
©Fel
ix

Zh
ou

CS762: Graph-Theoretic Algorithms

Felix Zhou1

Spring 2020
University of Waterloo

1from Professor Therese Biedl’s Lectures

©Fel
ix

Zh
ou

2

©Fel
ix

Zh
ouContents

1 Introduction 13

1.1 Motivation . 13

1.1.1 Points of Inquisition . 13

1.2 Graph Assumptions . 13

1.3 Weighted Dominating Set in Paths . 14

I Planar Graphs 15

2 Planar Graphs 17

2.1 Definitions . 17

2.1.1 Planar Drawing . 17

2.1.2 Planar Embedding . 18

2.1.3 Multiple Planar Embeddings . 19

2.2 Exploting the Planar Embedding . 19

2.2.1 Right-First Search . 19

2.2.2 The Menger Problem in st-planar graphs 21

Pseudocode . 21

Analysis . 21

2.3 Dual Graphs . 21

2.3.1 Computing & Storing G∗ . 22

2.3.2 Algorithmic Implications . 23

3

©Fel
ix

Zh
ou

2.4 Euler’s Formula . 23

2.4.1 Algorithmic Implications . 24

Colouring . 25

Testing Adjacency . 25

Clique . 25

3 Problems in Planar Graphs 27

3.1 NP-Hard Problems in Planar Graphs . 27

3.1.1 Coloring . 27

3-Coloring Reduction . 28

3.1.2 Planar 3-SAT . 28

3.1.3 Independent Set . 29

Planar Reduction . 30

3.2 Maximum-Flow . 31

3.2.1 st-Cuts . 31

3.2.2 Undirected Flow in st-Planar Graphs 32

Restricting to st-Planar Graphs . 32

4 Planarity Testing 37

4.1 Bush Forms . 37

4.2 The Algorithm by Haeupler & Tarjan . 38

4.2.1 Depth-First Search & Bush Forms 38

4.2.2 High-Level Idea . 40

4.2.3 PQ-Trees . 40

Reductions . 41

4.2.4 Data Structures . 41

Descendants Consisting of Finished Children 42

The Active Child . 42

4

©Fel
ix

Zh
ou

4.2.5 Summary . 42

Initialization . 42

Tree Edge Update . 43

None-Tree Edge Update . 43

Tree Edge Retreat Update . 43

4.2.6 Final Thoughts . 44

5 Triangulated Graphs 45

5.1 Maximal Planar Graphs . 45

5.2 Related Graph Classes . 46

5.3 Canonical Ordering . 47

5.3.1 Properties . 48

5.3.2 Existence of the Canonical Order . 49

5.3.3 Splitting into Trees . 50

Arboricity . 51

5.3.4 Visibility Representation . 51

5.3.5 Straight-Line Embeddings . 53

6 Friends of Planar Graphs 55

6.1 Super Classes of Planar Graphs . 55

6.1.1 Graphs in 3D . 55

6.1.2 Graphs of Bounded Genus . 56

6.1.3 Near Planar Graphs . 56

6.2 Subclasses of Planar Graphs . 57

6.2.1 Trees . 57

6.2.2 Outer-Planar Graphs . 57

Maximal Outer-Planar Graphs . 58

Problems . 59

5

©Fel
ix

Zh
ou

6.2.3 k-Outer-Planar Graphs . 59

6.2.4 Series-Parallel Graphs . 60

6.2.5 2-Terminal Series-Parallel Graphs . 60

The SP-Tree . 60

SP-Graphs . 61

6.2.6 Apollonion Networks . 61

6.2.7 Relationships between Subclasses of Planar Graphs 62

II From Interval Graphs to Treewidth 63

7 Interval Graphs & Friends 65

7.1 Interval Graphs . 65

7.2 Chordal Graphs . 66

7.3 Perfect Elimination Order . 66

7.4 Problems in Chordal Graphs . 67

7.4.1 Coloring . 67

7.4.2 Clique . 68

7.4.3 Independent Set . 68

7.4.4 Dominating Set . 68

7.5 Friends of Interval Graphs . 69

7.5.1 Intersection Graphs . 69

7.5.2 H-Free Graphs . 70

7.5.3 Perfect Graphs . 70

8 Recognizing Chordal Graphs & Interval Graphs 71

8.1 Finding a Perfect Elimination Order . 71

8.1.1 Finding Simplicial Vertices . 71

8.1.2 Maximum Cardinality Search . 72

6

©Feli
x Zhou

8.1.3 Lexicographic BFS . 74

8.2 Testing a Putative Perfect Elmination Order 74

8.2.1 An Idea . 74

8.3 Recognizing Interval Graphs . 75

8.3.1 PQ-Trees . 78

8.3.2 Other Algorithms . 79

9 Tree Decompositions 81

9.1 Strong Path Decomposition . 81

9.2 Strong Tree Decomposition . 81

9.2.1 Perfect Elimination Orders & Tree Decompositions 83

10 Treewidth 87

10.1 k-Trees . 87

10.1.1 Properties of k-Trees . 88

10.1.2 Planar k-Trees . 88

10.2 Partial k-Trees . 89

10.3 Treewidth . 91

10.3.1 Properties of the Treewidth . 92

10.3.2 Graphs with Big Treewidth . 93

10.3.3 Series-Parallel Graphs . 93

SP-Graphs & Treewidth . 94

Recognizing SP-Graphs . 94

11 Branchwidth 97

11.1 e-Separations & Branch Decompositions . 97

11.2 Branchwidth & Treewidth . 99

11.3 Branch Decomposition of Planar Graphs . 100

11.3.1 Spanning Trees of Small Height . 101

7

©Fel
ix

Zh
ou

12 Pathwidth 105

12.1 Path Decomposition . 105

12.2 Pathwidth & Trees . 106

12.3 Linear Arrangements . 107

12.4 Pathwidth-Equivalence . 109

12.5 Cutwidth & Pathwidth . 110

12.6 NP-Hardness of Computing Width Parameters 111

12.7 NP-Hardness of Treewidth . 113

III Treewidth & Algorithms 115

13 Dynamic Programming in Partial k-Trees 117

13.1 Dynamic Programming in Trees . 117

13.1.1 Maximum Weight Independent Set 117

13.1.2 Maximum Matching . 118

13.1.3 Solution . 119

13.1.4 Crucial Idea & Outlook . 119

13.2 Dynamic Programming in 2-Terminal SP-Graphs 119

13.2.1 Independent Set . 119

SP-Graphs . 120

13.3 Dynamic Programming in Graphs of Pathwidth 3 120

13.3.1 Nice Path Decompositions . 120

13.3.2 Subgraphs . 122

13.3.3 Maximum Weight Independent Set 122

13.4 Dynamic Programming in Partial k-Trees 123

13.4.1 Nice Tree Decomposition . 123

13.4.2 Subgraphs . 124

13.4.3 Independent Set . 125

8

©Fel
ix

Zh
ou

13.5 Fixed-Parameter Tractability . 125

13.6 Monadic Second-Order Logic . 125

13.6.1 Examples . 126

13.6.2 MSOL2 . 126

13.6.3 Courcelle’s Theorem . 127

13.7 Wrap Up . 127

14 k-Outer-Planar Graphs 129

14.1 Combinatorial Properties . 129

14.2 Treewidth of k-Outer-Planar Graphs . 130

14.3 Baker’s Approximation Scheme . 131

14.3.1 Obtaining Outer-Planar Graphs . 131

14.3.2 A 1
2
-Approximation . 132

14.3.3 Obtaining k-Outer-Planar Graphs . 132

14.3.4 Baker’s PTAS . 133

14.3.5 Final Comments . 134

15 Separators 137

15.1 Separators . 137

15.2 Some Examples . 138

15.3 Trees . 139

15.3.1 Pathwidth of Trees . 140

15.4 Partial k-Trees . 140

15.5 Planar Graphs . 141

15.6 Divide & Conquer . 142

15.6.1 Shortest Cycles . 142

15.6.2 Global Minimum Cut . 142

15.6.3 Matching . 142

9

©Fel
ix

Zh
ou

15.7 Sparator Hierarchies . 143

15.7.1 Path Decompositions . 143

15.8 Generalized Separator Theorem . 146

15.8.1 Approximation Schemes . 146

The Approximation . 146

Analysis . 146

16 Approximation Treewidth 149

16.1 Approximating Treewidth . 149

16.1.1 Separations . 149

16.1.2 W -Separations . 151

16.1.3 W -Separations to Tree Decompositions 152

16.1.4 Approximation of Treewidth . 154

16.2 Grid Minors . 154

16.2.1 Planar Minors . 157

16.2.2 Non-Planar Graphs . 158

16.3 Exploiting Dichotomies . 158

16.3.1 Longest Path and DFS . 158

Bi-Dimensionality . 159

17 The Graph Minor Theorem 161

17.1 H-Free Graphs . 161

17.2 The Minor-Poset . 162

17.2.1 Infinite Anti-Chains . 162

Well-Quasi-Ordered . 163

17.3 Well-Quasi-Ordered Graph Classes . 164

17.3.1 Chain Subsequences . 164

17.3.2 Star Pairs & Connected Components 165

10

©Fel
ix

Zh
ou

17.3.3 More WQO Classes . 166

17.4 Implications . 166

11

©Fel
ix

Zh
ou

12

©Fel
ix

Zh
ouChapter 1

Introduction

1.1 Motivation

Consider the minimum weight dominating set problem. It is NP-hard in general. However,
we may be able to exploit the properties of certain graph classes and obtain polynomial time
algorithms. For example, if the graph is planar, interval, chordal, or a k-partial tree.

1.1.1 Points of Inquisition

What graph problems become easier if the input graph belongs to graph classs C?

How easy it is to recognize graphs in C?

What are properties and/or equivalent characterizations of graphs in class C?

1.2 Graph Assumptions

Unless stated otherwise, we will work with finite, simple, and connected graphs. In addition
we can assume there is a sufficiently large lower bound on n = |V |.

By default, graphs are undirected. However, we may impose a ”direction” for certain algo-
rithms if it helps.

As in normal CS literature, we will let n or n(G) indicate the number of vertices and m,m(G)
the number of edges.

We will assume graphs are stored with incidence lists. This allows vertex or edge addition
in O(1) time. Edge deletion is also O(1) assuming we know where the edge is. However,

13

©Fel
ix

Zh
ou

vertex deletion takes Θ(deg(v)) time.

1.3 Weighted Dominating Set in Paths

As a warm-up, notice that the weighted dominating set in paths is solvable using DP with
the following formula

δ(vn, 1) = weight of best dominating set in {v1, . . . , vn} including vn

δ(vn, 0) = weight of best dominating set in {v1, . . . , vn} NOT including vn

The key observation is that if we do not include vn in the dominating set, vn−1 must be
included. On the other hand, if vn is included, we can either include vn−1 or not. If we do,
we can use δ(vn−1, 1). Otherwise, since vn−1 is covered anyways, we can take one of δ(vn−2, i)
for i = 0, 1.

