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Introduction
From the University of Waterloo’s website: an elementary approach to the theory of num-
bers; the Euclidean algorithm, congruence equations, multiplicative functions, solutions to
Diophantine equations, continued fractions, and rational approximations to real numbers.

4



©Fel
ix

Zh
ou

1 Primes

1.1 Divisibility

Definition 1.1.1
let d, n ∈ Z
If d|n, then we say d divides n ,or n is a multiple of d if there is some m ∈ Z, n = md.

Proposition 1.1.1
1. a|b, b|c =⇒ a|c

2. a|b, a|c =⇒ a|bx+ cy ∀x, y ∈ Z

3. a|b, b|a =⇒ a = ±b

4. a|b, b 6= 0 =⇒ |a| ≤ |b|

Proof
Trivial

1.2 Prime Numbers

Definition 1.2.1 (Prime)
p ∈ Z+ is prime if and only if a|p =⇒ |a| ∈ {1, p}

Definition 1.2.2 (Composite)
any integers that are not primes (include negative integers!)

Lemma 1.2.1
for n ∈ Z+, there is some prime p that divides n.

Proof
induction

Lemma 1.2.2
n ∈ Z+ is either prime or a product of primes.

Proof
induction
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Theorem 1.2.3
There are an infinite number of primes

Proof
Suppose that there are finite primes pi
Then consider 1 +

∏
pi, it must be prime!

Else there some prime which divides it, meaning that prime would divide 1 as well!
Contradiction

1.3 Greatest Common Divisors and Euclid’s Algorithm

Definition 1.3.1 (Greatest Common Divisor)
gcd(a, b), a, b ∈ Z is literally its name above
Note gcd(0, a) = a for every non-zero integer a.
Note gcd(0, 0) is not defined but most things work out if we define that to be 0.

Theorem 1.3.1 (Euclidean Algorithm)
|a| ≥ |b| ∈ Z, then gcd(a, 0) = a ∧ gcd(a, b) = gcd(a (mod b), b)

Proof
The proof hinges on the fact that and common divisor of integers a, b will divide the linear
combinations of a, b.

Theorem 1.3.2 (Division Algorithm)
For 0 6= |a| < |b|, there are unique integers r, q such b = qa+ r with 0 ≤ r < |a|

Corollary 1.3.2.1
Let a, b ∈ Z, Then there exists x, y ∈ Z such that gcd(a, b) = ax+ by.

Proof
By Euclidean Algorithm with Back Substitution

1.4 Unique Factorization

Lemma 1.4.1
a, b, c ∈ Z, if gcd(a, b) = 1 and a|bc, then a|c.

Proof
since gcd(a, b) = 1, 1 = ax+ by for some integers x, y.
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So c = cax+ cby.
Now, we have both a|cax and a|cby, the second by assumption.
So it must be true that a divides their linear combination ie a|c.

Lemma 1.4.2
If a prime q divides a product of primes

∏
pi. Then it is equivalent to one of the

primes.

Proof
By previous lemma

Theorem 1.4.3 (Fundamental Theorem of Arithmetic)
Every integer n > 1 is either prime or can be uniquely expressed as a product of
primes, up to permutation.

Proof (contradiction)
Let n be smallest number with no unique factorization.
divide by a common prime, which is possible by previous lemma.
We have a smaller non-unique factorization which is a contradiction.

1.5 Applications of Unique Factorization

Theorem 1.5.1 (Pythagoras)√
2 is irrational

Proof
Suppose it is not. Express as a fraction

√
2 = a

b
.

So 2b2 = a2

This clearly contradicts unique factorization as number of twos differ on both sides.
Note that the proof may be adapted to a variety of cases.

Theorem 1.5.2 (Euler’s Proof of Infinitude of Primes)
Assuming unique factorization, we have the identity

∞∑
n=1

n−s =
∑
p

(
1 + p−s + p2−s + . . .

)
=
∑
p

(
1− p−s

)−1

Let s → 1+, The LHS diverges but RHS is bounded if there are only finitely many
primes which is a contradiction.

7



©Fel
ix

Zh
ou

1.6 Divisors

Proposition 1.6.1
Let n ∈ Z+. Write n =

∏
pαi
i

define d(n) to be the number of divisors of n.
We have

d(n) =
∏

(αi + 1)

Proof
By inspection

Proposition 1.6.2
Let n ∈ Z+. Write n =

∏
pαi
i

define σ(n) to be the sum of divisors of n.
We have

σ(n) =
∏(

1 + p1i + p2i + · · ·+ pαi
i

)
Proof
By inspection

Proposition 1.6.3
If m,n ∈ Z+, then σ(mn) = σ(m)σ(n)
We say such a function is multiplicative.

Proof
By inspection

1.7 Perfect Numbers

Definition 1.7.1
A Perfect Number is an integer n ∈ Z+ that is equal to the sum of its proper divisors
(or two times its divisors).
So σ(n) = 2n.

Theorem 1.7.1
Let p be a prime of the form p =

∑q−1
i=0 2

i.
Then n = 2q−1p is perfect.

Proof
Note that p is odd.
So n = 2q−1p has two distinct primes appearing in its prime factorization (2 and p).
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So σ(n) = (1 + 2 + · · ·+ 2q−1) (1 + p) = p · 2q = 2n

Definition 1.7.2 (Mersenne Prime)
Primes of the form 2q − 1 are called Mersenne Primes.
It is an open problem whether there are infinite Mersenne Primes and therefore infinite
Perfect Numbers.

Theorem 1.7.2
If 2q − 1 is prime then so is q.

Proof
Suppose q = a, b ∈ Z+ with a, b > 1.
Then

2q − 1 = 2ab − 1 = (2a − 1)
(
1 + 2a + · · ·+ 2(b−1)a

)
= (2a − 1)

(
2ba − 1

2a − 1

)
There do not seem to be odd perfect numbers, but no proof exists as of today.

Proposition 1.7.3
If p is an odd prime and α ∈ Z+, then pα is not perfect.

Proof

σ(pα) = 1 + p+ p2 + · · ·+ pα =
pα+1

p− 1
< pα

p

p− 1

But p
p−1

is at most 3
2
, so σ(pα) < 2pα.

