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Chapter 1

Introduction

1.1 Mid-17th Century: Pascal, de Fermat

1.1.1 Classical Probability Model

All (finite) outcomes of a random experiment are equally probable, say E = {e1, . . . , en}.
We can identity these events with a probability model Ω = {ω1, . . . , ωn}. Here each ωi is an
elementary event. An event is some A ⊆ Ω and the probability

P{A} = |A|
|Ω|

.

Note that

1) P(A) ≥ 0

2) P(Ω) = 1,P(∅) = 0

3) ∀A1, A2 with A1 ∩ A2 = ∅, P(A1) + P(A2) =
|A1|+|A2|

|Ω| = P(A1 + A2)

1.1.2 18th Century: Bernoulli, de Moivre, Laplace

The concept of Bernoulli trials were introduced during this time.

1.1.3 19th Century: Generalizations

Our elementary event space now generalizes to countable cardinality E = {e1, e2, . . .} with
corresponding probability model Ω = {ω1, ω2, . . .}. An event is again a subset A ⊆ Ω.

13
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However, we no longer enforce equiprobable events.

1) P(ωi) = pi ≥ 0

2)
∑

i pi = 1

3) P(A) =
∑

j P(ωij) =
∑

j pij where A =
⋃

j{wij}

Shortcomings

We are still limited to countably finite events, when bigger cardinalities were already known.

There was no concept of “geometric probability”. Thus for F ⊆ G ⊆ RN , what is the
probability that a random point of G belongs to F?

Independently, Brownian motion was already discovered. Moreover, Chebyshev, Lyapenov,
and Markov introduced random real numbers, expectations, variance, and limit theorems.

Borel and Lebesgue introduced measure theory, which was evidently useful for probability.

Finally, Hilbert left the axiomatization of probability as his 6th problem.

1.2 1930: Kolmogorov

Kolmogorov came up with a measure theoretic axiomatization of probability and more im-
portantly, applied this theory to study stochastic processes, showing the broad applicableness
of this model.

14
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Chapter 2

Axiomatic Approach to Probability

2.1 Probability Space

Definition 2.1.1 (Algebra)
An F -system of subsets of Ω is an algebra if

a) Ω ∈ F
b) A ∈ F =⇒ Ā ∈ F (A ∈ F are called events or measurable sets)

c) A1, A2 ∈ F implies that A1 ∪ A2, A1 ∩ A2 ∈ F

Definition 2.1.2 (σ-algebra)
An F -system of subsets of Ω is a σ-algebra if

a) Ω ∈ F
b) A ∈ F =⇒ Ā ∈ F (A ∈ F are called events or measurable sets)

c) A1, A2, · · · ∈ F implies that
⋃∞

n=1Ai,
⋂∞

n=1Ai ∈ F (note that only one of the
two is needed)

Definition 2.1.3 (Measurable Space)
(Ω,F) where F ⊆ 2Ω is a σ-algebra is a measurable space.

15



©
Fe
lix
Zh
ou

Definition 2.1.4 (Probability Measure)
Let (Ω,F) be a measurable space. Then P : F → R+ is a probabilistic measure on
(Ω,F) if

a) P(A) ≥ 0 (non-negativity)

b) P(Ω) = 1 (normalization)

c) A1, A2, . . . ,∈ F with Ai ∩ Aj = ∅ implies that P (⊔∞i=1Ai) =
∑∞

i=1 P(Ai)

Definition 2.1.5 (Probability Space)
Let (Ω,F) be a measurable space and P a probability measure. Then (Ω,F ,P) is a
probability space.

Note that our new model strictly includes all previous models.

2.2 Experiments

We would like to differentiate the event space from our universal probability space. For
instance, our probability space might consist of the outcomes of a dice roll. However, we
can derive multiple event spaces such as the value of the roll or the parity of the roll from a
single probability space.

Definition 2.2.1 (F/E-measurable)
Let (E, E) be another measurable space. Then X : (Ω,F) → (E, E) is F/E-
measurable if for all B ∈ E , X−1(B) ∈ F .

Proposition 2.2.1
For all B ∈ E , define Px(B) := P(X−1(B)). Then Px is a probability measure on (E, E)
called the distribution / law / law of distribution of X.

Proof
Check definitions.

2.3 σ-Algebra & Algebras

Remark that a σ-algebra is an algebra. Moreover, a finite algebra is a σ-algebra.

16
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Example 2.3.1
The trivial σ-algebra F∗ := {∅,Ω} ⊆ Ω is a σ-algebra.

F∗ := 2Ω is the “richest” σ-algebra on Ω. If |Ω| < ∞ like in classical probability, we
always consider F∗.

Let A ⊆ Ω, then FA := {A, Ā,Ω,∅} is the σ-algebra generated by A.

Lemma 2.3.2
Let B ⊆ 2Ω, there exists a smallest algebra and σ-algebra, denoted α(B), σ(B), re-
spectively, containing B.

We say α(B), σ(B) is the (σ-)algebra generated by B.

Proof
Take σ(B) :=

⋂
{G : G is σ-algebra ∧ B ⊆ G} and similarly for α(B).

2.3.1 Borel Sets & σ-Algebras

Let (Ω, ρ) be a metric space.

Definition 2.3.1 (Borel σ-Algebra)
Consider the metric topology on (Ω, ρ). The Borel σ-algebra is the one generated by
open sets.

2.3.2 Borel σ-Algebra on R

Note that similar things can be said for [0, 1] and RN .

Theorem 2.3.3
We have

BR = σ{(a, b) : −∞ ≤ a < b ≤ ∞}
= σ{[a, b]}
= σ{[a, b)}
= σ{(a, b]}
= σ{(−∞, a)}
= . . .

17
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Proof
Any open set on R is a countable union of open intervals.

Remark that any finite union, intersection of intervals of the type [a, b) are again intervals
of the same type. Thus they form an algebra.

2.3.3 Cylinder σ-Algebras

Let Ω be an infinite-dimensional space, say Ω = RN.

Definition 2.3.2 (Cylinder Set)
Let A1, . . . , Ak ∈ BR with k ∈ N. A cylinder set

Ci1i2...ik(A1, A2, A3) := {x ∈ RN : xij ∈ Aj}

is contrained at finitely many coordinates.

Note that cylinder sets form an algebra.

Definition 2.3.3 (Cylinder σ-Algebra)
The σ-algebra generated by all cylinder sets.

2.3.4 σ-Algebra vs Algebras

Lemma 2.3.4
An algebra A is a σ-algebra if and only if A is a monotone class. That is, for all
A1 ⊆ A2 ⊆ · · · ∈ A , then A :=

⋃
An ∈ A . Similarity if A1 ⊇ A2 ⊇ · · · ∈ A , then⋂

An ∈ A .

Proof
( =⇒ ) Easy.

(⇐= ) Check definitions. The only non-trivial aspect is σ-additivity. For A1, A2, · · · ∈ A ,
consider Bn =

⋃n
i=1Ai and observe that

⋃
nAn =

⋃
nBn.

2.4 (Probability) Measures

Let (Ω,F) be a measurable space.

18
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Definition 2.4.1 (Measure)
A measure is a set function µ : F → R such that

1) µ(A) ≥ 0 for all A ∈ F
2) µ(∅) = 0

3) A1, A2, · · · ∈ F with Ai ∩ Aj = ∅ implies that µ(
⊔

nAn) =
∑

n µ(An) (σ-
additivity)

We say a measure is finite if µ(Ω) <∞ and σ-finite if Ω =
⋃

nΩn with each µ(Ωn) <∞.

We say µ is normalized if µ(Ω) = 1 and also refer to it as a probability measure.

Note that the definition of a probability measure no longer requires µ(∅) = 0 since that can
be derived using µ(Ω) = 1 and σ-additivity.

2.4.1 Basic Properties of Probability Measures

Proposition 2.4.1
1) µ(Ā) = 1− µ(A)
2) 0 ≤ µ(A) ≤ 1

3) B ⊆ A =⇒ µ(B) ≤ µ(A) (monotonicity)

4) For A,B ∈ F ,

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) ≤ µ(A) + µ(B)

(semiadditivity)

5) µ(
⋃n

i=1Ai)?

6) µ(
⋃

nAn) ≤
∑

n µ(An) (semiadditivity)
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Theorem 2.4.2 (Continuity of Measure)
Let (Ω,F) be a measurable space equipped with µ : F → R+, a finitely additive set
function. The following are equivalent:

1) µ is σ-additive (probability measure)

2) µ is continuous from below, thus for all A1 ⊆ A2 ⊆ · · · ∈ F , limn µ(An) =
µ(
⋃

nAn)

3) µ is continuous from above

4) µ is continuous at ∅, thus if A1 ⊇ A2 ⊇ . . . with
⋂

nAn = ∅, then limn µ(An) =
0

Proof
(1 =⇒ 2) Observe that⋃

n

An = A1 ⊔ (A2 \ A1) ⊔ (A3 \ A2) ⊔ . . .

Thus

µ(
⋃
n

An) = µ(A1) + µ(A2 \ A1) + µ(A3 \ A2) + . . .

= lim
n
µ(An).

(2 =⇒ 3) Consider the increasing sequence of complements.

(3 =⇒ 4) Easy.

(4 =⇒ 1) Let A1, A2, . . . ,∈ F be disjoint.

We claim that µ(
⊔∞

i=n+1Ai) → 0 as n → ∞. Indeed, let Bn :=
⊔∞

i=n+1Ai. Notice that
Bn ↓

⋂∞
n=0Bn = ∅. By assumption µ(Bn) = µ(

⊔∞
i=n+1Ai)→ 0.

But then

µ(
∞⊔
i=1

Ai) = µ(
n⊔

i=1

Ai) + µ(
∞⊔

i=n+1

Ai)

→ lim
n
µ(

n⊔
i=1

Ai) + 0 n→∞

= lim
n

n∑
i=1

µ(Ai)

=
∞∑
i=1

µ(Ai)
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2.5 Deterministic & Null Sets

Let (Ω,F ,P) be a probability space.

Definition 2.5.1 (Null Set)
M ∈ F is a null set if P(M) = 0.

Definition 2.5.2 (Negligible Set)
N ⊆ Ω is negligible if there is some null set M ∈ F such that N ⊆M .

Definition 2.5.3 (Complete Space)
(Ω,F ,P) is complete if any negligible set is also a member of F .

Definition 2.5.4 (Almost Surely)
A ∈ F occurs almost surely (a.s.) OR with probability 1 if P(A) = 1.

Proposition 2.5.1
1) A countable union of null sets is null

2) A countable union of negligible sets is negligible

3) A countable intersection of a.s. events happens a.s.

Lemma 2.5.2 (Borel-Cantelli)
Let A1, A2, dots ∈ F be events and

A := {ω ∈ Ω : ω is contained in infinitely many Ai’s}

(a) If
∑

n P(An) <∞, then P(A) = 0

(b) If
∑

n P(An) =∞ and the An’s are independent, then P(A) = 1.
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2.6 Random Elements (Measurable Functions)

Definition 2.6.1 (Measurable Function)
Let (F,F), (E, E) be measurable spaces.
X : F → E is measurable if for every B ∈ E , X−1(B) ∈ F .

Definition 2.6.2 (Random Element)
X : (Ω,F ,P)→ (E, E) is a random element.

Example 2.6.1
X : (Ω,F ,P)→ (R,BR) is a random variable.

X : (Ω,F ,P)→ (RN ,BRN ) is a random vector.

X : (Ω,F ,P)→ (RT , σcylinder) is a random process. Here we take T = N or T = [0, T ].

Let X : (Ω,F ,R)→ (E, E) be a random element. Recall the pushforward measure on (E, E)
/ distribution of X given by PX(B) = P(X−1(B)).

Definition 2.6.3
The pullback σ-algebra is given by

σX = X−1(E).

Note that σX ⊆ F and that different pullback σ-algebras can occur with different random
elements.

Example 2.6.2
Suppose (Ω,F ,P) X−→ (E, E ,PX)

f−→ (R,B). Then f ◦X : Ω→ R is a statistic.

For instance, the mean or variance are all statistics.

2.6.1 Measures on R

Recall the classical proability spaces (Ω, 2Ω,P) where Ω is finite and P comes from the p(ωi)’s.
This is the discrete measure.

We also have the discrete measure on (R,B) where we assign some real numbers a1, a2, . . .
with a probability p(ai) such that

∑
i p(ai) = 1. Then for A ∈ B, P(A) =

∑
ai∈A p(ai).

We wish to enrich our zoo of measures.
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Theorem 2.6.3 (Carathéodory)
Let A be an algebra and F = σ(A ). Suppose PA : A → R is nonnegative, normal-
ized, and σ-additive.
Then there exists a unique probability measure PF : (Ω,F)→ R which is an extension
of PA .

2.7 Borel & Lebesgue Measure on R

Let A be the algebra on (0, 1] be generated by intervals of the form (a, b] for 0 ≤ a ≤ b ≤ 1.
Recall B(0,1] = σ(A ).

Now for A =
⊔n

i=1(ai, bi], we define

λ(A) =
n∑

i=1

(bi − ai).

Note that λ ≥ 0 and λ((0, 1]) = 1. We also claim that λ is σ-additive. If we show this then
λ extends uniquely to a probability measure on ((0, 1],B(0,1]) called the Borel Measure.

Proposition 2.7.1
λ is σ-additive.

Proof
It suffices to show continuity at ∅.

Suppose that A1 ⊇ A2 ⊇ . . . ↓ ∅. By definition, each Ai is a finite disjoint union of
intervals. But then the maximum and minimum endpoints exist and their differences
must converge to 0. But this is an upperbound on λ(Ai) so that λ(Ai)→ 0 as desired.

Note that the Lebesgue measure coincides with the Borel measure on B(0,1]. However, the
number of measurable sets under the Borel measure has cardinality 2N while the number
of measurable sets under the Lebesgue measure has cardinality 2R. In fact, the Lebesgue
measure (R,LR, λ) is the completion of the Borel measure (R,BR, λ) and contains a richer
set of null events.

2.7.1 More Measures

We now include the Borel/Lebesgue measure in our zoo. We can also construct measures by
combining them. For instance, in the universe (0, 1], we assign (0, 1/2] the Borel measure
and some discrete measure on (1/2, 1].
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2.8 Lebesgue Integration

2.8.1 Construction of Lebesgue Integration

Let (Ω,F , µ) be a measure space.

Indicator Functions

Let S ∈ F . We write 1S : Ω→ R denote the indicator function of S. Then we define∫
Ω

1S(ω)dµ(ω) := µ(S).

Simple Functions

Recall a simple function is a linear combination of indicator functions. We define∫
Ω

n∑
k=1

ak1Sk
(ω)dµ(ω) :=

n∑
k=1

akµ(Sk).

Note the rigorous construction requires careful treatment of negative coefficients.

Non-negative Functions

Let f : Ω→ R+ be measurable. We define∫
Ω

f(ω)dµ(ω) := sup

{∫
Ω

s(ω)dµ(ω) : s simple ∧ 0 ≤ s ≤ f

}
.

Measurable Functions

Finally, consider f : Ω→ R measurable. we decompose f = f+ − f− and define∫
Ω

f(ω)dµ(ω) :=

∫
Ω

f+(ω)dµ(ω)−
∫
Ω

f−(ω)dµ(ω).

Note that we ask at least one of the integrals be finite.
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2.8.2 Properties

Recall an Lp-space for a Lebesgue measurable space (Ω,F , µ) is given by

Lp(Ω,F , µ) :=
{
f : Ω→ R :

∫
Ω

|f(ω)|pdµ(ω) <∞
}
.

1)
∫
fdµ =

∫
gdµ implies that f = g a.e. in µ

2)
∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ (linearity)

3) f ≤ g implies that
∫
fdµ ≤

∫
gdµ (monotonicity)

4) Suppose fn+1 ≥ fn, fn → f a.e., and f, fn ≥ η satisfying
∫
ηdµ > −∞, then

∫
fndµ→∫

fdµ (monotone convergence theorem)

5) Supppose fn → f a.e. and there is some g ∈ Lp(Ω,F , µ) with |fn|, |f | ≤ g. Then∫
fndµ→

∫
fdµ and f ∈ Lp(Ω,F , µ) (dominated convergence theorem)

2.8.3 Examples

Consider Ω = {0, 1} with the measure p(0) = 1
3
, p(1) = 2

3
. Consider f : 0 7→ 1, 1 7→ 10. Then∫

Ω

f(ω)dµ(ω) =
1

3
· 1 + 2

3
· 10.

2.9 Absolute Continuity

Let p : R→ R+ be BR-measurable such that∫
R
p(x)dλ(x) = 1.

We can define a probability measure on R where for A ∈ B,

Pp(A) =

∫
R
p(x)1A(x)dλ(x).

Proposition 2.9.1
Pp is a probability measure.

Proof
Non-negativity and normalization is easy to show. For σ-additivity, let Ai ∈ BR for i ∈ N.
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Then

Pp(
⊔
i

Ai) :=

∫
⊔

i Ai

p(x)dλ(x)

=

∫
R
p(x)1⊔

i Ai
dλ(x)

=

∫
lim
n
p(x)

n∑
i=1

1Ai
dλ(x)

= lim
n

∫
p(x)

n∑
i=1

1Ai
dλ(x) monotone convergence

=
∞∑
i=1

∫
R
p(x)1Ai

(x)dλ(x)

=
∞∑
i=1

Pp(Ai).

We can generalize this idea.

Definition 2.9.1 (Absolutely Continuous)
Let µ, ν be measures on some measurable space (Ω,F). µ is absolutely continuous
with respect to ν if ν(A) = 0 implies that µ(A) = 0 and write µ << ν.

Recall that a σ-finite measure on (Ω,F) means that Ω is a countable union of finite measure
subsets.

Theorem 2.9.2 (Radon-Nikodym)
Let µ << ν be σ-finite measures on (Ω,F). There exists a unique measurable function
f : (Ω,F)→ (R+,B) such that for all A ∈ R,

µ(A) =

∫
A

f(x)dν(x).

Note that this theorem can be reversed.

Definition 2.9.2 (Radon-Nikodym Derivative)
We say that f is the Radon-Nikodym derivative and write

f(x) =
dµ

dν
(x).
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2.10 Independence

Let (Ω,F ,P) be probability spaces.

Definition 2.10.1 (Independent)
A,B ∈ F are independent with respect to P if

P(A ∩B) = P(A) · P(B).

Definition 2.10.2 (Mutually Independent)
We say Ai ∈ F for i ∈ [n] are independent if for all sub-indices I ⊆ [n],

P(
⋂
i∈I

Ai) =
∏
i∈I

P(Ai).

Note that this is stronger than pairwise independence!

Definition 2.10.3 (Mutually Independent)
We say At ∈ F for t ∈ T are independent if for all finite sub-indices I ⊆ T , {Ai : i ∈ I}
is independent.

Definition 2.10.4 (Independent Variables)
Consider Xi : (Ω,F ,P)→ (Ei,Ei,PXi

) for i ∈ [n]. The Xi’s are mutually independent
with respect to P if for all Bi ∈ Ei, {X−1(Bi) : i ∈ [n]} is mutually independent.

Definition 2.10.5 (Independent σ-Algebra)
Let F1, . . . ,Fn be σ-algebras on Ω. We say there are independent if any {Ai ∈ Fi :
i ∈ [n]} are independent.

Note that random variables are independent if and only if their pullback σ-algebras are
independent.

2.11 Direct Product of (Finite) Measure Spaces

Suppose (Ωi,Fi, µi) are finite measure spaces for i ∈ [n]. We construct the direct product
space as follows:

1) Ω = ×n
i=1Ωi
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2) Let A := {×n
i=1Ai : Ai ∈ Ωi} be an algebra and take F := σ(A ).

3) Define µ on A as µ(×n
i=1Ai) =

∏n
i=1 µ(Ai). Then we extend using Carathéodory’s

theorem.

Proposition 2.11.1
µ : A → R is nonnegative, normalized, and σ-additive.

This justifies the use of Carathéodory’s theorem.

Proof
Nonnegativity and normalization is easy. We show σ-additivity by showing continuity at
∅.

Suppose some ×n
i=1Ai ↓ ∅. It must be that some Ai ↓ ∅. But then µ(Ai) → 0 and by

finiteness, µ(×n
i=1Ai)→ 0.

Definition 2.11.1 (Direct Product of Measure Spaces)
(Ω,F , µ) from above.

Proposition 2.11.2
The coordinate projections from the direct product are independent random elements.

The proof will involve showing that they are random elements and then showing indepen-
dence.

Example 2.11.3
An example of a direct product is Bernoulli trials.
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Chapter 3

Random Variables & Vectors

3.1 Random Variables

Let (Ω,F ,P) be a probability space. Recall a random variable is a measurable function

ξ : (Ω,F ,P)→ (R,B).

We consider random variables equivalent if they agree a.e., or P{ω : ξ(ω) ̸= η(ω)} = 0.

Recall Pξ is a probability measure on (R,B) induced by ξ with Pξ(A) := P(ξ−1(A)).

Proposition 3.1.1
1) Let g : R→ R be measurable. Then g ◦ ξ : Ω→ R is a random variable.

2) If ξi, i ∈ N are random variables, then

a) max(ξ1, ξ2),min(ξ1, ξ2) are random variables.

b) supn ξn, infn ξn are random variables.

c) If ξn → ξ pointwise, then ξ is a random variable.

3) Let ξ, η be random variables. Then so are the following:

a) ξ + η

b) aξ + bη

c) ξ · η

Proof (sketch)
2) We have

(max(ξ1, ξ2))
−1(−∞, x] = ξ−1

i (−∞, x] ∩ ξ−2
2 (−∞, x].
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3) We have

(ξ + η)−1(−∞, x] =
⋃
q∈Q

{ω : ξ(ω) < q, η(ω) < x− q}.