The recursion is given as

δ(vn, 0) =

{
∞, n = 1

δ(vn−1, 1), n 6= 1

δ(vn, 1) =

w(v1), n = 1

w(v2), n = 2

w(vi) + min{δ(vn−1, 1), δ(vn−2, ?)}
δ(vn, ?) = min{δ(vn, 1), δ(vn, 0)}

14

©Fel
ix

Zh
ou

Part I

Planar Graphs

15

©Fel
ix

Zh
ou

©Fel
ix

Zh
ouChapter 2

Planar Graphs

We will explore the following tools which make problems easier in planar graphs:

Graph Properties Structural properties such as the forbidden K5, K3,3-minors

Planar Embeddings We can traverse a fixed embedding in a special way

Dual Graph For a fixed embedding, this gives rise to a dual, planar graph which can be
useful

Separator Theorems Any planar graph can be ”evenly” divided by removing O(
√
n) ver-

tiecs. This gives rise to divide-and-conquer techniques

2.1 Definitions

2.1.1 Planar Drawing

Definition 2.1.1 (Planar Drawing)
A planar drawing Γ assigns each vertex to a point in R2 and each edge to a curve in
R2 which begins at the endpoints of the edge. The interiors of the images of edges
are pair-wise disjoint.

A planar drawing Γ separates R2 into regions.

Definition 2.1.2 (Face)
A maximal connected region of R2 \ Γ(G).

17

©Fel
ix

Zh
ou

Notice that there is exactly one unbounded face as G is finite. This is referred to as the
outer face. All other faces are interior faces.

Proposition 2.1.1
1. All subgraphs of a planar graph is planar
2. Adding edges do not preserve planarity in general but if the endpoints are on the

boundary of some face, it does
3. Vertex contraction does not necessarily preserve planarity but if both vertices are

on one face, it does
4. Edge contraction always preserves planarity

If follows if G is planar, then any minor of G is planar.

For all graphs obtained in the proposition above, we refer to the ”natural” new drawing as
the planar drawing induced by the planar drawing of G.

2.1.2 Planar Embedding

Drawings are analytic properties and thus not very useful in the algorithmic sense.

Definition 2.1.3 (Rotation System)
Any drawing Γ defines for each vertex the clockwise order of incident edges. The set
of all these orders is a rotation system of the graph.

Notice that we can read facial circuits directly from the rotation system. Start at some
e = uv ∈ E and take the next edge e′ = vw after e in the edge order at v, then take the edge
after e′ to be the edge wx after vw in the rotation system of w.

Definition 2.1.4 (Combinatorial Embedding)
A rotation system together with one face indicating the outer face.

Although non-planar graphs can also have combinatorial embeddings, we will refer to planar
embeddings and combinatorial embeddings interchangeably since we do not study non-planar
embeddings.

18

©Fel
ix

Zh
ou

2.1.3 Multiple Planar Embeddings

Lemma 2.1.2
Let G be connected, planar with drawing Γ. Let F be one of the faces.
There is a planar drawing of G with the same rotation system as Γ and F being the
outer face.

We can prove this the classical way with stereographic projection. However, the following
algorithmic proof is less terse.

Proof
Let p be some point in the interior of F and r a ray emanating from p which does not
intersect any vertices.

If r crosses no vertices, F is already on the outer face. Otherwise, take e to be some edge
on the outer face intersecting r. Since e is on the outer face, we can easily reroute it so it
does no cross f in a way which preserves the rotation system.

We can then proceed by induction on the number of edges r crosses.

2.2 Exploting the Planar Embedding

Problem 1 (Menger)
Given directed graph G and vertices s, t, find the maximum set of vertex-disjoint
paths from s to t.

The Menger problems can be solved in general with maximum-flow techniques. However,
there is faster solutions in planar graphs.

2.2.1 Right-First Search

This is a specific implementation of depth-first search where ties are broken by the planar
embedding.

19

©Fel
ix

Zh
ou

Right-First-Search(G, v0, e0):
discovered = [None for v in V]

def recurse(v, e):
discovered[v] = e # discovered coming from e
for e_i in e_1, ..., e_d:
incident edges at v
enumerated in ccw order with e_d = e

v, w = e_i
if discovered[w] is None:

recurse(w, e_i)

recurse(v0, e0)
return discovered

Definition 2.2.1 (Right-Most)
Let π be a path from s to some other vertex x, both of which are on the outer face.
The part to the right of π contains everything bounded by π and the counter-clockwise
outer face path from s to x. We say π is right-most if any other path π̂ from s to x
is in the left region of π.

Lemma 2.2.1
Let G be plane with vertices s, x on the outer face.
Run right first search starting at s with respect to the outer-face edge of s going
the clockwise order. If x is reached during the exploration, the resulting path π is
rightmost.

Proof
Let P be any other sx-path and consider the first vertex v where P, π use different outgoing
edges eP , eπ.

Then, consider the counter-clockwise order at v. We must have the incoming edge on
both paths, eπ, then eP . This is purely by the definition of right-first search.

So P diverges ”left” from π at v. It may intersect π again at some vertex before x but by
the same argument, it can only diverge ”left”.

20

©Fel
ix

Zh
ou

2.2.2 The Menger Problem in st-planar graphs

Definition 2.2.2 (st-Planar)
A graph is st planar if it has an embedding in which s, t are both on the outer face.

We will study the Menger problem for st-planar graphs.

Pseudocode

1) Temporarily insert the edge es = ts on the outer face
2) Run right-first search starting at s with respect to es

3) If this does not reach t, there are no (more) st-paths
4) If it does reach t, output the path it used and remove any vertex which was used not

including s, t

5) Repeat 2)

Analysis

Let π1, . . . , π` be the paths at were found by the algorithm. Let P1, . . . , Pk be any other set
of vertex-disjoint directed st-paths. We show that k ≤ `.

Order P1, . . . , Pk such that Pi is in the right region of Pi+1 for all i. This works since the
paths are vertex-disjoint.

Since π1 is rightmost, deleting π1 and everything to the right will not delete any vertex of
P2, . . . , Pk. Repeating this argument shows that Pi is to the left of πi for i = 1, 2,

In particular, we have k ≤ ` as desired.

Notice that each subsequence call ot right-first search only viists edges that have not previ-
ously been visited. It follows that the total run time is O(m+ n).

2.3 Dual Graphs

For every graph with a fixed rotation system, we can define a dual graph capturing the
emdbedding in a graph structure.

21

©Fel
ix

Zh
ou

Definition 2.3.1 (Dual Graph)
The dual graph G∗ = (V ∗, E∗) for a graph G = (V,E) with a fixed embedding is as
follows

V ∗ = {F : F is a face of G}
E∗ = {vFvF ′ : F, F ′ is incident to the faces F, F ′ of G}

Observe that each v ∈ V becomes a face in the dual. The edges incident with v as a face in
G∗ rise directly from those incident with v in G.

Lemma 2.3.1
Let G be a connected plane graph.

(G∗)∗ = G

It is not clear what the definition of a dual for a disconnected graph should be. The ambiguity
is mosty due to the unbounded face. We can either take the union of duals of each connected
component or directly apply the definition using faces.

2.3.1 Computing & Storing G∗

Lemma 2.3.2
The dual graph of any plane connected G can be computed in O(m+ n).

Proof
The idea is to have the incidence list simultaneously store incidences for the primal and
dual graph.

Start with the incidence list of G. Each vertex has a doubly linked list of references to a
doubly linked list of edges. Each edge in turn has two references to the two vertices to
which it is incident.

For each uv ∈ E(G) in the edge list, add two initially null references to vertices in G∗

with v → w,w → v. We impose a direction to indicate that this edge is incident with the
face which is to the right as we walk from the head to tail.

Now, while there is an edge of e for which one of the new references are null, say v → w,
define a new face F and append it to a list of faces (vertices of G∗). Trace the facial
circuit of F by start at the edge vw and tracing the counter-clockwise next edge after vw
at w, etc. For each edge e in the facial circuit, we append a new reference to it in the list
for F and fill in the null reference in e to F as well.

22

©Fel
ix

Zh
ou

Notice that each edge is traversed twice so the overall run time is linear.

2.3.2 Algorithmic Implications

Dual graphs are useful for rephrasing a problem in the primal.

Definition 2.3.2 (Polygon Mesh)
A way to approximate surfaces by small polygons.

Notice that if the surface has genus 0, the polygon mesh is a planar graph.

The most common kind of mesh is triangular, but there are some situations where it is
helpful to have a quadrangular mesh instead. How can we convert a triangular mesh to
quadrangular one?

In other words, given a plane connected G where every face is a triangle, groups faces into
pairs that share an edge. In other words, we want a set of edges E ′ such that every face is
incident to exactly one edge in E.

In the dual graph, this is precisely the problem of finding a perfect matching. Maximum
matchings can be found efficiently for any graph. Moreoever, in the special case of meshes,
there is always a perfec matching whicH can be found in linear time.

2.4 Euler’s Formula

Theorem 2.4.1 (Euler’s Formula)
Let G be a connected, but not necessarily simple plane graph.
Then

n−m+ f = 2

where f is the number of faces.

Proof
By induction on the number of faces with the case of f = 1 implying G is a tree.

Corollary 2.4.1.1
Let G be planar. Any planar drawing of G has the same number of faces.

Corollary 2.4.1.2
Any simple connected planar graph with at most 3 vertices has at most 3n− 6 edges.

23

©Fel
ix

Zh
ou

Proof
Every edge is incident with at most 2 edges and every face is incident with at least 3
edges. Applying this with Euler’s Formula gives the result.

Corollary 2.4.1.3
Every simply planar graph has a vertex of degree at most 5.

Lemma 2.4.2
Every simple planar triangle-free graph with at least 3 vertices has at most 2n − 4
edges.

Proof
The proof is identical, except now every face is incident with at least 4 edges.

Corollary 2.4.2.1
K5, K3,3 are not planar.

Theorem 2.4.3
plane G is planar if and only if it does not contain a subdivision of K5 or K3,3 as a
subgraph (topological-minor).

2.4.1 Algorithmic Implications

Dijkstra’s algorithm finds shortest path trees in O(m + n log n) time with Fibonacci heaps
and O((m + n) log n) time if we use binary heaps. However, since m ∈ O(n) for planar
graphs, there is no need to use the more complicated Fibonacci heaps for planar graphs.

Definition 2.4.1 (Minimum-Degree Order)
v1, . . . , vn such that vi has minimum degree in G[v1, . . . , vn].

Lemma 2.4.4
Every planar graph has a vertex order v1, . . . , vn such that each vi has at most 5
predecessors. It can be found in linear time.

Proof
Let v1, . . . , vn denote a minimum degree order. This clearly suffices since any subgraph of
G is also planar and thus has minimum degree at most 5.

24

©Fel
ix

Zh
ou

Colouring

Using the minimum degree order of a planar graph, the greedy colouring algorithm uses at
most 6 colours.

Some additional work garanteeds a linear time 5-coloring algorithm.

Theorem 2.4.5 (Four-Colour)
Every planar graph has a vertex-coloruing with at most 4 colours.

Testing Adjacency

Recall that if a graph is stored with incidence lists, then adjacency testing between v 6= w ∈ V
takes

Θ(min{deg(v), deg(w)})

time.

Theorem 2.4.6
Any planar graph can be stored using O(n) space, so adjacency testing is O(1).

Proof
Compute a minimum-degree order and store the predecessors and index in the ordering
for each vertex.

To compare vi, vj simply look at the constant number of predecessors of vmax(i,j).

Clique

For each integer k = 5, 4, . . . , 2, traverse the minimum-degree ordering in reverse. For each
vi and each possible subset C ⊆ pred(v) such that |C| = k − 1, test if C is a clique through
brute force O(1) adjacency testing. Stop immediately upon finding a clique and output
C ∪ {vi} as a maximal clique.