Theorem 1.7.4 (Euler’s Converse for Even Perfect Numbers)
n ∈ Z+ is a positive even integer and perfect means that n is of the form

2k(2k+1 − 1)

Where 2k+1 − 1 is a Mersenne prime.

Proof
If n is even, write it as 2km Where m is odd, k ∈ Z+.
Now, n is perfect implies σ(2km) = 2k+1m.
So 2k+1m = σ(2k)σ(m) = (2k+1 − 1)σ(m).
Since gcd(2k, 2k+1 − 1) = 1, we must have 2k+1|σ(m).
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Write σ(m) = 2k+1c for some c ∈ Z+.
Then 2k+1m = (2k+1 − 1)2k+1c.
But that indicates that m = (2k+1 − 1)c.
We need to show that c = 1 and 2k+1 − 1 is prime.
To see the first note that σ(m) = σ((2k+1 − 1)c) = 2k+1c.
If c > 1, then m = (2k+1 − 1)c has at least three distinct divisors 1, c, (2k+1 − 1)c.
But then σ(m) ≥ 1 + c+ (2k+1 − 1)c = 2k+1c+ 1 since 2k+1 − 1 ≥ 1.
However, we showed σ(m) = 2k+1c! This is clearly a contradiction.
So c = 1.
We have σ(2k+1 − 1) = 2k+1.
So the only divisors are 2k+1 − 1 and 1 which is the definition for 2k+1 − 1 being prime,
completing the proof.
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2 Congruences

2.1 Gauss’ Notation

Definition 2.1.1
a, b,m ∈ Z with m ≥ 1, then a ≡ b (mod m) if m|a− b
Note that this is an equivalence relationship!
We say b is a residue of a modulus m.

Theorem 2.1.1
a = q1m+ r1, b = q2m+ r2 =⇒ a ≡ b (mod m) ⇐⇒ r1 = r2

Proof
This is a direct consequence of the definition

Definition 2.1.2
A Complete set of Residues for the modulus m is any set of m integers such that
any integer is congruent, modulo m to exactly one integer in the set.
ie Zm := {0, 1, 2, . . . ,m− 1}
We can compute which element in Zm is it congruent to by computing the remainder
of a when divided by m, we call this reducing a modulo m.

2.2 Congruence Arithmetic

Proposition 2.2.1
for a ≡ a′ (mod m) ∧ b ≡ b′ (mod m)

1. a+ b ≡ a′ + b′ (mod m)

2. ab ≡ a′b′ (mod m)

Proof
1. This is trivial

2. m|a− a′ ∧m|b− b′ so mc1 = a− a′,mc2 = b− b′

Then a = mc1 + a′, b = mc2 + b′ so ab = m2c1c2 + a′mc2 + b′mc1 + a′b′

Rearranging, we see ab− a′b′ = m(mc1c2 + a′c2 + b′c1), so we have m|ab− a′b′
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2.3 Inverses modulo m

Definition 2.3.1 (invertible)
An integer a is invertible or has an inverse mod m if there is an integer b such that
ab ≡ 1 (mod m).

Proposition 2.3.1
We can calculate the inverse of a mod m if gcd(a,m) = 1 by Bezout’s Lemma.

Proof
Trivial

2.4 Sun Zi’s Theorem

Theorem 2.4.1 (Sun Zi / Chinese Remainder Theorem)
Let m1,m2 be positive integers with gcd(m1,m2) = 1. Let 0 ≤ r1 < m1 − 1, 0 ≤ r2 <
m2 − 1.
Then any pair of congruences mod m1 and mod m2 with:

x ≡ r1 (mod m)1

x ≡ r2 (mod m)2

is equivalent to one congruence mod mn, i.e. there exists a unique 0 ≤ c ≤ mn such
that x ≡ c (mod mn)

Proposition 2.4.2
Let b1, b2 be congruent to m−1

1 ,m−1
2 respectively mod m2,m1. Note the swap.

The integer m1b1r2 +m2b2r1 is one desired solution.

Proof
By inspection

Example 2.4.3
We have x ≡ 2 (mod 3), x ≡ 4 (mod 5) ⇐⇒ x ≡ 14 (mod 15)
To arrive at this, we set set an equality for one of the two congruences and solve in terms
of the other congruence.

2.5 Fermat’s Little Theorem

Theorem 2.5.1 (Fermat’s Little Theorem)
a, p ∈ Z with p prime and gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).
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Proof
Consider {a, 2a, . . . , (p− 1)a} (mod p), we have ap−1[1 · 2 · . . . (p− 1)] (mod p), and each
1, . . . , (p− 1) is distinctly congruent to one of {1, 2, . . . , p− 1}.
If ai ≡ aj (mod p), then p|(i− j)a.
But gcd(p, a) = 1, so p|i− j, so i ≡ j (mod p).

2.6 Euler’s Generalization and his phi-function

Definition 2.6.1 (Euler Phi/Totient Function)
n ∈ Z
φ(n) = number of 1 ≤ x ≤ n such that gcd(x, n) = 1

Example 2.6.1
φ(7) = 6
1, 2, 3, 4, 5, 6
In general φ(p) = p− 1 for p prime

Example 2.6.2
φ(32) = p2 − p
In general φ(pα) = pα − pα−1 for p prime
(p, 2p, 3p, . . . , pk−1p)

Proposition 2.6.3
If gcd(m,n) = 1 then φ(mn) = φ(m)φ(n)
So the Euler Phi function is multiplicative

Proof

Theorem 2.6.4 (Euler)
let m ∈ Z+, a ∈ Z, gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m)
note that if m is prime, this is simply the specialization to Fermat’s Little Theorem

Proof
This is similar to the proof of Fermat’s Little Theorem, but restricted to invertible residue
classes mod m (ie the ones with inverses mod m).
Let {r1, r2, . . . , rφ(m)} be the φ(m) representatives of of the invertible residue classes mod
m (1 ≤ ri ≤ m).
Consider {ar1, . . . , arφ(m)}. They are a permutation of the residue classes mod m.
So
∏

ari ≡
∏

ri (mod m).
In other words, m|(aφ(m) − 1)

∏
ri.

But gcd(
∏

ri,m) = 1, thus m|aφ(m) − 1, which by definition implies aφ(m) ≡ 1 (mod m).