3.2 Distribution Function

Definition 3.2.1 (Distribution Function)
Let ξ : (Ω,F ,P)→ (R,B). Define the distribution function Fξ : R→ R be

Fξ(x) := Pξ(−∞, x].

Proposition 3.2.1
1) Fξ(b)− Fξ(a) = ξ−1(a, b]

2) Fξ is non-decreasing

3) Fξ(−∞) := limx→−∞ F (x) = 0 and Fξ(∞) := limx→∞ F (x) = 1

4) Fξ is right-continuous

5) Fξ has left limits but is not necessarily left continuous

Proof (sketch)
3) Continuity of measure.

Definition 3.2.2 (CADLAG)
The CADLAG function class D is right continuous and has left limits but is not
necessarily left-continuous.

Theorem 3.2.2
1) The class of all distribution functions coincides with CADLAG functions which

are non-decreasing and whose limits at ±∞ are 0, 1, respectively.

2) Each distribution Pξ and distribution function Fξ determine each other uniquely.

Proof (sketch)
2) Given Fξ(x), define Pξ(a, b] := Fξ(b) − Fξ(a). Then apply Carathéodory’s theorem to
extend to σ{(a, b] : a ≤ b]}.
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3.3 Discrete Random Variables (and Distributions)

Definition 3.3.1 (Discrete Random Variable)
A random variable ξ : (Ω,F ,P) → (R,B) is discrete if there is some A = {ai : i ∈
N} ⊆ R countable such that Pξ(A) = 1.

We can write Pξ(B) =
∑

i pi1ai∈B.

3.3.1 Delta Measure

ξ(Ω) = 1 so

Pξ(0) = 1.

3.3.2 Bernoulli Variable

We write Be(p) to denote

Pξ(0) = 1− p,Pξ(1) = p.

Thus Pξ(A) = (1− p)10∈A + p11∈A.

3.3.3 Binomial

We write Bin(N, p) to denote

Pξ(k) :=

(
N

l

)
pk(1− p)N−k.

3.3.4 Geometric

We write Geo(p) to denote

Pxi(k) = p(1− p)k.

3.3.5 Poisson

We write Po(λ) to denote

Pξ(k) =
λke−λ

k!
.
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This is used to model events happening independently in some interval with fixed rate.

Theorem 3.3.1 (Poisson (informal))
As N →∞ and pN → 0

|P{Bin(N, pN) = k} − P{Po(NpN) = k}| → 0.

3.4 Absolutely Continuous Distributions

Recall that if we have a density p : (R,B)→ (R+,B) measurable such that
∫
R p(x)dλ(x) = 1,

we can define a distribution

Pξ(A) :=

∫
A

p(x)dλ(x).

3.4.1 Uniform

We write ξ ∼ U [a, b] to denote that it comes from the density given by p(x) = 1
b−1

1[a,b].

3.4.2 Normal / Gaussian

We write ξ ∼ N(a, σ2) to denote that it came from the density

p(x) =
1√
2πσ

exp

(
−(x− a)2

2σ2

)
.

3.4.3 Exponential

We write ξ ∼ Exp(λ) for λ > 0 to denote that it came from the density

p(x) = λe−λx.

Recall that the exponential distribution is memoryless

P(ξ(ω) > x+ y : ξ(ω) > y) = P{ξ(ω) > x}.
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3.5 Continuous Singular Distributions

Definition 3.5.1 (Continuous Singular)
A random variable ξ is continuous singular if the corresponding distribution function
Fξ is continous with F

′
ξ(x) = 0 a.e. with respect to λ.

An example is the Cantor distribution.

Theorem 3.5.1
1) Any distribution function is a convex combination of discrete, absolutely con-

tinuous, and continous singular distributions functions.

2) The corresponding distribution measure is also a convex combination of discrete,
absolutely continuous, and continuous singular measures.

3.6 Random Vectors

Recall that a random vector is a measurable function

ξ̄ : (Ω,F ,P)→ (Rd,B(Rd)).

Note that we can think of B(Rd) = σ{×d
i=1(ai, bi]} or σ{×d

i=1Bi : Bi ∈ B(R)}. Alternatively,
it is a fact that B(Rd) = B(R)×d. The proof is not obvious at an initial glance.

Definition 3.6.1 (Distribution)
Pξ̄ is a distribution on (Rd,B(Rd)) given by

Pξ̄(A) = P(ξ̄−1(A)).

Definition 3.6.2 (Distribution Function)
Fξ̄(x) given by

x̄ 7→ Pξ̄{×d
i=1(−∞, xi]}.

Note that we can show there is a bijection between distributions and distribution functions,
analogously to the 1-dimensional case.
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3.7 Discrete Random Vectors

3.7.1 Discrete Random Vectors

Delta Measure

ξ̄(Ω) = x for some x ∈ Rd.

Multinomial Distribution

We write ξ̄ ∼ Mult(p1, . . . , pd) to denote

P(ξ̄ = x) =
N !

xi! . . . xd!
px1
1 . . . pxd

d

where
∑

i pi = 1.

Random Walk

We can let ξ̄ be the position of a lattice random walk in Rd.

3.7.2 Absolutely Continuous Distributions in Rd

Recall absolutely continuous distribution have an associate density p : Rd → R+ where

Pξ̄(A) =

∫
A

p(x)dλ(x).

Note that the distribution function is simply

Fξ̄(x) =

∫ x1

−∞
· · ·
∫ xd

−∞
p(x)dλ(x).

Uniform Distribution

We write ξ̄ ∼ U(D) for some Dd ∈ B(Rd) to denote

Pξ̄(x) =
1

λ(D)
1D.

36



©
Fe
lix
Zh
ou

Gaussian Distribution

We write ξ̄ ∼ N(A,Σ) for some PSD Σ ∈ Rd×d to denote

Pξ̄(x) =
1

(
√
2π)2|detΣ|

exp

[
−1

2
(x− Ā)TΣ−1(x− Ā)

]
.

3.8 Joint & Marginal Distributions

Let ξ̄(ω) = (ξ1(ω), . . . , ξd(ω)) be a random vector. Then the i-th projection ξi(ω) = πi(ξ̄(ω))
is a random variable.

Definition 3.8.1 (Joint Distribution)
We say Pξ̄ is the joint distribution of the ξi’s.

Definition 3.8.2 (Marginal Distribution)
We say Pη̄ where η̄ is any subvector of ξ, is a marginal distribution of ξ̄.

Note that marginals are uniquely defined given the joint, but the converse is not necessarily
true!

Example 3.8.1
Let ξ1, ξ2 ∼ U [0, 1]i and ξ̄ = (ξ1, ξ2).

If ξ1, ξ2 are independent, then ξ̄ = λ[0,1] × λ[0,1].

Now suppose ξ1 = ξ2. Then ξ̄ = (ξ1, ξ1) is different!

Thus we cannot reconstruct a random vector from marginals unless they are independent.

Recall that ξ1, . . . , ξd are mutually independent if {ξ−1
i (Ai) : i ∈ [d]} is independent as events

for all Ai ∈ B(R).

Proposition 3.8.2
1) ξ̄ = (ξ1, . . . , ξd) is uniquely defined given

a) Pξi for i ∈ [d]

b) ξi’s are mutually independent

2) Pξ̄ = ×d
i=1Pξi

3) Fξ̄(x) := Pξ̄(I−∞(x)) =
∏d

i=1 ξi(xi)
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Proof
It suffices to show that

(Rd,B(Rd),Pξ̄) =
dl

i=1

(R,B,Pξi).

Moreover, by Carathéodory’s extension theorem, it suffices to show the distributions co-
incide on boxes.

Pξ̄(×d
i=1Ii) := P(ξ̄−1(×d

i=1Ii))

= P(
d⋂

i=1

ξ−1
i (Ii))

=
d∏

i=1

P(ξ−1
i (Ii)) independence

=:
d∏

i=1

Pξi(Ii).

Let ξi’s be independent, absolutely continouos distributions with densities pi(x). Remark
that by Fubini’s theorem

Fξ(xi) =

∫ xi

−∞
pi(t)dt

Fξ̄(x) =
d∏

i=1

Fξi(xi)

=

∫ x1

−∞
· · ·
∫ xd

−∞
p1(x1) . . . pd(xd)dxd . . . dx1.

Also, if the ξi’s are discrete and we let ξ̄ = (ξi), then ξ̄ take values in some countable set A.
We know Pξ̄ if and only if we know all P{ξi = ai : i ∈ [d]} for all a ∈ A.

3.9 Moments of Random Variables & Random Vectors

Let ξ : (Ω,F ,P)→ (R,B,Pξ).
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3.9.1 Expectation

Definition 3.9.1 (Expectation)
The expectation of ξ is

Eξ :=
∫
Ω

ξ(ω)dP(ω).

Note that we require either of Eξ+,Eξ− to be finite.

We say that the expectation si finite if ξ ∈ L1(Ω,F ,P), that is,
∫
|ξ|dP <∞.

Proposition 3.9.1
1) If ξ(ω) is bounded, then Eξ exists.

2) If ξ = a is constant, then Eξ = a

3) If ξ is discrete, taking on values ai with probability pi, then

Eξ =
∑
i

∫
ξ−1(ai)

ξ(ω)dP(ω) =
∑
i

aipi.

Properties

prop E(aξ + bη) = aEξ + bEη
prop ξ ≥ η implies that Eξ ≥ Eη
prop |Eξ| ≤ E|ξ|

Recall that proofs about Lebesgue integrals always follows the same path: start from
indicator functions, proceed to simple functions, then considering approximations. Let
Ak,n := g−1

[
k
n
, k+1

n

)
for k ∈ Z. Then a simple approximation is

fn(ω) =
∑
k

k

n
1Ak,n

.

Corollary 3.9.1.1
Let ξi(ω), k ∈ N be non-negative. By the monotone convergence theorem,

E

(
∞∑
i=1

ξk

)
=

∞∑
k=1

Eξk.
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Theorem 3.9.2 (Change of Variables)
Let X : (Ω,F ,P) → (E, E ,PX) be a random element, and g : (E, E) → (R,B) be
measurable. For any A ∈ E ,∫

A

g(e)dPX(e) =

∫
X−1(A)

g(X(ω))dP(ω).

Corollary 3.9.2.1
1)
∫
A
g(x)dPξ(x) =

∫
ξ−1(A)

g(ξ(ω))dP(ω)

2) Eg(ξ) =
∫
R g(x)dPξ(x)

3) If ξ is and absolutely continuous distribution with denity p(x) =
dPξ(x)

dλ(x)
, then

Ef(ξ) =︸︷︷︸
2)

∫
R
f(x)dPξ(x) =

∫
R
f(x)p(x)dx.

(needs proof)

Note that for discrete distributions, we can directly compute Eξ =
∑

i aipi witht the LHS.
On the other hand, for absolutely continuous distributions, we use the RHS Eξ =

∫
R xp(x)dx.

Proposition 3.9.3
Let ξ, η be independent random variables with finite expectation. Then E(ξη) =
E(ξ)E(η).

Proof
Let the joint be ξ̄ = (ξ, η), let f : R2 → R be the function (x, y) 7→ xy. Then

E(ξη) = Ef(ξ, η)

=

∫
R2

x1x2dPη̄(x1, x2)

=

∫
R2

x1x2dPξ(x1)Pη(x2) independence

=

∫
R
x1dPξ(x1) ·

∫
R
x2dPη(x2) Fubini

Examples

For ξ ∼ Be(p),
Eξ = 0(1− p) + 1(p) = p.
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For ξN ∼ Bin(N, p),

EξN =
N∑
k=1

k

(
N

k

)
pk(1− p)N−k.

Instead of computing this, we can instead realize it is the sum of IID bernoulli variables so

E

(
N∑
i=1

ξ(i)

)
= Np.

For ξ ∼ U [a, b],

Eξ =
∫
R
x

1

b− a
1[a,b] =

∫ b

a

x

b− a
=
a+ b

2
.

3.9.2 Median

This is not a true moment. However, it is some measure of centrality.

Definition 3.9.2 (Median)
A median Mξ is any x ∈ R such that

Pξ(−∞, x] ≥
1

2

Pξ[x,∞) ≥ 1

2

for symmetric distributions, the median is the mean but not always! It is a fact that |Mξ −
Eξ| ≤

√
Var ξ.

3.9.3 Variance

Definition 3.9.3 (Variance)
Let ξ be a random variable with |Eξ| <∞. Then its variance is

Var ξ := E(ξ − Eξ)2

=

∫
ω

(ξ(ω)− Eξ)2dP(ω)

= Eξ2 − 2Eξ · Eξ + (Eξ)2

= Eξ2 − (Eξ)2.
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Proposition 3.9.4
1) The variance is non-negative with equality if and only if the variable is constant

a.e.

2) Var(ξ + a) = Var ξ

3) Var(aξ) = a2Var ξ

Note that the variance of a discrete variable can be computed as

∞∑
i=1

(ai − Eξ)2pi.

which the absolutely continuous ones can be computed as∫
R
(x− Eξ)2p(x)dx.

Examples

For ξ ∼ Be(p),

Var ξ = p− p2.

For ξ ∼ Bin(N, p),

Var ξ = N(p− p2)

where we use the fact that independent variances are summable.

For ξ ∼ U [a, b],

Var ξ =

∫
R

(
x− a+ b

2

)2
1[a,b]

b− a
dx.

3.9.4 Covariance

Now, this is not a moment but it is a useful notion concerning the variance.

Definition 3.9.4 (Covariance)
Let ξ, η be random variables with finite expectation. Then

Cov(ξ, η) := E(ξ − Eξ)(η − Eη)

=

∫
R2

(x1 − Eξ)(x2 − Eη)dP(ξ,η)(x1, x2).
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Note that if ξ, η are independent, we can then factorize the joint as a product and apply
Fubini’s theorem to realize that Cov(ξ, η) = 0.

Now, by Hölder’s inequality,

|Cov(ξ, η)| ≤
√
Var ξ · Var η.

Definition 3.9.5 (Correlation Coefficient)
We define

ρ(ξ, η) =
Cov(ξ, η)√
Var ξ · Var η

∈ [−1, 1].

We say ξ, η are uncorrelated if they have correlation 0.

Proposition 3.9.5
We have

Var(ξ + η) = Var ξ +Var η + 2Cov(ξ, η).

Corollary 3.9.5.1
1) If ξi, i ∈ [n] are pairwise uncorrelated, then Var(

∑
i ξi) =

∑
i Var ξi.

2) If ξi are independent, then their variances are additive.

3.9.5 Higher Order Moments

Definition 3.9.6 (Absolute Moment of Order p)
We define

E|ξ|p =
∫
Ω

|ξ(ω)|pdP(ω).

Note that the p-th absolute exists if and onky if ξ ∈ Lp(Ω,F ,P).

Similarly, we have

Definition 3.9.7 (Moment of Order p)
Eξp.

Definition 3.9.8 (Absolute Central Moment of Order p)
E|ξ − Eξ|p.

43



©
Fe
lix
Zh
ou

Definition 3.9.9 (Central Moment of Order p)
E(ξ − Eξ)p.

Theorem 3.9.6 (Jensen’s Inequality)
For all q ≤ p,

(E|ξ|q)
1
q ≤ (E|ξ|p)

1
p .

Theorem 3.9.7 (Hölder’s Inequality)
For 1

p
+ 1

q
= 1,

E|ξη| ≤ (E|ξ|p)
1
p (E|ξ|q)

1
q .

3.9.6 The Moment Problem

Problem 1 (Moment Problem)
Let a1, a2, · · · ∈ R.
(1) When does this form a sequence of moments for some random variable?

(2) If so, does this sequence uniquely determine a distribution?

The answer to (1) is the following theorem, while the answer to (2) is not fully fleshed out.

Theorem 3.9.8 (Hamburger)
an = Eξn, n ∈ N for some ξ,Pξ if and only if the matrix A := [ai+j]i,j ⪰ 0.

Note that

n∑
i,j=1

Eξiξjxixj = E

(
n∑

i=1

ξixi

)2

≥ 0

so one directly is needed.
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3.9.7 Moment Inequalities

Lemma 3.9.9 (Chebyshev)
Let ξ be a non-negative ranodm variable. Let φ : R+ → R+ be non-decreasing. Then
for all ϵ > 0,

P{ξ ≥ ϵ} ≤ Eφ(ξ)
φ(ϵ)

.

Proof
Let

Aϵ := {ω : ξ(ω) ≥ ϵ}

and note that it is a subset of

Bϵ := {ω : φ(ξ(ω)) ≥ φ(ϵ)}.

We have

P{ξ ≥ ϵ} =
∫
Aϵ

dP(ω)

≤
∫
Bϵ

dP(ω)

≤
∫
Bϵ

φ(ξ(ω))

φ(ϵ)
dP(ω)

=
1

φ(ϵ)
Eφ(ϵ).

Corollary 3.9.9.1
1) P{|η| ≥ ϵ} ≤ Eφ(|η|)

φ(ϵ)

2) P{|
∑n

i=1 ξi −
∑n

i=1 Eξi| ≥ ϵ} ≤ Var
∑n

i=1 ξi
ϵ2

3) P
{
|∑n

i=1 ξi−
∑n

i=1 Eξi|
n

≥ ϵ

}
≤ Var(

∑n
i=1 ξi)

n2ϵ2

Thus if Var (
∑n

i=1 ξi) ∈ o(n2), the LHS of 3) tends to 0 as n → ∞. This is also known as
Markov’s Law of Large Numbers.
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Chapter 4

Characteristic Functions

Characteristic functions will be our main tool to attain limit theorems.

4.1 Characteristic Functions

Let ξ be a random variable.

Definition 4.1.1 (Characteristic Function)
The characteristic function of ξ is given by

φξ(t) := Eeitξ =
∫
R
eitxdPξ(x).

Note that we can equivalently express this as

E(cos tξ) + iE(sin tξ).

If ξ is discrete, we can compute

φξ(t) =
∞∑
k=1

pke
itak

If ξ is absolutely continuous,

φξ(t) =

∫
R
eitxp(x)dx.

Note that this is essentially the inverse Fourier transform!
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Proposition 4.1.1
1) φξ(0) = 1

2) |φξ(t)| = E|eitξ| = 1

3) φξ(t) is uniformly continuous in t

4) φξ(−t) = φξ(t)

5) φaξ+b(t) = Eeit(aξ+b) = eibtφξ(at)

6) ∀t ∈ R, φξ(t) ∈ R if and only if Pξ is symmetric, ie Pξ(A) = Pξ(−A)

Proof
3) We have

|φξ(t+ h)− φξ(t)| = |Eeitξ(eihξ − 1)|
≤ E|eihξ − 1|
→ 0 h→ 0

by the dominated convergence theorem.

6) Suppose Pξ is symmetic. It must be that E(sin tξ) = 0 as sin is an odd function. But
then ImPξ(t) = 0 as desired.

Now suppose φξ is real-valued. Then φ−ξ(t) = φξ(t) = φξ(t).

Example 4.1.2
a) If ξ follows a δ-distribution, then φξ(t) = eita where P{ξ = a} = 1

b) ξ ∼ Be(p), then φξ(t) = (1− p) · 1 + p · eit

c) ξ ∼ Po(λ), then φξ(t) =
∑∞

k=0 e
itk λk

k!
e−λ = e−λeλeit

d) ξ ∼ exp(λ), then φξ(t) =
∫
R+
eitx(λe−λx)dx = − λ

it−λ

e) ξ ∼ N(0, 1).

φξ(t) =
1√
2π

∫
R
eitxe−

x2

2 dx

=
1√
2π
e−

t2

2

∫
R
e−

1
2
(x−it)2dx

=
e− t2

2√
2π

∫
R−it

e−
x2

2 dx

= e−
t2

2 .
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Theorem 4.1.3 (Bochner-Khintchin)
Let φ(t) : R→ C. Then φ is the characteristic function of some probability distribu-
tion if and only if

1) φ(0) = 1

2) φ(t) is continuous

3)
∑n

k,ℓ=1 φ(tk − tℓ)zkz̄ℓ ≥ 0 for all ti ∈ R, zi ∈ C, i ∈ [n]

The forward implication is rather straightforwards. Indeed,

0 ≤ E

∣∣∣∣∣
n∑

k=1

eitkξzk

∣∣∣∣∣
2

=
n∑

k,ℓ=1

eitkξe−tℓξzkz̄ℓ.

Proposition 4.1.4
E−|t|α is a characteristic function if and only if α ∈ (0, 2].

Theorem 4.1.5 (Levy)
Let ξ1, ξ2 be random variables such that φξ1(t) = φξ2(t) for all t ∈ R. Then ξ ≡
ξ2,Pξ1 ≡ Pξ2 as distributions.

Theorem 4.1.6 (Inversion Formula)
Let ξ,Pξ, φξ be a random variable, its pushforward measure, and characteristic func-
tion.

1) Pξ(a, b) +
1
2
Pξ{a}+ 1

2
Pξ{b} is equal to

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φξ(t)dt.

2) If
∫∞
−∞|φ(t)|dt <∞, then there is some density p(x) of Pξ given by

p(x) =
1

2π

∫ ∞

−∞
e−itxφξ(t)dt.
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Proof (2)
Let a < b. ∫ b

a

p(x)dx =
1

2π

∫ b

a

∫
R
e−itxφξ(t)dtdx

=
1

2π

∫
R
φξ(t)

(∫ b

a

e−itxdx

)
dt Fubini

=
1

2π

∫
R
φ(t)

e−ita − e−itb

it
dt

= T→∞
1

2π

∫ T

−T

φ(t)
e−ita − e−itb

it
dt

= Pξ(a, b) +
1

2
Pξ{a, b}.

Since p follows the requirements of being a density on intervals, it must do so on all Borel
sets as desired.

4.2 Characteristic Functions & Moments

Theorem 4.2.1
Let ξ ∈ Lk(Ω). Then the j-th derivative

φ
(j)
ξ (t) = E{(iξ)jeitξ} =

∫
R
(ix)jeitxdPξ(x)

exists for j ∈ [k].

