s

n 1 191N
Falz) =277 sin(107my,) = 277 (— 1)1 v H1EN = g [ OPPOSTCHE
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hence |fn(yn) - fn(zn)| =27,
If £ > n then
Fi(yn) = 27" sin(10"7y,)
_ 2—k(_1)10kynezN

— 9~k

and 50 fi(ya) — fi(z) = 0.
For 1 < k < n we have
| fe(yn) — fr(za)l = 1£i(0) - (Y — 20)]

< | felloolyn — 2nl
= [|27% - 10*7 cos (10" 1) || o - 107"

5k
T
n T
=9 S
Overall
[ (yn) = FGa)l = D Filyn) — fu(20)
k=1
k—1
= 1 fi(n) = fulzn) + D frlyn) = fulzn)
k=1
k—1
> | fulyn) = Felza)l = D Fulyn) = fi(zn)
k=1
- n—1 - 1
=27 =y "o =
k=1
—n+1 —n 1/5
> 27t _ 9 7r-1_1/5
=2 (2-7)

> 27"
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By the Pigeonhole Principle, we can take w, € {y,, z,} such that

[f(wn) = fl@)] > 27"

The Newton Quotient at x is given by

f@) = flw) | 27!
T — Wy, 10—

J— 5n

T2

— 0

showing that the derivative at z does not exist. Hence, by the choice of x, f is nowhere
differentiable.

5.15 Oscillations

Definition 5.15.1 (Oscillation)
Let f: (X,d) — (Y, p).
For x € X,0 > 0, define

wy(z,0) == sup p(f(y), f(2))

Y,2€bs (x)

The oscillation of f at x is defined as

we(z) := (isgg we(z,0)

Lemma 5.15.1
f is continuous at z if and only if ws(x) = 0.

Lemma 5.15.2
For ¢ > 0 and
U:={zeX: wir)<e}

is open.

Proof
Let x € U, > 0 such that w¢(z, ) < e.

Ify € bs(x),d(x,y) =r <.

106



So
bs—r(x) C bs(z)

since wy(y,d —r) < wy(z,d) and wy(y) < €, hence

By definition, U is open.

Definition 5.15.2 (Gs-set)
A countable intersection of open sets.

Definition 5.15.3 (F,-set)
A countable union of closed sets.

Recall that point-wise discontinuity does not necessarily preserve continuity. We now show
that it preserves continuity at many points.

Theorem 5.15.3
If f, € Cla,b] and f(z) = lim, o fn(x) exists point-wise.
Then the set of points of continuity of f is a residual, dense Gs-set.

Proof
Notice that

{z : f is continuous at z} = {z : w(x) = 0}

— ﬂ{x:wf(x)<%}l

n>1

open by lemma
which is a Gs-set.

Now, the complement is

A::UAn

n>1

A, = {x oy (2) > 1}

where
n
and notice each A, is closed by the lemma.

We claim that int A,, = @ so A,, is nowhere dense, and so A is first category by definition.
Then A€ is a residual set, and in particular, dense.
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Suppose there is an open interval I C A,,.

Take € = % and let

Ex = () {o € I:1fi2) - fi@) < &

1,j>N
and notice that it is an intersection of closed sets and is therefore closed.

Since lim,, o fi(z) = f(z), the sequence (f;(2))$2, is cauchy. In other words, for all x € I,
there is some N (z) such that
T € EN(a:)

It follows that I = |Jy_, En and by the BCT there is some Ny such that we have some

open interval
J g int ENO 7é 1G]

Fix z € J. By uniform continuity of fy, on [0, 1], there is some § > 0 such that

[z =yl <0 = |fno(2) = fvo(y)] <€

WLOG, (z —d,2+6) C J so

ly—z| <d = [f(z) = f(y)]
< [f(z) = fvo @) + [ fvo () = o ()] + o (y) — [ ()]
<et+et+e
= 3¢

This is due to the fact that

Vi > No,|fi(z) = [ (2)] <€ = [f(2) = fxo(2)] <€

So wy(z,0) < + meaning
(@) <5
we(zr) < —
/ n

and so
JNA, =

which contradicts the assumption that I C A,,.

So int A,, = @ and by BCT, A€ is a residual set as desired.
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5.16 Contraction Mapping

Definition 5.16.1 (Contraction Mapping)
T:(X,d) — (X,d) is a contraction mapping if 7" is Lipschitz with a constant ¢ < 1

Example 5.16.1
If <y € [—1,1] then there is some 6§ € (z,y) such that

COST — COSY

Tx—Ty|
= pr—

r—y

‘ = |sinf| <sinl <1

by the Mean Value Theorem.

So cos is indeed a contraction mapping on [—1, 1].

Let zy € [0, 1] and define a sequence x, := cos(x,_1),n > 1.

Notice that there is some x* € [—1, 1] such that cos(z*) = x* (consider the graph of y =
x,y = cos(x)).

|z, — 2% = |sinl] - |z, — x¥|

< |sin1|"|zo — x”|
— 0

Hence, any arbitrary point xy € [—1, 1] converges to z*, the fixed point.

Theorem 5.16.2

Let (X, d) be a complete metric space and 7' : X — X be a contraction with Lipschitz
costant ¢ < 1.

T has a unique fixed point x, such that

z, =Tz,

In particular, if xy € X is arbitrary and z,, 41 := T'(x,),n > 0, then z,, — z, and

cn

1—c

d(l‘n,l‘*) S Cnd(.'I/'O,ZE*) S d(xl,l'(])
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Proof
We first note that

d(T(vn-1), T (7))

Cd<xn—17 xn)

d(l’n, xn—i—l)

INIAIA

"d(zo, 1)

We claim that (x,) is a Cauchy sequence. Indeed, let m > n > N, then

For sufficiently large N, we will have d(z,,z,,) < € for any fixed € > 0.

By the completeness of X, we can define

T, = lim z,
n—0o0
By continuity
Ty = T = T(x,) = Tpy1 — T

gives us the fixed point.

Observe that

d(xy,x) = lim d(z,, ;)

m—0o0

m—1
< lim (Z ck> (0, 1)
k=n
Cn
=1 Cd(:vo, x1)
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Finally, we show that it is unique. Suppose T'(y) = y, then we have

d(:lj*, Z/) = d(T(:L'*), T(y))
< cd(z4,y)
= cd(T(2.),T(y))
< Fd(z,,y)

— 0

Example 5.16.3
Consider the function T'(z) = 108(x — z?).

Clearly, it is not a contraction. As we would have 3 fixed points

107/3
6

0,=£

However, if we select a point close enough to one of the three fixed points, we would still
converge to that fixed point.

Theorem 5.16.4
Suppose T' € C([a, b], [a,b]), T(x,) = z, and |T"(z,)| < 1.
Then, there is a § > 0 such that

T : bs(xy) — bs(x,)
is a contraction.
Proof
By continuity and compactness, there is some § > 0 such that

sup |T'(x)]=c< 1

|z—x4| <

If |z — z,| < § then we have

T (z) — .| = |T(x) — T(z.)|
=[T'(&)] - |[v — .| MVT

< clr — .|
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Definition 5.16.2 (Affine Map)
T(z) : R™ — R™ such that
T(l') = L(iL') + Yy

where L is linear and y is fixed.

Example 5.16.5 (Fractals)
Let Ty, ..., T, : R — R? be affine mappings. We wish to find a set X C R? such that

X=T(X)U---UT,(X)

Assume T} are contractions, ie

[Li(2)]l2 < cillzflz, e < 1

If there is such an X, then we have that X is similar to T;(X).

We provide a concrete example. Consider T} : R? — R? defined by

then

(0,).(4,0).(2,2v3)
are fixed for Tj, T, T5 respectively.
Let X C R? be compact and we define the mapping

T(X)=T1(X)UTyX)UT5X)
Let X be the solid triangle.
™(X)

gives us the Sierpinski Triangle under the limit.

Lemma 5.16.6
dH(U:‘l:l Aia U?:l Bz) S maX{dH(A,-, B,L) . 1 S Z S n}
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Proof
Let the RHS be 7, then dy(A;, B;) < r means that

A CE(B;) ={z:d(z,B;) <r}
B; C E.(A;)

So we have

UAi - Er(U B;)
U B; C Er(U A;)

Theorem 5.16.7
Let (X, d) be complete and T3,...,T, : X — X be contractions. Recall that

H(X):={K C X : K is compact}

is a metric space with dy.
Define T': H(X) — H(X) by

(V) =) JT)

Then, T is a contraction mapping, ie there is a unique compact set K, C X such that

T(K,) = K,

Proof
We claim that
du(Ti(A), T;(B)) < c;du(A, B)

Let a € A and note that there is some b, € B such that

d(a,b,) < dy(A, B)
d(T,(a), Ti(ba)) < c;d(a,by) < c;dp(A, B)
Ti(A) C Ee,ay a8 (Ti(B))

and vice versa for T;(B) C Ec,q,,(a,8)(Ti(A)). Thus

du(Ti(A), Ty(B)) < cidu(A, B)
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So T; is a contraction in H (X)), and thus by the lemma, 7" is a contraction and so we have
our desired unique K,.