13
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Theorem 2.6.5
If n ∈ N, n = pα1

1 · · · · · · · pαk
k then

φ(n) =
k∏

i=1

φ(pαi
i )

=
k∏

i=1

pαi
i

(
1− 1

pi

)

=

(
k∏

i=1

pαi
i

)(
k∏

i=1

1− 1

pi

)

= n
∏
p|n

(
1− 1

p

)

2.7 The Divisor Sum

Theorem 2.7.1 (Divisor Sum of φ)

∑
d|n

φ(d) =
k∏

i=1

(1 + φ(pi) + · · ·+ φ(pαi
i )) =

k∏
i

pαi
i

Proof
telescoping sum

2.8 Wilson’s Theorem

Theorem 2.8.1 (Wilson’s Theorem)
p is prime ⇐⇒ (p− 1)! ≡ −1 (mod p)

Proof
Suppose p is prime.
Each 1 ≤ a ≤ p− 1 is invertible mod p.
Consider a when a is its own inverse mod p.

a2 ≡ 1 (mod p) =⇒ p|a2 − 1 =⇒ p|a− 1 ∨ p|a+ 1 =⇒ a ≡ 1,−1 (mod p)

Thus, with the exception of ±1, we know that the other numbers can be arranged into
pairs such that the product of each pair is 1, so their product comes out as −1.
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For the converse, suppose (p− 1)! ≡ −1 (mod p) with p being composite.
Then there is some 1 < d ≤ p such that d|p, so d|(p− 1)!.
But we have d|p|(p− 1)! + 1 by assumption, so

d| ((p− 1)! + 1)− (p− 1)! = 1

which contradicts d > 1.

2.9 Polynomials in mod p

p prime
Fp = {0, 1, 2, . . . , p− 1}
arithmetic in the Fp mod p.
All non-zero residue classes mod p are invertible.
Can consider polynomials with coefficients in Fp

Theorem 2.9.1 (division algorithm in modular field)
p prime, let f(x), g(x) ∈ Fp[x], with g(x) 6= 0 in Fp[x].
f(x) = q(x)g(x) + r(x)
with deg r(x) < deg g(x) ∨ r(x) = 0

Proof
we apply highschool division by reducing f(x) repeatedly by a max factor of g(x)

Theorem 2.9.2 (Lagrange’s Theorem)
p prime, f(x) ∈ F[x] with degree n.
Then there are at most n solutions x ∈ F[x]p to f(x) ≡ 0 (mod p)

Proof (by induction)
The result holds for n = 0. IF f(x) ≡ x 6= 0 in Fp, then there are no solutions to
f(x) ≡ 0 (mod p)
Suppose now inductively, the result holds for degree k < n.
If there are no solution for 0 (mod p), we are done for f(x) with degree n ≥ 1.
Else say x1 ∈ Fp is a solution to f(x1) ≡ 0 (mod p).
divide f(x) by (x− x1), f(x) = q(x)(x− x1) + r(x) with deg r(x) < deg(x− x1) = 1, so
r is a constant polynomial.
So f(x) = q(x)(x− x1) + a, but f(x1) = q(x1)0 + a ≡ 0 (mod p) so a = 0!
But deg q(x) = deg f(x) − 1, so we can apply the induction hypothesis to q(x) (has at
most n− 1 solutions)
Note that we used f(x2) ≡ 0 (mod p) =⇒ (x2 − x1)q(x2) ≡ 0 (mod p) Since p is prime
and thus must divide either one of the two
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Example 2.9.3
x3 + x ≡ 0 (mod 5) has 3 solutions x = 0, 2, 3

Example 2.9.4
x3 + x ≡ 0 (mod 7) has 1 solutions x = 0

Example 2.9.5
x7 + 6x+ 1 ≡ 0 (mod 7) has no solutions since f(x) ≡ 1 mod p ∀x ∈ Fp

16
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3 Primitive Roots and Quadratic Reciprocity

3.1 Primitive Roots

Definition 3.1.1 (order)
m ≥ 1, a ∈ Z.
m is said to have (finite) order l mod m if l is the smallest positive integer:

al ≡ 1 (mod m)

Note a has finite order if and only if gcd(a,m) = 1.

Proposition 3.1.1
If a has order l mod m, then aj has order

l

gcd(j, l)

Proof
Let d = gcd(j, l), l = dl0, j = dj0, gcd(l0, j0) = 1.
What is the smallest integer such that

(aj)k ≡ 1 (mod m)

Now, ajk ≡ 1 (mod m) so

adj0k ≡ 1 (mod m) =⇒ l|dj0k =⇒ dl0|dj0k =⇒ l0|j0k =⇒ l0|k

So the smallest positive integer k is k = l0.

Definition 3.1.2 (primitive root)
m ≥ 2, a ∈ Z is said to be a primitive root mod m if a has order φ(m)

Theorem 3.1.2 (Primitive Root Theorem)
The only moduli which have primitive roots are 2, 4, pα, 2pα where p is prime α ≥ 1.

Lemma 3.1.3
Let n be an odd modulus. There are primitive roots modulo n if and only if there
are primitive roots modulo 2n

17
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Proof (Lemma)
Note that φ(2n) = φ(n) since n is odd.
Then

gk ≡ 1 (mod 2n) ⇐⇒ gk ≡ 1 (mod n) ∧ gk ≡ 1 (mod 2)

for g an (necessarily odd) invertible residue class of 2n.
So an primitive root mod 2n is necessarily an invertible root mod n, and an primitive
root h mod n generates a (possibly different) primitive root mod 2n (h+ n).

Lemma 3.1.4
Suppose that p|n for some odd prime p. If there is a primitive root modulo n, then
either n = pk or n = 2pk for some integer k ≥ 1

Proof (Lemma)
Write n = mpk for some p 6 |m. We show that if m ≥ 3 then primitive roots modulo n do
not exist.
First not that φ(n) = φ(m)φ(pk) Where both are even integers since m ≥ 3.
for any a coprime to n, we have

aφ(n)/2 = (aφ(m))φ(p
k)/2 ≡ 1 (mod m)

And
aφ(n)/2 = (aφ(p

k))φ(m)/2 ≡ 1 (mod p)k

So by the Chinese Remainder Theorem, aφ(n)/2 ≡ 1 (mod n) so we cannot have any
primitive roots mod n.

Lemma 3.1.5
Let n = 2k with k ≥ 3. Then there are no primitive roots modulo n.