25

©Fel
ix

Zh
ou

26

©Fel
ix

Zh
ouChapter 3

Problems in Planar Graphs

3.1 NP-Hard Problems in Planar Graphs

We will introduce soem problems which are NP-hard even in planar graphs. The proofs of
NP-hardness typically involve one of two technique. The first technique involves developing
a crossing gadget which shows that problems in general graphs reduce to planar ones. On
the other hand, if the proof of NP-hardness in general graphs relies on a reduction from an
NP-hard problem in planar graphs, the reduction preserves planarity, then the same problem
is NP-hard for planar graphs.

3.1.1 Coloring

We first show that 3-coloring is NP-hard.

Lemma 3.1.1
In any 3-coloring of the gadget, c(a) = c(a′) and c(b) = c(b′), where c denotes the
coloring function.
Moreoever, there is a 3-coloring of the gadget where c(a) = c(b), and there exists a
3-coloring of the gadget where c(a) 6= c(b).

27

©Fel
ix

Zh
ou

Proof
We may assume without loss of generality that the center vertex is colored 1. Its neigh-
bours must then be colored 2, 3 alternatingly. The colors of the outer face vertices are
then also fixed between one of two states illustrated above.

3-Coloring Reduction

We want to show
3-coloring � 3-coloring in planar graphs

Let G be an arbitrary graph and create a drawing (with crossings) that is x-monotone. In
other words, G the vertices are all on the x-axis with edges being half-circles. This is so we
can classify each endpoint of edges as “left” and “right” endpoint.

Create a new graph G1 by replacing crossings with the gadget defined above.

Proposition 3.1.2
G is 3-colorable if and only if G1 is 3-colorable.

Proof
Apply the lemma for each gadget subgraph and see that a 3-coloring is transferable
between G,G1.

3.1.2 Planar 3-SAT

Now, we try our hand at the other method of proving a problem is NP-hard in planar graphs.

28

©Fel
ix

Zh
ou

Definition 3.1.1 (3-SAT Graph)
Given an instance of 3-SAT, the corresponding SAT-graph is defined as follows

1. create one vertex for every variable xi

2. create one vertex for every clause cj

3. create an edge xi, cj if and only if cj contains the literal xi or x̄i

4. create a cycle x1, x2, . . . , xn, x1 of edges

Problem 2 (Planar 3-SAT)
An instance of 3-SAT wher the associated 3-SAT graph is planar.

Theorem 3.1.3
3-SAT reduces to Planar 3-SAT, thus Planar 3-SAT is NP-hard.

3.1.3 Independent Set

Assuming the NP-hardness of Planar 3-SAT, it is straightforward to prove that Vertex Cover,
Independent Set, and Hamiltonian Cycle are all NP-hard in planar graphs by inspecting
the original reduction from 3-SAT and showing (with easy modifications) that it preserves
planarity.

Theorem 3.1.4
3-SAT reduces polynomially to Independent Set.

Proof
Let I be an instance of 3-SAT with N variables and M clauses. Define an instance I ′ of
independent set.

For any variable xi define the variable cycle consisting of 2 deg xi vertices (number of times
it appears in a clause). Label the vertices of this cycle alternatingly as xi, x̄i. For every
clause cj, define a clause-triangle consisting of three vertices forming a triangle. Label the
three vertices with the three literals in cj, and connect them to an OPPOSITE literal in
the corresponding variable-cycle.

Clearly, G′ is polynomial in n,m.

Observe that any independent set I in G′ contains at most one vertex per clause triangle
and at most half the vertices of each variable cycle. We surely have |I| ≤ M +

∑
i deg xi.

29

©Fel
ix

Zh
ou

We claim the 3-SAT instance I is satisfiable if and only if G′ contains an independent set
of size at least M +

∑
i deg xi.

Assume that I is satisfiable and define I as follows. For each xi, add deg(xi) vertices from
the variable-cycle to i by adding all xi vertices if xi is TRUE. Otherwise, add x̄i vertices.
For each clause cj, at least one vertex in the clause cycle `j is true. Add to I the vertex
corresponding to `j. By construction, its neigher in the variable clause x`j cannot be in I
since x̄`j is added.

Now assume we have an independent set of the specified size. I necessarily uses one
vertex from each clause-triangle and deg xi vertices from the variable-cycles. This induces
an assignment satisfying the instance I of 3-SAT.

Planar Reduction

Take an instance of Planar 3-SAT and apply the exact same reduction.

Proposition 3.1.5
The instance of Independent Set consists of a planar graph.
Specifically

Planar 3-SAT � Independent Set in planar graphs

Proof
Fix a planar embedding of GSAT, the 3-SAT graph corresponding to an instance I of
Planar 3-SAT.

Modify GSAT by vertex-capping: replace a vertex of degree e by a d-cycle of vertices of
degree 3, and redistribute the incident edges to the vertex of the d-cycle. Apply the same
technique to the clauses. Finally, achieve the labelling in the general reduction by deleting
the edges of the cycle of variables and subdividing each each in some variable-cycle. With
some possible rerouting of clause-variable edges to the newly created vertices, we have the
exact reduction from above.

Since vertex-capping, edge deleting, and edge subdivision preserves planarity, we are done.

Corollary 3.1.5.1
Independent Set is NP-hard even in planar graphs with maximum degree 3.

Proof
Notice that the graph used in the reduction above has maximum degree 3.

We also immediately have that Vertex Cover is NP-hard in planar graphs of maximum degree
3. This is due to the fact that C is a vertex cover if and only if V −C is an independent set.

30

©Fel
ix

Zh
ou

Another construction starting from Planar 3-SAT but using a different gadget shows that
Hamiltonian cycle is NP-hard in planar graphs.

3.2 Maximum-Flow

Definition 3.2.1 (Flow Network)
A simple graph G with two distinct vertices s, t, and a capacity function c : E → R+.

We say the flow network is undirected if c(i, j) = c(j, i) for all ij ∈ E and directed otherwise.

Definition 3.2.2 (Network Flow)
A function x : V × V → R+ such that

(i) x(ij) > 0 =⇒ ij ∈ E

(ii) x(ij)− x(ji) ≤ c(ij) (capacity constraint)
(iii) x(δ(v)) = x(δ(v̄)) for all v 6= s, t (balance constraint)

One should think of an edge as two directed edges in opposing directions. The capacity
constraint can be thought of as “net” flow on that edge since we can have units of flow in
both the forward and reverse directions.

Definition 3.2.3 (Flow Value)
The value of a flow x is

x(δ(s))− x(δ(s̄))

Notice that the value of a flow is precisely the units flowing out of s and never returning.

3.2.1 st-Cuts

Definition 3.2.4 (st-Cut)
A partition (S, S̄) of the vertices such that

s ∈ S, t /∈ S

Definition 3.2.5 (Cut Value)
The value of a cut (S, S̄) is

x(δ(S))

31

©Fel
ix

Zh
ou

Lemma 3.2.1
If x is a flow and (S, S̄) is an st-cut then

x(δ(s))− x(δ(s̄)) ≤ x(δ(S))

Proof
Unwrap the definitions.

Theorem 3.2.2 (Maximum-Flow Minimum-Cut)
For any network, the value of the maximum st-flow is equal to the value of the
maximum st-cut.

3.2.2 Undirected Flow in st-Planar Graphs

Ford-Fulkerson solves maximum flow in pseudo-polynomial time. There are polynomial time
algorithms, but can we do better?

Intuitively for planar graphs, a minimum st-cut is a simple, closed, Jordan curve which
separates s, t and does not cross vertices. We can nicely redefine such curves by observing
that they correspond to cycles in the dual graph.

Consider G∗ for plane G and define for every dual edge weight w(e∗) = c(e), the capacity of
the corresponding edge in G.

Lemma 3.2.3
A minimum cut in an indirected planar network (G, s, t) corresponds to a shortest-
weight cycle in the dual graph which separates s, t.

Proof
We prove this by finding a flow whose value is the same as the weight of the cycle.

Restricting to st-Planar Graphs

Let us further assume that s, t lie on the same face. By our work earlier, s, t might as well
be on the outer face.

32

©Fel
ix

Zh
ou

Definition 3.2.6 (Dual Network for st-Planar Graph)
Add an edge st in the primal network to obtain G′. Take the dual graph of G′ and
delete the edge between the two faces s∗, t∗ incident to the new edge st. Finally, for
any other dual edge e∗, set w(e∗) = c(e).

Lemma 3.2.4
The length of shortest s∗t∗-path is the value of maximum flow in the primal network.

Proof
We first construct a flow candidate from the shortest paths. Then we show it is indeed a
flow. Finally, we conclude by finding a cut of the same value. By the max-flow min-cut
theorem, this suffices to show the result.

Flow Construction Assume we know have the shortest path tree rooted at s∗. For a∗ ∈
V (G∗), denote by d(a∗) the distance from s∗ to a∗.

Assume ij ∈ E(G). Let `∗ be the face that is to the LEFT of i → j. Let r∗ be the face
to the RIGHT of i → j.

Define the flow for edge i → j to be

x(ij) = max(0, d(r∗)− d(`∗))

and observe that by definition

x(ji) = max(0, d(`∗)− d(r∗))

We now claim x is a valid flow.

33

©Fel
ix

Zh
ou

Capacity Constraints Fix an edge ij and let `∗, r∗ be as above for i → j. It must be true
that

d(`∗) + w(`∗, r∗) ≥ d(r∗)

This implies that
d(r∗)− d(`∗) ≤ w(`∗, r∗) = c(ij)

We also know 0 ≤ c(ij) and thus

x(ij) = max(0, d(r∗)− d(`∗)) ≤ c(ij)

as desired.

Balance Constraints Fix i 6= s, t and let j0, . . . , jk−1, jk = j0 be its neighbours in clockwise
order. Let f` be the face to the left of i → j`, so the face to the right is f`+1 (modulo
addition k).

By construction x(i, j`) = max(0, d(f`+1)− d(f`)). We have

x(δ(i))− x(δ(̄i)) =
k∑

`=1

max(0, d(f`+1 − d(f`)))−max(0, d(f`)− d(f`+1))

=
k∑

`=1

d(f`+1)− d(f`)

= 0

A similar calculation shows that the value of x is

d(t∗)− d(s∗) = d(∗)

as d(s∗) = 0. This is due to the fact that we deleted the edge s∗t∗ and thus there is a
single equation which does not cancel out

Finding the Cut Let P be the shortest path from s∗ to t∗. Its length is d(t∗). Clearly

P ∪ {s∗t∗}

would give us a cycle separating s, t.

Let S be all the vertices which are inside this cycle. Thus (S, S̄) forms a cut. Consider
ES, the edges of G with exactly one endpoint in S. Notice that these are precisely the
dual edges of P .

The value of this cut is precisely d(t∗). So we have found a valid flow x and a corresponding
cut (S, S̄) which the same values, concluding the proof.

34

©Fel
ix

Zh
ou

To summarize, we compute the dual network (linear), then run a shortest path algorithm
(linear, complicated).

Theorem 3.2.5
A maximum flow can be found in O(n) time.

35

©Fel
ix

Zh
ou

36

©Fel
ix

Zh
ouChapter 4

Planarity Testing

In all the algorithms for planar graphs so far, we assumed we had a planar embedding. To
have any hope to putting them to use, we need a way to recognize planar graphs.