‘

Proof
We argue by induction.

φ(j)(t+ h)− φ(j)(t)

h
= E

1

h

[
(iξ)jeitξ(eihξ − 1)

]
→ E

{
lim
h→0

(iξ)j
ei(t+h)ξ − eitξ

h

}
h→ 0

= E
{
(iξ)j+1eitξ

}
Swapping the limit and the integral requires an application of the dominated convergence
theorem.
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Note that

|xix − 1| =
∣∣∣∣i ∫ t

0

eiydy

∣∣∣∣
≤
∣∣∣∣∫ x

0

1dy

∣∣∣∣
= |x|.

It follows that ∣∣∣∣1h [(iξ)jeitξ(eihξ − 1)
]∣∣∣∣ ≤ 1

|h|
· 1 · |ξj+1h|

= |ξ|j+1.

Thus our application of the dominated convergence theorem above is justified.

Corollary 4.2.1.1
We have

1) Eξj = φ
(j)
ξ (0)

ij

2) φξ(t) =
∑k

i=0
(it)j

j!
Eξj + o(tk)

Theorem 4.2.2
Suppose that φ

(2k)
ξ (0) exists and is finite. Then Eξ2k <∞.

Proof (Sketch)
We consider k = 1, as the rest is similar.

Consider Taylor’s theorem

φ(h) = φ(0) + hφ′(0) +
h2

2
φ′′(0) + o(h2).

On one hand,

φ(h) + φ(−h)− 2φ(0)

h2
=
h2φ′′(0)

2h2

→ φ′′(0)

2
h→ 0

∈ [−M,M ].
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On the other hand,

φ(h) + φ(−h)− 2φ(0)

h2
=

1

h2
E
[
eihξ + e−hξ − 2

]
=

1

h2
E

[(
sin

ξh

2

)2
]

→ Eξ2. h→ 0

It remains to argue that the two limits do not differ much. Note that the convergence of
the second limit requires an application of the dominated convergence theorem.

Corollary 4.2.2.1
1) If φξ ∈ C∞, then ξ has all moments Eξk <∞
2) If ξ is such that E|ξ|k <∞ for all k, then φξ ∈ C∞

3) φξ(t) =
∑∞

k=0
(it)k

k!
Eξk for all

|t| < 1

limn sup

(
(E|ξ|k)

1
k

k

)

(assuming the limit is finite).

4.3 Distributions & Characteristic Functions for Sums

of Random Variables

Theorem 4.3.1
Let ξ1, ξ2 be independent random variables with distributions Pξ1 ,Pxi2 and character-
istic functions φξ1 , φξ2 .

1) We have the following convolutional distribution

Pξ1+ξ2(A) =

∫
A

Pξ1(A− x)dPξ2(x)

=

∫
A

Pξ2(A− x)dPξ2(x)

2) φξ1+ξ2(t) = φξ1(t) · φξ2(t)
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Proof
1) Consider η := (ξ1, ξ2). Then Pη = Pξ1 × Pξ2 .

Define
BA := {x ∈ R2 : x1 + x2 ∈ A}.

Then

Pξ1+ξ2(A) = P{ξ1 + ξ2 ∈ A}
= P{η ∈ BA}

=

∫
R2

1BA
(x)dPη(x)

=

∫
R
dPξ1(x1)

[∫
R
1BA

(x)dPξ2(x2)

]
.

Now, ∫
R
1BA

(x)dPξ2(x2) =

∫
R
1A−x1(x2)dPξ2(x2)

= Pξ2(A− x1).

This concludes the proof.

2) We have

φξ1+ξ2(t) = Eeit(ξ1+ξ2)

=
(
Eeitξ1

) (
Eeitξ2

)
independence

= φξ1(t)φξ2(t).

Corollary 4.3.1.1
1) Let Fξ1 , Fξ2 be distribution functions. Then Fξ1+ξ2(x) =

∫
R Fξ1(x − y)dFξ2(y).

(Some more general integral)

2) Let pξ1 , pξ2 be densities. Then pξ1+ξ2(x) =
∫
R pξ1(x− y)pξ2(y)dy.

Corollary 4.3.1.2
1) Let ξ1, . . . , ξn be independent, then φ∑

i ξi
=

dn
i=1 φξi(t)

2) If ξ1, . . . , ξn are iid, then φ∑
i ξi
(t) = φξ1(t)

n
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4.4 Gaussian Random Variables

Let ξ ∼ N(a, σ) and recall it has density

p(x) = pa(x, σ) =
1

σ
√
2π

exp

(
−(x− a)2

2σ2

)

for a ∈ R and σ > 0. Note that ξ ≡ σξ0,1 + a where ξ0,1 ∼ N(0, 1).

Let us define

N(a, σ = 0) := δa

where P{δa = a} = 1 is a point mass. Then pa(x, σ) satisfies

∂p

∂σ
=
∂2p

∂x2
heat equation

p(x, 0) = δa(x).

Here we consider some more general derivative at p(x, 0).

Proposition 4.4.1
If ξ ∼ N(0, σ),

1) Eξ = a

2) Var ξ = σ2

3) E(ξ − a)k = σk(k − 1)!! for k even, otherwise it is 0

4) φξ(t) = exp
(
ita− σ2t2

2

)

Corollary 4.4.1.1
1) If ξ1 ∼ N(a1, σ1), ξ2 ∼ N(a2, σ2) are independent, then ξ1 + ξ2 ∼ N(a1 +

a2,
√
σ2
1 + σ2

2)

2) Suppose ξ1, . . . , ξn ∼ N(0, σ) are independent, then
∑n

i=1 ξi ∼ N(0,
√∑

i σ
2) =

N(0,
√
n · σ)

3) Suppose ξ1, . . . , ξn ∼ N(0, σ) are independent, then
∑n

i=1 ξi ≡
√
n · ξ1
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Example 4.4.2
Suppose ξ1, ξ2 ∼ Exp(λ = 1) are iid. Recall then pξi(x) = e−x for x > 0. We thus have

φξ1−ξ2(t) = φξ1(t) · φ−ξ2(t)

= φξ1(t) · φξ2(−t)

=
1

1− it
· 1

1 + it

=
1

1 + t2
.

This is the characteristic function of the Laplacian distribution with a density pξ(x) =
1
2
e−|x|. To verify this,

φξ(t) =

∫
R

eitx · e−|x|

2
dx =

1

1 + t2
.

Coincidentally, the Laplacian distribution’s characteristic function is proportional to the
density of the Cauchy distribution with density p(x) = 1

π(1+x2)
.

Indeed,

pL(x) =
1

2
e−|x|

=
1

2π

∫ ∞

−∞
e−itx 1

1 + t2
dt

= 2EeitξCauchy

Note that if ξ1, . . . , ξn are iid Cauchy, then
∑

i ξi ≡ nξ1. This can be shown through charac-
teristic functions.

4.5 Stable Distributions

Definition 4.5.1 (Stable)
We say a distribution ξ is stable if for all n ≥ 1, there is some an > 0 and bn ∈ R
such that the following holds: If ξ1, . . . , ξn ∼ ξ iid, then

∑
i ξi \ anξ + bn.

Equivalently,

φξ(t)
n = φanξ+bn(t) = eibntφξ(ant).
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Theorem 4.5.1 (Lévy-Khintchine)
ξ is stable if and only if the characteristic function is of the form

φξ(t) = exp [itβ − c|t|α(1 + iθ sgn(t)G(t, α))] .

Here 0 < α ≤ 2, β ∈ R, c ≥ 0, and |θ| < 1 are hyperparameters and

G(t, α) =

{
tan πα

2
, α ̸= 1

−2 log|t|
π

, α = 1

Corollary 4.5.1.1
All symmetric stable distributions have characteristic functions of the form

φξ(t) = e−c|t|α

for α ∈ (0, 2].

First note the inverse implication is straightforwards. Indeed, we can just multiply the
characteristic functions.

On the other hand, consier α ≥ 2. Then

φ(2)(0)

{̸
= 0, α = 2

0, α > 0

But from a previous theorem Eξ2 = 0 so that ξ ≡ 0 is a constant.

Proposition 4.5.2
Suppose φξ(t) = e−c|t|α . For r < α,

E|ξ|r <∞

and for r ≥ α,
E|ξ|r =∞.

Depending on the qualities of iid distributions, they tend to their family of “preferred stable
distributions”.
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Chapter 5

Limit Theorems

Let ηk be a sequence of random variations. We wish to pose the question of convergence.
For example,

ξk :=
1

k

k∑
i=1

ηk →?

ζk :=
1√
k

[
k∑

i=1

ηi −
k∑

i=1

Eηi

]
→?

5.1 Convergence of Random Variables

Before we explore limits of random variables, we must first pin down precise notions of
convergence.

Let ξn, ξ : (Ω,F ,P)→ (X, ρ) where (X, ρ) is an arbitrary metric space, ie (R, |·|).

Definition 5.1.1 (Convergence Almost Everywhere)
We say ξn → ξ a.e., converges in P a.e., or with probability 1 if

P{ω : ξn(ω)→ ξ(ω)} = 1.

First, let us check that the set of pointwise convergence is measurable. Define

Aϵ
k := {ω : ρ(ξk(ω), ξ(ω)) > ϵ}

Aϵ :=
∞⋂
n=1

⋃
k≥n

Aϵ
k =: lim

k
supAϵ

k.
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This is the set of points that that for all n ≥ 1, there exists k ≥ n such that ρ(ξk(ω), ξ(ω)) > ϵ.
Thus the set of points of non-convergence is precisely

⋃
m∈N

A
1
m = {ω : ξn(ω) ̸→ ξ(ω)}.

We have constructed the set of pointwise (non-)convergence with countable operations on
countably many measurable sets, which is thus measurable.

Proposition 5.1.1
ξn → ξ almost everywhere if and only if for all ϵ > 0,

P
{
ω : sup

k≥n
ρ(ξk(ω), ξ(ω)) > ϵ

}
→ 0

as n→∞.

Proof
Remark that A

1
n ⊇ A

1
m for n ≥ m. Now, ξn → ξ almost everywhere if and only if

P
⋃
m

A
1
m = 0 ⇐⇒ ∀m,PA

1
m = 0

⇐⇒ ∀ϵ > 0,P(Aϵ) = 0

⇐⇒ ∀ϵ > 0,P
⋃
k≥n

Aϵ
k → 0 n→∞

⇐⇒ ∀ϵ > 0,P
{
ω : sup

k≥n
ρ(ξk(ω), ξ(ω)) > ϵ

}
→ 0. n→∞

Proposition 5.1.2
Borel-Cantelli Lemma: If for all ϵ > 0,

∞∑
k=1

P{ω : ρ(ξk(ω), ξ(ω)) > ϵ} <∞,

then ξn → ξ almost surely.
Second Borel-Cantelli Lemma: Also, if the ξk’s are independent and

∞∑
k=1

P{ω : ρ(ξk(ω), ξ(ω)) > ϵ} =∞,

then P{ω : ξk(ω) ̸→ ξ(ω)} = 1.
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Definition 5.1.2 (Convergence in Probability)
Suppose ξn, ξ are random variables. We say ξn → ξ in probability if for every ϵ > 0,

P{ω : |ξn(ω)− ξ(ω)| > ϵ} → 0.

Definition 5.1.3 (Convergence in Distribution)
We say ξn → ξ in distribution if for every bounded continuous f : X → R,

Ef(ξn)→ Ef(ξ).

Definition 5.1.4 (Convergence in Mean of Order p)
Suppose ξn, ξ are random variables. We say ξn → ξ in mean of order p if

E|ξn − ξ|p → 0

for ρ > 0.

Let ([0, 1],B[0, 1], λ) be our probability space.

Example 5.1.3
Consider ξ ≡ 0 and

ξn(ω) :=

{
en, ω ∈

[
0, 1

n

]
0, ω > 1

n

ξn → ξ almost everywhere.

Also, λ{ω : |ξ(ω)| > ϵ} ≤ 1
n
. Thus we have convergence in probability.

Now, for any bounded continuous f ,

Ef(ξn) =
1

n
f(en) +

n− 1

n
f(0)→ f(0)

since f is bounded. Thus we have convergence in distribution.

However, E|ξn|p = (en)p · 1
n
̸→ ξ as n→∞. Thus we do not have convergence in mean of

order p for any p ≥ 1.

Example 5.1.4
Take

ξ(i)n := 1[ i−1
n

, i
n ]

and flatten that to a 1-dimensional sequence.
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We see that ξ
(i)
n (ω) ̸→ 0 a.e. since it takes on the value 1 for infinite many times in any

tail. However,

P{ω : |ξ(i)n (ω)− 0| ≥ ϵ} = 1

n
→ 0.

Thus we do have convergence in probability.

Theorem 5.1.5
1) convergence almost everywhere implies convergence in probability

2) convergene in Lp implies convergence in probability

3) convergence in probability implies convergene in distribution

Proof
1) We have

P{ω : ρ(ξn(ω), ξ(ω)) > ϵ}

≤ P
{
ω : sup

k≥n
ρ(ξn(ω), ξ(ω)) > ϵ

}
→ 0. convergence almost everywhere

2) By Chebyshev’s inequality, and Lp convergence,

P{ω : ρ(ξn(ω), ξ(ω)) > ϵ}

≤ 1

ϵp
E|ξn − ξ|p

→ 0.

3) Let f : R→ R be bounded and continuous. Thus |f | ≤ c for some c > 0.

Fix some ϵ > 0, there is some N ∈ N such that P{|ξ| > N} < ϵ
4c
.

Now, f is continuous, and thus uniformly continuous on [−N,N ]. There is some δ > 0
such that |x− y| < δ implies that |f(x)− f(y)| < ϵ for all x, y ∈ [−N,N ].

Let A,B,C be the following partition of Ω:

A := {ω : |ξn − ξ| < δ, |ξ| < N}
B := {ω : |ξn − ξ| < δ, |ξ| ≥ N}
C := {ω : |ξn − ξ| ≥ δ}.
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Then

|Ef(ξn)− Ef(ξ)|
≤ E|f(ξn)− f(ξ)|

=

∫
Ω

|f(ξn)− f(ξ)|dP(ω)

=

∫
A

|f(ξn)− f(ξ)|dP(ω) +
∫
B

|f(ξn)− f(ξ)|dP(ω) +
∫
C

|f(ξn)− f(ξ)|dP(ω)

< ϵ · P(A) + 2c · ϵ
4c

+ 2c · P{|ξn − ξ| ≥ δ}

→ 0 n→∞

Proposition 5.1.6
Let ξn be a random variable and ξ ≡ a. Then ξn → ξ in probability if and only if ξn → ξ
in distribution.

5.2 Convergence of Probabilty Measures

Let (E, E , ρ) be a metric space. Let Pn be a sequence of probability measures on E.

Definition 5.2.1 (Weak Convergence)
We say Pn → P weakly if for every f : E → R that is bounded and continuous,∫

E

f(x)dPn(x)→
∫
E

f(x)dP(x).

We note that we can think of distributions abstractly as a black box which computes expec-
tations. By definition, ξn → ξ in distribution if and only if Pξn → ξ weakly.

Definition 5.2.2 (Convergence in General)
We say Pn → P in general if for every A ∈ E such that P(∂A) = 0,

Pn(A)→ P(A).

Note that the condition that the boundary has measure zero is to avoid point masses on
boundaries.
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Theorem 5.2.1
The following are equivalent.

1) Pn → P weakly

2) limn supPn(A) ≤ P(A) for all A closed

3) limn inf Pn(A) ≥ P(A) for all A open

4) Pn → P in general

Proof
1) =⇒ 2) Let A be closed. We can the define

ρ(x,A) := inf
y∈A

ρ(x, y)

Aϵ := {x : ρ(x,A) < ϵ}

f ϵ
A(x) :=

(
1− 1

ϵ
ρ(x,A)

)
+

=


1, x ∈ A
0, x ∈ Aϵ

continuous, else

Remark that Aϵ ↓ A as ϵ→ 0. We can think of f ϵ
A as a continuous bounded approximation

of 1A.

Then for every ϵ > 0,

lim
n

supPn(A) =

∫
E

1AdPn(x)

=

∫
E

f ϵ
A(x)dPn(x)

→
∫
E

f ϵ
A(x)dP(x) weak convergence

≤ P(Aϵ).

But as ϵ→ 0, P(Aϵ) ↓ P(A) by the continuity of measure.

2) ⇐⇒ 3) This is not hard to see by considering complements.

2), 3) =⇒ 4) Let B ∈ E be such that P(∂B) = 0. Remark that B ∪ ∂B is closed and
contains B, while B \ ∂B is open and contained in B.
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We have

lim
n

supPn(B) ≤ lim
n

supPn(B ∪ ∂B)

≤ P(B ∪ ∂B)

= P(B)

lim
n

inf Pn(B) ≥ lim
n

inf Pn(B \ ∂B)

≥ Pn(B \ ∂B)

= P(B)

Thus the limit exists and Pn(B)→ P(B).

4) ⇐⇒ 1) Let f : E → R be bounded and continuous. Then there is some C > 0 such
that |f | ≤ C.

Consider Pf , the push-forward measure on R. We claim that it has at most countably
many atoms. This is not hard to see by consider sets of the form {x ∈ R : Pf (x) ≥ 1

n
}

which has at most n elements.

Fix ϵ > 0.

Let −C = t0 < t1 < · · · < tk = C be a partition of [−C,C]. From the claim above, we
can always choose ti such that

(i) |ti − ti+1| < ϵ

(ii)
∣∣∣∑k−1

i=0 tiP(Bi)−
∫
f(x)dP(x)

∣∣∣ < ϵ

(iii) P{x : f(x) = ti} = Pf (ti) = 0

Then
Bi := f−1[ti, ti+1]

for 0 ≤ i < k forms a partition of E such that P(∂Bi) = 0. By assumption,

k−1∑
i=0

tiPn(Bi)→
k−1∑
i=0

tiP(Bi).

63



©
Fe
lix
Zh
ou

Now to show weak convergence,∣∣∣∣∫ f(x)dPn(x)−
∫
f(x)dP(x)

∣∣∣∣
≤

∣∣∣∣∣
∫
f(x)dPn(x)−

k−1∑
i=0

tiPn(Bi)

∣∣∣∣∣+
∣∣∣∣∣
k−1∑
i=0

tiPn(Bi)−
k−1∑
i=0

tiP(Bi)

∣∣∣∣∣
+

∣∣∣∣∣
k−1∑
i=0

tiP(Bi)−
∫
f(x)dP(x)

∣∣∣∣∣
≤ max

0≤i<k
|ti − ti+1|+

∣∣∣∣∣
k−1∑
i=0

tiPn(Bi)−
k−1∑
i=0

tiP(Bi)

∣∣∣∣∣
+

∣∣∣∣∣
k−1∑
i=0

tiP(Bi)−
∫
f(x)dP(x)

∣∣∣∣∣
< ϵ+

∣∣∣∣∣
k−1∑
i=0

tiPn(Bi)−
k−1∑
i=0

tiP(Bi)

∣∣∣∣∣+ ϵ

→ 0. n→∞

In particular, this shows that weak limits are unique. Indeed, if a sequence had two weak
limits, they must agree on all open intervals. But then by Carath’eodory’s extension theorem,
they are in fact the same measures.

Consider a family of probability measures {Pα : α ∈ A} defined on a measurable space (E, E)
equipped additionally with a metric ρ.

Definition 5.2.3 (Relative Compactness)
{Pα} is relatively compact if any sequence Pn contains a weakly converging subse-
quence whose limit is a probability measure.

Definition 5.2.4 (Tight)
{Pα} is tight if for all ϵ > 0, there is some Kϵ ⊆ E compact such that

Pα(Kϵ) > 1− ϵ

for all α ∈ A.

Theorem 5.2.2 (Prokhorov)
Suppose (E, E , ρ) is complete and separable. Then {Pα} is relatively compact if and
only if it is tight.
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Remark that in the setting of Prokhorov’s theorem, tighting is equivalent to the statement
that any converging subsequence converges to a probability measure.

Lemma 5.2.3
There is some K > 0 such that for all a > 0, if P is any probability measure,∫

|x|> 1
a

dP(x) ≤ K

a

∫ a

0

[1− Reφ(t)] dt.

Proof
By computation,

1

a

∫ a

0

[1− Reφ(t)] dt =
1

a

∫ a

0

∫ ∞

−∞
[1− cos tx] dP(x)dt

=

∫ ∞

−∞

1

a

∫ a

0

[1− cos tx] dtdP(x)

=

∫ ∞

−∞

[
1− sin ax

ax

]
dP(x)

≥ inf
|y|≥1

[
1− sin y

y

]
· P
{
|x| > 1

a

}
.

By taking 1
K

= inf |y|≥1

[
1− sin y

y

]
, we are done.

Theorem 5.2.4 (Lévy’s Continuity Theorem for Rd)
Let Pn, n ∈ N be a sequence of probability measures on Rd with characteristic func-
tions φn(t) = E [exp(−i⟨t, ξn⟩)], where Pn = Pξn .

1) If Pn
w−→ P to a probability measure with characteristic function φ(t), then

φn(t)→ φ(t) for every t ∈ R as n→∞.

2) If the limit φ(t) = limn→∞ φn(t) exists for all t, then Pn
w−→ P to a probability

measure and φ(t) is its characteristic function. Moreover, φ(t) is continuous.

Proof (d = 1)
1) Suppose Pn

w−→ P. For every f : R→ R bounded and continuous,∫
R
f(x)dPn(x)→

∫
R
f(x)fP(x).

Let f(x) := Re exp(itx). Then
∫
RRe exp(itx)dPn(x)→

∫
R Re exp(itx)dP(x) and similariy
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for Im exp(itx). Thus φn(t)→ φ(t) as desired.