Proof
We proceed by induction so show that a2

k−2 ≡ 1 (mod 2k).
The case k = 3 is trivial to check.
For the induction step we note that

a2
k−1

= 1 +m2k+1 +m222k ≡ 1 (mod 2k+1)

for some integer m
So we cannot have primitive roots mod 2k+1 either and all of k ≥ 3 by induction.

Lemma 3.1.6
Let g be a primitive root modulo an odd prime p such that gp−1 6≡ 1 (mod p2).
Then gφ(p

k) 6≡ 1 (mod pk+1) for all k ≥ 1.

18
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Proof
Write gφ(p

k) = 1 +mpk for some integer m by Euler’s Generalization.
We have p 6 |m by supposition.
Since φ(pk+1) = pk+1 − pk = φ(pk)× p, the binomial expansion gives us

gφ(p
k+1) = (1 +mpk)p ≡ 1 +mpk+1 6≡ 1 (mod pk+2)

Lemma 3.1.7
Let g be a primitive root modulo an odd prime p. Then either g or g+p is a primitive
root modulo pk for all k ≥ 1.

Proof
Case I, gp−1 6≡ 1 (mod p2).
We argue by induction that ordpk(g) = φ(pk) = pk−1(p− 1).
The base case clearly holds.
Now, write m = ordpk+1(g).
Since gm ≡ 1 (mod p)k, so pk−1(p− 1)|m.
We also have m|φ(pk+1) = pk(p− 1). So either m = φ(pk+1) or m = pk−1(p− 1) = φ(pk).
But the second is impossible by the second lemma. So we are done.
Case II, gp−1 ≡ 1 (mod p2).
We will consider g + p.
It is still a primitive root modulo p and by the binomial theorem, satisfies

(g + p)p−1 ≡ gp−1 + (p− 1)gp−2p ≡ 1− gp−2p 6≡ 1 (mod p2)

But p 6 |g =⇒ we can use the same argument as above to show that g + p is a always a
primitive root mod pk

Proof (Primitive Roots Theorem, Case: p odd prime)
Let 1 ≤ a < p.
Consider fp(p) for l|φ(p− 1).
Where fp(l) denotes the number of invertible residue classes mod p with order l
We claim fp(l) = φ(l), 0 for all l|p − 1 and furthermore, fp(l) = φ(l). In particular,
fp(p− 1) = φ(p− 1) ≥ 1
Now, to see proof of our first claim. We show that if fp(l) = φ(l) if fp(l) 6= 0.
Since fp(l) 6= 0 there is at least one 1 ≤ a < p of order l mod p.
Let a have order l mod p. So it is a solution to xl ≡ 1 (mod p).
By Legendre’s Theorem, the system has at most l solutions mod p.
However, ak, 1 ≤ k ≤ l are the l distinct solutions mod p to xl ≡ 1 (mod p) by minimality
of orders.
But how many of ak have order l mod p?
aj has order l ⇐⇒ gcd(j, l) = 1.
Among j = 1, . . . , l, φ(l) has gcd(j, l) = 1.
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Given our first claim, then fp(l) ≤ φ(l) for all l|p− 1.
Hence

p− 1 =
∑
l|p−1

fp(l) ≤
∑
l|p−1

φ(l) = p− 1

Note the RHS uses the divisor sum.
with equality if and only if fp(l) = φ(l) for all l|p− 1.

3.2 Quadratic Residues

Definition 3.2.1
p prime, a ∈ Z, a 6≡ 0 (mod p),
a is said to be a quadratic residue mod p if there is some x ∈ Z such that

x2 ≡ a (mod p)

otherwise, a is said to be a quadratic non-residue (or non-quadratic residue).

Note that we may study quadratic residues mod p in terms of a primitive root mod p.

Proposition 3.2.1
p, odd, prime.
We have a quadratic residue mod p if and only if it is an even power of a primitive root
mod p.

Proof ( ⇐= )
Let a ≡ gα (mod p) for g a primitive root.
If α = 2α0, take x ≡ gα0 and we are done.

Proof ( =⇒ )
Write x, a in terms of g.
Let a ≡ gα (mod p). x ≡ gλ (mod p).
Note both a, x 6≡ 0 (mod p) so the above is valid.
Hence

x2 ≡ a (mod p) =⇒ g2λ ≡ gα (mod p)

By the definition of the order, p− 1|2λ− α
So we have 2|2λ− α.
Now, p is odd so 2|p− 1.
Thus we must have 2|α!

Corollary 3.2.1.1
p is and odd prime.
The number of quad residues amongst 1 ≤ a < p in equal to p−1

2
.
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To see this note that half the powers 1 ≤ α < p− 1 are even.

Theorem 3.2.2 (Mutiplicative Law for Quadratic Residues / Non-Residues)
If a is a quadratic residue mod p, and b is a quadratic residue mod p.
Then ab ≡ gα+β with the power and even number and thus ab is a quadratic residue
mod p.
By similar logic the product of two quadratic non-residue is a quandratic residue by
parity.
Finally the product of a quadratic residue and quadratic non-residue is a quadratic
non-residue.

Definition 3.2.2 (Legendre’s Symbol)
p an odd prime. a ∈ Z.
Define (

a

p

)
=


0, a ≡ 0 (mod p)

1, a is a quadratic residue
−1, a is a quadratic non-residue

Proposition 3.2.3 (multiplication law in terms of Legendre Symbols)
For all a, b ∈ Z. (

ab

p

)
=

(
a

p

)(
b

p

)
Proof
Trivial

Theorem 3.2.4 (Euler’s Criterion)
p an odd prime. a ∈ Z. (

a

p

)
≡ a

p−1
2 (mod p)

Proof
If a ≡ 0 (mod p), both sides are 0.
Else, let g be primitive so we can write

a ≡ gα (mod p)

case I:
(

a
p

)
= 1 =⇒ 2|α
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Thus
a

p−1
2 ≡ (g2α0)

p−1
2 ≡ g(p−1)α ≡ 1 (mod p)

case II: 2 6 |α So
a

p−1
2 ≡

(
g2α0+1

) p−1
2 ≡ g

p−1
2 ≡ −1 (mod p)

Theorem 3.2.5 (Gauss’ Lemma)
p and odd prime, a ∈ Z.
Consider the numbers a, 2a, . . . , p−1

2
a.