Example 5.16.8 (A Counterexample)
T : R — R defined by
Tr=x+1

has Lipschitz constant 1 and no fixed point.

So we require Lipschitz constant less than 1.

Example 5.16.9
S :[1,00) = [1,00) defined by

1

Srx=x+ —

X

We have

1 1
Sr—Sy=a+—-—y——
x Y
— (i y—=x
=(z—y)+ xy

So |Sx — Sy| < |x — y| but S has no fixed points. This is due to the fact that

1
1— —
Y

LipS:= sup

1<e<y<oo

=1

5.16.1 Newton’s Method

Let f € C? with f(z,) =0

We want
0~ f(x1) + f'(z1)(22 — 11)
by taking
Ty R X — flan)
f'(@1)
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Definition 5.16.3 (Quadratic Convergence)
T, — To converges quadratically if
|J7n+1 - $*| S M|$n - £*|2

for some constant M.

Theorem 5.16.10 (Newton’s Method)
If f € C? such that f(z,) = 0 and f’(z.) # 0, then there is some R > 0 such that on
[z. — R,z + R]

f(z)

/()

Ter =x —

is a contraction.
Moreoever, for zg € [z, — R,z + R]

Ty =T "xg — T,
defines a convergent sequence converging to x,

If fact, (z,,) converges quadratically.

Proof
First, we compute the derivative of T'

['(@)f'(z) = f(2) P ()

YA HEE
@)= PP @)
7@y
F@) /()

Notice that 7"z, = 0.
Choose R such that )
T3] < 3. () £ 0
on bg(x,). This is possible by the continuity of f, f’, f).
We claim T is a contraction with LipT < % Indeed
[Tz —Ty| = [T'¢]|x — y| MVT

1
<

§|x—y|
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and hence there is a unique fixed point

B flzs)
T33* =Ty — f’(x*) = Tx
Let
A= sup [f®(z)
|z—z.|<R
B = |$_i£f§R|f’(w)|
and )
M=3
Notice that
f(x”> o f(l'*) = fl(§n>($n - 33*) gn € (xn ) 33'*)
f(xn) = .f,(gn (xn - CE*)
f(@n) =T, —T
fr&)
By definition

So

Tpi1 — Tu = (Tpy1 — Tn) + (Tn — )
_ fln) | flzn)
T @) P
f(n) ) f'(&n) — ['(2n)
f'(6n) [ ()

_ (.Tn — x*) / — iy

= In T p) —x again
f'(x) FE(Gn) (n n) MVT ag
2 (G) 2

Tpa1 — Ty| < N, — . &n € (g, x,)or vice versa

f(@n)
S §|xn - ZC*|2

= M|z, — z,]?
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Example 5.16.11
Find \/a where

and
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6 Metric Completions

6.1 Metric Completion

Definition 6.1.1 (Completion)
The completion of a metric space (X, d) is a complete metric space (Y, p) with an

isometry
J: X =Y

such that JX is dense in Y.

Theorem 6.1.1
Every metric space has a completion.

Proof (slick)
Define J : X — C¥(X) as follows.

Pick z¢y € X and define
fo(y) = d(z,y) — d(x0,y)

for all z € X.
Then define
Jr=f,
Bounded
We have
fa ( ) fx(l/2) = d(ﬂ%yl) - d(5507y1) - d(%?b) + d(%,yz)
( ) S d(% ZL'()) + d(an y) = d(ya ZL') - d(y7 T
(y7 Io) S d(ya (L’) + d((l,’7 ZL'0> = d(yu xO) - d(yu l‘)
|d<y7 ) (yaxO)‘ S d(l‘, $0)
| felloo < d(z,x0)
Continuous

We actually claim f, are Lipschitz.

| fo(yn) = fa(y2)| < |d(z,y1) — d(z,y0)| + [d(z, 1) — d(, y2)|
< 2d(y1, y2)
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[sometry

[ far = faalloo = sup|fu, (y) — far (9)]
yeX

= Su)lz()‘d(xby) - d($07y) - d(l’z,y) + d(:Ean)’
=

= Sup|d(]}1,y) - d($2,y)|
yeX

= d(z1, r22) Y= 22

Define Y := JX and notice that it is a closed subset of Cy(X) and therefore complete.
JX is also dense in Y by definition so we are done!

Proof (intuitive)
Take
C :={(z,) : (z,,) is Cauchy}

Let ~ denote an equivalent relationship so that

(zn) ~ (yn) == lim d(2n,y,) =0

n—oo

(Check that ~ is an equivalent relationship)

Let
Y:=C/~
be the quotient space and define

p(Z,9) = lim d(zn, yn)

n—oo

p is well-defined as

d(xm yn) < d(xm mm) + d(wma ym) + d(yma yn)

and vice versa which shows

|d(@n, Yn) = d(@m, Ym)| < d(@n, Tim) + d(Yn, Yom)
50 d(Zy, Ym) is Cauchy in R so the limit always exists.
(Check that p is well-defined on the equivalent class)
(Check that p is a metric)

Define J : X — Y by the equivalence class of the constant sequence

Jr = [(2);4]

n=1
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[sometry
p(JZ, Jy) = imd(x,, y,) = d(z,y)
Dense Image
Let 4 = [(yn)] be equivalence class of a not necessarily constant sequence in Y and € > 0.

There is an N such that for m,n > N we get

d(ym7 yn) <e€
Consider
T = Jyn = [(yn)]
and notice that

(Y, T) = limd(yn, yn) < €

Completeness
Let (9k)52; be a sequence of equivalence classes of cauchy sequences in Y.

Choose x;, € X such that
p(Jzp, ) <275 k>1

and notice this is possible by the density of JX.
Let # = [(xy)] (Check it is Cauchy).
For € > 0 There is some K, such that for k,l > K

p(gkagl) <€
27k < ¢

d(xg, x;) = p(Jxg, Jy) isometry
< p(Jxk, ¥i) + p(Fe, 51) + p(G; J21)
<2 Fte+27!
< 3e

We claim that lim gj, = @ = [(z4)].

First, note that

since
p(Jxg, z) = limd(xy, ©,)
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and for all € > 0 there is an N such that for k,n > N

d(xg, x,) < €

For k> N
p(Jxk,f) <e

and hence
J T — T

by definition.
Finally
PG T) < p(Gk, Jak) + p(Ja, T)

<27F 4 ¢
-0 k — o0

so i, — T and we are done.

Theorem 6.1.2 (Extension Theorem)

Let (X, d) be a metric space with completion (Y, p).

Let (Z,0) be another complete metric space.

Suppose that f : X — Z is uniformly continuous, then f extends uniquely to a
uniformly continuous f : Y — Z.

Example 6.1.3
f:(0,1) — R defined by
is not uniformly continuous and thus does not extend to [0, 1].

Example 6.1.4
g(x) = sinz also does not extend.

Example 6.1.5
However, h(z) := 23 does in fact extend to [0, 1].

Proof
Let € > 0. By uniform continuity, there is some ¢ > 0 such that for d(z,y) < J, we have

o(f(z), f(y)) <e
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By Cauchyness, there is some N such that for n,m > N

d(Tp, Tpy) <0

Hence
o(f(@n), flzm)) <e€

and (f(z,))2, is Cauchy and
lim f(z,)
exists (by Completeness).
Define ~
f([#]) = lim f(zy)

n—o0

Well-Defined

Let (z,) ~ («]) and note that
(w1, 2, w0, 25, .. )

is then Cauchy (by ~).

For € > 0 there is N such that for n,m > N

d(zp, Tm),d(z), 2)), d(x), x,) < €

n»'m

so d(xy,, z),)) < 2¢ gives that

I
)

lim f(z,) = lim f(2,) =: f([Z])

is well defined.

Uniform Continuity Let € > 0 and get § > 0 such that d(x,2’) < § means

o(f(x), f(a)) <€

If .4 € Y such that p(7,y) =r <. Let

which is possible by density of JX.

We have
p(¥,y) = lim p(Jxy, Ja;,)
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so if p(7,y’) < § then there is some N so that n > N means
d(z,x)) = p(Jxy, Jz)) < 0

and hence

o(f(zn), f(,)) <€

By cauchyness of (z,,) and (x,) — ¥ we have that

and so
o(f(@), f(@) =limo(f(zn), f(})) <€

showing us that f is uniformly continuous.