4.1 Bush Forms

Lemma 4.1.1
Let G be planar and (V ′, V̄ ′) be a cut for which G[V \ V ′] is connected. Then G[V ′]
has a planar embedding where all endpoints of edges in the cut are on the outer face.

Proof
Contract all edges within V \V ′. This shrinks V ′ to a single vertex c. Bring this vertex to
the outer face and observe that this forces the neighbours of c to the outer face of G[V ′].

Rather than deal with cuts directly, we work with bush forms. These add parts of the edges
of a cut to the graph.

Definition 4.1.1 (Bush Form)
The bush form B(V ′) of V ′ ⊆ V consists of the graph G[V ′] as well as one leaf vertex
for every edge e in the cut

(C ′, V̄ ′)

adjacent to the endpoint of e in V ′.

It is natural to label these vertices with the other endpoints of e that is not in V ′.

We say a bush form is valid if all leaves are on the outer-face.

37

©Fel
ix

Zh
ou

Lemma 4.1.2
If G is planar and G[V − V ′] is connected, then B(V ′) has a valid embedding.

This follows directly from the previous lemma.

4.2 The Algorithm by Haeupler & Tarjan

This method is based on a depth-first search traversal.

4.2.1 Depth-First Search & Bush Forms

Recall that a rooted DFS-tree T partitions the edges of G into either tree-edges or an
edge connecting an ancestor with a descendant in the tree. We write D(v) to denote the
descendants of v, with the convention of including v.

Lemma 4.2.1
If G is planar, then for any tree edge vw with v the parent, the bush form

B(D(w))

has a valid embedding where the leaves Lv that are labelled v are consecutive on the
outer-face.

38

©Fel
ix

Zh
ou

Proof
Observe that B(D(w)) has valid embeddings since V \D(w) is connected via the DFS-tree.

Fix a planar drawing of G and contract all tree-edges except those within the subgraph
induced by {u} ∪D(w).

If v is not the root, then this creates one super-node r with the root. It also creates one
super-node for each child c 6= w of v.

39

©Fel
ix

Zh
ou

Delete any super-node such a child as this does not affect edges relevant for the bush form
B(D(w)). This is because there are no edges between D(c), D(w).

Modify the resulting planar drawing to bring edge rv to the outer-face (or just v if it is
the root). This means that the only edges in the cut (D(w), D(w)) have endpoints in r
or v. By planarity, their other endpoints in D(w) must then be consecutive as desired.

After vertex-capping both r, v and deleting the edges in the cycle created by the vertex-
cappings (and some more), this gives the desired drawing of B(D(w)).

4.2.2 High-Level Idea

We run a DFS and maintain a number of data structures that help determine if B(D(w))
satisfies the conclusion of the lemma. Along the way, we implicitly build a planar embedding
of B(D(w)) so that if the lemma holds at the end, we have constructed a planar embedding
of the entire graph.

Since the appropriate data structures are built while traversing, we index them with a time
stamp t ≥ 1. Time advances when we explore or retreat from an edge.

At any time a vertex is one of three stages: Undiscovered, Finished (retreated from it), and
Active (neither of the previous two). The actice vertex always form a path from the root to
some vertex, so any vertex in T has at most 1 active vertex at any given time.

Let D(w, t) be the descendants of w visited by time t. Notice that D(w, t) = D(w) if t is the
time when we retreat from to from w to v, its parent. So the all-important lemma restricts
B(D(t)) at this time.

Testing whether B(D(w, t)) has a suitable embedding is the key ingredient. For this, we im-
plicitly store all possible planar embeddings. This is done using the PQ-tree data structure.

4.2.3 PQ-Trees

The goal is to store permissible permutations of a finite set X. A PQ-Tree is a rooted tree
with elements of X at the leaves. A permissible permutation is obtained by listing the leaves
in order from left to right.

We are able to reorganize the leaf-order with the following rules: Interior nodes are either
P or Q nodes. A Q node indicates that its entire subtree can be reversed, while a P node
indicates that its children can be placed in any order.

40

©Fel
ix

Zh
ou

Reductions

PQ-trees have only one non-trivial operations. Given a PQ-tree T and a constraint I ⊆ X,
decide if there exists a permutation expressed by T in which the items in I are consecutive.
If there is one, return a PQ-tree which expresses all such permutations.

Lemma 4.2.2
PQ-trees can be implemented such that a reduction for constraint I takes O(|I|)
amortized time.

Lemma 4.2.3
Let X be a finite set and I a finite set of consecutive constraints. We can test whether
there is a permutation of X such that for any I ∈ I, the elements are consecutive in

O

(
|X|+

∑
i∈I

|I|

)

time.

Proof
Initialize a PQ-tree to be a P -node with X as leaves. Initialize I ′ = ∅.

Perform reductions for each I ∈ I one by one and add to I ′. Either until we have
exhausted all of I or report that no suitable permutation exists.

4.2.4 Data Structures

We now return to the idea of performing a depth-first search while storing information to
construct bush forms B(D(w, t)) at the time when we retreat from w.

To save space, we store bush forms (PQ-trees) only at active nodes v. Furthermore, the
PQ-tree for v only includes the finished descendants of v.

These PQ-trees consist of non-leaf vertices which are v or finished descendants
of v and discovered leaf vertices.

At the active child w of v, there may be other parts of the bush form B(D(v, t)) but these
are NOT stored with v and instead stored with at some vertex in D(w). When we later
retreat from w, the bush form of w will be merged into the bush form of v, hence completing
it by the time we retreat from v and actually need B(D(v)).

41

©Fel
ix

Zh
ou

Descendants Consisting of Finished Children

Let c1, . . . , cd be the children of v that are finished at time t. So D(ci, t) = D(ci) for i ∈ [d].
Define

V ′(v, t) := {v} ∪
d⋃

i=1

D(ci)

Let PQ(v, t) be a PQ-tree the encodes all valid embeddings of the bush form B(V ′(v, t)).
We label the leaves of PQ(v, t) with the corresponding edges in the leaf-edges of B(V ′(v, t)).

The bush form B(V ′(v, t)) always includes the edge vp among its leaf edges if v is not the
root and has parent p. Among the multiple PQ-trees that could represent B(V ′(v, t)), we
additionally impose that the leaf for vp is a child of the root, and the root-node is a P -node.

The Active Child

Recall that v has at most one active child w.

We store a list S(v, t) of edges (v, x) where the other endpoint x is in D(w, t) (a visited
descendant of the active child w of v). List S(v, t) is empty if v currently has no active child.

S(v, t) helps us reformulate the previous lemma in terms of PQ-trees and these data struc-
tures.

Proposition 4.2.4
Consider the time t when we retreat from w to its parent v. If G is planar, then a
reduction of PQ(w, t) with respect to constraint I := S(v) is successful.

Proof
Since we are about to finish w, all children are finished and V ′(w, t) = D(w). As D(w, t) =
D(w) as well, S(v, t) contains all edges incident with v with the other endpoint in D(w).

The claim follows from our previous lemma as PQ(w, t) stores B(V ′(w, t)) = V (D(w)).

4.2.5 Summary

Initialization

Initially only the root r has been visited. It has no active child, so S(r) = ∅. It also has no
finished children, so V ′(r) = {r}. Then PQ(r) has no leaves.

We create a single root-node in PQ(r) as a placeholder so we can add leaves as need later.
Notice we do not specify t = 1.

42

©Fel
ix

Zh
ou

There are 3 kinds of updates: advancing along a tree-edge (discover new vertex), travers-
ing a non-tree-edge (vertex already discovered), and retreating along a tree-edge (vertex is
finished).

Tree Edge Update

Suppose we advance along the tree edge vw where w was discovered.

Initialize PQ(w) to be a single P -node with a single child labeled with leaf edge vw.

v had no actice child and now has one. Set S(v) = {vw}. Finally, as w has been visited,
the edge vw must be considered for the bush form B(V ′(v)), thus add it as a child of the
root-node of PQ(v) (for consistency but not strictly necessary).

None-Tree Edge Update

Suppose we explore a non-tree edge wv, where both w, v are active and w was a descendant
of v.

Since w is a descendant of v and both are active, w is a proper descendant of the active child
of v. Add the newly discovered edge vw to S(v).

Likewise, vw is a leaf edge of V (V ′(v)) and of V (V ′(w)), so in both PQ(v) and PQ(w), add
a leaf labelled vw and make it a child of the root (for consistency but not strictly necessary).

Tree Edge Retreat Update

Suppose we retreat along a tree edge vw with v being the parent. So w was active and now
becomes finished. V ′(v) now includes D(w).

First, let I be the leaves in PQ(w) that are labelled with entries from S(v). Since edges are
cross-linked, we can find these in O(|S(v)|) time. Reset S(v) = ∅ as we no longer need it.

Do a PQ-tree reduction at PQ(w) with respect to I. By our previous proposition, if this
fails then G cannot be planar.

Assuming this reduction is succesful, let P̂Q(w) be the resulting PQ-tree. Delete all leaves
of I − vw from P̂Q(w) and rearrange P̂Q(v) so that the leaf vw is again a child of the
root-node. Call this result PQ′(w).

These operations are not standard for PQ-trees but are easy to implement.

Finally, merge PQ′(w) into PQ(v) by making its root a child of the leaf vw which exists in
PQ(v). Notice the leaves labelled S(v) in PQ(v) are no longer leaves so we delete them.

43

©Fel
ix

Zh
ou

Moreover, any node of PQ(v) with only one child should be contracted into this child (ie
the now-non-leaf node vw should be contracted into the previous-root node PQ′(w)).

Theorem 4.2.5
Planarity testing can be done in O(m) time.

Proof
The key observation is that each edge vw is in S(v) only once, so even though reductions
are expensive, the amortized time is linear.

4.2.6 Final Thoughts

The key insigh of Haeupler and Tarjan was to add vertices in finishing order. This means
the rest of the graph is connected.

44

©Fel
ix

Zh
ouChapter 5

Triangulated Graphs

Recall that every simple planar graph has at most 3n− 6 edges. We now wish to study the
case when this is tight.

5.1 Maximal Planar Graphs

Definition 5.1.1 (Maximal Planar Graph)
A simple planar graph to which we cannot add more edges while staying planar.

Definition 5.1.2 (Triangulated Graph)
A simple planar graph with n ≥ 3 that has a planar embedding for which every face
is a triangle.

Lemma 5.1.1
The following are equivalent for a simple planar graph with n ≥ 3.

1. G is triangulated
2. G has 3n− 6 edges
3. G is maximal planar.

Proof
(1) =⇒ (2) The proof that the number of edges is bounded by 3n− 6 can be modified if
the faces have exactly 3 incident edges.

(2) =⇒ (3) Trivial.

45

©Fel
ix

Zh
ou

¬(3) =⇒ ¬(1) Assume G is not triangulated. so some face F has at least 4 vertices
incident to it. There must be vertices v, w in F which are not incident, lest we add a
vertex to F ajacent with all of its vertices and get K5.

Add the edge vw preserves planarity and thus G was not maximal planar.

Lemma 5.1.2
Any triangulated graph with n ≥ 3 has 2n− 4 faces.

Proof
Euler’s Formula.

Lemma 5.1.3
Any simple triangulated graph is 3-connected.

Proof
If it is not, we could add an edge and remain simple, planar. so it could not be maximal
planar.

So every triangulated graph has a unique planar embedding by Whitney’s Theorem.