Reduce these (mod p) to lie in the interval (−p
2
, p
2
).

Let ν be the number of reductions that end up negative.
Then (

a

p

)
= (−1)ν

Proof
Let

a ≡ r1 (mod p)

2a ≡ r2 (mod p)

. . .

p− 1

2
≡ r p−1

2
(mod p)

with
−p

2
< ri <

p

2
for all i.
We claim that

{|ri|} =

{
1, . . . ,

p− 1

2

}
Indeed, note the bounds of each ri and none are zero.
Case I: ri = rj.
ai ≡ aj (mod p) =⇒ p|a(i− j) so p|i− j.
But that means i− j = 0 or i = j.
Case II: ri = −rj.
ai ≡ −aj (mod p) =⇒ p|(i+ j)
But for 1 ≤ i, j ≤ p−1

2
.

0 < i+ j ≤ p− 1
There is no 0 < i+ j < p with p|i+ j so ri = −rj does not occur.
So

a · 2a · . . . p− 1

2
a ≡ (−1)νr1 · r2 · . . . r p−1

2
(mod p)
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Next, multiplying by inverses result in

a
p−1
2 ≡ (−1)ν (mod p)

But a
p−1
2 ≡ (−1)ν (mod p) by Euler’s Criterion, so

(−1)ν ≡
(
a

p

)
(mod p)

Hence
(−1)ν =

(
a

p

)
Corollary 3.2.5.1

(
−1

p

)
= (−1)

p−1
2 =

{
1, p = 4k + 1

−1, p = 4k + 3

Corollary 3.2.5.2
Note 1 · 2, . . . p−1

2
· 2 = p− 1.

To determine the value of Legendre’s symbol, we must count how many even numbers
2x satisfy p

2
< 2x < p to get ν.

Equivalently, we count the number of integers x in the range

p

4
< x <

p

2

Let p = 8k + r for r = 1, 3, 5, 7.
So

p

4
< x <

p

2
⇐⇒ 2k +

r

4
< x < 4k +

r

2

Since we are only concerned with the parity of ν, if suffices to claculate the number of
integers x with

r

4
< x <

r

2

All in all (
2

p

)
=

{
1, r = 1, 7

−1, r = 3, 5
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Lemma 3.2.6
let a be an integer and p an odd prime with a ≡ 0 (mod p).
The value of

(
a
p

)
is determined by p (mod 2a).

Proof (lemma)
We show the case a > 0 and note that the other cases are handled in a similar fashion.
Consider a, 2a, . . . , p−1

2
a and reduce them modulo p so they lie in the interval

[
−p−1

2
, p−1

2

]
.

Note that each i · a lies in some interval(
0,

p

2

)
,

(
p

2
,
3p

2

)
, . . . ,

(
(b− 1

2
)p, bp

)
with b = a

2
since

a

2
(p− 1) <

a

2
p <

a

2
(p+ 1)

Note we do not omit any values by taking open intervals as none of them are multiples
of p or p

2
.

Let i · a ≡ ri (mod p) with each ri ∈
[
−p−1

2
, p−1

2

]
.

Note that the negative ri lie in the intervals of the form
(
(n− 1

2
)p, np

)
for n ∈ N \ {0}.

Now, the number of ax with x ∈ Z satisfying (n − 1
2
)p < ax < np is the same as the

number of x satisfying (
n− 1

2

)
p

a
< x < n

p

a

Let p ≡ r (mod 4)a so p = 4ak + r with 0 ≤ r < 4a. ν is the number of integers in the
intervals:(

2k +
r

2a
, 4k +

r

a

)
,

(
6k +

3r

2a
, 8k +

2r

a

)
, . . . ,

(
(2c− 1)2k +

(2c− 1)r

2a
, 4ck +

cr

a

)
with

c =

{
b, b ∈ Z
b− 1

2
, else

Since we are again only concerned with the parity of ν, we count the integers in the
intervals ( r

2a
,
r

a

)
,

(
3r

2a
,
2r

a

)
, . . . ,

(
(2c− 1)r

2a
,
cr

a

)
So the parity of ν depends only on a, r but not k! In other wirds, we have shown that the
legendre’s symbol depends only on p (mod 4a).
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Theorem 3.2.7 (Quadratic Reciprocity)
Let p, q be distinct odd primes, then(

p

q

)
·
(
q

p

)
= (−1)

p−1
2

· q−1
2 =

{
−1, p ≡ q ≡ 3 (mod 4)

1, else

Proof (Quadratic Reciprocity)
Let p, q be as in the statement.
We will show the equivalent statement that

(
p

q

)
=

−
(

q
p

)
, p ≡ q ≡ 3 (mod 4)(

q
p

)
, else

If p ≡ q (mod 4) then 4|p− q so p = 4a+ q for some integer a.(
p

q

)
=

(
4a+ q

q

)
=

(
4

q

)(
a

q

)
=

(
a

q

)
By Fermat’s Little Theorem.
Similarly, (

q

p

)
=

−
(

a
p

)
, p ≡ 3 (mod 4)(

a
p

)
, p ≡ 1 (mod 4)

So the conjecture certainly holds when p ≡ q (mod 4).
Now, if p 6≡ q (mod 4), then p ≡ −q (mod 4).
So 4|p+ q and p+ q = 4a for some integer a > 0.(

p

q

)
=

(
4a− q

q

)
=

(
a

q

)
Also, (

q

p

)
=

(
a

p

)
Having considered both cases, we conclude the proof.
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4 Pythagorean Triple

4.1 Pythagorean Triple

Definition 4.1.1 (Pythagorean Triple)
x, y, z ∈ Z solutions to

x2 + y2 = z2

We say it is primitive if gcd(x, y, z) = 1

Theorem 4.1.1 (Classification of Primitive Pythagorean Triples)
z, y, z ∈ Z are primitive Pythagorean Triples if and only if

z =
A+B

2
= U2 + V 2

x =
B − A

2
= V 2 − U2

y =
√
AB = 2UV

with gcd(U, V ) = 1, V > U > 0 and U, V having opposite parity.
Note if x2 + y2 = z2 and gcd(x, y, z) = 1 then gcd(x, y) = gcd(x, z) = gcd(y, z) = 1
Recall that if x, y, z is a primitive pythagorean triple, without loss of generality x, y
are odd, even respectively.