2) First, we show that {Pn,P : n ∈ N} is tight. Note that it suffices to show the claim for
all n ≥ N where N ∈ N is fixed. This is because finite unions preserve compactness. We
have

Pn

[
−1

a
,
1

a

]c
=

∫
|x|> 1

a

dPn(x)

≤ K

a

∫ a

0

[1− Reφn(t)] dt lemma

< ϵ+
K

a

∫ a

0

[1− Reφ(t)] dt. CDT, large n

< ϵ+Kϵ′

An appropriate choice of ϵ′ yields the result.

By Prokhorov’s theorem, tightness implies the existence of a subsequence converging to
a probability measure. But any subsequence converges to the same limit as the original
sequence since weak limits are unique by an earlier remark. Thus Pn

w−→ P.

By 1), φn(t)→ ψ(t) for all t ∈ R where ψ is the characteristic function of P. Since limits
in C are unique, it must be that φn(t)→ φ(t) = ψ(t) for all t ∈ R.

We now show continuity. This is not hard since

|E[exp(itx)]− E[exp(it(x+ h))]| ≤ E|exp(itx)[1− exp(ith)]|
→ 0. h→ 0

Corollary 5.2.4.1
If Pn,P are probability distributions with characteristic functions φn, φ, then Pn

w−→ P if
and only if limn→∞ φn(t) = φ(t) for every t ∈ R.

5.3 Laws of Large Numbers

5.3.1 Definitions

Let ξ1, ξ2, . . . be a sequence of random variables and

Sn(ω) :=
n∑

i=1

ξi(ω).
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Definition 5.3.1 (Law of Large Numbers)
We say {ξi} obeys the law of large numbers if there is some L ∈ R such that

1

n
Sn

p/d−−→ L.

Equivalently, we can require P 1
n
Sn

w−→ δL where δL is the delta distribution at L.

Suppose {ξi} obeys the LLN and Eξi exists. Then

E
1

n
Sn =

1

n

n∑
i=1

Eξi
p/d−−→ L.

In other words, 1
n
Sn − E 1

n
Sn

p/d−−→ 0.

Definition 5.3.2 (Strong Law of Large Numbers)
We say {ξi} obeys the SLLN if there is some L ∈ R such that

1

n
Sn

a.s.−−→ L.

Example 5.3.1 (Bernoulli’s Golden Theorem)
Suppose ξi ∼ Be(p) iid. Then 1

n
Sn(ω) → p. This convergence is in probability, distribu-

tion, and almost everywhere.

5.3.2 Laws of Large Numbers

Theorem 5.3.2 (Markov’s LLN)
Let ξi, i ∈ N be random variables with Eξi,Var ξi < ∞. If

Var(
∑n

i=1 ξi)
n2 → 0, then the

LLN holds:
1

n

n∑
i=1

ξi −
1

n

n∑
i=1

Eξi
p/d−−→ 0.

67



©
Fe
lix
Zh
ou

Proof
By Chebyshev’s inequality,

P

{
ω :

∣∣∣∣∣ 1n
n∑

i=1

ξi −
1

n

n∑
i=1

Eξi

∣∣∣∣∣ ≥ ϵ

}

≤
Var

(
1
n

∑n
i=1 ξi

)
ϵ2

→ 0. n→∞

Corollary 5.3.2.1 (Chebyshev’s LLN)
Let ξi, i ∈ N be independent random variables such that there is some C ∈ R for which
Var ξi < C. Then LLN holds.

Theorem 5.3.3 (Khinchin’s LLN)
Let ξi, i ∈ N be iid random variables with characteristic function φ(t). If φ′(0) exists,
then LLN holds:

1

n

n∑
i=1

ξi(ω)
p/d−−→ a =:

φ′(0)

i
.

Note here that we do not require ξi has finite expectation. However, if it exists, then
Eξi = φ′(0)

i
.

Proof
Define ηi := ξi−a, which are also iid random variables. We show the equivalent statement

1

n
Sn :=

1

n

n∑
i=1

ηi
p/d−−→ 0.

Remark that

φη(0) = e−itaφξ(t)

φ′
η(0) = −itae−ita φξ(0)︸ ︷︷ ︸

=1

+e−ita φ′
ξ(0)︸ ︷︷ ︸
=ai

= 0

Indeed, our plan is to apply Lévy’s continuity theorem. Now, φδ0(t) = Eeit0 = 1 for every
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t ∈ R. Thus we show that φ 1
n
Sn
(t)→ 1 for every t ∈ R.

φ 1
n
Sn
(t) =

n∏
i=1

φ 1
n
ηi
(t)

=
n∏

i=1

φηi

(
t

n

)
= φη

(
t

n

)n

.

Taking logarithms,

logφ 1
n
Sn
(t) = n logφη

(
t

n

)
= n log

[
φη(0) +

t

n
φ′
η(0) + o

(
1

n

)]
= n log

(
1 + o

(
1

n

))
= n · o

(
1

n

)
→ 0. n→∞

5.3.3 Strong Law of Large Numbers (Almost Surely Convergence
of Series of Random Variables)

Let ξi, i ∈ N be independent random variables and define Sn :=
∑n

i=1 ξi.

Lemma 5.3.4 (Kolmogorov’s Inequality)
Let ξi, i ∈ N be independent with Eξi = 0 and Eξ2i <∞. Then for every ϵ > 0,

P
{
max
k∈[n]

Sk > ϵ

}
≤ ES2

n

ϵ2
.

Theorem 5.3.5 (Kolmogorov, Khinchin)
Let ξi, i ∈ N be random variables with Eξi = 0 and

∑n
i=1 Eξ2i < ∞. Then

∑∞
i=1 ξi

converges with probability 1.

Proof
We show that the set of ω where Sn(ω) is a Cauchy sequence has measure 1. Recall that
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R is complete and thus Cauchy sequences always converge.

Indeed, the statement above is true if and only if

P
{
ω : sup

k≥n
|Sn+k − Sn| ≥ ϵ

}
→ 0 n→∞

⇐⇒ P

{
ω : lim

N→∞
sup
k∈[N ]

|Sn+k − Sn| ≥ ϵ

}
→ 0 n→∞

⇐⇒ lim
N→∞

P
{
max
k∈[N ]
|Sn+k − Sn| ≥ ϵ

}
→ 0 n→∞

The last if and only if holds due to the downward continuity of measure.

Observe that

lim
N→∞

P
{
max
k∈[N ]
|Sn+k − Sn| ≥ ϵ

}
≤ lim

N→∞

(
n+N∑
k=n+1

Eξ2k

)
/ϵ2 Kolmogorov’s Inequality

→ 0. n→∞

The last limit is justified since the tail series of a convergent series must tend towards 0.

Lemma 5.3.6 (Kronecker)
Let 0 < bn ↑ ∞ and xn ∈ R be such that

∑∞
n=1 xn = L ∈ R. Then

1

bn

n∑
j=1

bjxj → 0.

Theorem 5.3.7 (Kolmogorov)
Let ξi, i ∈ N be independent random variables such that Var ξi <∞. Let 0 < bn ↑ ∞
be such that

∑∞
n=1

Var ξn
b2n

<∞. Then

Sn(ω)− ESn

bn

a.s.−−→ 0.
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Proof
Observe that

Sn(ω)− ESn(ω)

bn
=

1

bn

n∑
k=1

bk

(
ξk(ω)− Eξk

bk

)
.

Let xk(ω) :=
ξk(ω)−Eξk

bk
. If we show that

∑∞
k=1 xk ∈ R a.s. Then we can apply Kronecker’s

lemma to conclude the proof.

Note that Exk = 0 and Varxk = Var ξk
b2k

. By assumption,
∑∞

k=1 Var xk < ∞. Thus by the

Kolmogorov-Khinchin Theorem,
∑∞

k=1 xk → 0 converges a.s.

From our remark above, this terminates the proof.

Corollary 5.3.7.1
Let ξi, i ∈ N be independent random variable with finite variance. If

∑∞
n=1

Var ξn
n2 < ∞,

then SLLN holds.
1

n

n∑
i=1

ξi(ω)−
1

n

n∑
i=1

Eξi
a.s.−−→ 0.

Example 5.3.8
Let ξi ∼ Be(p), i ∈ N such that Var ξi = p(1−p). Choose bn := 1

n
. Then

∑∞
n=1

p(1−p)
b2n

<∞.
It follows that

Sn(ω)− np
n

a.s.−−→ 0.

In fact, we can do even better and show that

Sn(ω)− np√
n log n

a.s.−−→ 0.

Theorem 5.3.9 (Kolmogorov’s SLLN)
Let ξi, i ∈ N be iid random variables such that E|ξi| <∞. Then SLLN holds:

1

n
Sn

a.s.−−→ Eξ.

5.3.4 Monte Carlo Methods

Let f : [0, 1] → [0, 1] be continuous. Suppose we wish to compute
∫ 1

0
f(x)dx. Let (ξi, ηi) ∼

U [0, 1]2 iid. Define

ρi :=

{
1, ηi ≤ f(ξi)

0, ηi > f(ξi)
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Then ρ is the characteristic function of the complement of the graph of f and we have

∫ 1

0

f(x)dx = Eρi
w←− 1

n

n∑
i=1

ρi.

Thus we can use stochastic approximations of deterministics quantities.

5.4 Central Limit Theorems

The essence of LLN is that demeaning and rescaling a series leads to convergence to 0.
Central limit theorems (CLTs) ask if we apply a different scaling factor, can we get to some
non-trivial limits?

Lévy’s theorem is the most useful and is seen the most often.

Theorem 5.4.1 (Lévy)
Let ξi, i ∈ N be iid random variables such that Var ξi = σ2 <∞. Define Sn :=

∑n
i=1 ξi.

1) Sn−nEξ1√
nVar ξ1

d−→ N(0, 1)

2) For every x ∈ R,

P
{
Xn − nEξ1√
nVar ξ1

≤ x

}
→ Φ(x) :=

∫ x

−∞

1√
2π
e−

u2

2 du.

Proof
Recall that convergence in distribution is equivalent to weak convergence which is equiv-
alent to convergence in general. Since a distribution function uniquely determines a
distribution, we need only show 1) and 2) automatically follows.

Define ηi(ω) := ξi(ω) − Eξi. Then ηi are iid random varaibles with mean 0 and variance
σ2. It suffices then to show that ∑n

i=1 ηi√
nσ

d−→ Z

where Z ∼ N(0, 1). But by the corollary to Lévy’s continuity theorem, it suffices to show
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that for every t ∈ R,

φ ∑
n

σ
√
n

(t) = φ η1
σ
√
n
(t)n

= φη1

(
t

σ
√
n

)n

→ φN(0,1)(t)

= exp

(
−t

2

2

)
.

Since Var η1 <∞ we know that η ∈ L2(Ω) and thus by a previous theorem, φη(t) is twice
differentiable. Thus we can write

φη(t) = φη(0) + φ′
η(0)t+ φ′′

η(0)
t2

2
+ o(t2)

= φη(0) + 0 · t+Var η1
t2

2
+ o(t2)

= 1− σ2t2

2
+ o(t2).

Since we are holding t, σ fixed,

φ ∑
n

σ
√
n

(t) = φη

(
t

σ
√
n

)n

=

[
1− σ2

2
· t

2

nσ2
+ o

(
1

n

)]n
=

(
1− t2

2n

)n

+ o

(
1

n

)
. . .︸ ︷︷ ︸

∈o(1)

→ exp

(
−t

2

2

)
. n→∞

We can alternatively take the log of φ ∑
n√
nσ

.

The following is an even stronger result which requires more assumptions of moments.
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Theorem 5.4.2
Let ξi, i ∈ N be iid random variables with Var ξi = σ2 and E|ξ1|3 < ∞. Then as
n→∞,

sup
x

∣∣∣∣P{∑n
i=1 ξi(ω)− Eξ1 · n

σ
√
n

≤ x

}
− Φ(x)

∣∣∣∣ ≤ CE|ξ1|3

σ3
√
n
→ 0

where C is some universal constant.

Example 5.4.3
Let ξi ∼ Be(p), i ∈ N be iid and consider Sn :=

∑n
i=1 ξi. Then as n→∞,

sup
x

∣∣∣∣∣P
{
Sn(ω)− np√
np(1− p)

≤ x

}
− Φ(x)

∣∣∣∣∣→ 0

Theorem 5.4.4 (Lindeberg’s CLT)
Let ξi, i ∈ N be independent random variables with Var ξi < ∞. Define B2

n :=∑n
i=1Var ξi.

If Lindeberg’s condition holds: For every ϵ > 0,

Ti,ϵ := {x⃗ ∈ R : |x− Eξi| > ϵBn}
1

B2
n

n∑
i=1

∫
Ti,ϵ

|x− Eξi|2dPξi(x)→ 0. n→∞

Then ∑n
i=1 ξi −

∑n
i=1 Eξi

Bn

d−→ N(0, 1).

Corollary 5.4.4.1 (Lindeberge’s CLT Implies Lévy’s CLT)
Let B2

n := nVar ξ1. For every i and ϵ, Ti,ϵ ↓ ∅ as n→∞. Thus

1

B2
n

n∑
i=1

∫
Ti,ϵ

|x− Eξi|2dPξi(x) =
n

nVar ξ1

∫
T1,ϵ

. . . dPξ1(x)

→ 0. n→∞
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Corollary 5.4.4.2 (Lyapunov)
Let ξi, i ∈ N be independent random variables with finite variance. Define B2

n =
Var

∑n
i=1 ξi. If Lyapunov’s condition holds: For every δ > 0,

1

B2+δ
n

n∑
i=1

E|ξi − Eξi|2+δ → 0. n→∞

Then CLT holds.

Proof
We have

E|ξi − Eξi|2+δ ≥
∫
Ti,ϵ

|x− Eξi|2+δdPξi(x)

≥ ϵδBδ
n

∫
Ti,ϵ

|x− Eξi|2dPξi(x).

So

1

B2
n

n∑
i=1

∫
Ti,ϵ

|x− Eξi|2dPξi(x) ≤
1

ϵδB2+δ
n

E|ξi − Eξi|2+δ

→ 0. n→∞

5.5 More on Limits

There are more results on convergence. For instance, the laws of iterated logarithms and the
laws of large deviation.

5.5.1 Violating CLT

Let ξi, i ∈ N be iid random variables. We know that if Var ξi < ∞, then the central limit
theorem holds. Yet we know that some stable distributions do not have expectation, yet
there are CLT-like results for these distributions.
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Theorem 5.5.1
Let η be a random variable. Then it is the limit of some∑n

i=1 ξi − An

Bn

d−→ η

if and only if η is stable.

We can prove this theorem using the idea of grouping partial sums into a higher-level series.

5.5.2 Fundamental Theorem of Statistics

Let ξi, . . . , ξN be iid random variables and F (x) their common distribution function.

Definition 5.5.1 (Empirical Distribution Function)
For N ≥ 1,

FN(x, ω) =
1

N

N∑
k=1

1{ξk(ω) ≤ x}.

Notice that FN(x, ·) is a random variable and FN is in fact a stochastic process.

By Kolmogorov’s SLLN, for every x ∈ R,

FN(x, ω)− EFN(x, ω) = F (x)
a.s.−−→ 0.

Theorem 5.5.2 (Glivenko-Cantelli)
Let ξi, i ∈ N be iid random variables. Then

DN(ω) := sup
x∈R
|FN(x, ω)− F (x)|

a.s.−−→ 0.

Proof
First we note that

DN(ω) = sup
q∈Q
|FN(q, ω)− F (q)|

since F is right continuous. A countable supremum of measurable functions remain mea-
surable.
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Now, we determine some bounds. Fix M ≥ 2. Define

XM,K = min

{
x ∈ R :

K

M
≤ F (x)

}
1 ≤ K < M

XM,0 = −∞
XM,M =∞.

Fix ω ∈ Ω. We write FN(x−0, ω) := limϵ→0+ FN(x−ϵ, ω). For any x ∈ [XM,K , XM,K+1) ̸=
∅,

FN(x, ω)− F (x) ≤ FN(XM,K+1 − 0, ω)− F (XM,K)

= FN(XM,K+1 − 0, ω)− F (XM,K+1 − 0) + F (XM,K+1 − 0)− F (XM,K)︸ ︷︷ ︸
≤ 1

M

.

Similarly,

FN(x, ω)− F (x) ≥ FN(XM,K , ω)− F (XM,K)−
1

M
.

Thus we can compare FN , F at only finitely many points. It follows that for every ω ∈ Ω,

sup
x∈R
|FN(x, ω)− F (x)|

≤ max
0≤k,ℓ≤M

{|FN(xM,K , ω)− F (XM,K)|, |FN(XM,ℓ − 0, ω)− F (XM,ℓ − 0)|}+ 1

M

a.s.−−→ 1

M
N →∞

Note that FN(x, ω) → F (x) a.s. in L∞. Thus for any φ that is continuous under the sup
norm,

φ(FN(x, ω))→ φ(F (x))

ω-a.s.

Theorem 5.5.3 (Kolmogorov)
We have

P{
√
N · sup

x
|FN(x, ω)− F (x)| ≤ y} → K(y)

where K(y) :=
∑∞

k=−∞(−1)k exp(−2k2y2).
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Chapter 6

Theory of Random Vectors

Most of the theory we developed for random variables extend to random vectors. Let ξ̄ =
(ξ1, . . . , ξd) denote a random vector.

6.1 Moments

Definition 6.1.1 (Expectation)
We define

Eξ̄ := (Eξ1, . . .Eξd).

Definition 6.1.2 (Mixed Moments)
We define the mixed moment of order k̄ as

E(ξk11 , · · · ξ
kd
d ) =

∫
Ω

d∏
i=1

ξi(ω)
kidP(ω)

=

∫
Rd

d∏
i=1

ξi(ω)
kidPξ̄(x̄).

Definition 6.1.3 (Covariance Matrix)
We define the covariance matrix Rξ̄ := [rij]

d
i,j=1 with entries

rij = Cov(ξi, ξj).

We say R−1
ξ̄

is the concentration matrix if it exists.

79



©
Fe
lix
Zh
ou

Proposition 6.1.1
1) We have

Rξ̄ = E
[
(ξ̄ − Eξ̄)(ξ̄ − Eξ̄)T

]
= E(ξ̄ξ̄)T − Eξ̄Eξ̄T .

2) Rξ̄ is symmetric, positive semidefinite.

3) detRξ̄ = 0. if and only if ξ̄ lives in some hyperplane, ie xTRξ̄x = 0 for some x ̸= 0.

4) Any symmetric positive definite matrix is the covariance matrix of some random
vector.

5) If A : Rd → Rk is a matrix, then RAξ̄ = ARξ̄A
T .

6.2 Characteristic Functions

Definition 6.2.1 (Characteristic Function)
We define

φξ̄(t̄) =

∫
Rd

exp(i⟨t̄, x̄⟩)dPξ̄(x̄)

= E exp
(
i⟨t̄, ξ̄⟩

)
.

Note that

φξ̄(t̄) =

∫
Rd

exp(i⟨t̄, x̄⟩)pξ̄(x̄)dx̄

if the density exists.

We remark that the same theory from random variables can be developed for random vectors.

There is a unique correspondance between distributions and their characteristic function.

For the sum of two independent random vectors, the characteristic function is the product
of characteristic functions.

If A is a d× d matrix,

φAξ̄+b̄(t̄) = exp
(
i⟨b̄, t̄⟩

)
φξ̄(A

T t̄).

If it exists,

E(ξkii : i ∈ d) = i
∑d

i=1 ki
∂
∑d

i=1 kiφξ̄

∂tk11 . . . ∂tkdd
(0)
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The coordinates ξi are independent random variables if and only if

φξ̄(t) =
d∏

i=1

φξi(ti).

6.3 Limit Theorems

These results are constructed analogously.

Theorem 6.3.1 (Lévy)
Let Pn,P be probability measures in Rd. Then

Pn
w−→ P ⇐⇒ ∀t ∈ Rd, lim

n
φn(t) = φ(t).

6.3.1 Law of Large Numbers

Theorem 6.3.2
Let ξ̄i, i ∈ N be iid random vectors with characteristic function φ(t̄) such that

∂φ

∂tk
(0)

exists and is finite for all k ∈ [d]. Then

1

n

n∑
i=1

ξ̄i(ω)
p/d−−→

(
1

i
· ∂φ
∂tk

(0)

)
k∈[d]

.

The proof is analogous to the 1-dimensional case. We use Taylor expansion and Lévy’s
theorem.

6.3.2 Central Limit Theorem

Theorem 6.3.3
Let ξ̄i, i ∈ N be iid random vectors with finite Eξ̄ and covariance matrix R. Then∑n

i=1 ξ̄i(ω)− nEξ̄√
n

d−→ N(0, R).

81



©
Fe
lix
Zh
ou

82



©
Fe
lix
Zh
ouPart III

Stochastic Processes

83



©
Fe
lix
Zh
ou



©
Fe
lix
Zh
ou

Chapter 7

Conditioning

7.1 Conditional Probability of Events

Let (Ω,F ,P) be a probability space and A,B ∈ F be with that P(B) > 0.

Definition 7.1.1 (Conditional Probability of A given B)
We define

P{A | B} := P(A ∩B)

P(B)
.

Alternatively, we can write PB(A).

Proposition 7.1.1
PB is a probability measure on both (Ω,F) and (B, F

∣∣
B
).

Proposition 7.1.2
1) P(A ∩B) = P(A | B)P(B) = P(B | A)P(A)
2) A,B are independent if and only if P(A | B) = P(A) or P(B | A) = P(B)

3) P (
⋂n

i=1Ai) =
∏n

i=1 P(Ai | A1 ∩ . . . Ai−1) (Multiplication Formula)

Proposition 7.1.3 (Law of Total Probability)
Let A1, A2, · · · ∈ F be a countable partition of Ω. For every B ∈ F ,

P(B) =
∑
i∈N

P(Ai)P(B | Ai).
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Proposition 7.1.4 (Baye’s Formula)
Let Ai ∈ F , i ∈ N be a countable partition of Ω. For B ∈ F ,

P(Ai | B) =
P(B | Ai)P(Ai)∑
i P(B | Ai)P(Ai)

.