Theorem 6.1.6 (Uniquess of the Metric Completion)
If (X, d) is a metric space and (Y, p), (Z, ¢) are both completions with JX, KX dense
images of an isometry in Y, Z respectively, then there is a unique h : Y — Z such
that

h(Jx) = Kz

which is an isometric homeomorphism.

Proof
Define hy : JX — KX by
ho(Jz) = Kz

and notice by definition that hy is an isometry and is therefore uniformly continuous
(Lipschitz with constant 1).

By the extension theorem, hg extends to Y — Z uniformly continuous.

To see that h is an isometry, notice that

To see that this is a surjection, let '€ Z with
Z=1imKzx,

and (z,) cauchy.
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This means (Jx,,) is also cauchy with
y=limJz, €Y

in fact
h(y) = lim hyJx, = lim Kz,, = 7

Since isometries are bi-Lipschitz, they are therefore homeomorphic as well.

6.2 p-adics

Recall the p-adic norm

Remark that we have
(1) |z =0 <= =0

@) llzyll =yl
(3) Nz +yll < max{|[z[], [y]l}

this d, := ||z — y||,, is a metric.

Also, recall that by a previous assignment, the rationals are not complete under the p-adic
norm. Let Q, be the completion of (Q,d,), then Q, is the set (field) of p-adic numbers.

Remark that for any ball in Q,, any point in the ball is in the center.

Proposition 6.2.1
If (z,,) is a d,-Cauchy sequence in Q and

x=Ilimx, #0
in Q,, then ||z,, is eventually constant.
Proof

We claim
znlly = Zmllp] < 20 — 2mll, — 0

Indeed, we have
[znlly € {lIrllp : r € QF = {p" : n € Z} U{0}

Since x,, is cauchy for € > 0 there is N such that n,m > N means

20 = 2nlly < ¢
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50 |meHp - ||l'n”p| < € and .
lim [z,
n—00

exists by the completeness of R.

Suppose z /4 0 so ||z,||, # 0. We have

limHSBan :pk

and |z, ], - p*] < c.

Choose € > min{p* — p**1 p*1 — p*} so
2]l = lim||z,|,
as desired.

Proposition 6.2.2
If 2,y € Q, with (x,), (yn) cauchy sequences in (Q,d,) such that

limz, =z, limy, =y
then we may define
(1) z+y=limz, +y,
(2) zy = limz,y,

(3) —z =lim—=z,
which is all well-defined and makes @Q, into a commutative ring.
Moreoever,

@) llzylly = llzlallyll,
(i) [z +yllp < max{[|l[}, [yll»}
(ili) ||z]|[, =0 <= =0

Proof
Claim: (z,, + y,) is cauchy.

We have

1(@n + 90) = @m = Y)llp = 1120 = Zm) + Y = o)
S maX{HI'n - xm”p? ”yn - ym”p}

<€

for any fixed € > 0 and sufficiently large n > N.
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To see well-definedness suppose =/, — x,y!, — vy, then

limz, + vy, =limz, + y,

< max{ ||z, — 27, |lp, 1Y — Ynllp}
— 0

Claim: (z,y,) is cauchy.
We have
10y = Zmymllp = 120 = 20)90 + Zm(yn = 45)llp
< max{||z, = TmllpllYnllps |Zmlpllyn — v llp}

so either x,y # 0 and thus

[Ynlly = [1Yllp; [2nllp = [zl ¥ = N,
for some Ny by our work earlier, or z = 0,y = 0 and

[znllp = OV {lynll, = 0

In both cases, ||,y ||Ynll, are bounded, say by p™° then

(x) < p" max{|lzn — zmllp, 190 — Y}
giving us cauchyness.

So

xy = limz,y,
malkes sense.
Well-definedness is similar to the above.

If zy # 0 we have

2yl = Tim[zyn|l,

= ||lznynllp n > Ny
= [|z|[,/[yll»

as well as

|z + yll, = lim||z, + yall,
< lim max{ ||z, |y, |ynllp}

= max{||z||,m|ly|l,}

We can check all the facts for a commutative ring.
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Theorem 6.2.3
Q, is a topologically complete field that contains QQ as a dense subfield.

Proof
Q, is complete and Q is dense by construction.

It remains to check for inverses. Let x € Q, x # 0.

Write
r=limz,,z, € QAR > N, ||z,|l, = ||z, #0

So x, #0,n > N.

Let y = lim i

1 _ 1 || % — s
Tn  Tm TmZn ||,
. ”xm - xn”p

= lewlllzalls
e = zally
J, 2

and hence the sequence is cauchy and makes sense.

In addition

rxy =limz,— =1

as desired.
Propo_sgtion 6.2.4
Zy=72"={x€Qy:|zll, <1}
Proof
RHS is closed and equal to

b1(0) 2Z
hence 4

RHSDZ"™

To see inclusion in the other direction, let

r € Qy, ||x||p <1
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Let n > 0. There is some r, € Q such that

[ =7l <p™"

We have
”Tan = ||:L‘ - (m - 7“n)“p
< max{||zlp, |z — 7|y}
<1
and hence
ka/
Tn =D E

where a, b, p are relatively prime and & > 0.

Replace a with a + p"c =0 mod b and solve for ¢ € Z since ged(p™,b) = 1.

Let
rfa Dp'c g [a+ptc
n = -+ — | = eZ
e (b* b) p( b )
We have
p'c
e
b p
:pfkfn
<p"
Also

[ = snllp < max{[lz = 7rallp, [[rn = snllp}

<p™"
We may then conclude
lims, =z
—
zeZ"”
= Zp
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6.2.1 p-adic Expansion

Proposition 6.2.5
Let x € Z, we claim there is a unique o € {0,1,...,p — 1} such that

1
|z — zoll, < =
"~

Proof
Existence

Pick k € Z, ||z — k||, < % We have

k=ay modp,ag€{0,1,...,p—1}

and ||k — apl] < %.
Hence
[l — avoll, < max{|[z — k|, [k — aollp}
1
S —
p
Uniqueness

Suppose there is some 5y € {0,1,...,p — 1} with 5y # ap.

So [lag = Boll, = 1 as p fao — o
It follows that

1= |lao — Bollp
= l(co — 2) + (z — Bo) ||
< max{[|z — aollp, [|= — Bollp}
——

<

RS

then

[z = 6ol =1 (=1)
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Proposition 6.2.6
for n > 0 there is a unique «, € {0,1,...,p — 1} such that

p
Proof
Establish this for n = 0.

Suppose this is true up to n — 1.

n—1
y=r-—= Z a;p’
1=0

has

ol <
y < —
= o,

Then [|p~"yll, = lp"lpllvll, = P"[lyll, < 1. By the n = 0 case, we are done.

By construction

n o0
r = lim g a;p' = E a;p’
i=0 =0

To see uniqueness, if x € Q, with ||z||, = p" then

n TL

lp"zll, =p™" - p
-1

prr =Y By’
T = Z Bip ™"
= Z aip’

Proposition 6.2.7
Z,, is compact.

Proof
From an assignment, Z is totally bounded and

{0,1,...,p—1}
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is a L -net.
P
Hence Z, is totally bounded and complete.

It follows that Z, is compact.

6.3 Construction of R

6.3.1 Definitions

Definition 6.3.1 (Ordered)

A field is ordered if there is a subset P C F (positive) such that
(1) F=—-PU{0} U P (disjoint union)

(2) P+PCP
3) P-PCP
(4)

Hr<yify—xeP

Definition 6.3.2 (Upper Bound)
@ # S CF has an upper bound if there is x € F such that

selS —= s<z

Definition 6.3.3 (Lowest Upper Bound, LUB)
&S C F has a LUB y :=sup S if every upper bound z is such that

y<uw

Definition 6.3.4 (Lowest Upper Bound Property, LUBP)

A field has this property if for all @ # S C F with an upper bound, S has a LUB.

Definition 6.3.5 (Archimedean)
A field is said to be Archidemean if for every x > 0 there is n € N such that

1
— <z
n
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Definition 6.3.6 (Complete)
A field is complete if every cauchy sequences converges.

Definition 6.3.7 (Cauchy)
A sequence is cauchy if for all 0 < r € Q, there is N such that n,m > N implies

|Tp — T| <7

6.3.2 Results

Proposition 6.3.1

If F is an ordered field
(1) QcF
(2) F has the LUBP if and only if F is complete
(3) F has the LUBP implies F is archimedean
(4)

4) if F is archimedean, then x <y =— Ire Q,z <r <y

Proof (1)
We know 0,1 € F so
0<l<l4+l<+!’l1=neflF

and so —n € IF.
It follows that Z C FF.