Proof
Now x2 + y2 = z2 =⇒ y2 = z2 − x2 = (z − x)(z + x) = AB with A,B both even since
x, z are both odd.
Let d = gcd(A,B) so 2|d as both A,B are even. So write d = 2d0
But

d|A, d|B =⇒ d|A+B ∧ d|B − A

=⇒ d0|z ∧ d0|x

However, gcd(x, z) = 1 =⇒ d0 = 1 =⇒ d = 2
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A = 2A0

B = 2B0

y2 = AB

= (2A0)(2B0)(y
2

)2
= A0B0

gcd(A0, B0) = 1

=⇒ A0 = U2

B0 = V 2

So A = 2U2, B = 2V 2, gcd(U, V ) = 1, 0 < U < V
And so

z =
A+B

2
= U2 + V 2

x =
B − A

2
= V 2 − U2

y =
√
AB = 2UV

with gcd(U, V ) = 1, V > U > 0 and U, V having opposite parity.
Note the converse if trivial to check for validity of Pythagorean Triple.
let b = gcd(x, y, z) with x, y, z specified by the above.
So

b|x =⇒ b|x+ z = zV 2

b|z =⇒ b|z − x = 2U2

But gcd(2, b) = 1 since x = V 2 − U2 is odd.
So by Euclid’s Proposition, b|V 2 ∧ b|U2 =⇒ b = 1 as gcd(U, V ) = 1
Hence gcd(x, y, z) = 1.

Theorem 4.1.2 (Fermat’s Last Theorem)
Let n ≥ 3 ∈ Z.
There are no positive integer solutions x, y, z to

xn + yn = zn
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Proof (General Case)
in 1995 by Andrew Wiles and Richard Taylor

Proof (Fermat’s Case, n = 4)
We consider

x4 + y4 = z2

and show that it has no positive integer solution.
We will apply a minimality argument.
Let x, y, z be a solution with z minimal.
We will then show that there is a smaller solution for x′, y′, z′ < z, contradicting the
minimality of z.
We have gcd(x, y) = 1, otherwise there would be a smaller solution.
Hence x2, y2, z is a Primitive Pythagorean triple, as

gcd(x, y) = 1 =⇒ gcd(x2, y2, z) = 1

Thus, by the classification of Primitive Pythagorean triples,

x2 = V 2 − U2

y2 = 2UV

z = U2 + V 2

Now, x2 ≡ 1 (mod 2) =⇒ x2 ≡ 1 (mod 4).
Thus V 2 ≡ 1 (mod 4), U2 ≡ 0 (mod 4).
In other words, V is odd, U is even.
But U is even implies that U = 2r, 0 < r ∈ Z. Substituting into our previous work shows
that

x2 = V 2 − 4r2

as well as
y2 = 4rV =⇒

(y
2

)2
= rV

But gcd(r, V ) = 1 as gcd(U, V ) = 1 hence r = t2, V = S2 as rV is a square.
Note that V > 0 =⇒ S > 0.
Substituting again, we see that

x2 = S4 − 4t4

So x, 2t2, S2 form a Primitive Pythagorean Triple as

gcd(r, V ) = 1 =⇒ gcd(S2, t2) = 1 =⇒ gcd(x, 2t2, S2) = 1

Now then, there is some U ′, V ′ such that

x = V ′2 − U ′2

2t2 = 2U ′V ′

S2 = U ′2 + V ′2
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with gcd(U ′, V ′) = 1, U ′, V ′ having opposite parity and V ′ > U ′ > 0.
But then t2 = U ′V ′ so

U ′ = X2, V ′ = Y 2

since U ′V ′ is a square and they are coprime.
Now, substituting, we have

X ′4 + Y ′4 = S2

with U ′, V ′ > 0 =⇒ X,Y, S > 0.
But then X ′, Y ′, s is a solution to our original equation with S < z which contradicts the
minimality of z.
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5 Sums of Two Squares
Let A,B, a, b, c, d ∈ Z

A = a2 + b2

B = c2 + d2

Note, by cancellation
AB = (ac− bd)2 + (ad+ bc)2

5.1 Complex Numbers

Definition 5.1.1 (Complex Exponential)

ez =
∞∑
n=0

zn

n!

Where eu + v = eu · ev, for all u, v ∈ C.

Theorem 5.1.1 (Euler’s Identity)

eiϕ = cosϕ+ i sinϕ

Proof
By definition

eiϕ = 1+ (iϕ) +
(iϕ)2

2!
+ · · · =

(
1− ϕ2

2!
+

ϕ4

4!
+ . . .

)
+ i

(
ϕ− ϕ3

3!
+

ϕ5

5!

)
= cosϕ+ i sinϕ

5.2 Primes that are Sums of Squares

Proposition 5.2.1
Let p ≡ 3 (mod 4) be prime.
Then p is not a sum of squares.

¬∃a, b ∈ Z, p = a2 + b2
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Theorem 5.2.2 (Euler)
If p ≡ 1 (mod 4) is prime, then p is a sum of squares.

p = a2 + b2, a, b ∈ Z

with a, b unique up to order and sign.

Proof (existence)
p ≡ 1 (mod 4) =⇒ ∃z ∈ Z such that

z2 ≡ −1 (mod p)

since
(

−1
p

)
= 1 if p ≡ 1 (mod 4).

So p|z2 + 1, which by definition means z2 + 1 = mp < p2

4
+ 1, which means m < p.

Note m ≥ 1 since z2 + 1 is positive.
We can take −p

2
< z < p

2
, hence z2 + 1 < p2

4
+ 1

Now, we show that if mp = x2+y2 and if m > 1, then there is some r, x′, y′ ∈ Z such that

rp = (x′)2 + (y′)2

with 1 ≤ r < m.
If so, the repeat until we get

p = X2 + Y 2

so r = 1.
Assume m > 1, otherwise we are done.
Let −m

2
< u, v ≤ m

2
such that

u ≡ x (mod m)

v ≡ y (mod m)

Thus u2 + v2 ≡ x2 + y2 ≡ 0 (mod m)
So there is some r ∈ Z, u2 + v2 = rm.
if r = 0, then u = v = 0 =⇒ x ≡ y ≡ 0 (mod m).
But mp = x2 + y2 so if x ≡ y ≡ 0 (mod m)

m2|x2 + y2 = mp =⇒ m|p

But 1 ≤ m < p, contradicting primality of p.
Furthermore,

r =
u2 + v2

m
≤

2
(
m
2

)2
m

=
m

2
< m

in other words, r < m.
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Next,
mp ·mr = (x2 + y2)(u2 + v2) = (xu+ yv)2 + (xv − yu)2

with xu+ yv ≡ x2 + y2 ≡ 0 (mod m) so m|xu+ yv
Also, xv − yu ≡ xy − yx ≡ 0 (mod m) so m|xv − yu.
Thus dividing by m2, we have

rp =

(
xu+ yv

m

)2

+

(
xv − yu

m

)2

both being integers.
So we have reached our goal and we are done.