7.2 Conditional Probability of Random Variables

Let ξ, η be random variables with joint distribution Pξ,η. How do we quantify the probability
{ω : ξ(ω) = x | η = . . .}?

7.2.1 Discrete Random Variables

Suppose (ξ, η) takes on values {(xi, yi) : i ∈ N}

Definition 7.2.1 (Conditional Distribution of Discrete Random Variables)
Let xi be such that P{ξ(ω) = xi} > 0. We define

Pη|ξ=xi
(y) := P{η(ω) = y | ξ(ω) = xi}.

The conditional distribution function is

Fη|ξ=xi
(t) =

∑
yj≤t

Pη|ξ=xi
(yj).

Note that

Pη|ξ=xi
(A) =

∑
j

Pη|ξ=xi
(yj)1{yj ∈ A}

is a probability measure on R.

Example 7.2.1
Consider N iid Bernoulli trials and let ξ(ω) be the result of the 1st trial and η(ω) the
number of successes.
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Then

Pη|ξ=1(k) = P{η(ω) = k | ξ = 1}

=

(
N−1
k−1

)
pk(1− p)N−k

p

=

(
N − 1

k − 1

)
pk−1(1− p)(N−1)−(k−1)

which we realize is just another binomial distribution!

7.2.2 Absolutely Continuous Random Variables

Let pξ(x), pη(y) be marginal densities

pξ(x) = F ′(x) a.e.

=
∂

∂x

∫ x

−∞

∫ ∞

−∞
pξ,η(u, y)dydu

=

∫ ∞

−∞
pξ,η(x, y)dy.

Definition 7.2.2 (Conditional Density of Absolutely Continuous Random Variables)
Let x ∈ R be such that pξ(x) > 0. We define

pη|ξ=x(y) =
pξ,η(x, y)

pξ(x)
.

The conditional distribution function is thus

Fη|ξ=x(t) :=

∫ ∞

−∞
pη|ξ=x(y)dy.

Proposition 7.2.2
The conditional distribution of η | ξ = x is a probability measure on R.

Pη|ξ=x(A) =

∫
A

pη|ξ=x(y)dy.

Proof
Non-negativity is clear.
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For normalization,

Pη|ξ=x(R) =
∫
R

pξ,η(x, y)

pξ(x)
dy

=
1

pξ(x)

∫
R
pξ,η(x, y)dy

=
1

pξ(x)
pξ(x)

= 1.

Finally, for σ-additivity,

Pη|ξ=x(
⊔
i

Ai) =

∫
⊔

i Ai

pη|ξ=x(y)dy

=
∑
i

∫
Ai

pη|ξ=x(y)dy

=
∑
i

P(Ai).

We remark here that we could have alternatively defined

Pη|ξ=x(A) = lim
ϵ→0+

P{η ∈ A : |ξ(ω)− x| < ϵ}.

Example 7.2.3
Let (ξ, η) ∼ U(B2

1) be uniformly distributed across the unit sphere in R2. Then

pξ,η(x, y) =
1

π
1{x2 + y2 ≤ 1}

pξ(x) =

∫
−
√
1−x2

√
1− x2 1

π
dy

=
2

π

√
1− x2

pη|ξ=x(y) =
pξ,η(x, y)

pξ(x)

=
1{y2 ≤ 1− x2}

2
√
1− x2

.

Note that y ∼ U
[
−
√
1− x2,

√
1− x2

]
.
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7.3 Conditional Expectation

Recall that we defined conditional probability for events but conditional probability of ran-
dom variables for two special cases. We will see how to define conditional probability for
random variables in general. It turns out that approaching this from the perspective of
conditional expectation is quite natural.

7.3.1 Definitions

Let (Ω,F ,P) be a probability space, ξ : Ω→ R a random variable, and G ⊆ F a σ-subalgebra
of F .

Definition 7.3.1 (Conditional Expectation)
The conditional expectation of ξ with respect to G is any random variable E{ξ | G} :
Ω→ R such that

1) E{ξ | G} is G-measurable.

2)
∫
A
ξ(ω)dP(ω) =

∫
A
E{ξ | G}(ω)dP(ω) for any A ∈ G.

We should think of the conditional expectation as “an average over a coarser σ-subalgebra
while preserving the value of the integral”.

Example 7.3.1
Consider the probability space ([0, 1],B[0, 1], λ) with the σ-subalgebra

Gn := σ

{[
k

n
,
k + 1

n

]
: 0 ≤ k < n

}
.

Then

E{ξ | Gn} =
n−1∑
k=0

(
k + (k + 1)

2n

)
1[ kn , k+1

n ).

If we did not require E{ξ | G} to be G-measurable, then we can simply take E{ξ | G} = ξ!
This condition forces us “collapse the random variable” so that it “contains only as much
information as permitted by G”.

Example 7.3.2
If G = {Ω,∅} is trivial, then E{ξ | G}(ω) = Eξ.

If G ⊇ σ(ξ), then we can take E{ξ | G} = ξ(ω) since that clearly satisfies the defining
property.
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7.3.2 Construction

We first remark that E{ξ | G} is in fact an equivalence class of random variables satisfying
the definiting conditions. In fact, it can be show that it is unique up to null sets of P.

In order to rigorously construct the conditional expectation, we proceed similarly to the
construction of the Lebesgue integral. We begin with ξ ≥ 0 and define a general conditional
expectation as

E{ξ | G} = E{ξ+ | G} − E{ξ− | G},

assuming that at least one of the two values are finite.

Theorem 7.3.3
For a non-negative random variable ξ ≥ 0, E{ξ | G} exists and is non-negative.

The outline of the proof is to define a measure Q on (Ω,G) which is absolutely continuous
with respect to P

∣∣
G. Then, we show that we can take E{ξ | G} to be the Radon-Nikodym

derivative dQ
dP .

Proof
Define

Q(A) :=

∫
A

ξ(ω)dP(ω)

for all A ∈ G. We claim that Q is a measure on (Ω,G).

Indeed, it is clearly non-negative and 0 at ∅. We need only demonstrate σ-additivity.

Q(
⊔
i

Ai) =

∫
⊔

i Ai

ξ(ω)dP(ω)

=
∑
i

∫
Ai

ξ(ω)dP(ω) (⋆)

=
∑
i

Q(Ai)

(⋆) This equality is intuitive but requires proof, which we omit.

Furthermore, P
∣∣
G (A) = 0 implies that Q(A) = 0, hence we see that Q << P

∣∣
G.

Since the restriction a finite measure, we conclude by the Radon-Nikodym theorem that
there exists some dQ

dP (ω) ≥ 0 that is G-measurable.
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We can take E{ξ | G} = dQ
dP (ω). Indeed,∫

A

dQ

dP
(ω)dP(ω) =

∫
A

dQ(ω)

= Q(A)

=

∫
A

ξ(ω)dP(ω).

7.3.3 Conditional Probability

Consider the special case where ξ = 1B for some B ∈ F .

Definition 7.3.2 (Conditional Probability)
The conditional probability P{B | G} : Ω→ [0, 1] is given by

P{B | G} := E{1B | G}.

The following is a characterization of conditional property which we could have used as an
alternative definition.

Proposition 7.3.4
P{B | G} : Ω→ [0, 1] is any random variable that is

1) G-measurable

2) P(A ∩B) =
∫
A
P{B | G}dP(ω) for any A ∈ G.

Example 7.3.5
If G is trivial, then P{A | G} = E1A = P(A).

If G = σ(B) for some B ∈ F , then

P(A | σ(B))(ω) =

{
P(A | B), ω ∈ B
P(A | Bc), ω /∈ B

If B1, . . . , Bn is a partition of Ω,

P{A | σ(B1, . . . , Bn)} =
n∑

i=1

P(A | Bi)1Bi
.
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7.3.4 Properties

Lemma 7.3.6
Let ξ, η be G-measurable random variables. If∫

A

ξ(ω)dP(ω) =
∫
A

η(ω)dP(ω)

for every A ∈ G, then ξ = η a.e.
Note here we mean that {ω : ξ(ω) ̸= η(ω)} ∈ G and has measure zero under P

∣∣
G.

Most of these properties are proven using the definiting conditions as well as the lemma
above.

Proposition 7.3.7
a) E{ξ ≡ c | G}(ω) = c a.s. for all c ∈ R
b) {aξ + bη | G}(ω) = aE{ξ | G}+ bE{η | G} a.s.
c) If ξ ≤ η a.s., then E{ξ | G}(ω) ≤ E{ξ | G} a.s.
d) |E{ξ | G}(ω)| ≤ E{|ξ| | G}(ω)
e) E{ξ | F} = ξ a.s.

f) E{ξ | {Ω,∅}} = Eξ a.s.

g) E [E{ξ | G}] = Eξ
h) If σ(ξ),G are independent, then E{ξ | G} = Eξ a.s.

Proof (h)
For any A ∈ G,∫

A

E{ξ | G}(ω)dP(ω) =
∫
A

ξ(ω)P(ω)

= E[ξ1A]

= E[ξ] · E[1A] independence

= Eξ · P(A)

=

∫
A

EξdP(ω).

Then we apply the useful lemma.
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Proposition 7.3.8
If η is G-measurable, then E{ξη | G}(ω) = ηE{ξ | G}(ω).

Proof
We will show that case where ξ ≥ 0 and η = 1B for some B ∈ G. The rest proceeds as in
the construction of the Lebesgue integral. For every A ∈ G,∫

A

η(ω)E{ξ | G}(ω)dP(ω) =
∫
A∩B

E{ξ | G}(ω)dP(ω)

=

∫
A∩B

ξ(ω)dP(ω)

=

∫
A

η(ω)ξ(ω)dP(ω).

Lemma 7.3.9 (Smoothing)
For G1 ⊆ G2,

E{E{ξ | G1} | G2} = E{ξ | G1} = E{E{ξ | G2} | G1}

a.s.

Proof
The first equality is easy since E{ξ | G1} is automatically G2-measurable. To see the second
equality, we apply the defining relation multiple times. Indeed, for any A ∈ G1 ⊆ G2,∫

A

E{E{ξ | G2} | G1}(ω)dP(ω) =
∫
A

E{ξ | G2}dP(ω)

=

∫
A

ξdP(ω)

=

∫
A

E{ξ | G1}dP(ω).

Then, an application our the ever useful lemma terminates the proof.

We now proceed to limiting properties.
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Proposition 7.3.10
1) If ξn ↑ ξ as n→∞, then

E{ξn | G}(ω) ↑ E{ξ | G}(ω)

a.s.

2) If |ξn| ≤ η ∈ L1 and ξn → ξ a.s., then

E{ξn | G}(ω)→ E{ξ | G}(ω)

a.s.

Proof (1)
We remark that E{ξn | G}(ω) is monotonically increasing and thus the limit Z(ω) exists.
For every A ∈ G, we have∫

A

lim
n

E{ξn | G}(ω)dP(ω) = lim
n

∫
A

E{ξn | G}(ω)dP(ω) MCT

= lim
n

∫
A

ξn(ω)dP(ω)

=

∫
A

lim
n
ξn(ω)dP(ω) MCT

=

∫
A

ξ(ω)dP(ω)

=

∫
A

E{ξ | G}(ω)dP(ω).

Yet another application of the useful lemma completes the proof.
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Chapter 8

Martingales

The fundamental theory of martingales was developed by Doob.

8.1 Introduction

Let (Ω,F ,P) be a probability space.

Definition 8.1.1 (Filtration / Flow)
An increasing sequence of sub σ-algebras

F0 ⊆ F1 ⊆ . . . ⊆ F

is a filteration or flow.

We sometimes write

F∞ := σ

(⋃
n≥1

Fn

)
.

Example 8.1.1 (Natural Filtration)
If {ξn}n≥1 is a sequence of random variables, the sequence given by

Fn := σ{ξi}ni=1

is a filteration known as the natural filtration.
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Definition 8.1.2
A sequence of random variables Xn, n ≥ 1 is adapted to the filtration Fn, n ≥ 1, if
Xn is Fn-measurable for all n ≥ 1.

Definition 8.1.3 (Predictable)
We say the sequence Xn is predictable with respect to Fn if Xn+1 is Fn−1-measurable.

Example 8.1.2
For a measurable function F ,

Fn(ω) := F (ξ1(ω), . . . , ξn(ω))

is {Fn} adapted.

For example, Fn could be the sum or product of its arguments.

Definition 8.1.4 (Martingale)
Let {Xn} be adapted with respect to {Fn} such that E|Xn| < ∞. Then {Xn} is a
martingale sequence if

E{Xn+1 | Fn}(ω)
a.s.
= Xn(ω)

Definition 8.1.5 (Submartingale)
Let {Xn} be adapted with respect to {Fn} such that E|Xn| < ∞. Then {Xn} is a
submartingale sequence if

E{Xn+1 | Fn}(ω)
a.s.

≥ Xn(ω)

Definition 8.1.6 (Submartingale)
Let {Xn} be adapted with respect to {Fn} such that E|Xn| < ∞. Then {Xn} is a
supermartingale sequence if

E{Xn+1 | Fn}(ω)
a.s.

≤ Xn(ω)

Note that the definition of a martingales require an instance of a filtration. If left unspecified,
we typically consider the natural filtration.
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8.2 Properties

Proposition 8.2.1
1) {Xn} is {Fn}-martingale if and only if E{Xn+k | Fn}(ω)

a.s.
= Xn(ω) for all k ≥ 1.

2) EXn = EXn+k for all k ≥ 1.

Proof
1) (⇐= ) is by definition. We argue ( =⇒ ) by induction on k.

The base k = 1 is by assumption. Then,

E{Xn+k+1 | Fn}(ω) = E{E{Xn+k+1 | Fn+1} | Fn}(ω)
= E{Xn+1 | Fn}(ω) induction hypothesis

= Xn(ω).

2) We have

EXn = E (E{Xn+k | Fn}) 1)

= EXn+k defining relation

We can think of a martingale sequence as a “fair game”, submartingale sequence as a “fa-
vorable game”, and supermartingale as an “unfavorable game”.

Proposition 8.2.2
Let ξ1, ξ2, . . . be independent random variables such that E|ξi| <∞,Eξi = 0. Then

Sn :=
n∑

i=1

ξi

forms a martingale.

Proof
Clearly Sn is Fn-measurable under the natural filtration. Moreover,

E{Sn+1 | Fn} = E{Sn + ξn+1 | Fn}
= Sn + E{ξn+1 | Fn}
= Sn + Eξn+1 σ(ξn+1),Fn are independent

= Sn.
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Example 8.2.3
If ξi are the steps of a symmetric random walk, then it is a martingale.

Proposition 8.2.4
Let η1, η2, . . . be independent random variables such that E|ηi| <∞,Eηi = 1. Then

Xn :=
n∏

i=1

ξi

forms a martingale.

Proof
Xn is clearly adapted to the natural filtration. Moreover,

E{Xn+1 | Fn} = E{Xnηn+1 | Fn}
= XnE{ηn+1 | Fn} Xn is Fn-measurable

= XnEηn+1

= Xn

Example 8.2.5
We begin the game with $1 and each round, we either double our wealth or lose everything.

Then if ηi ∼ 2Be
(
1
2

)
,

Xn :=
n∏

i=1

ηi

is the random variable modeling our wealth after n rounds.

From our work above, Xn is martingale.

Example 8.2.6 (Doob’s Martingale)
Let ξ be an arbitrary integrable random variable and {Fn} a given filtration.

Then
Xn := E{ξ | Fn}(ω) ∈ Fn

is known as Doob’s martingale.

Proposition 8.2.7
{Xn} is submartingale if and only if {−Xn} is supermartingale.
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Proposition 8.2.8
If {Xn}, {Yn} are martingales with respect to {Fn},

a) aXn + bYn is martingale

b) max(Xn, Yn) is submartingale

c) min(Xn, Yn) is supermartingale

Proposition 8.2.9
Suppose {Xn} is {Fn}-submartingale and g : R → R is convex and increasing. Then
{g(Xn)} is submartingale.

Proof
We have

g(Xn) ≤ g(E{Xn+1 | Fn}) submartingale definition

≤ E{g(Xn+1) | Fn}. Jensen’s inequality

Proposition 8.2.10
1) If {Xn} forms a non-negative submartingale, then {Xα

n} is submartingale for any
α ≥ 1.

2) If Xn is martingale, then |Xn|α is submartingale for all α ≥ 1.

Proof (2))
We have

E{|Xn+1| | Fn} ≥ |E{Xn+1 | Fn}|
= |Xn|.

So |Xn| is a non-negative martingale and we can apply 1).

Theorem 8.2.11 (Doob’s Maximal Inequality)
Let {Xk}nk=1 be a non-negative {Fn}-submartingale. Then

P
{
max
k∈[n]

Xk ≥ t

}
≤ 1

t
EXn

for all t > 0.
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Proof
Define

Ak := {ω : X1(ω), . . . , Xk−1(ω) < t,Xk(ω) ≥ t}.

Then

A :=

{
ω : max

k∈[n]
Xk(ω) ≥ t

}
=

n⊔
k=1

Ak.

It follows that

EXn ≥
∫
A

Xn(ω)dP(ω)

=
n∑

k=1

∫
Ak

Xn(ω)dP(ω)

=
n∑

k=1

∫
Ak

E{Xn | Fk}(ω)dP(ω) Ak ∈ Fk

≥
n∑

k=1

∫
Ak

Xk(ω)dP(ω) submartingale definition

≥
n∑

k=1

∫
Ak

t · dP(ω)

= tP(A).

Corollary 8.2.11.1 (Kolmogorov’s Inequality)
Let ξ1, ξ2, . . . be independent random variables with zero mean and finite variance. Then

Sk :=
k∑

i=1

ξk

is martingale and so S2
k is submartingale by the properites of submartingales.

It follows that

P
{
max
k∈[n]
|Sk| ≥ ϵ

}
= P

{
max
k∈[n]
|Sk|2 ≥ ϵ2

}
≤ E[S2

n]

ϵ2
.
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8.3 Martingale Differences

Definition 8.3.1 (Martingale Difference)
Let {ξn} be {Fn}-adapted and integrable. Set ξ0 ≡ 0 for convenience.
{ξn} is a martingale difference if

E{ξn+1 | Fn}(ω)
a.s.
= 0

for all n.

Similarly we define submartingale difference if

E{ξn+1 | Fn}
a.s.

≥ 0

for all n and supermartingale difference if

E{ξn+1 | Fn}
a.s.

≤ 0

for all n.

Proposition 8.3.1
a) If {Xn} is {Fn}-martingale, then ξn := Xn−Xn−1, ξ0 ≡ 0 is a martingale difference.

b) If ξn is a martingale difference with respect to {Fn}, then Xn :=
∑n

i=1 ξn is
martingale

c) Similar statements hold for submartingale and super martingale differences.

Proposition 8.3.2 (Orthogonality for Martingale Differences)
Let {Xn} be {Fn}-martingale and ξn := Xn −Xn−1. Then

E [ξnξm] =

{
E[ξ2n], m = n

0, m ̸= n

Proof
If m < n,

E [ξnξm] = E [E{ξmξn | Fm}]
= E [ξm · E{ξn | Fm}]
= E [ξm · 0]
= 0.
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Theorem 8.3.3 (Doob’s Decomposition)
Let {Xn} be {Fn}-submartingale. Then Xn uniquely decomposes as

Xn =Mn + An

where Mn is martingale and the compensator An is predictable and increasing a.s.

That is, An+1

a.s.

≥ An with A0 ≡ 0.

Proof
Let M0 := X0 and A0 ≡ 0.

For n ≥ 1, recursively define

Mn =Mn−1 +Xn − E{Xn | Fn−1}

=M0 +
n∑

i=1

Xi − E{Xi | Fi−1}

∈ Fn.

We claim that Mn is martingale. Indeed, Mn is the sum of integrable random variables
and is thus integrable. Moreover,

E{Mn | Fn−1} =Mn−1 + E{Xn | Fn−1} − E{E{Xi | Fn−1} | Fn−1}
=Mn−1.

Next, recursively define the a.s. increasing sequence

An := An−1 + E{Xn | Fn−1} −Xn−1︸ ︷︷ ︸
a.s.
≥ 0

=
n∑

j=1

E{Xj | Fj−1} −Xj−1

∈ Fn−1.

We have

Mn + An = X0 +
n∑

j=1

(Xj −Xn−1)

= Xn

as desired.

Uniquness can be shown by taking the conditional expectation of two candidates.
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Let Mn ∈ L2(Ω,F ,P) be martingale. Then Mn = M0 =
∑n

j=1 ξj where ξj is a martingale
difference. By Doob’s decomposition, we have

M2
n = mn + ⟨Mn⟩

where mn is martingale and ⟨Mn⟩ is known as the quadratic variation of Mn.

Proposition 8.3.4
We have

⟨Mn⟩ =
n∑

j=1

E{ξ2j | Fj−1}.

Example 8.3.5
Suppose Mn =

∑n
i=1 ξi for some independent zero-mean random variables ξi with finite

variance. Then

⟨Mn⟩ =
n∑

j=1

E{ξ2j | Fj−1}

=
n∑

j=1

Eξ2j

= VarMn.

Remark that M2
n − Var[Mn] is thus a martingale.
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Chapter 9

Stopping

9.1 Stopping

Let F0 ⊆ F1 ⊆ . . . ⊆ F be a filtration.

Definition 9.1.1 (Stopping Time)
A random variables τ : Ω→ N ∪ {∞} is a stopping time if for every n ∈ N,

{ω : τ(ω) ≤ n} ∈ Fn.