But then 1—; :=p-q¢ ' €F and so Q CF. This means the field has characteristic 0.

Proof (2)

(=) Notice that the monotonic subsequence version of the Bolzano-Weierstrass Theo-
rem gives us completeness assuming the LUBP as all cauchy sequences are bounded and
converge if there it as a convergent subsequences.

(<) Our previous proof of the existence of LUBD in R can be repeated with some sort
of base d expansions.

Proof (3)

Let J:={x:2 >0AVn > 1,nx <1} (infinitessimals).

Suppose J # &. Notice that 1 is an UB for J and if x,y € J then nz + my € J for
n,m > 1.
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If F has the LUBP, let y := supJ. Let xqg € J and notice that Vaxg € J,z + 29 € J so
r+xg <y = x <y— x9, a clear contradiction.

So J = & as desired.

Proof (4)
If x <y, then y — x > 0 so there is some n such that

1
O<—<y—=
n

It follows that there is some k& € Z with

k E+1 1
—<z< <zrz+-<y
n n n
~——
€Q

as desired.

6.3.3 Order Embedding

Definition 6.3.8 (Order Embedding)
The order embedding of an ordered field K into an ordered field F means there is an
order preserving (ring) homomorphism.

Proposition 6.3.2
If F is an ordered field and K is a complete ordered field. There is an ordered embedding

v:F—-K

Proof
Define v(0) = 0,7(1) = 1 and thus

foralln e Z,r € Q.
If z € Flet
Sy ={reQ:r<uz}

So there is some n € N such that x < n by the Archemedean and so S, is bounded above.
Thus, we have v(S,) is bounded above in K by ~(n).
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Define
v(z) = supy(Ss)

Notice that
Sy + Sy = Saty

since for r,s € Q,r < x,s < y meaning

r+s<ax+y

If t € Qt <x+ywecanchooser € Qv — - <r<zandse€ Quy—+ < s <z

2n 2n
Remark

1
t<zt+y——<r+s<z+y
n

andsot=r+(t—r)withreS,andt—r<s = t—reSs,

Sy={r<0tu{0<s<y}

It follows that v(z) + v(y) = v(z + y)

We can also check
Sey ={r<0}U{rs:0<r<z0<s<y}
meaning y(zy) = v(x)7y(y).

Theorem 6.3.3 (Uniquess of R)
There is a unique complete ordered field R.

Proof
Let K, L be two complete ordered fields, then they are Archimedean.

By the second proposition, there is an ordered embedding v : K — L (order homomor-
phism). Also, there is 0 : L. — K order homomorphism.

The composition of both necessarily act as the identity on Q. Hence
0y(x) =sup S, =z

and similarly for the other side.

This shows that d,y are inverses of each other and that K, I are isomorphic by definition.
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6.3.4 Actual Constructions of the Real Numbers

Example 6.3.4 (Cantor)
equivalence classes of cauchy sequences of Q

Example 6.3.5 (Dedikind Cut)
We say S is a cut of Q if @ # 5 # Q and

relS —= W<zx,xes

Notice that S has an upperbound as the complement is not the emptyset, no biggest
element and, and we define S > 0 if there is » € S such that » > 0.

Example 6.3.6 (Base d Expansion)
We can define
R:= {.’E = QAapQy c - ay 6{0,1,,(1—1}}
By our work prior, it has the LUBP. We can then take equivalence clases by ~ so

0.49 ~ 0.5

for example.
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7 Approximation Theorem

7.1 Polynomial Approximation

We attempt to approximate an arbitrary continuous function f on [a,b]. This means finding
g € R[x] such that

If =gl <€

where € > 0 is arbitrary.

7.1.1 Interpolation

We first consider polynomial interpolation.
Let f € Cla,b] and defines the points
b—a

T i=a-+1

n

We wish to find a polynomial p such that p(x;) = f(z;) for 0 <i <n.

Let
Hj;éi L=
Glz) = 2T
Hj;éi Li — Xj

and note that ¢; has degree n with ¢;(x;) = 0;;.

Furthermore, deifne
p(r) =Y flw)a()
=0

with degree at most n and p(z;) = f(z;).

If r(z) is another polynomial with degree r < n and r(z;) = f(z;) then
(r—p)(zi) =0

for all + and so the degree of r — p is at most n with n + 1 roots.

Sor—p=0andr=p.

However, Runge showed in 1901 that these interpolations do not always converge uniformly
to f on [a,b].
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7.1.2 Taylor Polynomials

But how about Taylor Polynomials?
We do not wish to assume that derivatives exist.

In fact, we showed that the set of functions which are not differentiable are a residual subset
of Cla, b].

7.1.3 Weierstrauss Approximation

Theorem 7.1.1 (Weierstrauss)
R[] is dense in C|a, b].

Notice that if the theorem holds, we can apply it to R", C* ~ R?" by approximating com-
ponents.
It suffices to prove [a,b] = [0, 1] by the (continuous) change of variables

T —a

We have )
1=+ a=a) =Y (et - ot

k=0
If we let P, := (k) #(1 — x)" %, we then have

n

P;Lk ) ko (n— k:)xk(l — a:)”_k_l)

=N

I
/\/\3/\
vvv

Hﬁ‘

:
?r
=

—

|
=
=

|
=
=

Ea

Notice that

Define



and remark that deg B,, f < n is a polynomial.

Lemma 7.1.2
We claim that B,, : C|0, 1] — R[z] is such that
(I) Bu(sf +tg) = sB,f +tB,g (linearity)

(Ill) f <g = B,f < By,gand |f| <g = |B.f| < Bug.

Proof
Claim I: To see linearity, note that

Baor+i0)=3 (s (£) +10 (£)) Prsto

k=0
= $B,f +tBng

Claim II: To see positivity, notice

so if f >0, thenf(%) > 0 and so
B.f >0

by definition.
Claim III: Since f < g = g— f <0 then

Bn(g—f)ZO - BngZan

by linearity.
In addition, if |f| < g then —g < f < g so

Lemma 7.1.3
We claim
(I) Bo(1) =1
(I) Byx ==z

(IIT) B, (2?) = 212® + £ and hence || B,(2?) — 2?||o =
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Proof
By computation.

Claim I:
(Bul)(z) =) 1 (Z):ﬁu — )"k
=(z+(1-2)"
=1
Claim II:

(Bur)(x) =Y g - ﬁzm — )t

start summation at £ =1

=... cancel fraction 1/n

=... pull out x from z*
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Claim III:

2 N n! X -
(Bna®)(x) = > = (1—z)

1 (n—1)! .

0 kz?(k? -1) i = D)l(n— k)!xk(l )
N (n—1)! .

T £ I k)ﬁck(l —a)

= % k_2<k — 1) (k; _(?)'(;)i k:)'xk(l . x)n—k + %Bn—l(l'>
1 - (n_l)' k n—k x

= Gy
n—1, (n—2)! i nenj @

on . — j'(n—Q—])lx(l z) +E

= n; 1:U2Bn,2(1) + L

= 22 + < ;xQ

Notice that B,z? — 22 as n — oo.

Proof (theorem, Bernstein)

starting at k =1

cancel k/n

cancel £ — 1
pull out n — 1

pull out =

For e > 0 by continuity on compact domain (uniform continuity) there is ¢ > 0 such that

z—yl<d = |f(z) - fly)| <e

For a € [0, 1] we have
[r—al <6 = |f(z) = fla)| <€

On the other hand, for |z —a| > 0

£~ fla) < 2l < L]

2

(z —a)
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and therefore

(z—a)’

2| flloo
+ 52
hence

((Buf)(2) = fla)] = |(Buf)(x) = f(a) - (Ba1) ()]

= |Bu(f = f(a) - 1) ()|
e (et Ml
<B4+ ||f||oo Bo(x — a)?
+—2”§2H°° ((:v—a)2+—x_nx2)
Plug in x = a and we have
Buf(a) = @) < e+ 2”3;”°°< 0+2=%)
Ll
MDY

If we choose n > [ @L":W then

|Bnf(a) — fla)] < 2¢

and by the choice of a

[1Bnf = flloo < 2¢

7.1.4 More

Definition 7.1.1
dist(f, F) := inf e r|| f — g|lcc Where F is a collection of functions.

Proposition 7.1.4
If f € Cla,b],n € N then there is a polynomial p € P,[a, b] such that

||f _p”oo = diSt(f, Pn[avb])

Proof
Notice that P,[a, b] is subspace with dim P,[a,b] = n+ 1 < co. So the closest polynomials
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are at LEAST as close as the zero polynomial.

This means the closest polynomial lies in
Pn[a, b] M b”f”oo(f) = K,
which is a closed subspace of P,,.

It follows that it is homeomorphic to F*™! and hence K, is compact (already bdd).