Proof (uniqueness)
Say p = x2 + y2 = X2 + Y 2, where x, y,X, Y ∈ Z.
Then we wish to show x = ±X, y = ±Y or y = ±X, x = ±Y .
We have by assumption

p ≡ 1 (mod 4) =⇒ ∃h ∈ Z, h2 ≡ −1 (mod p)

So

p = x2+ y2 = (x+hy)(x−hy) (mod p) =⇒ p|(x+hy)(x−hy) =⇒ p|x+hy ∨ p|x−hy

as x2 − h2y2 ≡ x2 + y2 (mod p).
We have x ≡ ±hy (mod p).
Also

p = X2 + Y 2 ≡ (X + hY )(X − hY ) =⇒ · · · =⇒ X ≡ ±hY (mod p)

If p = x2 + y2, then p = (±x)2 + (±y)2.
So we can assume x ≡ hy (mod p) (if not, we replace b y → −y, etc) and X ≡ hY (mod p).
Thus

p2 = (x2 + y2)(Y 2 +X2) = (xY − yX)(xX + yY )

but xY − yX ≡ hyY − hyY ≡ 0 (mod p) and xX + yY ≡ h2yY + yY ≡ 0 (mod p).
Thus xY−yX

p
, xX+yY

p
∈ Z.

dividing by p2 gives
1 ≡ (xY − yX)2 + (xX + yY )2

Therefore either xY − yX = ±0 and xX + yY = 1 or vice versa.
Note gcd(x, y) = gcd(X,Y ) = 1.
But x|xY , so x|yX and by Euclide x|X.
Likewise, X|x so x = ±X.
Similarly, y = ±Y .
In the other case, xX = −yY .
But x|xX so x| − yY and by Euclide x|Y .
Likewise Y |x.
Repeating gets us x = ±Y .
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6 Continued Fractions

6.1 Continued Fractions
Let α ∈ R, we can write

α = q0 + α′

where q0 ∈ Z, 0 ≤ α′ < 1, if α′ > 0.
Let α′ = 1

α
with α1 > 1.

Hence
α = q0 +

1

α1

, α1 > 1

We can repeat on α to get a continued fraction, note this process terminates if and only if
α is rational.
This is due to the Euclidean Algorithm.

6.2 General Continued Fraction
Then general, finite continued fraction is in the form

q0 +
1

q1+

1

q2+
. . .

1

qn

Note for n = 1, we have
q0 +

1

q1
=

q0q1 + 1

q1

If n = 2 we have

q0 +
1

q1+

1

q2
= q0 +

q2
q1q2 + 1

=
q0q1q2 + q0 + q2

q1q2 + 1

Continuing forwards, n = 3

q0 +
1

q1+

1

q2+

1

3
= q0 +

q2q3 + 1

q1q2q3 + q1 + q3

=
q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1

q1q2q3 + q1 + q3
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Definition 6.2.1

[q0, . . . , qn]

denote the numerator of
q0 +

1

q1 + · · ·+ 1
qn

So inductively, we have that

[q0] = q0

[q0, q1] = q0q1 + 1

[q0, q1, q2] = q0q1q2 + q0 + q2

[q0, q1, q2, q3] = q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1

Lemma 6.2.1
The denominator of the above is

[q1, . . . qn]

Proof (Induction)
True for n = 1: [q0, q1] = q0q1 + 1, [q1] = q1.
Inductively

q0 +
1

q1+
. . .

1

qn
= q0 +

1
[q1,...,qn]
[q2,...,qn]

=
q0[q1, . . . , qn] + [q2, . . . , qn]

[q1, · · · qn]

Theorem 6.2.2 (Euler’s Rule)
[q0, . . . qn] is equal to a sum of all possible products obtained from q0q1 . . . qn by omit-
ting no terms, omitting consequetive pairs of terms, two pairs of consequetive terms,
and so on.

Proof (Induction)
True for n = 0, 1.
[q0] = q0.
[q0, q1] = q0q1︸︷︷︸

erase nothing

+ 1︸︷︷︸
erase first pair of terms

Inductively,
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[q0, . . . , qn] = q0[q1, . . . , qn]︸ ︷︷ ︸
sum of products with q0

+ [q2, . . . , qn]︸ ︷︷ ︸
sum of products omitting q0, q1

The first term, we never erase q0q1 while the second one we definitely do.

Note that
[q0, . . . , qn] = [qn, . . . , q0]

Corollary 6.2.2.1 (forwards recursion)

[q0, . . . , qn] = [qn, . . . , q0] = qn[qn−1, . . . , q0]+[qn−2, . . . , q0] = qn[q0, . . . , qn−1]+[q0, . . . , qn−2]

6.3 Convergents to a Continued Fraction

Definition 6.3.1
Let

A

B
= q0 +

1

q1 + . . .
∈ Q

be a finite continued fraction.
The fraction that one gets by stopping at qm rather than qn, 0 ≤ m ≤ n is called the
m-th convergent to A

B
and is given by

Am

Bm

with Am = [q0, . . . , qm], Bm = [q1, . . . , qm].

Proposition 6.3.1 (forwards recursion for q0, . . . , qm)

Am = qmAm−1 + Am−2

and also
Bm = qmBm−1 +Bm−2

we can take m ≥ 0 by taking
A0

B0

=
q0
1
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Theorem 6.3.2

AmBm−1 −BmAm−1 = (−1)m−1,m ≥ −1

Proof (induction)
true for m = −1.