Lemma 5.1.4
Any simple planar graph can be made triangulated by adding edges.

Proof
If it is not triangulated, it is not maximal planar. Thus we can add edges until it is.

5.2 Related Graph Classes

We use the term triangulated graph only for simple planar graphs.

Definition 5.2.1 (Inner Triangulated Graph)
The underlying graph constructed by a set of points and straight-line edges such that
all interior faces are triangles.

46

©Fel
ix

Zh
ou

Definition 5.2.2 (Triangulated Disk)
Planar graph with a planar drawing that is inner triangulated with the outer face a
simple cycle.

Lemma 5.2.1
Any triangulated disk G is 2-connected. Furthermore, any cutting pair {v, w} has
both v, w on the outer face connected by a chord of the outer face.

Proof
Let G+ be obtained from G by adding a vertex u inside the outer face and making it
adjacent to all vertices on F . Clearly G+ is planar and triangulated. It is also simple. So
G+ is 3-connected and G = G+ − u is 2-connected.

For any cutting pair {v, w}, there are two faces F, F ′ that contains them both. At least
one of them, say F , is not the outer face and so exists in G+. If vw does not exist then
we could add it inside F , contradicting maximality of G+. So vw exists.

This means there are actually three faces F, F ′, F ′′ which contain both v, w. If neither
is the outer face, then all three also exist in G+, making {v, w} a cutting pair in G+, a
contradiction.

So it must be that vw is a chord of the outer face as desired.

5.3 Canonical Ordering

This is a useful tool for graph drawing, planar encoding, and proving graph properties. The
order exists for any 3-connected planar graph but we will focus on triangulated ones for
simplicity sake.

In the following, whenever we speak of a triangulated graph, we assume that the unique
rotational sytem is fixed, and an outer-face has been chosen.

Definition 5.3.1 (Canonical Ordering)
A vertex order

v1, . . . , vn

of a triangulated planar graph such that v1, v2, vn is the outer-face and any vertex vk
for 3 ≤ k ≤ n− 1 has at least two predecessors and at least one successor.

47

©Fel
ix

Zh
ou

5.3.1 Properties

Given a canonical order, we write Gk := G[v1, . . . , vk] and assume its planar embedding is
the one induced by G.

Lemma 5.3.1
Let G be a triangulated graph with canonical order

v1, . . . , vn

Then for any 3 ≤ k ≤ n− 1

1. The outer face of Gk contains the edge v1v2

2. vk is on the outer-face of Gk

3. Every vj, j > k is in the outer-face of Gk

4. Every internal face of Gk is a face of G In particular, Gk is internally triangu-
lated.

5. The predecessors of vk+1 form a a consecutive set of vertices (interval) on the
outer-face of Gk

6. The outer-face of Gk is a simple cycle
7. Gk is a triangulated disk and in particular is 2-connected

Proof
1. Gk is an induced subgraph
2. reverse induction on k; we obtain Gk by deleting all v`, ` > k which in particular

includes the successor of Gk, bringing vk to the outer face
3. vj is on the outer face of Gj for all j > k.
4. all vertices in G−Gk belong to the outer-face of Gk and hence all internal faces of

Gk are also faces in G

5. since vk+1 is in the outer-face of Gk all its predecessors must be on the outer-face
of Gk by planarity. When we add edges from vk to predecessors, we create internal
faces and these are necessarily triangles. Hence when we traverse the precessors of
vk+1 in clockwise order, any predecessors that are consecutive must be adjacent as
desired

6. follows by induction on k using the observation that indeg(vk) ≥ 2 means we vk and
at least 2 edges every time

7. follows from the previous property

48

©Fel
ix

Zh
ou

5.3.2 Existence of the Canonical Order

Lemma 5.3.2
Let G be a triangulated disk. Let ab be an edge on the outer-face.
Then G has a vertex order

v1 = a, v2 = b, v3, . . . , vn

such that every vi for i ≥ 3 has at least two precedecessors.
Moreover, any vi for i ≤ n that is not on the outer-face has at least one successor.

Proof
We argue by induction on n.

for n = 3, G is necessarily a triangle, and the only possible vertex order satisfies all
conditions.

Presume n ≥ 4. The aim is to choose a vertex vn 6= a, b so that G−vn is still a triangulated
disk. We do not have to worry about internal faces of G − vn so the only way G − vn is
not a triangulated disk is that the outer face is NOT a simple cycle. In other words, we
do not want G− vn to have a cut vertex v on the outer face. Observe that this happens
if and only if {v, vn} is a cutting pair.

By our previous work lemma, vvn is a chord. So we are actuallly looking for vn on the
outer face which is not incident to a chord.

If there are no chord, this is trivial. Suppose there are. Let

a = c1, c2, . . . , cp = b

be the outer face of G.

Pick cicj to be the chord which minimizes j − i. By construction, there are no OTHER
chords in {ci, ci+1, . . . , cj}. Since the graph is planar, there is no chord between ci+1 and
any vertex in {c1, . . . , ci−1} or {cj+1, . . . , cp}.

Furthermore, we know
1 ≤ i < i+ 1 < j ≤ p

so ci+1 6= a, b and we may choose vn.

Then G − vn has the desired ordering by induction. Moreover, vn has at least two pre-
decessors (neighbours on the simple cycle which was the outer face of G). Finally, any
vertex that is not on the outer-face of G has at least successor. This is due to the fact
that it was either not on the outer-face of G− vn, or it was adjacent to vn and hence vn
is a successor.

49

©Fel
ix

Zh
ou

Theorem 5.3.3
Let G be a triangulated planar graph with {a, b, t} be the outer-face of G.
There is a canonical order of G such that

v1 = a, v2 = b, vn = t

Proof
By the lemma.

Lemma 5.3.4
A canonical order of a triangulated planar graph can be found in linear time.

5.3.3 Splitting into Trees

Theorem 5.3.5
The edge set of any triangulated simple G can be partitioned into 3 edge-disjoint
trees.

Proof
Assume that we have the canonical ordering v1, . . . , vn of G. Label the edge v1v2 1.

Fix some k ≥ 2 and enumerate the outer face of Gk

v1 = c1, c2, . . . , cp = v2

Let `, r be the minimal and maximal indices where c`, cr are predecessors of vk+1. Notice
that ` < r since indeg(vk+1) ≥ 2.

Assign 1 to edge c`vk+1 and 2 to the edge crvk+1. Finally, assign 3 to all other edges from
vk+1 to a predecessor. There must be a 1 and 2 edge but not necessarily a 3 edge.

For each i ∈ [3], let Ti be the graph formed by the edges labeled i. We claim Ti is a tree.

Direct each edge from the lower-indexed to the higher-indexed endpoint.

Each vertex has at most one incoming edge labelled 1. This implies that the edges labeled
1 are a forest. Since every vertex except v1 has an incoming 1 edge, T1 has n − 1 edges
and is in fact a spanning tree of G.

Similarly, the edges labeled 2 are a forest. Observe that all vertices except v1, v2 have
exactly one incoming 2 edge and v1 is not incident to any edge labeled 2. It follows that
T has n− 2 edges an reaches n− 1 vertices. Thus it is a spanning tree of V − v1.

50

©Fel
ix

Zh
ou

Finally, a vertex may have many incoming edges labelled 3 but it has at most one outgoing
edge labeled 3. a vertex vi has an outgoing 3 edge only if it disappears from the outer face
in G[vi+1]. Vertices v1, v2, vn neveer disappear from the outer face and have no outgoing
edges labeled 3. Furthermore, v1, v2 have no incident edges labeled 3. Therefore T3 forms
a spanning tree of V − v1 − v2.

Definition 5.3.2 (Schnyder Wood)
The tree trees obtained from a canonical order.

Arboricity

Definition 5.3.3 (Arboricity)
A graph G is said to have arboricity

a(G)

if there is a partition of the edges into at most a(G) forests.

Corollary 5.3.5.1
Every planar graph has arboricity at most 3.

Proof
Add edges until we have a triangulated graph G′. From Schnyder Wood, we know a(G′) ≤
3.

Since edge deletion does not increase arboricity

a(G) ≤ 3

as desired.

5.3.4 Visibility Representation

Definition 5.3.4 (Bar Visibility Representation)
Each vertex is a horizontal line segment. Each edge is a vertical line segment con-
nected the bars of its endpoints and intersecting no other bars.

51

©Fel
ix

Zh
ou

Definition 5.3.5 (Strong Visibility Representation)
A bar visibility representation where edges between two vertices exist if and only if
there is some vertical line intersecting both horizontal vertex lines and nothing else.

Definition 5.3.6 (Weak Visibility Representation)
A bar vibility representation where the rule for strong model does not necessarily
apply.

Theorem 5.3.6
Every triangulated graph has a strong visibility representation.

Proof
Let v1, . . . , vn be the canonical ordering of a triangulated graph G. We create for k ≥ 2
a visibility representation of Gk with the following invariant: For each outer face vertex c
in clockwise order from v1 to v2, there is an interval where the bar of c can “see” upward
to infinity.

This is trivial for G2. Assume Gk has been drawn with the invariant holding. To add
vk+1, we create a new segment above the current visibility representation.

Let ci, cj be the left most and rightmost predecessors of vk+1. Place the bar for vk+1 such
that it covers partially the intervals for ci, cj and all intervals in between. Then since all
vk=1 is adjacent to all vertices between ci, cj on the outer face of Gk, all visibility lines
from vk+1 aorrespond to edges.

In addition, the invariant continues to hold, so all visibility lines from vk+1 correspond to
edges and ci, cj continue being on the outer face.

The result follows by induction.

Corollary 5.3.6.1
Every planar graph has a weak visibility representation.

Proof
Triangulate the graph and apply the theorem.

Corollary 5.3.6.2
Any planar graph has a weak visibility representation for which endpoints are grid points
in

[1, 3n− 6]× [1, n]

52

©Fel
ix

Zh
ou

Proof
There are n vertices and thus we need only n different y-coordinates to place vertex
intervals. There are at most 3n − 6 edges and thus we need only 3n − 6 different x-
coordinates to place edge lines.

Theorem 5.3.7
Every planar graph is the minor of a k × k-grid for k ≤ 3n.

Proof
Use the weak visibility representation Γ to obtain a k × k-grid. That is, overlay Γ with a
k × k-grid H. Delete from H all vertices and edges that do not belong to a vertex bar or
edge segment.

Finally, contract all edges along vertex bars and all but one edge of H along each edge
segment. This precisely gives G and thus shows that H is a minor of H.

5.3.5 Straight-Line Embeddings

Theorem 5.3.8
Every simple planar graph has a straight-line embedding.

Proof
It suffices to show this for triangulated graphs.

Let v1, . . . , vn be a canonical ordering of G. We claim for 2 ≤ k ≤ n:

Gk has a straight-lint drawing such that

x(c1) < x(c2) < · · · < x(cp)

where the outer face of Gk consists of v1 = c1, c2, . . . , cp = v2 in clockwise order. Here
x(v) denotes the x-coordinate of vertex v.

This holds for k = 2 by drawing v1v2 as a horizontal line segment. Assume we have such
a drawing for Gk. We show how to add vk+1 appropriately.

Assume vk+1 is adjacent to
c`, . . . , cr

on the otuer face of Gk with ` < r. Let x∗ ∈ R be such that

x(c`) < x∗ < x(cr)

If we place vk+1 which this x-coordinate, the invariant will be satisfied.