Define p : K,, — [0, 00) by
p(p) = IIf = pllo

and note that it is continuous.

By the EVT, p attains its minimum at some p € K,, as desired.

Example 7.1.5
S:={fe€Cla,b]: f(0) =0} then

dist(1, 8) = inf|[1 — fll < 1
€

Example 7.1.6
(R™, ||-|l2) is a convex open ball so the distance to a point is unique.

But with ||-|| an entire line attains the distance.

Example 7.1.7
T:={feCl0,1]: f(0) =0, [, f(t)dt =0}

Let g(x)=x,f €T
1
19 = flloo = / 19— flle

Z / (t — f(t))dt

J/

:é
t21 1
=3 —/ f(t)dt
0 0
_!
2

Equality forces f(z) = x — 5 but then f ¢ T. Hence dist(f,T) is NOT attained.
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Theorem 7.1.8 (Chebychev)
If f € Crla,b],n € N, then there is a unique polynomial p € P,[a,b] such that

If = glloo = dist(f, Pn)

Definition 7.1.2 (Equioscillation)
g € Crla, b has equioscillation of degree n if there are

a<wz <2<, < Tpgp <D

such that ‘ .
9(x:) = (=1)"lgllos V g(z:) = (1)l gllso

Lemma 7.1.9
If f € Cgla,b],p € P,la,b] and f — p satisfies equioscillation of degree n, then

If = Pllec = dist(f, Pn)

Proof
If there is g € P,[a, b] such that

lg—dloc=1lf —p=all = lIf = Pllc =0 = [lgllc — 0

then let
a<z; <b

exhibit the equioscillation.

19lec =0 = [g(2:) = q(2:)| = £l — q(:)
hence ¢(z;) has the same sign as g(z;).
It follows that ¢(z) changes signs on [z, z;41] for 1 <i<n+ 1.
By IVT, it has n + 1 roots but degq < n so this is the desired contradiction.
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Lemma 7.1.10
Let f € CRla,b],p € P, such that

[7loc = Ilf = Plloc = d(f, Pnla, b])

then r satisfies equioscillation of degree n.

Proof
Without loss of generality, r # 0.

By uniform continuity, there is § > 0 such that

T|loo
oyl <0 = [f(x) - )] < e
Divide [a, b] into intervals of length less than . Label intervals I; upon which r attains
+||7|loe on I;.

It r(z) = [Irlle on I;
Ll <6 = Wy € Llr(@) - )] < LI
and similarly if r(z) = —||7||os on I, there y € I;
[l
< —
r(y) £ -5

Pick x; € I; such that r(z;) = £||r|| and define
€ :=sgnr(z;) € {£1}

Group [;’s into adjacent groups with common sign, say Jy,...,Jy. If K > n+ 2, then get
x; € J; and we are done.

Suppose k < n + 1 and pick aq,...,ar_1 such that
Jj <a; < Jj+1
(which exist as r alternates between =£||r||o on J;, Jit1).

Let q(z) := Hf;ll (r — a;) and notice that degqg =k — 1 <n and ¢ € P,,. Without loss of

generality, by multiplication of —1 if necessary, sgn q(x) = ¢; on I;,.
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As g #0on J;, let

‘= mi >0
m ;%%mmn

Moreoever, let
L:= U]_“M :=la,b]\ L

be the union of closed intervals on which r does NOT attain £||7||» so

sup|r(z)| = [|rllec —d < [|7[lo0
zeM

Let

d
si= 4.2 €Pn
lallee 2

and consider

1f =@+ 8)llo = I = sl
= max{sup|r(z) — s(x)|, sup|r(z) — s(z)

}

zeLl zeM
_d
=3
dm ~ =
< max{ ||7le — STl 7Moo — d + IIs]l
[e.e]
dm d
< maxy ||7]|eo — W; [7]]00 — 5
o

< [I7lloo
which is a contradiction.

Theorem 7.1.11 (Chebychev)
For all f € Cg[a, b] there is a unique p € P,, with

If = Plloo = d(f,Pn)

characterized by equioscillation of degree n.

Proof
The two lemma above show that p € P, is a closest polynomial if and only if f — p satisfies
equioscillation of degree n.

The existence of p is guaranteed by the compactness.
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Suppose that p, ¢ both attain the minimum distance to f.

-2 = s -nl_+ 59
= dist(f, P,)
=D

So %(p + ¢) also attains the minimum distance. If follows that %(p + q) satisfies equioscil-
lation of degree n, so there are

a<x <To<- - <Tp1 <Db

and
_ (P4,
D= (7-23") )
1 1
= S0 =P + 5 — a)(w)
1 1
§§D+§D
=D
—D>—1D—1D
2 2
=-D

and hence f(z;) — p(z;) = £D = f(x;) —q(z;) for 1 <i <n+2.
It follows that (p — ¢)(x;) = 0 and

1<i1<n+4+2 = p—q=0
by degp — g < n.

Example 7.1.12
f(z) =cosz € Cg [£3].

The best polynomial approximation of degree n must be even.
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7.2 Stone-Weierstrauss Theorem
7.2.1 Definitions

Let (X, d) be a compact metric space.

Definition 7.2.1 (Subalgebra)
A subalgebra of C'(X), Cr(X) is a subspace closed under multiplication.

Definition 7.2.2 (Vector Sublattice)
A Vector Sublattice of C'(X) is a subspace A such that for all f,g € A then

fVg=max(f,g)
f A g=min(f,g)

are both in A.

Example 7.2.1
A={f(m) =ao+ > ;_, axcoskx + bysinkz} C Cr(X)[m, ] is a subalgebra but

feA = f(-r) = f(r)

so A is NOT dense in Cg[—7, 7| (does not separate points).

Definition 7.2.3 (Seperates Points)
A C C(X) separates points if

Ve#ye X,3f € A, f(z) # fy)

Example 7.2.2
A={p(z)=>1_, axz" : ax € R} C C[0,1] is not dense (vanishes).

Definition 7.2.4 (Vanishes)
A C C(X) vanishes at zp € X if f(x¢) = 0 for every f € A.
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7.2.2 The Theorem

Lemma 7.2.3 B
If A is a subalgebra of Cg(X), then A is a subalgebra and and a vector sublattice.

Proof B
We have shown that A is a vector space (assignment).

Let f,g € A there are (f,), (g,) € A such that
fn = fign— g

uniformly.

Then f,g, € A by the definition of a subalgebra. Moreoever

Jngn — f9

uniformly and hence fg € A. So A is a subalgebra.
Now, let f,g € A and remark that

fAg

fvg:f;rng‘f;g :f;rg_‘f;g‘

So we need only show f € A = |f] € A.

By the Weierstrauss Approximation Theorem, there is some sequence of polynomials p, ()
such that
Pn(z) = |2]

uniformly on [—|| f|lc, | f]lco)-
Remark that p,(0) — 0. Let

0n(2) = ale) = pn(0) = 3 apsa®

and notice that

|||x| - qn”oo < |||a?| _pn”oo + ||pn - QnHoo
[P (0)]
Pn

< 2[[z] = pnllo
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Look at g,(f)(x) = Y47, @nf(z)* € A by definitions

111 = 4u(1) e = suplLF ()] = g F @)
< swp (= g.(0)
e[ flloo]

= [zl = gall = 0

hence |f| € A, fVg,fAg€ A

Lemma 7.2.4

Let (X, d) be compact and A C Cgr(X) be a subalgebra which separates points and
does not vanish anywhere.

If z #y € X,a,0 € R then there is h € A such that

h(.CL’) = G, h(y) =

Proof
Since A separates points, there is f € A such that

fla)=a# f(y)=0b
Without loss of generality, we may assume b # 0 (or else take swap b = f(z) as they
cannot both be 0).
Case I: a # 0.

Then
a a®

det {b bz} # 0
and we may find h = uf + vf? such that
h(x) = ua +va* = a
h(y) = ub+ vb* = 3
as desired.

Case II: a = 0.

Since A does NOT vanish, there is some g € A such that g(z) # 0. We can take
h=uf 4+ vg so

>
—
8
N
I
<
K
—
a¥
|
Q

This concludes the proof.
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Theorem 7.2.5 (Stone-Weierstrauss)
Let (X,d) be compact and A C Cg(X) be a subalgebra which separates points and
does NOT vanish at any point, then A is dense in Cg(X).

Proof (Stone Weierstrauss)
Fix f € Cr(X) and let € > 0.

Fix a € X and let a # x € X. By our second lemma, we can choose h, € A such that
he(a) = f(a)
he(z) = f(x)

Let

U:): = {y € X: hx(y) > f(y> - 6} 4 (hz - f)il(_evoo)

We remark that U, is open as f, h, are continuous. Moreoever, Vo € X, a,x € U,.