A−1B−2 −B−1A−2 = 1 = (−1)−2

Next, assume the result holds for m− 1, consider the m case:

AmBm−1 −BmAm−1 = (qmAm−1 + Am−2)Bm−1 − (qmBm−1 +Bm−2)Am−1

= Am−2Bm−1 −Bm−2Am−1

= −(Am−1Bm−2 −Bm−1Am−2)

= (−1)m−1

6.4 Infinite Continued Fractions
α ∈ R \Q, the procedure

α = q0 +
1

α1

, α1 > 1

repeated produces a continued fraction for α.

α =
[q0, . . . , αn+1]

[q1, . . . , qnαn+1]

Forward Recursion gives

[q0, . . . qn, αn+1] = αn+1[q0, . . . qn] + [q0, . . . qn−1]

and
[q1, . . . , qn, αn+1] = αn+1[q1, . . . , qn] + [q1, . . . , qn−1]

As before, we have convergents Am

Bm
.

A0

B0

=
q0
1
,
A1

B1

=
q0q1 + 1

q1
, . . .

where A−2 = 0, B−2 = 1, A−1 = 1, B−1 = 0.
By our work above

α =
αn+1An + An−1

αn+1Bn +Bn−1

, n ≥ −1, α0 = α
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Theorem 6.4.1

∣∣∣∣α− An

Bn

∣∣∣∣ < 1

BnBn+1

Proof

α− An

Bn

=
αn+1An + An−1

αn+1Bn +Bn−1

− An

Bn

=
BnAn−1 − AnBn−1

Bn(αn+1Bn +Bn−1)

=
(−1)n

Bn(αn+1Bn +Bn−1)

Note that αn+1 = qn+1 +
1

αn+2
.

Taking absolute value

|α− An

Bn

| = 1

Bn(αn+1Bn +Bn−1)

<
1

Bn(qn+1Bn +Bn−1)

=
1

BnBn+1

Futhermore,

Bn+1(αn+2Bn+1 +Bn) > Bn(αn+1Bn +Bn−1)

= Bn

(
Bn+1 +

Bn

αn+2

)
We need

αn+2(Bn+1)
2 >

B2
n

αn+2

which is true as αn+2 > 1, Bn+1 > Bn.
So these differences are monotonically decreasing.

Corollary 6.4.1.1
Note that

B0 = 1, B1 = q1, B2 = q2q1 + q0 > q1

37



©Fel
ix

Zh
ou

continued, we see

Bm = qmBm−1 +Bm−2 ≥ Bm−1 +Bm−2 > Bm−1

So Bm is strictly increasing.
It follows that An

Bn
→ α.

6.5 Purely Periodic Continued Fractions
We can recursively define the continued fraction in terms of itself, and even better with
forwards recursion.

α =
αAn + An−1

αBn +Bn+1

Definition 6.5.1 (Quadratic Irrational)
α ∈ R is a Qudratic Irrational if it is an irrational root of a polynomial

ax2 + bc+ c

with a, b, c ∈ Z, a 6= 2.

Definition 6.5.2 (Conjugate)
α ∈ R a Quadratic Irrational, then

α′

is the other root and defined to be the Conjugate

Definition 6.5.3 (Reduced)
α is said to be reduced if α > 1 and

−1 < α′ < 0

Theorem 6.5.1 (Galois)
α has a purely periodic continued fraction representation if and only if α is reduced.

Proof ( =⇒ )
Say α is purely periodic.

α =
αAn + An−1

αBn +Bn−1
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So
Bnα

2 + α(Bn−1 − An)− An−1 = 0

We have

(i) α > 1 since q0 > 1, as the first partial quotient appears repeatedly

(ii) α is irrational due to periodicity

Consider

β = qn +
1

qn−1

1

. . . +
1

q0 + β

=
β[qn, . . . , q0] + [qn, . . . , q1]

β[qn−1, . . . , q0] + [qn−1, . . . , q1]

=
Anβ +Bn

An−1β +Bn−1

=⇒
An−1β

2 + β(Bn−1 − An)−Bn = 0

Hence, if α is one solution of

BnX
2 +X(Bn−1 − An)− An−1 = 0

then −1
β

is the other solution.
Note β > 1 since qn > 1, hence the expression above gives the desired other root, ie α is
reduced.

6.6 Application to
√
N

Theorem 6.6.1
Let N ∈ Z+ be a positive integer, but not a perfect square.
Then

√
N is irrational.

Let q0 = b
√
Nc be the integer part of

√
N .

Then
√
N + q0 is reduced and hence has a purely periodic continued fraction.

Proof
First, note

√
N + q0 is the root of

(x− q0)
2 −N = x2 − 2q0x+ q20 −N

Furthermore,
√
N + q0 is irrational.
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Then α =
√
N + q0 > 1 and

α′ = −
√
N + q0 < 0

So α is reduced.
Note palindriomic nature.

6.7 Pell’s Equation
N ∈ Z+ not a square.
Find positive x, y ∈ Z+ with

x2 −Ny2 = 1

Solutions can be found via continued fractions for
√
N .

x−
√
Ny =

1

x+
√
Ny

⇐⇒
(
x

y
−
√
N

)
=

1

y(x+
√
Ny)

Note that
1

y(x+
√
1y)

<
1

2y2
√
N

this suggests that x
y

is a continued fraction approximation to
√
N .

Take advantage of large 2q0’s. Indeed, let An

Bn
, An−1

Bn−1
occuring before the 2q0 partial quotient.

√
N =

(
√
N + q0)An + An−1

(
√
N + q0)Bn +Bn−1

clearing denominator
√
N
(
(
√
N + q0)Bn +Bn−1

)
= (

√
N + q0)AnAn−1

collecting terms

NBn +
√
N (q0Bn +Bn−1) = q0An + An−1 +

√
NAn

If a + b
√
N = c + d

√
N with integer variables, and N is not a square, then a = c, b = d

otherwise N is rational.
Hence comparing integer and

√
N components:

NBn = q0An + An−1 =⇒ An−1 = NBn − q0An

q0Bn +Bn−1 = An =⇒ Bn−1 = An − q0Bn

But
AnBn−1 − An−1Bn = (−1)n−1
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So
An(An − q0Bn)− (NBn − q0An)Bn = A2

n −NB2
n

Thus

A2
n −NB2

n =

{
1, n ≡ 1 (mod 2)

−1, n ≡ 0 (mod 2)

We can take A2n+1, B2n+1 which reverses parity and would guarantee a solution.
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