Proposition 9.1.1
The following are equivalent:

(1) ∀n, {ω : τ ≤ n} ∈ Fn

(2) ∀n, {ω : τ = n} ∈ Fn

(3) ∀n, {ω : τ > n} ∈ Fn

Proof
(1) ⇐⇒ (3) Observe that

{τ ≤ n} ∈ Fn ⇐⇒ {τ ≤ n} = {τ > n} ∈ Fn.

(1) ⇐⇒ (2) We have

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1}

{τ ≤ n} =
n⋃

k=1

{τ = k}.
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Proposition 9.1.2
1) τ ≡ N for some constant N ∈ N is a stopping time.

2) If τ, σ are stopping times, then so are their max and mins.

3) The sum of stopping times is a stopping time.

4) If τk ↓ τ is a decreasing sequence of stopping times, then τ is a stopping time.

Proof
1) We have

{τ ≤ n} =

{
Ω, n ≥ N

∅, n < N

2) For every n ∈ N,
{max(τ, σ) ≤ n} = {τ ≤ n} ∩ {σ ≤ n}.

For the minimum, we take the union.

3)

{τ + σ ≤ n} =
n⋃

k=1

{τ ≤ k} ∩ {σ ≤ n− k}.

Proposition 9.1.3 (Pre-τ σ-Algebra)
Let τ be a stopping time. Then the following is a σ-algebra

Fτ := {A ∈ F∞ : ∀n,A ∩ {τ ≤ n} ∈ Fn}.

We may also take F in place of F∞.

Proof
Firstly, we have that Ω ∩ {τ ≤ n} = {τ ≤ n} ∈ Fn since τ is a stopping time.

Next, for all A ∈ Fτ ,

Ā ∩ {τ ≤ n} = {τ ≤ n} \ (A ∩ {τ ≤ n}) ∈ Fn.

Thus Fτ is closed under complements.

Finally, let Ak ∈ Fτ . We have(
∞⋃
k=1

Ak

)
∩ {τ ≤ n} =

∞⋃
k=1

(Ak ∩ {τ ≤ n}) ∈ Fn.

Hence Fτ is closed under countable unions.
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Proposition 9.1.4
1) τ ≡ n =⇒ Fτ = FN

2) If σ
a.s.

≤ τ , then Fσ ⊆ Fτ

3) τ is Fτ -measurable

Proof
1) For any A ∈ F , A ∩ {τ ≤ n} = ∅ if n < N and A ∩ {τ ≤ n} = A if n ≥ N .

2) Suppose that for every n ∈ N, A ∩ {σ ≤ n} ∈ Fn. Then

A ∩ {τ = n} = A ∩ {σ ≤ τ} ∩ {τ = n}
= A ∩ {σ ≤ n}
∈ Fn.

But then

A ∩ {τ ≤ n} =
∞⋃
k=1

A ∩ {τ = k} ∈ Fn

and A ∈ Fτ as desired.

3) For any s ∈ R, we need to show that τ−1(−∞, s] ∈ Fτ . Indeed,

{τ ≤ s} ∩ {τ ≤ n} = {τ ≤ min(⌊s⌋, n)}
∈ Fn.

9.2 Stopping a “Process”

Let {Xn}n≥0 be {Fn}n≥0-adapted and τ a stopping time.

Example 9.2.1 (First Hitting Time)
τB given by

ω 7→ min{n : Xn(ω) ∈ B}

is a stopping time.

Indeed,

{τB ≤ n} =
n⋃

k=1

{ω : ∀j < k,Xj(ω) /∈ B ∧Xk(ω) ∈ B}

∈ Fn.
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In general,

τB(ω) := max{0 ≤ n ≤ N : Xn /∈ B}

is NOT a stopping time. Consider the natural filtration and remark it depends on the
“future”.

Proposition 9.2.2 (Configuration of Xn at τ )
Define

Xτ (ω) :=
∞∑
n=0

Xn1{τ(ω) = n}.

Then Xτ is a Fτ -measurable random variable.

Proof
For every n ∈ N,

{ω : Xτ (ω) ∈ B} ∩ {τ ≤ n} =
n⋃

k=1

{ω : Xk(ω) ∈ B, τ = k} ∈ Fn.

Theorem 9.2.3 (Doob Optimal Sampling / Stopping)
Let {Xn}Mn=1 be a {Fn}-martingale (sub, super). Let

τ1
a.s.

≤ τ2
a.s.

≤ . . .
a.s.

≤ τp

be stopping times taking values from 1 to M .
Then

(Xτ1 , Fτ1), . . . , (Xτp ,Fτp)

is martingale (sub, super).
Remark that by taking τ0 ≡ 1, τp+1 ≡M , we equivalently have

(Xτ0 ,Fτ0), (Xτ1 ,Fτ1), . . . , (Xτp ,Fτp), (Xτp+1 ,Fτp+1)

being martingale (sub, super).
In particular,

EXτ0 = EXτ1 = · · · = EXτp = EXτp+1

with
a.s.

≤ ,
a.s.

≥ holding in the case of sub, supermartingales, respectively.

Proof
We have already shown that Xτi ∈ Fτi .
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Next, we have that

E|Xτ | =
M∑
k=1

∫
τ=k

|Xk|dP

≤
m∑
k=1

E|Xk|

<∞. Xk is martingale

Finally, we need to show that for stopping times σ ≤ τ , Xσ = E{Xτ | Fσ}. This holds if
and only if for every A ∈ Fσ,∫

A

XσdP =

∫
A

E{Xτ | Fσ}dP defining relation

=

∫
A

XτdP. A ∈ Fσ ⊆ Fτ

First, consider the simpler case where

0
a.s.

≤ τ − σ
a.s.

≤ 1.

For every A ∈ Fτ , we have∫
A

(Xτ −Xσ)dP

=
M∑
k=1

∫
A∩{σ=k}∩{τ=k+1}

Xk+1 −XkdP

=
M∑
k=1

∫
A∩{σ=k}∩{τ>k}

Xk+1 −XkdP 0
a.s.

≤ τ − σ
a.s.

≤ 1

=
M∑
k=1

∫
A∩{σ=k}∩{τ>k}

E{Xk+1 −Xk | Fk}dP (A ∩ {σ = k}) , {τ > k} ∈ Fk
= 0, {Xn} is martingale

≥ 0, {Xn} is submartingale

≤ 0, {Xn} is supermartingale

Now, for the general case of σ
a.s.

≤ τ , we can inject stopping times

σ = ρ0
a.s.

≤ ρ1
a.s.

≤ . . .
a.s.

≤ ρM = τ,
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satisfying 0 ≤ ρj − ρj−1 ≤ 1 a.s. For instance, we can take

ρk := min(σ + k, τ)

for k = 0, 1, . . . ,M , which we know to be stopping times.

Then for every A ∈ Fσ ⊆ Fρ1 ⊆ . . . ⊆ Fρτ ,∫
A

XσdP =

∫
A

Xρ1dP

=

∫
A

Xρ2dP

= . . .

=

∫
A

XτdP

with ≤,≥ holding for the sub, supermartingale cases, respectively.

We note that there is a converse of Doob’s theorem.

Proposition 9.2.4
For a {Fn}-adapted sequence {Xn}, Xn is martingale if and only if for all bounded
stopping times τ ,

EXτ = EX1.

We also have the same stopping theorem without the bounded stopping time assumption,
but now with a restriction on the increments.

Theorem 9.2.5
Let {Xn} be {Fn := σ(X1, . . . , Xn)}-martingale and τ a stopping time. If

1) Eτ <∞

2) there is some c ∈ R such that E{|Xn+1 −Xn| | Fn}(ω)
a.s.

≤ c for all ω ∈ {τ(ω) >
n}

then
(X1,F1), (Xτ ,Fτ )

is a martingale and in particular,

EX1 = EXτ .
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Definition 9.2.1 (Stopped Sequence / Process)
We define

Xτ
n(ω) := Xτ(ω)∧n(ω) ∈ Fn.

Proposition 9.2.6
If (Xn,Fn) is martingale, then (Xτ

n ,Fn) is also martingale.
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Chapter 10

Convergence of Martingales

10.1 Convergence of Martingales

10.1.1 Upcrossing Inequality

Lemma 10.1.1 (Upcrossing Inequality)
Let (Xn,Fn) be submartingale.
Define Bn(a, b) to be the number of upward crossings of [a, b] by trajectories of {Xn}.
That is, define

τ0(ω) := 0

τ1(ω) := min{k ≥ τ0(ω) : Xk(ω) ≤ a}
τ2(ω) := min{k ≥ τ1(ω) : Xk(ω) ≥ b}

. . .

τ2m−1(ω) := min{k ≥ τ2m−2(ω) : Xk(ω) ≤ a}
τ2m(ω) := min{k ≥ τ2m−1(ω) : Xk(ω) ≥ b}

Bn(a, b)(ω) := max{k : τ2k(ω) ≤ n}.

Then

EBn(a, b) ≤
E(Xn − a)+

b− a
.

Proof
For k > 0, define

X̃k(ω) := (Xk − a)+ ≥ 0
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and remark that convex increasing functions preserves submartingales.

For the sake of convenience, define b̃ := b− a and note that it suffices to show that

EBn(0, b̃) ≤
EX̃n

b̃
.

Define

φi(ω) :=

{
1, ∃2 ∤ m, τm(ω) < i ≤ τm+1(ω)

0, ∃2 | m, τm(ω) < i ≤ τm+1(ω)

to be the indicator variable that i lies on an increasing trajectory.

Observe that for every ω,

b̃ ·Bn(0, b̃)(ω) ≤
n∑

i=1

φi(ω)(X̃i − X̃i−1)(ω).

That is, each crossing must “travel” a distance of at least b̃.

Now, we have

{φi(ω) = 1} =
⋃

m:2∤m

{τm < i}︸ ︷︷ ︸
∈Fi−1

\ {τm+1} < i︸ ︷︷ ︸
∈Fi−1

∈ Fi−1.

It follows that

b̃EBn(0, b̃) ≤ E
n∑

i=1

φi · (X̃i − X̃i−1)

=
n∑

i=1

∫
{φi=1}

(X̃i − X̃i−1)dP

=
n∑

i=1

∫
{φi=1}

E{X̃i − X̃i−1 | Fi−1}dP

=
n∑

i=1

∫
{φi=1}

E{X̃i | Fi−1} − X̃i−1dP

≤
n∑

i=1

E
[
X̃i − X̃i−1

]
E{X̃i | Fi−1}

a.s.

≥ X̃i−1

= EX̃n.
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10.1.2 Doob’s Theorem

Theorem 10.1.2 (Doob)
Let (Xn,Fn) be submartingale with supn EX+

n <∞. Then with probability 1,

(1) ∃X∞(ω) := limn→∞Xn(ω)

(2) X∞ ∈ L1

Proof
Define

Ap,q := {ω : ∃p, q ∈ Q : lim
n

infXn ≤ p < q ≤ lim
n

supXn}.

We have

A := {ω : ∄ lim
n→∞

Xn}

=
⋃

p<q∈Q

Ap,q.

We first claim that P(A) = 0.

Recall Bn(p, q)(ω) and remark that it is monotonically increasing. It follows that there is
some

B∞(p, q) = lim
n
Bn(p, q).

If ω ∈ Ap,q, then we must have B∞(p, q)(ω) =∞. Hence if there is some Ap,q,P(Ap,q) > 0,
we must have EB∞(p, q) =∞. We will show that this is a contradiction.

Indeed, Recall by our lemma that

EBn(p, q) ≤
E(Xn − p)+

q − p

≤ EX+
n + |p|
q − p

.

It follows that

EB∞(p, q) = E lim
n
Bn(p, q)

= lim
n

EBn(p, q) MCT

≤ sup
n

EBn(p, q)

≤ sup
n

EX+
n + |p|
q − p

<∞. assumption
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By contradiction, P(A) = 0.

Now, to see that X∞ ∈ L1,

E|X∞| = E lim
n
|Xn|

≤ lim
n

inf E|Xn| Fatou’s Lemma

≤ sup
n

E|Xn|

≤ sup
n
(2EX+

n − EXn)

≤ 2 sup
n

EX+
n︸ ︷︷ ︸

<∞

−EX1 EXn = EX1

<∞.

Corollary 10.1.2.1
Let {Xn} be a sequence of random variables. Suppose any of the below hold:

a) {Xn} is submartingale and bounded from above

b) {Xn} is supermartingale and bounded from below

Then there is some
X∞(ω)

a.s.
= lim

n
Xn(ω) ∈ L1.

Corollary 10.1.2.2
The pair X∞,F∞ := σ{Fi, i ≥ 1}, closes the sequence. That is,

X1, X2, . . . , X∞

is a sub / super martingale.

Proof
We show that case of submartingales.

We have

E{X∞ | Fm}(ω) = E
{
lim
n
Xn | Fm

}
(ω)

≥ lim
n

supE{Xn | Fm}(ω) Fatou’s Lemma

≥ Xm(ω). n ≥ m

Note that this shows

E{Xinfty | Fn}(ω) = Xn(ω)

in the case of martingales.
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Theorem 10.1.3
Let (Xn,Fn) be martingale. The following are equivalent:

1) Xn
a.s−→ X∞ and (X∞,F∞) is a closing element

2) Xn
L1

−→ X∞, that is, E|Xn −X∞| → ∞ as n→∞
3) There is some random variable ξ(ω) such that Xn(ω) = E{ξ | Fn}(ω).

The proof of 1) ⇐⇒ 2) is not hard. The proofs involving 3) are less trivial.
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Chapter 11

Applications of Martingales

11.1 Kolmogorov’s 0-1 Law

Let ξ1, ξ2, . . . be independent random variables. We have

Fn := σ{ξi : i ∈ [n]}
↑ F∞

:= σ{ξi : i ∈ N} past

F∞
n := σ{ξi : i ≥ n}
↓ X
:= ∩n≥1F∞

n . future

Remark that the tail σ-algebra X is a σ-algebra. It captures events of the “ultimate” future.
For instance

{ω : max
n

ξn(ω) ∈ A =∞} ∈ X A ∈ F

{ω : ∃ lim
n
ξn(ω)} ∈ X.

However,

{ω : lim
n

1

n

n∑
i=1

ξn < c} /∈ X c ∈ R

{ω : ∀n, ξn = 0} /∈ X.

Finally, note that X ⊆ F∞, since⋂
n

F∞
n =

⋂
n

σ{ξi : i ≥ n}︸ ︷︷ ︸
⊆F∞

.
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Theorem 11.1.1 (Kolmogorov)
For all A ∈ X,

P(A) ∈ {0, 1}.

Proof
Let η := 1A(ω) ∈ X. Remark that η ∈ L1 is bounded. Consider the Doob martingale

Xn := E{η | Fn}

where Fn is the natural filtration. Then Xn is martingale and satisfies the conditions of
convergence.

Xn(ω)
a.s./L1−−−−→ X∞(ω) := E{1A | F∞} = 1A(ω).

The last equality follows from the remark that A ∈ X ⊆ F∞.

Remark that X is independent of Fn. Thus Xn = E1A = P(A)! In particular, 1A is
constant and thus is ones of 0-1.

11.2 Fundamental Theorems of Financial Mathematics

Let (Ω,F ,P) be a probability space and Fn, n ≥ 1 a filtration with F0 the trivial σ-algebra.

Definition 11.2.1 (Market)
We define a (B, S)-market satisfying the following.
B = (Bn)n≥0 are random variables with B0 constant, Bn ∈ Fn−1 (predictable), and

Bn = B0

n∏
k=1

(1 + bk).

Here bn = Bn−Bn−1

Bn−1
is the “interest rate” of a stable instrument (banks, bonds, etc).

S = (Sn)n≥0 are random variables with S0 constant, Sn ∈ Fn (adapted), and

Sn = S0

∏
k = 1n(1 + sk).

Here sn = Sn−Sn−1

Sn−1
is the “return” is some more volatile instrument.
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Definition 11.2.2 (Portfolio)
A portfolio is a random sequence (βn, σn)n≥1 with the “value”

Xπ
n (ω) = βn(ω)Bn(ω) + σn(ω)Sn(ω).

We say a portfolio is self-financing if

∆Xπ
n = βn(ω)∆Bn(ω) + σn(ω)∆Sn(ω).

Thus there is no “outside” influence.

Definition 11.2.3 (Arbitrage Opportunity)
We say a portfolio π provides opportunity for arbitrary at time n if X0 ≡ 0 and at
time n,

Xπ
n (ω)

a.s.

≥ 0

P{Xπ
n (ω) > 0} > 0.

We say the a (B, S)-market is arbitrage free if no self-financing portfolio provides an arbitrage
oppertunity.

Theorem 11.2.1
In finite discrete time, a (B, S)-market is arbitrage free if and only if there is some P̃
on (Ω,F) with P, P̃ absolutely continuous wwith respect to each other, such that

S

B
=
Sn

Bn

is P̃-martingale.

Definition 11.2.4 (N -Complete)
We say that a (B, S)-market is N -complete if any bounded Fn-measurable fN(ω) is
replicable, meaning there exists a self-financing portfolio π such that

XN(ω)
a.s.
= fN(ω).

Theorem 11.2.2
An arbitrage free (B, S)-market is N -complete for some N ∈ N if there exists a unique

P̃-martingale measure.
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Example 11.2.3 (CRR-Model)
Suppose the (B, S) market has constant interest bk ≡ b, k ∈ [N ]. Moreover, assume that
Sk takes on only two values A,B

P{Sk = C} =

{
q, C = A

p,C = B

where p+ q = 1 and −1 < A < b < B.

Thus

Sn

Bn

=

(
1 + Sn

1 + b

)(
Sn−1

Bn−1

)
=
S0

B0

n∏
k=1

(
1 + Sk

1 + b

)
.

If we want the above to be a martingale in some P̃ , we can ask that

Ẽ

(
1 + Sn

1 + b

)
= 1 ⇐⇒ ESn = b.

Then

P̃{Sn = C} =

{
B−b
B−A

, C = A
b−A
B−A

, C = B

11.3 Random Walks

Let ξ1, ξ2, . . . be iid random variables.

Definition 11.3.1 (Random Walk)
We say

Sn =
n∑

i=0

ξi

is a random walk.

A simple random walk satifies P{ξi = 1} = p,P{ξi = −1} = 1 − p =: q. Note that we can
easily generalize these notions to Rd.
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11.3.1 Revisiting Points

We wish to determine whether we return to ξ0. If so, how many times do we do so? Recall
by Komogorov’s 0-1 law,

P{max
n

Sn = 0 =∞} ∈ {0, 1}.

Now, remark that the walk can only return to 0 on even times.

P(B2n) := P{ω : S2n(ω) = 0}

=

(
2n

n

)
pnqn

≈ (4pq)n√
πn

. Sterling’s Formula

If pq < 1, then
∑

n P(B2n) < ∞ and Borel-Cantelli yields that the probability of visiting 0
infinitely many times is 0.

For p < 1
2
, we can show that

E
[
sup
n
Sn

]
< p.

Proposition 11.3.1
If p = q = 1

2
,

P{Sn = N infinitely many times} = 1

for any N ∈ Z.

Proof
It suffices to show that

P
{
lim
n

sup
Sn√
n
=∞, lim

n
inf

Sn√
n
= −∞

}
= 1.

Moreover, the probability is either 0 or 1, hence we need only show that it is non-zero.

Indeed,

lim
c→∞

P
{
lim
n

sup
Sn√
n
≥ c

}
≥ lim

n
supP

{
Sn√
n
≥ c

}
Fatou’s Lemma

= lim
n

supP{N(0, 1) ≥ c}

= lim
n

sup 1− erf(c)

> 0.
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11.3.2 Stopped Random Walks

suppose we start at some a ∈ [0,m] and p = q = 1
2
so the random walk is a martingale.

Define
τ := min{n : Sn(ω) ∈ {0,m}}

and remark it is a stopping time. Furthermore, Eτ <∞ and

E{|Sn+1 − Sn| | Fn} = E{|ξn−1| | Fn}
= 1

is bounded.

It follows that we can apply Doob’s optional stopping theorem to conclude that

(S0,F0), (Sτ ,Fτ )

is martingale. In particular,
ESτ = ES0 = a.

Since Sτ = 0 or m, the probability of being either is m−a
m
, a
m
.

Definition 11.3.2 (De Moivre’s Martingale)
For p ̸= q we can employ De Moivre’s Martingale

Mn(ω) :=

(
q

p

)Sn(ω)

.

We can also ask questions about one-side boundaries τ = min{n : Sn = 1} if we start at the
point 0. Now, suppose ESτ = ES0 = 0. But Sτ = 1 which is a contradiction. We must have
contradicted an assumption in Doob’s optional stopping theorem and in particular Eτ =∞.
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Chapter 12

Stochastic Processes

12.1 Stochastic Processes

Definition 12.1.1 (Stochastic Process)
A collection of random elements

X(ω) = {Xt(ω) : t ∈ T}

where T is some index set.

For T = N, X is a discrete time process. For T = [0,∞), we say X is a continuous time
process. For the sake of culture, T = Rd means we have a random field.

Now, for Xt : (Ω,F ,P)→ (Rd,B(Rd)), we say X is a d-dimensional process.

Lastly, we remark that Xt(ω) : T × Ω→ R is a function on two variables. For each t, Xt is
a random variable. For each ω fixed, t 7→ Xt(ω) is a trajectory or realization.

We can think of X as a “random trajectory”, but we need to develop some measurable space
first.

12.1.1 Equivalences

Let {Xt}, {Yt} be two processes on the same space (Ω,F ,P).
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Definition 12.1.2 (Indistinguishable)
We say Xt, Yt are indistinguishable if

P{ω : ∀t,Xt(ω) = Yt(ω)} = 1.

Definition 12.1.3 (Modification / Strict Equivalence)
We say Xt, Yt are modifications of each other, or strictly equivalent if ∀t ∈ T ,

P{ω : Xt(ω) = Yt(ω)} = 1.

Note that even ifXt, Yt are modifications of each other, they can still have different properties
of trajectories!