Thus {U, : © # a} is an open cover of X. Choose a finite subcover
Ugiy oo, Us,

of X

Let B
9o :=hyy N---Nh,, €A

as A is a vector sublattice. Notice that g,(a) = f(a) and if x # a then for some i,z € U,,
S0
he, () > f(2) —€ = ga(x) > f(2) —€

Now, define
Vo={r € X :gu(x) < f(x) + €} = (g — f) ' (—00,¢)
and remark that a € V,, is open so {V,, : a € X} is an open cover. Retrieve an open cover

Vars -+ Va,,

and define )
g:=0goyy V-V, €A

for the same reason as above. Again, notice that for all z € X there is j such that z € V,,
and
9o, () < f(x) +€ = g(x) < f(x) + €

But Va € X, g.(z) > f(z) — e so all in all

fla)—e<ygl@) < fla)+e = [[f —gllw <€
so by the choice of f, A = Cr(X) as desired.
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Remark that complex polynomials are dense in C'(X) since for f € C'(X), we can write

f=Re(f) +ilIm(f)

and estimate the components with real valued polynomials.

Corollary 7.2.5.1
Let X be a compact subset of R". Then, A, the subalgebra of polynomials in

L1y...,Ty

is dense in Cr(X).

Proof
Notice that 1 € A so it does not vanish. In addition, x # y € X then there is i, z; # y;
and thus

p=x; €A

so A indeed separates points.

By the Stone-Weierstrauss Theorem, A = Cg(X).

Corollary 7.2.5.2
Let X,Y be compact metric spaces. Then

A= {Z fi(@)gi(y) : fi € Cr(X), 9 € Cr(Y),n € N}
i=1
is dense on Cg(X x Y).

Proof
Put a metric on X x Y to be

p(<a7 b)? (Ca d)) = dx(CL, C) + dY(b7 d)
The identity mapping is in A so A does not vanish anywhere.

To see A separates points, suppose

(z1,91) # (22,92) € A
Case I: if x1 # xs.
Let




SO

—

(z1)g(y1) =0
f(2)g(y2) = dx(z1,2) # 0

Case I if y; # yo.
Similar.

So A indeed satisfies the conditions to apply the Stone-Weierstrauss Theorem and A =
Cr(X) as desired.

7.2.3 Complex Stone-Weierstrauss Theorem

Definition 7.2.5 (Self-Adjoint)
A subalgebra A C C(X) is self-adjoint if

feAd = fecA

where

complex conjugate

Remark that

Re f(x) = 3 (f(x) + (@)
I f(2) = 5 (/(2) ~ F ()

so if A is self-adjoint, then Re f,Im f € AN Cg(X).

Theorem 7.2.6 (Complex Stone-Weierstrauss Theorem)
If A is a subalgebra of C'(X) where X is a compact metric space and
(i) A does not vanish anywhere

(ii) A separates points
(iii) A is self-adjoint
then All'l= = C(X).
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Proof (sketch)
Basically, Re A = Cr(X) hence

A=ReA+iReA
= Cr(X) +iCr(X)
= C(X)
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8 Ordinary Differential Equations

8.0.1 Introduction

Consider the following motivating example
y'(z) = ¢(z,y),y(a) = yo

We wish to find y = f(z) which solves this.

It is useful to picture this as a vector field and an initial point. We need only follow along
according to the directions.

Example 8.0.1
y' = (), yla) = o
Compute

as desired.

Example 8.0.2 (Level Lines)
y' = zy,y(0) = 3 apply separation of variables to get

/

y _
==z
Yy
and integrate with respect to x
2
logy = Lic
2
902
Y= 6167
y(0) =¢; =3
322
y(z) =3e=
Definition 8.0.1 (Standard Form)
Write the highest derivative as a function of
NNV




Let u(z,y) € C! and recall the level lines ODE

u(z,y) =c

Since

ou n ou ,
ox
by the Implicit Function Theorem, if g—;(xg, yo) # 0 then there is § > 0 such that
fi(xg—6,z0+d) - R
such that
u(z, f(x)) = ulzo, yo) = ¢
Example 8.0.3
y=1+z—y 2] < 3,y0) =1
We have

IQ T
y(x) = 1+x+?—/ y(t)dt
0

Define T : C' [j:%] —C [:l:%] given by

Tf(x):= 1+x+%2—/oxg(t)dt

and notice that a solution T f = f solves the ODE and is a fixed point of T
Furthermore, T' is a contraction mapping by an assignment.

By computation
flz)=e" 42

solves this ODE and we can arrive at this conclusion by iteratively computing the fixed
point and noticing it is the power series of e™* + .

8.0.2 General Setup
For an n-th order ODE we have

155



(1) relationship between z, f(z), f'(z),..., f™ ()

(2) initial conditions, usually a point .

Recall the standard form

f(n_l) (a) = Tn—-1
® MUST be continuous, but perhaps even better.

Convert this to a 1st order vector-vaued ODE. Set

F(z) = (f(x), f'(z),..., f" V()

and remark that

foi(x) = f(x) = @, fola), fo(@),. .., f& V()

with
F(a) = (fola),..., fam1(a)) =T = (0, -, Yn-1)

Now, convert this to an integral equation.
F(z) = F(a) + / F'(t)dt =T + / U(t, F(t))dt

Define T : C ([a, b],R™") — C ([a, b], R™) with

TF(z) =T + / U(t, F(t))dt

Clearly, F'is a solution if and only if TF = F' (ie a fixed point)
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Example 8.0.4
1+ (¢)?)y® — y® + ayy = sinz with = € [£1].

y(0) =1
y'(0) =0
@(0) =2
SO = y® — zyy +sinx

L+ (y)?
= o(z,y, 9, y?)

Yo — TYoYr +sinx

o(z,y,y,y?) =

143
We have
= (f07f17f2)
(50) U(z, F(z))
(z, Yo, Y1, Y2) = (ZU173/27 ©(x, Yo, Y1,Y2))
Fla)=T = (1,0,2)

We wish to find F' € C ([£1],R?) such that

TF =T+ /Om U(t, fo(t),..., fot))dt

8.0.3 Basic Results

Definition 8.0.2 (Lipschitz)
O(z, Yo, -y Yn-1), P : [a,b] x R™ — R™ is Lipschitz in y if there is L < oo such that

(2, ) — @(z, )|l < L7 = 2|2

for all z € [a,b] and 7, Z € R™.

Example 8.0.5

If ® € C! in y variables with
0P 0P
Vo, 2
<ay0 aynfl
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By MVT
for some £ € [¢, Z) (line).

So by the Cauchy-Schwartz Inequality
(2, ) — @(, 2)[l2 < [[Vy®lloc |7 — Zll2

it
IVy@lloo = sup  [|[Vy®(z,y)lls = L < o0

yER™ z€(a,b]

and & is Lipschitz in y.

Example 8.0.6 (Linear ODE)
y " (z) = ag(2)y(x) +ai(x)y (2) +- - +a,(2)y™ V() +b(z) (linear in y, NOT necessarily
in z).

n—1
@(1‘73/0, e 7yn71) = (3/17 <oy Yn—1, Z @z(x)?/z + b(fﬂ))

=0

0O 10 . 0

O 0 1 0 Yo Y1

0O 0 0 1

0 00 ... 0) \I! b()

= A(z)y+ B(x) A e M,(Cla, b)), B(z) € C([a,b],R")

Notice that
V,@(z,9) = (A(r)e;)

and it is actually independent of y.

[VO|oo = sup [[VE(z, )l

z€[a,b),yeR"

= sup [|VO(z, )]

z€[a,b]

< o0 EVT
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Indeed,
Y1—=

@(z,g)—@(x,g) = Yn-1 — Zn_1

> im0 ai(2)(yi — 2i)

and so

2

2 )l = 3l =+ |3 au(o) s — =)

o=+ [(Soter) (Du-)']

8.0.4 Picard’s Theorem

Lemma 8.0.7
Suppose P is Lipschitz in y with constant L and let

TF(z) =T + / "ot F(t))dt

If F,G € C([a,b],R") satisfies

M|z — c|*
| F(x) — G(2)]]2 < T
then | |k+1
LM|z —c
TF(x)-T Qi L —
ITF(@) - T < “5
Proof
We have

ITF(x) — TG)|» = ’F+/x<1>(t,F(t))dt—F—/x@(t,G(t))dt

2

<|/ I||<I><t,F<t>>—<I><t,G<t>>||2dt]

x It_cyk
< /C LM i dt

_ LM|z — c|f*!
(k1)
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Theorem 8.0.8 (Global Picard Theorem)

Let the DE
y™ () = ®(z,y(@), ..., y" (@), x € [a,0]
with ¢ € [a, D]
(&) =0, 4" V() = Ya
Assume

CI)(:C?gj) = (yl; 500 7yn,90(95>907 SO >yn*1))

is Lipschitz in y.
Then the ODE has a unique solution on [a, b]. Moreover, define

TF(z):=T+ / "ot F(1)dt

If F'is a solution, then
F(z) =limT"T

uniformly.