53

©Fel
ix

Zh
ou

Choosing the y coordinate requires care. Since every x∗ differs from the x-coordinate of
its predecessors, there is a line from each ci to the horizontal line x = x∗. This is due to
the fact that there are only finite points which we need to worry about and they all have
differing x-coordinates by induction.

Notice that the y-coordinates can easily explode with our construction. If we are more
careful with choosing x-coordinates, we can obtain smaller y-coordinates and a smaller graph
drawing overall.

54

©Fel
ix

Zh
ouChapter 6

Friends of Planar Graphs

6.1 Super Classes of Planar Graphs

6.1.1 Graphs in 3D

Theorem 6.1.1
Any graph can be drawn straight-line without crossing in 3D.

Proof
Draw vertices on the moment-curve

{(x, x2, x3) : x ∈ R+}

with edges as straight lines.

If any edges cross, the 4 vertices on the ends of the crossing edges lie on one plane, so the
span of those 4 points is 2-dimensional.

But any 3 distinct points on the moment curve are linearly independent by Vandermonde
determinants, thus this never happens.

Definition 6.1.1 (Knot-Less Graph)
Can be drawn in 3D such that any cycle is homeomorphic to the unit circle.

Definition 6.1.2 (Link-Less Graph)
Can be drawn in 3D such that no two disjoint cycles form curves that are linked.

55

©Fel
ix

Zh
ou

6.1.2 Graphs of Bounded Genus

These are graphs embeddable on the surfaces of topological objects with constant genus
(holes).

A specific embedding in a surface can be described using a rotation system. From this
embedding we can hence construct a dual graph.

Moreoever, Euler’s formula holds in the generalized form

n−m+ f = χ

where χ is the Euler characteristic which for orientable surfaces is

χ = 2− 2g

where g is the genus and
χ = 1

for the projective plane.

So we can bound the number of edges, the minimum degree, and the number of predecessors
in a minimum degree order.

Some results include that any graph of genus g can be colored with⌊
7 +

√
1 + 48g

2

⌋
colors.

Thus clique-size in such a graph is bounded and brute force solves the clique problem in
polynomial time. Maximum cut is polynomial for graphs of bounded genus, leveraging the
dual graph again. Though the same ideas do not transfer for maximum flow, it can still be
solved in near linear time for graphs of bounded genus.

Unfortunately testing whether a graph has genus g is NP-hard.

6.1.3 Near Planar Graphs

Definition 6.1.3 (Bounded Crossing Number)
A graph G has crossing number k if there is a drawing of G in the plane that has k
crossings.

56

©Fel
ix

Zh
ou

Definition 6.1.4 (Bounded Skew Number)
A graph has skew number k if there exists a drawing of G in the plane with at most
k edges and k is minimal.

Definition 6.1.5 (k-Planar Graphs)
Can be drawn such that any edge crosses at most k other edges.

1-planar graphs arise naturally from taking the union of a plane graph, its dual, and adding
all edges for face-vertex incidences.

6.2 Subclasses of Planar Graphs

6.2.1 Trees

Self-explanatory.

6.2.2 Outer-Planar Graphs

Definition 6.2.1 (Outer-Planar)
A graph with a planar embedding such that all vertices are on the outer face.

Lemma 6.2.1
A graph G is outer-planar if and only if we can add a universal vertex u to G and the
resulting graph is planar.

Proof
(=⇒) Trivial.

(⇐=) Assume u is on the outer face and delete it.

Corollary 6.2.1.1
Outer-Planar testing can be done in O(n) time.

57

©Fel
ix

Zh
ou

Maximal Outer-Planar Graphs

We are interested in outer-planar graphs which do not remain outer-planar with the addition
of any edge.

Theorem 6.2.2
Any maximal outer planar graph G with n ≥ 3 vertices satisfy

1. Every interior face is a triangle
2. The outer face is simple
3. G is a triangulated disk
4. G has a Hamiltonian cycle
5. G has exactly n− 2 interior faces
6. G has exactly 2n− 3 edges

Proof
The only non-trivial observation is that a straight-line drawing of G contains an n-gon,
which can be split into n− 2 interior faces.

Lemma 6.2.3
Let G be a maximal outer-planar graph.
G∗ = {v∗} ∪ T where v∗ corresponds to the outer face and T is a tree with maximum
degree 3.

Proof
Since G is 2-connected, so must G∗ (by ear-decomposition for example).

G has 2n− 3 edges and n− 1 faces. So G∗ has G∗ has n− 1 vertices and 2n− 3 edges.

There are n edges incident to v∗ thus G∗ − v∗ has n − 2 vertices with n − 3 edges. This
must be a tree! Since all faces except the outer face are triangles, all vertices except v∗

have degree 3.

Lemma 6.2.4
Every maximal outer-planar graph has a vertex ordering v1, . . . , vn such that v1v2 is
an edge on the outer face and vi, i ≥ 3 has exactly two predecessors that are adjacent
ot each other.

Proof
The canonical order satisfies every condition except we permit more than two predecessors.

58

©Fel
ix

Zh
ou

This is resolved by noting that indeg(v2) = 1 and indeg(vi) = 2 gives 2(n−2)+1 = 2n−3
edges and anymore would violate our theorem above.

Problems

It is obvious that we can always find a 3-coloring using a greedy algorithm on the vertex-
order.

6.2.3 k-Outer-Planar Graphs

Definition 6.2.2 (k-Outer-Planar Graphs)
Can be embedded within the plane where all vertices are removed by removing the
outer face k times.

Clearly, any planar graph has outer-planarity at most n
3
. It is not known whether this is

tight.

Theorem 6.2.5
Let G be a planar graph that has a planar grid-drawing in a w × h-grid. Then the
outer-planarity of G is at most

min

{⌈w
2

⌉
,

⌈
h

2

⌉}

Proof
Assume h ≤ w so we must know G is

⌈
h
2

⌉
-outer-planar. We prove this by induction on h.

In the base case h = 1, 2 the claim clearly holds.

Assume h ≥ 2 and we have a drawing of height h. Then the vertices placed in the top
most and bottommost row have to be on the outer face. Thus the outermost onion peel
contains all these vertices (maybe more).

Remove the onion peel. The remaining graph is drawn on a grid of heigh h− 2 and thus
what remains is ⌈

h− 2

2

⌉
outer-planar.

k-outer-planarity testing can be done in O(k3n2) or even O(n2) time!

59

©Fel
ix

Zh
ou

6.2.4 Series-Parallel Graphs

6.2.5 2-Terminal Series-Parallel Graphs

Definition 6.2.3 (2-Terminal SP-Graph)
A graph with two terminals s, t obtained through:

base case A single edge st

series combination If G1, G2 are 2-terminal SP-graphs, then identifying t1, s2 gives
a 2-terminal SP-graph

parallel conbination Identifying s1, s2 and t1, t2 is a 2-terminal SP-graph

We will see K1,3 is not 2-terminal SP and thus not even trees are 2-terminal SP-graphs.
Moreover, K1,3 appears as an induced subgraph of a 2-terminal SP-graph so this class is
NOT classed under taking minors.

The SP-Tree

We can capture the sequence of conbinations used to construct a 2-terminal SP-graph G
with a binary tree T .

base case If G is an edge st, then T is a single node labelled st

combination If G is the combination of G1, G2, then T has a node labelled S or P. This
node is labelled G and its children are the SP-trees for G1, G2.

Lemma 6.2.6
Let G be a 2-terminal SP-graph with vw and edge.
The following are also 2-terminal SP-graphs

1. The graph obtained by duplicating vw

2. The graph obtained by subdividing the edge vw with a new vertex x

Proof
Get the leaf of the SP-tree representing vw. Replace this with a P node with two children
representing vw and its duplicate.

For the second claim, replace this node with an S node with two children that represent
vx and xw.

60

©Fel
ix

Zh
ou

Lemma 6.2.7
Let G be a 2-terminal SP-graph with n ≥ 3 and source terminals s, t.

1. G has at most 2n− 3 edges
2. G is either a single edge or contains a vertex of degree 2
3. G is planar and has a drawing with the terminals on the outer face
4. G has a 3-coloring where the terminals hae different colour
5. G an acyclic edge orientation such that s is the only source and t is the only

target

Proof
Structural induction on the SP-tree.

SP-Graphs

Definition 6.2.4 (Series-Parallel Graph)
A graph is called a series-parallel graph if it is a spanning subgraph of a 2-terminal
series-parallel graph.

6.2.6 Apollonion Networks

Definition 6.2.5 (Apollonion Network)
A triangulated plane graph obtained as follows

base case A triggle is an Apollonion network

Face Subdivision If G is an Apollonion network and T is a triangular inner face of
G, the graph obtained from G by inserting a new vertex inside T and connecting
it to T ’s vertices is also an Apollonion network.

Lemma 6.2.8
Any Apollonion network on n ≥ 4 vertices has a vertex order v1, . . . , vn where v1, v2, v3
form a triangle and for i ≥ 4, the vertex vi has exactly three predecessors that form
a triangle.

61

©Fel
ix

Zh
ou

6.2.7 Relationships between Subclasses of Planar Graphs

62

©Fel
ix

Zh
ou

Part II

From Interval Graphs to Treewidth

63

©Fel
ix

Zh
ou

©Fel
ix

Zh
ouChapter 7

Interval Graphs & Friends

7.1 Interval Graphs

Definition 7.1.1 (Intersection Graph of Intervals)
Given a set of intervals, we define a graph with a vertex v for every interval Iv, and
an edge vw if and only if the two corresponding intervals intersect.

Definition 7.1.2 (Interval Graph)
G is an interval graph if it is the intersection graph of some set of intervals.

Observe that we may assume without loss of generality that all endpoints are distinct in the
range [2n].

Every complete graph is an interval graph. Simply take the intervals to be copies of the
same interval.

Proposition 7.1.1
A cycle of length k ≥ 4 cannot be an interval graph.

Proof
Assume otherwise and let cj be the vertices/intervals.

Pick ci to be the one whose left endpoint `i is maximal. Then the interval of ci−1 start
to the left of ci. But ci−1ci is an edge so its right endpoint ri−1 is to the right of `i. The
same holds for ci+1. In particular, ci−1, ci+1 both share the point `i and they must have
an edge.

65

©Fel
ix

Zh
ou

Definition 7.1.3 (Induced-Hereditary)
Closed under taking induced subgraphs.

Interval graphs are induced-hereditary.

Definition 7.1.4 (Hereditary)
Closed under taking subgraphs.

Interval graphs are NOT hereditary.

7.2 Chordal Graphs

Definition 7.2.1 (Chordal Graph)
A graph G is chordal if it does not contain an induced k-cycle for k ≥ 4.

Observe that every interval graph is chordal. Moreoever, every tree is chordal. However, not
all trees are interval graphs

7.3 Perfect Elimination Order

Observe that sorting the intervals of an interval graph by the left endpoint yields a vertex
order. Consider some predecessor vh of vi in this order. Since vh comes earlier, `(vh) < `(vi).

66

©Fel
ix

Zh
ou

Since it is a neighbour, r(vh) > `(vi). So the set of predecessors and vi,

pred(vi) ∪ {vi}

form a clique!

Definition 7.3.1 (Perfect Elimination Order)
A vertex order v1, . . . , vn such that

pred(vi)

is a clique for all 1 ≤ i ≤ n.