Example 12.1.1
Suppose Xt(ω) ≡ 0 while

Yt(ω) =

{
1, t = ξ(ω)

0, t /∈ ξ(ω)

where ξ(ω) is some continuous random variable (with no atoms).

Then for all t,
P{Yt(ω) ̸= Xt(ω)} = P{ξ(ω) = t} = 0.

Proposition 12.1.2
If Xt, Yt are modifications of each other and have right continuous trajectories a.s., then
Xt, Yt are indistinguishable.

12.1.2 Finite-Dimensional Distributions

Let {Xt}t∈T be a 1-dimensional process.

Definition 12.1.4 (System of Finite-Dimensional Distributions)
A system of finite-dimensional distributions PT on RT is a family of probability
distributions containing a probability distribution Pt1,...,tn on Rn for every possible
n ≥ 1, t1, . . . , tn ∈ T .

The system of finite-dimensional distributions induced by Xt are of the form

P(X)
t1,...,tn(A) := P{ω : (Xt1(ω), . . . , Xtn(ω)) ∈ A}

for all A ∈ B(Rn).
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Note that in particular, for Ai ∈ B(R),

P(X)
t1,...,tn(A1 × · · · × An) = P

n⋂
i=1

{Xti ∈ Ai}.

Definition 12.1.5 (Consistent)
An arbitrary system of finite-dimensionaal distributions is consistent if

a) For every n ≥ 1, t1, . . . , tn ∈ T,A1, . . . , An ∈ B(R),

Pt1,...,tn(A1 × · · · × An) = Ptσ(1),...,tσ(n)
(Aσ(1) × · · · × Aσ(n))

for any permutation σ ∈ Sn.

b) For all n ≥ 1, t1, . . . , tn, tn+1 ∈ T,A ∈ B(Rn),

Pt1,...,tn,tn+1(A× R) = Pt1,...tn(A).

Proposition 12.1.3
The system of finite-dimensional distributions induced by Xt is consistent.

Definition 12.1.6 (Wide Equivalence)
Xt, Yt are widely equivalent if their systems of finite-dimensional distributions coin-
cide.

Proposition 12.1.4
If Xt, Yt are strictly equivalent, then they are also widely equivalent.

Proof
For every t1, . . . , tn ∈ T,A ∈ B(Rn),

|P{(Xt1 , . . . , Xtn) ∈ A} − P{(Yt1 , . . . , Ytn) ∈ A}|
≤ P{(Xti) ∈ A, (Yti) /∈ A}+ P{(Xti) /∈ A, (Yti) ∈ A}
≤ P{Xt1 ̸= Yt1 . . . . , Xtn ̸= Ytn}

≤
n∑

i=1

P{Xti ̸= Yti}

= 0.
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12.1.3 Processes as Random Elements

Definition 12.1.7 (Cylinder Set)
A cylinder set in RT is given by

Ct1,...,tn(A1, . . . , An) := {x ∈ Rn : xt1 ∈ A1, . . . , xtn ∈ An}.

Here n ≥ 1 and t1, . . . , tn ∈ T .

We define the σ-algebra generated by cylinder sets as

CRT = CT := σ{Ct1,...,tn(A1, . . . , An) : n ≥ 1, ti ∈ T,Ai ∈ B(R)}.

Now, stochastic processes are random elements of the measurable space (RT , CT ). Indeed,
we think of a stochastic process as X : (Ω,F ,P)→ (RT , CT ). It is measurable since

X−1(Ct1,...,tn(A1, . . . , An)) = {ω : Xt1 ∈ A1, . . . , Xtn ∈ An}.

12.2 Kolmogorov’s Extension Theorem

Theorem 12.2.1 (Kolmogorov)
Suppose PT is a consistent family of finite-dimensional distributions. Then there is a
probability measure PT on (RT , CT ) with the given finite-dimensional distributions.

The theorem is proven by leveraging Carathéodory’s extension theorem.

We remark that this theorem characterizes stochastic processes with a consistent system of
finite-dimensional distributions! We will employ this theorem to construct Brownian motion.

Example 12.2.2 (sketch)
Define Pt1,...,tn as follows: Sort and relabel t1 < t2 < · · · < tn. Then define

Pt1,...,tn(A1 × · · · × An)

=

∫
A1

∫
A2

· · ·
∫
An

pt1(0, x1) · pt2−t1(x1, x2) . . . ptn−tn−1(xn−1, xn)dx1 . . . dxn

pt(x, y)

=
1√
2πt

exp

[
−(x− y)2

2t

]
.
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Example 12.2.3 (Bernoulli Trials)
Let Xn(ω) take values in 0, 1 independently with equal probability for all n ∈ N. Then
Xn ∈ (Zn

2 , CN).

We have

Pt1,...,tn(A1 × · · · × An) = P{xt1 ∈ A1, . . . , xtn ∈ An}

=
n∏

i=1

PBe(Ai).

By Kolmogorov’s extension theorem, there is some PB on (ZN
2 , CN) corresponding to a

stochastic process
BBe : (Ω,F ,P)→ (ZN

2 , CT ).

We remark that it can be shown

(ZN
2 , CN,PB) ∼= ([0, 1],B[0, 1], λ).

The isomorphism is simply given by

y =
∑
n∈N

2−nxn.

Moreover,

CT = σ{x : ∃n, xi is fixed for i ≤ n}.

Thus the image σ-algebra is generated by open intervals.

12.3 Kolmogorov’s Continuity Theorem

Definition 12.3.1 (Continuity)
We say a stochastic process Xt(ω) is continuous if

P{ω : Xt(ω) is continuous} = 1.
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Theorem 12.3.1 (Kolmogorov)
Suppose Xt(ω) is a stochastic process with t ∈ [a, b] such that there are constants
ϵ, β, c > 0 such that for every t, s ∈ [a, b],

E
[
|Xt −Xs|β

]
< c|t− s|1+ϵ.

The following hold:

1) Xt(ω) has a continuous modification X̃t(ω).

2) X̃t(ω) is locally Hölder continuous, ie there is some K(ω)
a.s.
> 0 such that

|X̃t(ω)−Xs(ω)| ≤ K(ω)|t− s|α

for every α ∈
(
0, ϵ

β

)
.

Is X̃t(ω) unique up to indistinguishibility?

Proof
1) By Chebychev’s inequality,

P{|Xt −Xs| > δ} ≤ E|Xs −Xt|β

δβ

≤ c|t− s|1+ϵ

δβ

→ 0. |s− t| → 0

Hence Xsn

p−→ Xt for any sn → t.

Now fix some m ≥ 1 and define q := 2−α for some α ∈
(
0, ϵ

β

)
. From our result above,

P
{∣∣∣X k+1

2m
−X k

2m

∣∣∣ > qm
}
≤ c2−m(1+ϵ)

qmβ

= c2−m2−m(ϵ−αβ).

We can then take a union bound

P
{
max

k

∣∣∣X k+1
2m
−X k

2m

∣∣∣ > qm
}
≤ (b− a)

2−m
· c2−m2−m(ϵ−αβ)

which is a term in a convergent geometric series. It follows by the Borel-Cantelli lemma
that these events occur for only finitely many m a.s. In other words, there is some
Ω∗,P(Ω∗) = 1 and M0 : Ω

∗ → N such that for every ω ∈ Ω∗ and m ≥M0(ω),

max
k

∣∣∣X k+1
2m
−X k

2m

∣∣∣ ≤ qm = 2−αm.
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Now fix ω∗ ∈ Ω∗ and s, t be dyadic rationals. Moreover, suppose

2−(n+1) ≤ |t− s| ≤ 2−n < 2−M0(ω∗).

Without loss of generality, we can write

s = k2−n − 2−v1 + · · ·+ 2−va

t = k2−n + 2−ℓ1 + · · ·+ 2−ℓb .

Here n < vi < vi+1 and n < ℓi < ℓi+1. Then

|Xt(ω
∗)−Xs(ω

∗)| ≤ |Xt −X k
2m
|+ |Xs −X k

2m
|

≤
∑
i

qvi +
∑
j

qℓj

≤ 2
∞∑

k=n+1

qk

=
2qn+1

1− q

=
2 · 2−α(n+1)

1− 2−α

≤ 2

1− 2−α
|t− s|α. 2−(n+1) ≤ |t− s|

We define

X̃t(ω) := Xt(ω) t dyadic

X̃t(ω) := lim
tn→t

Xtn(ω). tn dyadic, t not

Thus X̃t is continuous by construction.

To see that X̃t is a modification, first remark that X̃t = Xt for dyadic t. For t non-dyadic,
we have Xsn

p−→ Xt and X̃sn
a.s.−−→ Xt. Hence by an unproven lemma, Xt = X̃t a.s.

2) By construction, X̃t(ω) is locally Hölder continuous.

Remark that we proved the theorem for a compact interval [a, b]. We can expand onto [0,∞).

Also, suppose that

E
[
|Xt −Xu|δ · |Xu −Xs|δ

]
≤ c|t− s|1+δ,

then there is a unique modification Xt(ω) with CADLAG trajectories.
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Consider the space of continuous functions C[0,∞) on the half-line. There is a metric

ρ(f, g) :=
∞∑
n=1

max
1≤t≤n

(1, |f(t)− g(t)|)

such that

C[0,∞)

∣∣∣∣
C[0,∞)

= B(C[0,∞)).
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Chapter 13

Brownian Motion

13.1 First Construction

Define Pt1,...,tn as follows: Sort and relabel t1 < t2 < · · · < tn. Then define

Pt1,...,tn(A1 × · · · × An)

=

∫
A1

∫
A2

· · ·
∫
An

pt1(0, x1) · pt2−t1(x1, x2) . . . ptn−tn−1(xn−1, xn)dx1 . . . dxn

pt(x, y)

=
1√
2πt

exp

[
−(x− y)2

2t

]
.

It can be checked that this is a consistent system. Hence we can apply Kolmogorov’s exten-
sion theorem to extract some stochastic process

Bt(ω) : (Ω,F ,P)→ (R[0,∞), C[0,∞)).

We remark that

Pt1(A1) =

∫
A1

1√
2πt1

exp

(
− x

2
1

2t1

)
dx1

so Bt1 ∼ N(0, t1)!

Moreover, P0 = δ0 is the delta measure at 0. If we wish to start a different distribution, we
will need to change the construction of the density.

Furthermore, remark that the increments

Bt1 , Bt1 −Bt1 , . . . , Btn −Btn−1
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are independent. Thus we have


Bt1

Bt2 −Bt1
...

Btn −Btn−1

 ∼ N(0,Diag(t1, t2 − t1, . . . , tn − tn−1)).

We can thus deduce that


Bt1

Bt2
...
Btn

 =


1 0 . . . 0
1 1 . . . 0
...

. . . . . .
...

1 1 . . . 1




Bt1

Bt2 −Bt1
...

Btn −Btn−1



∼ N

0,


t1 t1 . . . t1
t1 t2 . . . t2
...

. . . . . .
...

t1 t2 . . . tn


 .

Thus VarBti = ti and

Cov(Bti , Btj) = min(ti, tj).

Remark that

E
[
|Bt −Bs|4

]
= 3|t− s|2.

Hence the assumption of Kolmogorov’s continuity theorem is satisfied with parameter β =
4, ϵ = 1 and there is some continuous modification B̃t(ω).

Definition 13.1.1 (Brownian Motion)
A stochastic process Bt(ω) is a Brownian motion if its system of finite-dimensional
distributions has locally Hölder continuous trajectories with parameter α < 1

2
.

While this construction seems tailored to Gaussians, it is actually a necessity. We needed
that the Gaussian integral works out nicely to show consistency. Indeed, we need that the
sum of two increments yields the same class of densities.
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13.2 Processes with Independent Increments

Definition 13.2.1 (Independent Increment)
A stochastic process Xt(ω) has independent increments if for all 0 = t0 < t1 < · · · <
tn ∈ T ,

Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent.

Note that there is a bijection between the finite dimensional distributions of Xt and the
distribution of increments.

We wish to define processes using increments. To do so, we need to adapt the notion
of consistency for increments. Note that we define increments on the ordered vectors so
permutation invariance is free. We need only check that

P{(Xt0 , . . . , Xtn) ∈ A0 × . . . , Ak = R, . . . , An}
= P{(Xt0 , . . . , Xtk−1

, Xtk+1
, . . . , Xtn) ∈ A0 × · · · × Ak−1 × Ak+1 × · · · × An}

⇐⇒
P{D(Xt0 , . . . , Xtn) ∈ D(A0 × . . . , Ak = R, . . . , An)}
= P{D(Xt0 , . . . , Xtk−1

, Xtk+1
, . . . , Xtn) ∈ D(A0 × · · · × Ak−1 × Ak+1 × · · · × An)}.

Here D is the linear operator which sends the vector to its increments.

Equivalently, Since we must check over some generating set of the borel σ-algebra we check
that over boxes Bi,

P{D(Xt0 , . . . , Xtn) ∈ (B0 × . . . , D(R, Bk+1), . . . , Bn)}
= P{D(Xt0 , . . . , Xtk−1

, Xtk+1
, . . . , Xtn) ∈ (B0 × · · · ×Bk−1 ×Bk+1 × · · · ×Bn)}

⇐⇒
P{(Xtk −Xtk−1

, Xtk+1
−Xtk) ∈ D(R×Bk+1)}

= P{Xtk+1
−Xtk−1

∈ Bk+1}
⇐⇒

(Xtk+1−Xtk
)(ω)

ind
+ (Xtk −Xtk−1

)(ω)

d
= (Xtk+1

−Xtk−1
)(ω).

Proposition 13.2.1
A process Xt(ω) with independent increments is uniquely defined by the distribution of
X0(ω), (Xt −Xs)(ω) for s < t ∈ T , provided that

(Xt −Xs)(ω)
ind
+ (Xs −Xu)(ω)

d
= (Xt −Xu)(ω).
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Proposition 13.2.2
Let T = Z+ so that Xm(ω) is a discrete time process. Then Xm(ω) has independent
increments if and only if Xm =

∑m
k=0 ξk for some independent random variables ξk.

Proof
If it has independent increments, then ξ0 := X0, ξi := Xi − Xi−1 is independent by
assumption.

Conversely,

(X0, Xm1 −X0, . . . , Xmn −Xmn−1) =

ξ0, m1∑
k=1

ξk, . . . ,

mn∑
k=mn−1

ξk

 .

In particular, a Bernoulli process does NOT have independent increments.

13.3 The Increments of Brownian Motion

By the first construction of BM,

Pt1,...,tn(A1 × · · · × An)

=

∫
A1

∫
A2

· · ·
∫
An

pt1(0, x1) · pt2−t1(x1, x2) . . . ptn−tn−1(xn−1, xn)dx1 . . . dxn

pt(x, y)

=
1√
2πt

exp

[
−(x− y)2

2t

]
.

In particular, note that Bt ∼ N(0, t).

Moreover,

Bαt
d
=
√
αBt ∼ N(0, αt).

Proposition 13.3.1
Brownian motion has independent increments.
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Proof
We have

P{D(B0, . . . , Btn) ∈ A0 · · · × An}
= P{(B0, . . . , Btn) ∈ D−1A}

=

∫
D−1A

p(x1, . . . , xn)dx1 . . . dxn1{0 ∈ A0}dx0

=

∫
A

p(y1; 0, t
2
1) . . . p(yn; tn−1, (tn − tn−1)

2)dy1 . . . dyn.

This coincides with an independent distribution as desired.

In fact, we note that
Bt −Bs ∼ N(0, t− s) ∼ Bt−s.

Definition 13.3.1 (Stationary)
A process has stationary increments if the increment from s→ t is a function of t−s.

We have just shown that the increments of BM are independent and stationary.

Recall that Cov(Bt, Bs) = min(t, s). We can compute this as

EBtBt = EB2
s + E(Bt −Bs)EBs = s.

Remark that BM can alternatively be defined as the process with independent and stationary
increments with distributions B0 ≡ 0 and Bt −Bs ∼ N(0, t− s), provided that

(Bt −Bs)
ind
+ (Bs −Bu)

d
= (Bt −Bu)

for all t > s > u.

In other words, the convolutional distribution

D(. . . ) ∗D(. . . ) = D(. . . )

for normal distributions is again a normal. This is quit a rare property! In fact, these
distributions are known as Lévy processes to which Poisson and BM belong.

Finally, as a final remark on GM, recall Komogorov’s continuity theorem. There is a modi-
fication of BM with locally Hölder continuous trajectories. Thus

|(Bt −Bs)(ω)| < K(ω)|t− s|α

for any α ∈
(
0, 1

2

)
. We also know that the trajectory Bt is nowhere differentiable with

probability 1.
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Chapter 14

More Stochastic Processes

14.1 Poisson Processes

Definition 14.1.1 (Poisson Process)
A Poisson process Pt(ω) is the stochastic process such that

1) P0(ω) ≡ 0

2) Pt has inddependent and stationary increments

3) (Pt − Ps)(ω) ∼ Po(λ(t− s)) for all t > s ∈ R+

From our work with independent increments, we need only check that

(Pt − Ps)
ind
+ (Ps − Pu)

d
= (Pt − Pu)

for every t > s > u. In other words,

Po(λ(t− s)) ∗ Po(λ(s− u)) d
= Po(λ(t− u)).

and then Pt exists. Note that while Pt is well-defined, we do not know prior to checking that
it actually exists. This can be done simply by computing

n∑
k=0

P{ξ1 = k} · P{ξ2 = n− k}.

Proposition 14.1.1
Pt is stochastically continuous, that is,

Pt+h
p−→ Pt

as h→ 0.
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Proof

P{|Pt+h − Pt| > ϵ} = 1− P{Pt+h − Pt = 0} ϵ ∈ (0, 1)

= 1− exp(−λh)
→ 0.

Proposition 14.1.2
There exists a CADLAG modification of Pt.

Proof
We apply the stronger version of Kolmogorov’s continuity theorem

E(Pt − Ps)(Ps − Pu) = λ2|t− s| · |s− u|
≤ λ2|t− u|1+1.

Proposition 14.1.3
Pt is non-decreasing a.s. and Z+-valued.

Proof
Since the trajectory is CADLAG, it suffices to check that this holds on the rational points.

P{∀q ≥ p ∈ Q, Pq(ω) ≥ Pp(ω)} = 1

⇐⇒ ∀q ≥ p ∈ Q,P{Pq(ω) ≥ Pp(ω)} = 1

⇐⇒ ∀q ≥ p ∈ Q,P{Pq(ω)− Pp(ω) ≥ 0} = 1.

14.1.1 Counting Renewal Processes

We can think of a Poisson as a “counting renewal” proces, which are non-negative integer-
value processes where Pt−Ps model the the number of events which occur during the interval
(s, t]. In particular, Pt Po(λt) models the number of occurances up until time t for Poisson
processes.
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14.1.2 Random Point Processes

We construct a “random measure” on B(R) as follows. First consider an interval A = [a, b].
We define

#P
A(ω) :=

∞∑
k=1

1{Tk ∈ [a, b]}

= Pb(ω)− Pa(ω)

∼ Po(λ(b− a)).

Then for disjoint intervals A ⊔B,

#P
A⊔B(ω) = Po(λ(ℓ(A))) ∗ Po(λℓ(B))

= Po(λµ(A ∪B)) Lebesgue measure.

In general for C ∈ B(R),
#P

C(ω) ∼ Po(λµ(C)).

Note that #P
C ,#

P
D are independent for C ∩D = ∅.

An interesting example of a random point process are the eigenvalues of some random matrix.

We note that we can extend Poisson processes to Rd using the notion of a random point
process.

14.2 Lévy Processes

Definition 14.2.1 (Lévy Process)
A stochastic process satisfying:

1) L0(ω) ≡ 0

2) Stationary and independent increments

3) Stochastically continuous trajectories

Lévy processes are a generalization of both Brownian motion as well as Poisson processes
and capture all the processes defined using independent increments.

Proposition 14.2.1
Lt has CADLAG modifications.
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Example 14.2.2
Brownian motion with drift

Bt + at

is a Lévy process.

The gamma process with density

pt(x) :=
λγt

Γ(γt)
xγt−1 exp(−λx)

is a Lévy process.

We remark Lévy processes are infinitely divisible distributions. In other words,

Lt(ω) =
n∑

k=1

(
L kt

n
− L (k−1)t

n

)
(ω)

=
n∑

k=1

L
(k)
t
n

.

Another way to express this relation is through the characteristic function of the process

φt(x) = φn
t
n
(x).

Example 14.2.3 (Infinitely Divisible Distributions)
Any stable distribution is infinitely divisible. Examples include Normal, Cauchy, Gamma,
Poisson, χ2, and Student distributions.

14.3 Gaussian Processes

Definition 14.3.1 (Gaussian process)
A stochastic process is Gaussian if all finite-dimensional distributions are Gaussian
vectors

(Gt1 , . . . , Gtn) ∼ N(At1,...,tn ,Σt1,...,tn).

Example 14.3.1
Brownian motion is a Gaussian process.
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Proposition 14.3.2
A random vector ξ̄ is a Gaussian vector if and only if for all coefficients αi ∈ R,∑

i

αiξi

is a Gaussian random variable.

Proposition 14.3.3
Gt is Gaussian if and only if for every ti ∈ T, αi ∈ R,(∑

i

αiTti

)
(ω)

is a Gaussian random variable.

Example 14.3.4 (Discrete Brownian Motion)
Consider discrete Brownian motion, with T = Z+, which is a process with independent
stationary increments and satisfies

DB0 ≡ 0

DBn(ω) =
n∑

k=1

ξk(ω). ξk ∼ N(a, σ)

Example 14.3.5 (Ornstein-Uhlenbeck)
This is the Gaussian process given by

OUt(ω) = exp(−θt)Bexp(2θt)(ω)

for θ > 0.

Note that for every t ≥ 0,

OUt(ω)
d
= exp(−θt) ·N(0, exp(2θt))

= N(0, 1).