Proof
Set Fy(z) =T to be the constant function and define

F(x) = T"F,

Notice that

1F1 () — Fo(z)l[2 =

/ B(t, 1)t
c 2

< |z —cf sup [ (¢, 1)l

t€la,b]

J/

-~

=M<oo
[z —f!

=M
1!

We claim || Fy_1(z) — Fi(z)]]2 < w for k > 1.
The base case is shown above. Suppose the claim holds for &, then
[1Fe(@) = Frera(2)|l2 = [|[TFi-1(x) — TEe(2)]2

- L(MLk_1)|.Z‘ o c|k’+1
= (k+1)!
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and hence

| Fre1 = Filloo = sup ||Fr—1(z) — Fi(x)||2

z€[a,b]
MLE(b — a)Ft!
- (k+1)!
But then
i MLF(b—a)**' M i [L(b— a)]F+
| |
—~ (k+1) L~ (k+1)
M
= — (""" — 1 - L(b—a))
L
< 0
This shows that for m > n > N gives
m—1
HFm - FnHoo < ZHF/H—l - Fk“oo — 0
k=n

as N — oo.
So (F),) is cauchy and F,, — F, exists. But then
F,=lmF, =limTF, 1 =TF,

is a fixed point and
Fi(z) = ®(z, Fi(r))
so F'is a solution by the FTC.
To see uniqueness, let G be another solution. So TG = G with G(¢) =T
We have that

[1F(z) — G(x)]l2 < Sl[lpb]llF(w) — G(@)ll2
z€la,
|z — |’
0!

< IF = Gl

Inductively, by the lemma

[F(z) = G(a)]l2 = [T F(x) = T"G()]|
(L] — |

—0

so F'=(.
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Definition 8.0.3 (Locally Lipschitz)
We say @ is locally Lipschitz in y if for all (z,y) € [a, b] x R", there is € > 0 such that
® is Lipschitz in y on

[a,b] N [x £ €] X br(y)

for any 0 < R < o0.

Lemma 8.0.9
If ® € C! in y then ® is Lipschitz in y on

[a,b] x br(T")

for any 0 < R < 00

Proof
Notice that V,® is continuous so

|V, @2 =t L < o0

by EVT on [a,b] x br(L).

Then by MVT for y, z € bg(I") there is £ € [y, 2] such that

1®(z, y) = (z, 2)ll2 = [Vy@(€) - (y = 2)ll2 < Llly — 2|2

Lemma 8.0.10
If ® is locally Lipschitz in y on [a,b] x R™, then ® is Lipschitz in y on [a,b] x K for
any compact K C R".

Proof
WLOG, by replacing K with conv K, we can assume K is convex.

For each (z,y) € [a,b] X K, find ¢ > 0 and L, , such that

(2", ¢) = (2, 2') |2 < Laylly" — 22

for 2/ € [v — e,z + €] N[a,b] and ¥/, 2’ € be(y).

Then U,, = (v — €, + €) X b.(y) covers [a,b] x K. By compactness, there is a finite
subcover {Uy, 4 }-

Let
L :=max{L,,,}
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and for x € [a,b],y,z € K we can pick

U= 20,21, 2m = 2, |2i-1, 2] C U,

(straight line).
So

|1@(2,5) — @(z, D2 < Y _(w, zi-1) — D, 20)l2
i=1

< Li|zi—1 — |2

L

=1

= Lljz =yl

Example 8.0.11
Consider 3 = y%,y(0) = 1,z € [0,2]. Then

¢('T7 yU) = yg

and y'(z) = ¢(x,y). So ?)_Zl) = 2y and

3(3)2Y35(2)

since all straight lines

|d(z,y) — d(z,2)| = |y* — 2°| = |y — 2| - |y + 2|

and ¢ clearly is not globally Lipschitz but is indeed locally Lipschitz.

On [0, 2] x [£R], we have Lipschitz constant 2R.
Start with y(0) = 1 and consider

=1
y
Agﬂﬂﬁ—(JMt
oy
_?J(t>0
_ v
M@ly@)
:1_m
M@Zlix



which blows on [0, 2] as there is an asymptote at = 1 so this is NOT a solution.

Start with y(2) = ¢
x y/ x
2 Y 2

=z —2
_ -t
y(t)

T

2

y@) )

o
<
—

S
~

which still blows up at x = # but has nothing to do with the solution on [0, 1).

Theorem 8.0.12 (Local Picard Theorem)
Suppose

F'(z) = ¢(x, F(z))

for some ¢ : [a,b] x R" — R™ and F(c¢) = I where ¢ € [a,b]. In addition, assume
¢ is locally Lipschitz on y. Then, there is A > 0 so that the ODE has a solution on
[c+ h]N]a,b].

Proof
Let R > 0 and remark that ® has a Lipschitz condition on y on K := [a,b] X bg(T'). Let

M = ||®[ x

we will show that
h = E
M
satisfies the statement of the theorem.
Take Fy(z) =T and
F,.1:=TF,

for

Tf(x) =T+ /m O(t, f(t))dt
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The proof proceeds exactly the same way as the Global Picard Theorem and works as-
suming F),(x) € br(I"). Indeed

[P () = T = \

/jfb(t, Fn(t))dtH
[ 1ot @l

< |z —cM
< hM
R
— Ty
M
=R

<

so the assumption above holds and a solution exists.
Proposition 8.0.13
The solution given by the Local Picard Theorem is Unique.

Proof

Suppose F, G are solutions and let

=F
[e,c+t]

[c,c+t] }

Say F(d) = G(d) = A. Since both F, G are solutions we have

d::sup{te c,c+h]: G

F'(z) = ®(z, F(2)), F(d) = A
G'(z) = ®(z, G(2)), G(d) = A

Find r > 0 such that both F, G stays within

[d,d + k] x b,(8) C [c,c + h] x ba(D)

The argument for Global Picard applies as the solution stays inside the specified compact
subset.

|1F(x) = G(z)]| = [T F(x) = TG (2)]
(z —d)"

<N = Gllwarn———

—0
n!

hence G = F on [d, d+ k] which contradicts that d is the supremum. The proof is identical
on [c¢— h,cl.
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8.0.5 Corollaries of the Picard’s Theorem

Theorem 8.0.14 (Continuation)
Let F'(x) = ®(z, F(z)), F(c) =T,® : [a,b] x R" — R" is locally Lipschitz in y where
¢ € [a,b]. Either
(i) F(z) extends to a solution on [¢,b] OR
(ii) F(z) extends to a solution on [c,d) for some d < b and ||F(z)|| = cc as z — d
(similarly going left towards a).

Proof
Let
d := sup{t > ¢ : DE has a solution on [c, t]}

and remark that d > ¢ by the Local Picard Theorem.

If Fy, Fy are solutions on [¢, ¢ + t1], [c, ¢ + to] with ¢; < t9, then we claim

FQ :F1

[e,etta]

d1 = {t . FQ }
[e,c+1]

Fl(dl) = FQ(d1> = A

Indeed, let

= F
[e,c+1]

and

Both Fy, Fy are solutions of F'(x) = ®(z, F(z)), F(d;) = A. By the Local Picard Theo-
rem, there is h > 0 such that

Fl = FQ
[d1,d1+h]

[d17d1+h}
which contradicts that d; is the supremum.
It follows that d; = t; as desired.

Let F** be the unique solution on [c, d) obtained by piecing together solutions on [c, t] for
t <d. If d=0band F is continuous then we are in case (1) as F* is a solution on |[c, d.

Else, if [|[F(z)|| — oo as x — d then we are in case (2).

It remains to consider the scenario where F™ fails to continue to d, yet

Jon = d, | F*(za)]| < K
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But @ is locally Lipschitz in y and thus is Lipschitz in y on

[e,d] X br11(0) D [z, 0] X by (F*(x4,))

But the Local Picard Theorem provides a solution on [z, z, + h] where

1 1
h = min{b — T, —} = min{b — T, —}
1| M

[Plloc := sup_ [|®(z,y)[| =M <0

z€[e,d]xbg41(0)

and

We can choose z,, such that

1
d—z, < —
YV

by convergence so the solution extends to

1 1
_ _ =
[xn,xn + M} I [c, b] D) [mn,d—i— 5 ] N [c, b]

and contradicts the definition of d.

If d = b and F is bounded on x, — b, then the solution extends to be continuous at b.
All in all, we have shown either (1) or (2) hold.