Observe that the described vertex order of intervals graphs is a p.e.o. Futhermore, a pre-
order traversal of a tree yields a p.e.o. Thus not every graph with a vertex elimination order
is an interval graph.

Theorem 7.3.1
If G has a perfect elimination order, G is chordal.

Proof
Consider any k-cycle of C of G for some k ≥ 4. Enumerate

C = c0, . . . , ck−1

and pick the vertex in the cycle that appears last among the cycles in p.e.o.

ci must have two predecessors and thus they must be adjacent. So C has a chord!

The converse actually holds as well but we defer the proof.

7.4 Problems in Chordal Graphs

7.4.1 Coloring

Theorem 7.4.1
The greedy algorithm yields the optimal number of colors on a p.e.o.

Proof
Assume the greedy algorithm yields a k-coloring. Any clique of size k requires k colors.

67

©Fel
ix

Zh
ou

Any vertex requiring the use of the k-th color has k − 1 predecessors. Thus

k ≥ χ(G) ≥ ω(g) ≥ k

and we have equality throughout.

7.4.2 Clique

Corollary 7.4.1.1
let G be a graph with p.e.o. v1, . . . , vn. Then

ω(G) = χ(G) = max
i

{indeg(vi) + 1}

7.4.3 Independent Set

Definition 7.4.1 (Clique Cover)
A partition of V (G) so that each class form a clique in G.

Theorem 7.4.2
The greedy algorithm on a p.e.o. v1, . . . , vn yields a maximum independent set.

Proof
View the greedy algorithm from n to 1. If vi has not been marked yet, add vi to the
independent set and mark its predecessors.

Observe that marked sets form a clique cover. Suppose our independent set uses k vertices,
one from each clique.

But obviously an independent set can have at most 1 vertex per clique. Thus k is optimal.

7.4.4 Dominating Set

Theorem 7.4.3
Dominating Set is NP-hard in chordal graphs.

Proof
We show a reduction from Vertex Cover in a general graph to Dominating Set in chordal

68

©Fel
ix

Zh
ou

graphs.

Let G = (V,E) and an integer k. Create a new graph G+ as follows.

Subdivide every edge e ∈ E with we being the identified vertex.

Add all edges between the original vertices of G.

We claim that G has a vertex cover C of size k if and only if G+ has a dominating set S
of size k.

Given a vertex cover of C, use the same vertex set S = C in G+. Since every e ∈ E has
an endpoint v in C, the subdivision vertex we in G+ is dominated by v. Also, all vertices
in V \ S are dominated by any vertex in S since the vertices of V form a clique in G+.

Now, fix some dominating set S in G+. If S contains any subdivision vertices we for
e = uv, we may replace we by v in S, as we dominates only u, v while v dominates at
least u,we. So we may assume S only contains original vertex of V . With this, for any
we ∈ G+, there is a vertex v ∈ s adjacent to we. This means that v is an endpoint of the
edge e, and hence the same set S is also a vertex cover in G.

This shows the reduction. We need only show G+ is chordal. We can easily get a p.e.o.
of G+ by enumerating the vertices in V (form a clique), and then the vertices we (both
predecessors are adjacent) as required.

7.5 Friends of Interval Graphs

7.5.1 Intersection Graphs

Definition 7.5.1 (Intersection Graph)
A graph G is an intersection graph if there is a universe X such that every vertex v
corresponds to a set Sv ⊆ X of objects of the universe.
Moreoever, the edge uv exists if and only if Sv and Sw intersect.

Theorem 7.5.1
Every graph is an intersection graph.

Proof
Let X be the set of edges and each vertex v, let

Sv := {e = vw : e ∈ E}

Given two vertex v, w, then Sv, Sw intersect if and only if there is an edge incident to both

69

©Fel
ix

Zh
ou

v, w. This holds if and only if v, w are adjacent.

We can restrict the universe to make intersection graphs more interesting. Examples such
as the intersection graph of d-dimensional boxes or unit discs.

Another example is the touching graphs of discs. This means the geometric objects are
interior-disjoint and there exists and edge in the graph if and only if two corresponding
objects share a boundary point. These graphs turn out precisely to be the planar graph.

7.5.2 H-Free Graphs

Definition 7.5.2 (Induced H-Free Graph)
Let H be an arbitrary collection of graphs. The graph clas of induced-H-free graphs
are the ones whose induced subgraph NEVER belong to H

Some examples include the P4-free graphs (path with 4 vertices), AT-free graphs, and Odd-
hole (Odd-anti-hold) -free graphs.

A hole is a cycle Ck, k ≥ 4 and an anti-hole is the complement of such a cycle.

7.5.3 Perfect Graphs

Definition 7.5.3 (Perfect Graph)
A graph G is perfect if

ω(H) = χ(H)

for every (not necessarily proper) induced subgraph H of G

Theorem 7.5.2 (Strong Perfect Graph Theorem)
A graph is perfect if and only if it does not have an odd hole or an odd anti-hole as
induced subgraph.

70

©Fel
ix

Zh
ouChapter 8

Recognizing Chordal Graphs &
Interval Graphs

8.1 Finding a Perfect Elimination Order

8.1.1 Finding Simplicial Vertices

We need an alternative characterization of p.e.o.’s.

Definition 8.1.1 (Simplicial Vertex)
v ∈ V (G) such that the neighbours of v form a clique in G.

Lemma 8.1.1
A graph G has a p.e.o. if and only if every induced subgraph of G has a simplicial
vertex.

Proof
If G has a perfect elimination order and H is an induced subgraph, then the last vertex
of H in the p.e.o. is simplicial in H, as all its neighbours in H are predecessors in the
p.e.o. and so form a clique.

Vice versa, if all induced subgraphs of G contain a simplicial vertex, let vn be a simplicial
vertex of G. By induction on the number of vertices G − vn has a perfect elimination
order, and appending vn to it gives a p.e.o. of G.

This lemma implies a simple polynomial time algorithm to test whether a graph has a p.e.o.
Search for a simplicial vertex vn. If we find one, append it is to a recusively obtained order

71

©Fel
ix

Zh
ou

of G− vn.

8.1.2 Maximum Cardinality Search

This is a much faster algorithm which works by repeatedly choosing the vertex for which the
maximum number of neighbours has already been chosen. Ties are broken arbitrarily.

def MaxCardSearch:
for v in V:

chosen[v] = False
p[v] = 0

for i=1, ..., n:
_, v_i = max((p(v), v) for v in V)
chosen[v_i] = True
for w in adj(v_i):

if not chosen[w]:
p[v] += 1

return v_1, ..., v_n

the run time is dominated by the time to find the vertex maximizing p(v) among remainig
vertices. This can be done easily with a priority queue. But since 0 ≤ p(v) ≤ n− 1 for all v
and we only increment elements by at most 1, we can actually do this with a suitable bucket
struct of linked-lists such that the time to find vi or update p(w) is constant.

So the run time can be reduced to
O(m+ n)

Lemma 8.1.2
Let C = c0, . . . , vk−1 be a cycle in a chordal graph. Then for any 0 ≤ i < k, either
ci−1ci+1 is an edge, or ci is incident to a chord of C.

Proof
We argue by induction on k. The case k = 3 is trivial.

Assume k ≥ 4 and ci is not incident to a chord of C. Since G is chordal, there must exist
some chord cjc` in C. This chord splits C into two parts

C ′, C ′′

One of these parts, say C ′ contains ci. If C ′ had a chord incident to ci, then this would
be a chord of C which is a contradiction. So by induction on C ′, the edge ci−1ci+1 exists.

72

©Fel
ix

Zh
ou

To see that MCS works, we show that it maintains the following: Any set that separates
an undiscovered connected component from the discovered part must be a clique. We need
the following notation: For any vertex-set S, let Ni(S) be the set of neighbours of S in
{v1, . . . , vn}.

Lemma 8.1.3
Assume v1, . . . , vn was the output of MCS. Let C be a component of G \ {v1, . . . , vi},
for some 1 ≤ i < n.
Then Ni(C) is a clique.

Proof
We proceed using induction on i. The base case i = 1 is obvious as N(C) ⊆ {v1} which
is a trivial clique.

Consider the time when we add vertex v as vi+1 to the order. Fix an arbitrary component
C ′ of G \ {v1, . . . , vi+1}. We know that Ni(C

′) is a clique by induction, and want to show
that Ni+1(C

′) is also a clique.

This can be violated if and only if v ∈ Ni+1(C
′), and some vertex in Ni(C

′) is NOT
adjacent to v.

Assume for a contradiction that v has a neighbour y in C ′, and there is x in C ′ (possibly
x = y) with a neighbour px ∈ Ni(C

′) such that pxv /∈ E.

Let
x = x1, x2, . . . , xd = y

be a path from x to y within C ′. By re-defining x if necessary, we may assume px is NOT
adjacent to xi, i ≥ 2.

We claim that v has a neighbour pv in {v1, . . . , vi} that is not adjacent to x. this holds
because we picked v rather than x in MCS, so

|Ni(v)| ≥ |Ni(x)|

We have px ∈ Ni(x) \ Ni(v) so there must be at least one vertex pv in Ni(v) \ Ni(x), or
else we would have taken x.

Observe that both v, x belonged to one connected componenet Cv of G \ {v1, . . . , vi}, due
to the path x1, . . . , xd, v. Therefore pv, px both belong to Ni(Cv), and since this is a clique
by induction we know pvpx is an edge.

Now apply our lemma to the cycle

v, pv, px, x1, . . . , xd, v

using vertex px.

73

©Fel
ix

Zh
ou

This states that either we have the edge pvx, or the edge pxv, or some edge pxxi for i > 1.

All of these cases have been ruled out above which is a contradiction. We conclude N(C ′)
is a clique as required.

Theorem 8.1.4
Let G be a chordal graph. Then the order v1, . . . , vn returned by MCS is a perfect
elimination order, regardless of how ties are broken.

Proof
We must show that pred(vi) is a clique for i = 1, . . . , n. To this end, consider the subgraph
Gi induced by v1, . . . , vn, and observe that it is chordal and v1, . . . , vi has been obtained
by runnning MCS on Gi.

Vertex vi is a component of Gi \ {v1, . . . , vi−1} and its neighbourhood

Ni−1(vi) = pred(vi)

is a clique by our lemma.

Observe that this finishes the characterization of chordal graphs as those which have a perfect
elimination order.

8.1.3 Lexicographic BFS

MCS was improved later to lexicographic BFS. This has many properties which make it
useful for other applications. For example, when a vertex can be the last vertex.

However, it is harder to see why lexicographic BFS runs in linear time. Since we do not need
the algorithm further, we omit the details.

8.2 Testing a Putative Perfect Elmination Order

We know if G is chordal, then the order v1, . . . , vn computed by MCS is a p.e.o. Thus to
test if G is chordal, we only need a way to test a vertex ordering if is a p.e.o.

8.2.1 An Idea

Assume we already know that
v1, . . . , vi−1

74

©Fel
ix

Zh
ou

is a p.e.o.

Let vh be the last predecessor of vi (the one maximizing h).

For each u ∈ pred(vi)− vh, test whether u is adjacent to vh. If this fails at some u, pred(vi)
cannot be a clique. If they are all successful then

pred(vi) ⊆ pred(vh) ∪ {vh}

is a clique by induction.

Notice that this particular idea takes O(m) adjacency queries. This could take more than
linear time since adjacency-queries may take more than constant time.