Example 14.3.6 (Brownian Bridge)
Consider T = [0, 1]. A brownian bridge is the process given by

BBt(ω) = Bt(ω)− tB1(ω).
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We have

BB0 ≡ 0

BB1 ≡ 0

BBt ∼ N(0, t(1− t))
VarBBt = Var [(1− t)Bt − t(B1 −Bt)]

= (1− t)2t+ t2(1− t).

We remark that this is a Gaussian process since

∑
i

αi BBt1 =

(∑
i

αiBti

)
−

(∑
i

αiti

)
B1.

14.4 Markov Chains & Processes

Informally speaking, a process is Markov if the probability of the “future” conditioned on the
“past” and “present” is just the probability of the probability of the “future” conditioned on
the “present”. It captures a different notion of “memoryless” compared to the exponential
distribution as well as martingales.

14.4.1 Markov Chains

Let S be a countable phase (state) space.

Definition 14.4.1 (Markov Chain)
A discrete time process Xn, n ∈ Z+ is a Markov chain if

1) Xn ∈ S for all n ∈ Z+

2) P{Xn = i | X0 = i0, X1 = i1, . . . , Xn−1 = in−1} = P{Xn = i | Xn−1 = in−1}

Proposition 14.4.1
The second condition is equivalent to any of the following:

(i) P{Xn = i | Xkj = ikj , j ∈ [ℓ]} = P{Xn = i | Xkℓ = ikℓ} for kj < kj+1

(ii) P{Xn ∈ An | Xkj ∈ Akj , j ∈ [ℓ]} = P{Xn ∈ An | Xkℓ ∈ Akℓ} for kj < kj+1

(iii)

P{Xn = in, Xk+1 = ik+1, Xk−1 = ik−1, . . . , X0 = i0 | Xk = ik}
= P{Xn = in, . . . , Xk+1 = ik+1 | Xk = ik} · P{Xk−1 = ik−1, . . . , Xi0 = i0 | Xk = ik}
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Let

pij(n→ n+ 1) = P{Xn+1 = j | Xn = i}

and define the matrix P (n→ n+ 1) = [pij].

Proposition 14.4.2
P (n→ n+ 1) is a stochastic matrix. That is,

1) pij(n→ n+ 1) ∈ [0, 1]

2)
∑

j pij(n→ n+ 1) = 1 for all i

Theorem 14.4.3
Let Xn, n ∈ Z+ be a Markov chain. Then Xn is completely defined by

1) The distribution of X0, say pk := P{X0 = k} for every k ∈ S.
2) The sequence of transition matrices P (n → n + 1) provided that they are

stochastic.

Proof (Sketch)
For the forward direction, we can decompose P{Xj = ij, 0 ≤ j ≤ n} as a product
of transitions. Conversely, we can check that the two conditions define a permutation
invariant, consistent, and Markov system of finite dimensional distributions.

Definition 14.4.2 (Homogeneous Markov Chain)
We say a Markov chain is homogeneous or stationary, if the transition matrix is the
same across all steps.

Example 14.4.4 (Homogeneous Markov Chains)
1) Sequence of independent events

2) Random walk

3) Random walks with absorbing / reflecting barriers

Theorem 14.4.5 (Chapman-Kolmogorov Equations)
1) For a stationary Markov chain, the n-step transition matrix is just P n.

2) For a not-necessarily homogenous Markov chain,

P (k → m) = P (k → u)P (u→ m)

for all k < u < m.
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Corollary 14.4.5.1
We have

P{X0 ∈ A0, Xk1 ∈ Ak1 , . . . , Xkℓ ∈ Aℓ}

=
∑

i0∈A0,ikj∈Ak,j∈[ℓ]

pi0pi0→ik1
(0→ k1) · · · · · pikℓ−1

→ikℓ
(kℓ−1 → kℓ).

More on Markov Chains

There is further theory on Markov chains such as recurrency and transience. For instance,
random walks in dimensions 1, 2 are recurrent (returns almost surely), while for dimensions
3 or higher, they are transient (never return). We can also study ergodicity and asymptotic
properties.

14.4.2 Markov Processes

Consider now T = R+ and S = R. We write

F t
s := σ{Xu(ω) : s < u < t}.

Thus F s
0 is the σ-algebra of the past and F∞

s is the σ-algebra of the future.

Definition 14.4.3 (Markov Process)
A continuous time process Xt, t ∈ R+ is Markov if for every s < t and A ∈ B,

P{Xt ∈ A | F s
0}(ω) = P{Xt ∈ A | F s

s}(ω).

The definition above is difficult to work with. Thus we wish to consider an analogue of the
transition matrix.

Definition 14.4.4 (Transition Probability)
Suppose there is a function P (s, x, t, A) such that for every s, t and A ∈ B,

P{Xt ∈ A | F s
s}(ω) = P (x,Xt(ω), t, A),

then P is the transition probability.

Note that P should be measurable in x. Moreover, for every s, t, x, it should be a measure
in A. Finally, it should satisfy the Chapman-Kolmogorov equation

P (s, x, u, A) =

∫ ∞

−∞
p(s, x, t, dy)p(t, y, u, A).
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For instance, if there exists a transition density p(s, t, x, y) such that

P (s,X, t, A) =

∫
A

p(s, t, x, y)dy,

then the Chapman-Kolmogorov equations is as follows.

P (s, x, u, z) =

∫ ∞

−∞
p(s, x, t, y)p(t, y, u, z)dy.

Note that Chapman-Kolmogorov guarantees the consistency of finite-dimensional distribu-
tions.

If transition densities exist,

P{X0 ∈ A0, Xtj ∈ Aj, j ∈ [ℓ]}

=

∫
A0

· · ·
∫
Aℓ

f0(x0)p(0, x0, t1, x1) . . . p(tℓ−1, xℓ−1, tℓ, xℓ)dx0dx1 . . . dxℓ.

Here f0 is the density of X0.

Proposition 14.4.6
Markov processes with transition densities ar uniquely defined by transitions probabili-
ties given the Chapman-Kolmogorov equations.

Example 14.4.7
Any process with independent increments is Markov.

Brownian motion is a Markov process. More generally, any Lévy process is Markov.

14.5 Markov Diffusion

Markov Diffusion Processes are Markov processes with particularly well-behaved sample
paths. We omit the precise definition but give some sufficient conditions to be a diffusion
proces.
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Proposition 14.5.1
A markov process Xt with transition densities is a diffusion process if

1) The limit (drift coefficient)

a(s, x) = lim
t→s−

∫ ∞

−∞

(y − x)p(s, x, t, y)
(t− s)

dy

exists.

2) The limit (drift coefficient)

b(s, x) = lim
t→s−

∫ ∞

−∞

(y − x)2p(s, x, t, y)
(t− s)

dy

exists.

3) We have continuous trajectories, ie∫ ∞

−∞
|y − x|2+δp(s, x, t, y)dy = o(|t− s|).

14.5.1 Kolmogorov Forward-Backward Equations

Consider the operators

Da,b(·) =
1

2
b(s, x)

∂2

∂x2
(·) + a(s, x)

∂

∂x
(·)

D̃a,b(·) =
1

2

∂2

∂y2
(b(t, y)·)− ∂

∂y
(a(t, y)·) .

The idea is that with s, x fixed,

∂

∂t
p(s, x, t, y) = Da,bp(s, x, t, y).

Example 14.5.2
Brownian motion has drift coefficient a(s, x) = 0 and diffusion coefficient b(s, x) = 1. It
follows that

Da,b =
1

2
∆.
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14.6 Convergence of Stochastic Processes

14.6.1 The Space C[0,∞) & Convergence

The σ-algebra generated by cylinder sets is not “nice” to work with when discussing notions
of convergence. Instead, we restrict ourselves to the processes with continuous trajectories
and take the Borel σ-algebra under some metric.

We write

C[0,∞)

to denote the set of continuous functions f : [0,∞)→ R and we equip it with the metric

ρ(f, g) :=
∞∑
n=1

1

2n
max
0≤t≤n

{|f(t)− g(t)| ∧ 1}.

Remark that ρ(f, g) ∈ [0, 1].

Proposition 14.6.1
We have

BC[0,∞) = CR[0,∞)

∣∣∣∣
C[0,∞)

.

Thus random processes with continuous trajectories are random elements of (C[0,∞),BC).

We wish to study the weak convergence of measures, or in other words, the convergence
in distribution of random processes X

(n)
t

p−→ Xt. Recall that convergence in distribution is
defined as the convergence

EF (X(n)
t )→ EF (Xt)

for every bounded continuous F : C[0,∞)→ R, ie

∫
C[0,∞)

F (f)dPn(f)→
∫
C[0,∞)

F (f)P(f).

Recall that sequence of measures Pn is tight if every subsequence contains a convergene
subsequence converging to a probability measure. It is equivalent to relative compactness,
which states that there exists some Kϵ for which Pn(Kϵ) > 1− ϵ.
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14.6.2 Convergene of Processes

Proposition 14.6.2
If X

(n)
t

w−→ Xt and Pn
w−→ P in (C[0,∞),BC),

1) Pn is relatively compact and tight

2) For every t1, . . . , td ∈ [0,∞),(
X

(n)
t1 , . . . , X

(n)
td

)
(ω)

d−→ (Xt1 , . . . , Xtd) (ω).

Proof
To see 2), let f : Rd → R be continuous and bounded. Define F : C[0,∞)→ R given by

F (g) := f(g(t1), . . . , g(td)).

Remark that F (X
(n)
t (ω)) = f(X

(n)
t1 (ω), . . . , X

(n)
td

(ω)).

Theorem 14.6.3
Let X

(n)
t be a sequence of random elements of (C[0,∞),B) that is

1) tight (or relatively compact)

2) convergent in terms of finite dimensional distributions

Then X
(n)
t

d−→ Xt and Pn
w−→ P where Xt is the process given by the limiting finite

dimensional distributions.

We note that in general, tightness is a difficulty property to show. Luckily, there are criterions
for the tightness of processes.

14.6.3 Convergene of Random Walks to Brownian Motion

Let ξi, i ∈ N be iid with zero-mean and variance σ2. Define S0 := 0 and

Sk(ω) :=
k∑

i=1

ξi(ω).

Consider the process
Yt(ω) := S⌊t⌋ + (t− ⌊t⌋)ξ⌊t⌋+1

and rescale it so to

X
(n)
t (ω) :=

1

σ
√
n
Y⌊tn⌋

for t ≥ 0.
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Theorem 14.6.4 (Donsker)
The scaled random walk X

(n)
t converges in distribution to Brownian motion Bt and

Pn
w−→ PB on (C[0,∞),BC) a random elements.

We note that PB on (C,BC) is at times known as the Wiener measure.

Donsker’s theorem is also known as the functional central limit theorem.
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Chapter 15

Stochastic Calculus

15.1 Motivation

Recall that a Brownian motion Bt(ω) is a stochastic process with independent stationary
increments and a.s. (α < 1

2
Hölder) continuous trajectories. Moreover, it is a square-

integrable martingale. Indeed, for s < t,

E{Bt | Fs} = E{Bs + (Bt −Bs) | Fs}
= EBs + E[Bt −Bs] Bs ∈ Fs, independence

= EBs.

Finally, there exists some ⟨Bt⟩ such that B2
t − ⟨Bt⟩ is martingale.

Proposition 15.1.1
For S = t0 < t1 < · · · < tn = T ,

lim
∆t→0

n−1∑
k=0

(Btk+1
(ω)−Btk(ω))

2 p−→ T − S.

Proof
We have equality under expectation and the variance tends to 0. Thus we can apply
Chebyshev’s inequality.

Note that we can actually show convergence a.s. More importantly however, the total vari-
ation

lim
∆t→0

n−1∑
k=0

|Btk+1
(ω)−Btk(ω)| ≥ T − S > 0.

Hence Bt is a.s. nowhere differentiable and we have no hope of applying for example the

153



©
Fe
lix
Zh
ou

Riemann–Stieltjes integral.

Still, we would like some notion of a derivative, some definition of differential equations, as
well as calculus.

15.2 Construction of the Îto Integral

15.2.1 The Space

Let (Ω,F ,P) be a probability space. Our space carries a Brownian motion Bt that is adapted
to some filtration Ft, t ∈ [0, T ].

Remark that Bt is a Ft-martingale.

15.2.2 “Integrable” Processes

Consider an arbitrary f : [0, T ]× Ω→ R. We would like f to be adapted, ie f(t, ·) ∈ Ft for
every t, and square integrable, ie∫ T

0

∫
Ω

f(t, ω)2dPdt = ∥f∥2 <∞.

Write H2[0, T ] to be the set of adapted functions from L2([0, T ]× Ω).

15.2.3 Desired Properties

For our desired integral ∫ T

0

f(t, ω)dBt,

we wish for it to be a random variable that is FT measurable.

Moreover, we would like the following to be satisfied:

(i) Linearity

(ii)
∫ T

0
1[s,u](t, ω)dBt = (Bu −Bs)(ω)

(iii) E
[∫ T

0
f(t, ω)dBt

]
= 0

(iv)

E
[∫ T

0

f(t, ω)dBt

]2
= ∥f∥2H2

:=

∫ T

0

∫
Ω

f(t, ω)2dP(ω)dt <∞
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First we note that
∫ T

0
f(t, ω)dBt depends on both T, ω thus it is a process. Moreover, The

integral is an isometry between H2[0, T ] and L
2(Ω). Hence many properties can be divined

simply by looking at H2[0, T ].

15.2.4 Simple Processes

Similar to the construction of other integrals, we begin with easily integrable functions.

Definition 15.2.1 (Simple Process)
For f ∈ H2[0, T ], we say that f is simple if there are 0 = t0 < t1 < · · · < tn = T such
that

f(t, ω) =
n−1∑
k=0

f(tk, ω)1{t ∈ [tk, tk+1)}.

Here f(tk, ·) ∈ Ftk .

It is clear that f is square-integrable

∥f∥H2[0,T ] =
n−1∑
k=0

(tk+1 − tk)E
[
f(tk, ω)

2
]
<∞.

Moreover, it is adapted by definition.

For such a simple function, we define∫ T

0

f(t, ω)dBt :=
n−1∑
k=0

f(tk, ω)[Btk+1
(ω)−Btk(ω)].

Note that this definition allows refinement of partitions as it does not chance the value of
our random variable. This is due to the fact that Bt has independent increments.

Proposition 15.2.1
The integral satisfies all 4 desirable properties.

Proof
The proof of (i), (ii) is straightforwards. For (iii), we can directly compute

E
[∫ T

0

f(t, ω)dBt

]
=
∑
k

E[f(tk, ω)] · E[Btk+1
−Btk ] = 0

by independence.

The isometric property is again proven by computation using independence.
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15.2.5 Extending to all H2[0, T ]

Proposition 15.2.2
For any F ∈ H2[0, T ], there is a sequence of simple processes fn ↑ F such that

∥fn − F∥2H2
→ 0

as n→∞.

Now, Recall that our integral is an isometry. Hence the image
∫ T

0
fndBt is Cauchy in L2

since fn is Cauchy in H2. By the completeness of L2(Ω,FT ,P), there exists a unique limit∫ T

0
FdBt ∈ L2. We take this element to be the integral of F .

Proposition 15.2.3
We have ∫ T

0

BtdBt =
B2

T − T
2

.

Proposition 15.2.4
Our integral satisfies all 4 desirable properties for every f ∈ H2[0, T ].

Note that with more work, we can extend out integral to T =∞.

For sub-intervals [A,B) ⊆ [0, T ], we have for every F ∈ FB,∫ B

A

FdBt :=

∫ T

0

1[A,B)FdBt.

It follows that ∫ B

A

+

∫ C

B

=

∫ C

A

.

Now, we have

E
{∫ B

A

FdBt | FA

}
= 0.

We can see this since it certainly holds for simple functions, and L2 convergence implies L1

convergence in finite measures

∥g∥L1 = ∥1Ωg∥L1 ≤ P(Ω) · ∥g∥L2 .

But then

E
{∫ T

0

FdBt | Fs

}
=

∫ s

0

FdBt

and the stochastic integral is a martingale.
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15.3 Stochastic Differentials

Definition 15.3.1 (Stochastic Differential)
Let Zt(ω) for t ∈ [0, T ]. Suppose that there are a(s, ω) ∈ L1[0, T ] and σ(s, ω) ∈
H2[0, T ] such that

Zt(ω)− Z0(ω) =

∫ t

0

a(s, ω)ds+

∫ t

0

σ(s, ω)dBs

for every t ∈ [0, T ].
Then we define

dZt(ω) = a(t, ω)dt+ σ(t, ω)Bt.

Example 15.3.1
dBt = dBt. Indeed,

Bt(ω)−B0(ω) =

∫ t

0

1[0, t]dBt = Bt(ω)−B0(ω).

Example 15.3.2
dB2

t = 2BtdBt + 1 · dt. We can see this since
∫ t

0
Bs(ω)dBs =

B2
t−t

2
. Hence

B2
2 −B2

0 = 2

∫ t

0

BsdBs +

∫ 1

0

1dt.

Lemma 15.3.3 (̂Ito)
Let f ∈ C2(R,R) be deterministic. Then

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt.

In other words,

f(Bt)− f(B0) =

∫ t

0

f ′(Bt(ω))dBt +
1

2

∫ t

0

f ′′(Bt(ω))dt.

Proof (Idea)
Let us consider the special case of f ∈ C2 with bounded derivatives |f ′|, |f ′′|, |f ′′′| < C ∈
R+.
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Consider the partition 0 = t0 < t1 < · · · < tn = t as n→∞. By Taylor’s theorem,

f(Bt)− f(B0) =
n−1∑
k=0

[f(Btk+1
)− f(Btk)]

=
n−1∑
k=0

f ′(Btk)[Btk+1
−Btk ] (i)

+
1

2

n−1∑
k=0

f ′′(Btk)[(Btk+1
−Btk)

2 − (tk+1 − tk)] (ii)

+
1

2

n−1∑
k=0

f ′′(Btk)(tk+1 − tk) (iii)

+
1

2

n−1∑
k=0

f ′′′(Bt̃k(ω)
)[Btk+1

−Btk ]. (iv)

For some t̃k(ω) ∈ (tk, tk+1).

By construction,

(i) =

∫ T

0

f ′
n(Bt)dBt

L2−→
∫ T

0

f ′(Bt)dBt.

In addition,

we have shown that
(ii)

p−→ C · 0

and in fact, a.s. convergence holds. Recall this is due to the fact that it is 0 in expectation
and the variation tends to 0.

Now,

(iii)→ 1

2

∫ t

0

f ′′(Bt)dt

as it is just the normal Riemann sum.

Finally,

(iv) ≤ 1

6
max

k
[Btk+1

−Btk ]C ≤
∑
k

[Btk+1
−Btk ]

2 L2

−→ 0.

With Îto’s lemma in hand, we can prove some standard theorems.
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Theorem 15.3.4
Suppose

dXt = a(t, ω)dt+ σ(t, ω)dBt.

Then for all f(t, x) ∈ C2,

df(t,Xt) = f ′
t(t,Xt(ω))dt+ f ′

x(t,Xt)dXt +
1

2
f ′
xx(t,Xt)σ

2(t, ω)dBt.

we can also derive formulas for df(t,Xt, Yt), and so on.

15.4 Stochastic Differential Equations

15.4.1 Motivation

Consider an ODE

dX(t) = a(t,X(t))dt.

This models bond prices or assets prices.

Suppose now that there is some white noise perturbations

dXt(ω) = a(t,Xt)Xt(ω)dt+ σ(t,Xt(ω))dBt.

We can think of stock prices.

As a side note, we would like to make sense of Gaussian White Noise (GWN) as a stationary
Gaussian process with covariance being the delta function. However, this does not exist a
stochastic process. Instead, the so called “mean-squared derivative” of Brownian motion is
GWN. Informally speaking,

E
{
Bt+s −Bt

2
−GWNt

}2

→ 0.

In applications, we like to heuristically reason about dBt as GWN.

15.4.2 Theory

A Stochastic Differential Equation is written as

dXt(ω) = a(t,Xt(ω))dt+ σ(t,Xt(ω))dBt.
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Equivalently, recall that this means by definition

Xt(ω) = X0(ω) +

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs

for every t ∈ [0, T ]. Thus a SDE is actually an integral equation.

Definition 15.4.1 (Solving a SDE)
We say that Xt(ω) solves the SDE with initial conditions X0(ω) if the integral con-
dition holds. In other words,

Xt(ω) = X0(ω) +

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs

Theorem 15.4.1 (Existence of a Unique Solution)
Suppose the there is a constant K > 0 such that the following hold.

(i) |a(t, x)− a(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|
(ii) a2(t, x) + σ2(t, x) ≤ K(1 + x)2

(iii) X0 ∈ F0 and has finite variance

Then there exists a solution to the SDE that is continuous and unique up to indis-
tinguishability.

We remark the proof follows the same lines as for an ODE. We define some iterates

X
(0)
t := X0(ω)

. . .

X
(n)
t (ω) := X0(ω) +

∫ t

0

a(s,X(n−1)
s (ω))ds+

∫ t

0

σ(s,X(n−1)
s (ω))dBs.

We can show that X
(n)
t (ω) is Cauchy in C[0, T ] a.s. and that the limit is a solution.

Theorem 15.4.2
Under the conditions of the previous theorem, the solution Xt(ω) is a Markov process.
Moreover, it is a Markov diffusion with drift and diffusion coefficients

a(s, x) = E{Xt −Xs | Xs = x}
∣∣∣∣
t=s

σ2(s, x) = E
{
(Xt −Xs)

2 | Xs = x
}∣∣∣∣

t=s

.

We conclude by remarking that many interesting processes are implicitly described by SDEs
and hence are diffusions. Although we may not be able to find a closed-form solution for
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these SDEs, we can study their distribution and other properties based on the SDE that
they solve.
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