Corollary 8.0.14.1
If & : RxR"” — R™ is locally Lipschitz, and F'(x) = ®(z, F(z)) with F(¢) = I for some
¢ € |a,b]. Then this ODE has a solution ...
(i) on all R
(ii) on (—oo,d) and ||F(z)|| — o0 as ¢ — d~
(iii) on (d,o0) and ||F(z)|] = oo as © — d*
)

(iv) on (dy,ds) with ||F(x)|| — oo as z — dz(—l)lfi

Example 8.0.15
A counterexample is

29?4253 4y =0
with y (%) =1,y (%) =0.
In standard form F(x) = (fo(z), fi(z)) we get

(2 _ ~20% —y

Y !

167



Furthermore

—23y; —
Fl(z) = ®(z,y0,31) = (y1, #)

on (€,00) as it is a linear ODE with continuous coefficients.

So @ is globally Lipschitz on [¢, R] and there is a solution on (0, 00) by the Continuation
Theorem. It can be computed that f(z) = sin ().

However, the soution does NOT extend to 0 as there is no local Lipschitz condition on
(0,1). This is due to the fact that

f (ﬁ) € (£1,0)

SO n — 00 gives
11l =[[(£1,0)[] =1

8.0.6 Existence of Solutions without Lipschitz Condition

Example 8.0.16
y = y3,y(0) = 0 Write

<
ol

and integrate with respect to z

= 3y(t)s
0
= Sy(x)% —0=z
gives
3
x
y(x) 97
But y = 0 is also a solution!
In fact
(2—a)? "
27
f(z) =10, b<z<a
(x;’)3, r<b

is a solution.
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/

= olay) =3, 22 2 2

is discontinuous at y = 0.

There is a local Lipschitz condition on

R x ([€,00) U (—o00, —¢])
8.0.7 Peano’s Theorem

Theorem 8.0.17 (Peano)
® : [a,b] X br(T") — R™ continuous.
The DE given by

F'(z) = ®(x, F(x)),F(a) =T

has at least 1 solution on [a,a + h] where

R
h := min (b — a, —)
[Regpe

Lemma 8.0.18 (Arzela-Ascoli)
Recall that if (X, d) is compact, then K C C(X) is compact if and only if K is closed,
bounded, and equicontinuous.

Proof (theorem)
We are looking for a fixed point of T": C|a, b] — C|a, b] given by

Tf(x):=T+ /xq)(t,F(t))dt

Define F,(z) on [a,a + h] by

Y

r a<z<a+i
Fn(:L') = O 1
D+ [T @, Fu(t)dt, a++<z<a+h

Remark that this makes sense as F), is already defined on

{ 1} { 2} { 1}
a,a+—\|,la,a+—|,...,|a,x — —
n n n

i—1

! }, the function is well-defined as it depends on F;, on [a, T}

so for x € [a+%,a—l—

z
n
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We have

=0, a<z<a+ %
[ Fa(z) =T ol )
< [T o(t, F()dt < @l R <R, a+i<az<a+h
which is needed for F,, to be well-defined.
In addition
o - T+ [F®(t, Fo(t))dt — T, a<z<a+2
ITEw () = Ful)l = HF + [T ®(t, F(t))dt — T — fa"”‘% ®(t, Fo(t)dt|], a+i<z<a+h

S, Fat))|de
S (e, B ()
< @

Consider the set {F,, :n > 1}
Closed:

It is clearly bounded as
[Fnlloe = sup Fy(z) < ||T| + R
——

cbr(T)
Equicontinuous:
For a < z; <29 < a+ h we have
_1
Folxs) — Fy(z) =T — T + / 1" O(t, F,(t))dt
1 t
[En(x2) — Fu(z)] < /xl_ [P, Fu(t)) | dt

<@ oo |z — 21

For € > 0 simply take
€

0=
[P oo

for {F,,} to exhibit equicontinuity.
This shows that F := {F,,} is compact by the Arzela-Ascoli Theorem.

It follows that there is some subsequence indexed by {n;} such that

F,, = F
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uniformly.

Clearly
[F =Tl <R

since ||, — T'|lo < R.
In addition

—0

—
TF - F=TF —TF, +TF, — Fy, +F, — F
————

)

SM%
@ T x
|TF — Fllo < [2]e. +||F,-—F||OO+HF+/ @(t,F(t))dt—P—/ @(t,Fni(t))dtH
U a a
Do *
<Ay Pl [0t PO - 00 B o)l

But @ is continuous and thus uniformly continuous on [a, b] x bg(I).

For € > 0 take § > 0 such that |ly; — ys|| < ¢ gives

[P(t y1) — (t, 4a2)|| < e
for all t € [a, b].
Choose n; sufficiently large so that

[ Fn; = Flloo < min(d,e)

)
12l _
n;

We have

< eh

Pl o
irr—r < ey e

(2

<e+e+eh
= (2+h)e

and hence F' is indeed a solution.
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8.0.8 Stability of Solutions

We close this section by presenting a result that if two DEs have close initial values or
functions, then their solutions are also close.

Theorem 8.0.19 (Perturbation)
Let @ : [a,b] X B[I', R] — R™ be continuous with Lipschitz condition on the ¢ variable
and Lipschitz constant L.
Suppose W is another continuous function (not necessarily Lipschitz) on [a, b] x B[I", R]
such that

[@ = Voo <€

for some € > 0.
Suppose F, G are solutions on [a,a + h| by the Picard Theorems

F'(z) = ©(x, F(z)), F(a)

r
G'(z) =9 (z,G(2)),G(a) = A

such that
(x, F(x)), (x,G(x)) € [a,b] x B[', R]

for each € [a,b] and [|[A — || <.
Then, for all z € (a,b)
|G (@) = F@)]l2 < sl 4+ = (el - 1)

SO

|G = Flloo < 6% + =(* = 1)

Proof
Define 7 : [a,b] — R
z = |[F(z) = G(z)]l2
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Then 7%(z) = 3.1 fi(z) — gi(x)|* and we have by the Chain Rule

(T*(x)) = 27(2)7'(2)

(sz( ) - mn?)

= S Uhe) — @) - i)

< (z o) (Ll - )’
~ 2| F(s) - < MallF) ~ G (@)l

= 20 ()| F(0) - (o)l

If 7(z) = 0, then there is nothing to prove so assume 7(z) # 0 and the computation above
yields

7' (z) < |[F'(x) = G'(2)]2
Consider ||F'(x) — G'(x)]|2. Make use of the DE to get

1F' () = G'(@)ll2 = [ ®(z, F(2)) — ¥(z, G(z))[|2
= [|®(z, F(x)) = (z, G(2))]2 + [ @(z, G(z)) = V(z, G(2))]2
S L|F(z) = G(z)]l2 + €
= L7(x)+e

So

) 7'(z)
() < L1(z) + ¢ = 1ZLT( T

Notice that we assume 7(z) # 0. To make this happen in the final analysis, we fix x € [a, b]
and define
d :=sup{t € [a,z] : 7(t) = 0}

so 7(y) # 0 for all y € (d, z].
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Now, a <d < x so

r—a>xr—d

[
d

)
/d Lot + e
1
=7 In[L7(t) + € -~

1 Lr(z)+e
-7 | T

v

T

We either have d = a or 7(d) = 0. If d = a, then

7(a) = 7(d)
= [|F(a) = G(a)]]2
= [IT — All2
<9

In both cases

T(z) <

=9 L(z—a) E L(x—a) _
e + L(e

HF(.%) — G(£)H2 — 5€L(m,a) + %(eL(xfa) .

which yields
IF = Glloo < de™ + %(eLh —1)

as required.
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Corollary 8.0.19.1 (Continuous Dependence on Parameters)
Suppose @ : [a,b] x B[R,I'] — R™ is a locally Lipschitz function. Then, the solutions
Fa to the DE

F'(z) = ®(z, F(x)), F(c) = A, c € [a, ]

are a continuous function of A.

Proof
We wish to show that for A € B[I', R], if A — T is small, then ||Fa — Fr| is also small.

If A € B[I', R] with
[A=T|><d

for some 6 > 0, then by the Local Picard Theorem, the solution to
Fl(z) = ®(z, F(x)), F(c) = A
exists on [c¢ — h,c+ h] N [a, b] where

R—90
h:=—
[[]o

given that A € B[I', R —§].
Apply the Perturbation Theorem and take ¥ = ® and consequently

e=|[®— VUl =0

This shows that for all € [¢ — h, ¢+ h] N [a, b] we have

| Fr(x) — Fa(z)|2 < ||A — T[pekle=l
< ||A =Tl

where Lip® = L.

This shows that A — F, is Lipschitz with Lipschitz constant e/ as desired.
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