Rather than testing immediately, we can gather all such pairs inot one multi-set E of pairs
of vertices and test them all at once in the end. This shifts the burden of work to the last
step.

We can bucket sort E and the edge-list L of G, and check if E ⊆ L. Each vertex adds
indeg(v)− 1 pairs to E so the total time taken is

O(m+ n+ |E|) = O(m+ n)

Theorem 8.2.1
Chordal graphs can be recognized in linear time.

8.3 Recognizing Interval Graphs

Lemma 8.3.1
Let G be a graph with p.e.o.

v1, . . . , vn

Theb any clique C is a subset of

{vi} ∪ pred(vi)

for some i.
If C is a maximal clique, then

C = {vi} ∪ pred(vi)

Proof
Let i be the maximum index of a vertex in C. Then all other vertices in C are predecessors

75

©Fel
ix

Zh
ou

of vi, and
C ⊆ {vi} ∪ pred(vi)

If C is maximal, vi cannot have more predecessors, or else we can easily increase the size
of the clique.

Theorem 8.3.2
G is an interval graph if and only if the maximal cliques of G can be ordered consec-
utively.
In other words we can listed them as C1, . . . , Ck such that if v ∈ Ci, Cj

∀i < h < j, v ∈ Ch

Proof
(⇐=) If C1, . . . , Ck is a consecutive ordering of the maximal cliques, set

Iv := [min{i, v ∈ Ci},max{j : v ∈ Cj}]

To see that this is indeed an interval representation, assume vw ∈ E. There is some
maximal clique Ch which contains this edge. Thus v, w ∈ Ch. By the definition of Iv, Iw,
both intervals contain h and hence they intersect.

On the other hand, Suppose Iv, Iw intersect, say at h. Since the clique ordering is consec-
utive, this implies that both v, w belong to Ch and vw ∈ E as desired.

(=⇒) Assume that G is an interval graph with an interval representation with endpoints
in [2n]. Now for i = 1, . . . , 2n − 1, let Ci be the clique formed by the intervals that
intersect the open range

(i, i+ 1)

We claim C1, . . . , C2n−1 includes all maximal cliques. To see this let v1, . . . , vn be the
perfect elimination order obtained by sorting vertices by the left endpoint. By the lemma,
every maximal clique C has the form

pred(vi) ∪ {vi}

where vi is the vertex with maximal index.

Thus all vertices in pred(vi) intersect the opern interval

(`(vi), `(vi) + 1)

where `(vi) denotes the left endpoint of vi.

In the proposed clique order, every vertex appears in a consecutive set of cliques, since it
belongs to an interval. Removing from this order all cliques that were not maximal hence
gives the desired order.

76

©F
el

ix
Zh

ou
So to find all maximal cliques, we start with a candidate set

C = {{vi} ∪ pred(vi)}

Proposition 8.3.3
Fix a p.e.o.

v1, . . . , vn

and set Ci := {vi} ∪ pred(vi).
Then Ci is not a maximal clique if and only if there is an index j > i such that vi is the
last predecessor of vj and

indeg(vj) = indeg(vi) + 1

Proof
(=⇒) If Ci is not a maximal clique, there is a vertex vj /∈ Ci adjacent to all of Ci. We
cannot have j < i, thus choosing the smallest such j, we get that vi is the last predecessor
of vj.

In this case
pred(vj) ⊆ pred(vi) ∪ {vi} ∧ Ci ⊆ pred(vj)

so in fact pred(vj) = Ci and

indeg(vj) = |Ci| = indeg(vi) + 1

(⇐=) Since vi is the last predecessor of vj

pred(vj) ⊆ pred(vi) ∪ {vi} = Ci

But then by cardinality
pred(vj) = Ci

so Ci ⊂ Cj and Ci is not maximal.

Observe that finding maximal cliques in a chordal graph now amounts to scanning all vertices
and comparing in-degrees. This takes O(deg(v)) time per vertex, hence the time to find the
maximal cliques is linear.

def max_cliques_in_chordal(G);
v_1, ..., v_n = peo(G)
to_delete = [False for v_i in G]

for j=1, ..., n:
O(deg(v)) per vertex
cache[v_j] = (indeg(v_j), last_pred(v_j))

77

©Fel
ix

Zh
ou

for i=1, ..., n:
for v_j in succ(v_i):

indeg_v_j, last_pred_v_j = cache[v_j]
indeg_v_i, _ = cache[v_i]

if v_i == last_pred_v_j and indeg_v_j == indeg_v_i + 1:
to_delete[v_i] = true
break

8.3.1 PQ-Trees

No we want to bring maximal cliques into consecutive order. To do so we once again leverage
PQ-trees.

1) Test if G is chordal. If not, G cannot be an interval graph. If so, compute a p.e.o. of
G.

2) Compute all maximal cliques C of G.
3) Define the X (universe of PQ-tree) to be C
4) For each v ∈ V , add a constraint Iv that all cliques containing v must be consecutive
5) Test if there is a permutation π of X that all constraints are consecutive
6) If no such permutation exists, G is not an interval graph. Otherwise, we can extract

an interval representation

Theorem 8.3.4
Testing whether a graph is an interval graph can be done in linear time.

Proof
We argue that neither X, I (set of constraints) is too big.

Each clique in C has the form pred(vi) for some vertex i. So

|X| ≤ |C| = n

For any v ∈ V , if v ∈ Ci, then either v = vi or v is a predecessor of vi.

Hence v belongs to at most outdeg(v) + 1 maximal cliques, and∑
Iv∈I

|Iv| ∈ O(m+ n)

78

©Fel
ix

Zh
ou

The result following from the running time of PQ-trees.

8.3.2 Other Algorithms

The algorithm presented was the first linear time algorithm for recognizing interval graphs.
Subsequent algorithms have been developped avoiding the use of PQ-trees. A simple one
runs lexBFS 5 times. The algorithm is simple but the proof is quite involved.

79

©Fel
ix

Zh
ou

80

©Fel
ix

Zh
ouChapter 9

Tree Decompositions

9.1 Strong Path Decomposition

We showed that a graph is an interval graph if and only if the maximal cliques can be listed
in a “path”.

Definition 9.1.1 (Strong Path Decomposition)
A strong path decomposition P of a graph G = (V,E) consists of a path P with
nodes I and an assignment X : I → 2V to each node of P such that

(i) Every vertex of G belongs to at least one bag
(ii) For every v ∈ V , the bags containing V are consecutive along P

(iii) For any pair of vertices v, w, vw ∈ E if and only if there is some bag Xi

containing v, w.

Observe that every bag Xi in such a decomposition forms a clique. This is due to (iii).

While bags are cliques, they do not have to be maximal. Moreoever, duplicate bags are
perfect acceptable. In particular, strong path decompositions are NOT unique!

Corollary 9.1.0.1
A graph G is an interval graph if and only if it has a strong path decomposition.

9.2 Strong Tree Decomposition

We can generalize this idea to chordal graphs.

81

©Fel
ix

Zh
ou

Definition 9.2.1 (Strong Tree Decomposition)
A strong tree decomposition T of a graph G = (V,E) consists of a tree T with nodes
I and an assignment X : I → 2V to each node of T such that

(i) Every vertex of G belongs to at least one bag
(ii) For every v ∈ V , the bags containing V are connnected ie are connected (con-

nectivity condition)
(iii) For any pair of vertices v, w, vw ∈ E if and only if there is some bag Xi

containing v, w.

Notice that we use the term strong tree decomposition to emphasize that an edge exists in
the graph if and onloy if the two endpoints are in a bag. We can weaker this to an only if
condition and get a weak tree decomposition, where not all pairs in a bag have an edge.

To avoid confusion, we will talk about the nodes or arcs (links) of the “host tree” T and
vertices or edges of the original graph G.

There is a different way to view a strong tree decomposition.

Definition 9.2.2 (Intersection Graph of Subtrees)
Consider a tree T . Let T1, . . . , Tn be some subtrees of T .
We can then define a graph with vertices

v1, . . . , vn

that has an edge vivj if and only if the subtrees Ti, Tj have a node of T in common.

Proposition 9.2.1
A graph is an intersection graph of subtrees of a tree if and only if it has a strong tree
decomposition.

Proof
Assign a vertex to a bag if and only if its subtree contains that node, and vice versa.

82

©Fel
ix

Zh
ou

9.2.1 Perfect Elimination Orders & Tree Decompositions

Lemma 9.2.2
Assume G has a strong tree decomposition. Then G has a perfect elimination order

v1, . . . , vn

Furthermore, for j = 1, . . . , n, there exists a bag that contains

{vj} ∪ pred(vj)

Proof
Traverse the tree in pre-order to enumerate bags

X1, . . . , Xk

For i = 1, . . . , k, let the graph Gi be the graph for which X1 ∪ · · · ∪ Xi is a strong tree
decomposition.

Now we build by induction on i a p.e.o. of Gi.

This is easy for i = 1 as the vertices form a clique. Any ordering v1, v2, . . . will do.

For i > 1, assume we have a p.e.o. of Gi−1. Let Xh be the parent of Xi in the traversal,
and y1, . . . , y` be the vertices that are in Xi \Xh. By the connectivity condition and since
Xh is the parent of Xi. These vertices do not appear in X1, . . . , Xi−1.

If ` = 0, then Gi = Gi−1 and we are done. Assume otherwise that ` > 0. Any neighbour
of y1, . . . , y` in Gi must be in Xi, as none of X1, . . . , Xi−1 contains y1, . . . , y`.

Since we have a strong tree decomposition, Xi induces a clique. So y1, . . . , y` are all
simplicial in Gi, and appending them in arbitrary order to the p.e.o. of Gi−1 gives the
result.

Corollary 9.2.2.1
Let T be a strong tree decomposition of a graph G. Then for any clique C, some bag
of T contains all vertices of C.

Proof
Obtain the p.e.o. v1, . . . , vn from T as above. By our previous work

C ⊆ {vj} ∪ pred(vj)

for some vj, and we know that this set appears within one bag.

83

©Fel
ix

Zh
ou

Lemma 9.2.3
If G has a p.e.o. v1, . . . , vn, then it has a strong tree decomposition. Moreover, every
bag has the form

{vi} ∪ pred(vi)

for some i, and for every i there exists such a bag.

Proof
We prove the claim for

Gi := G[v1, . . . , vi]

by induction on i.

We start by putting v1 into one bag X1 of the tree decomposition. Clearly this satisfies
all conditions.

Now consider vertex vi, i > 1. Let vh be its last predecessor, and Xh be the bag

Xh = {vh} ∪ pred(vh)

. Add a new bag
Xi := {vi} ∪ pred(vi)

to the decomposition, and make it adjacent to Xh.

Clearly every vertex appears in one bag and every edge is covered by the bag of its
endpoint with bigger index.

The connectivity condition held within X1, . . . , Xi−1 by induction, so we need only check
vertices in Xi. Indeed, vi only appears in Xi so the condition holds. for any w 6= vi ∈ Xi,
we know

w ∈ pred(vi) ⊆ {vh} ∪ pred(vh) = Xh

so the new bag containing w is adjacent to a previous bag containing w and the connec-
tivity condition holds for w.

Theorem 9.2.4
A graph G is chordal if and only if it has a strong tree decomposition T . Furthermore,
the clique size ω(G) satisfies

ω(G) ≤ k + 1

if and only if all bags of T have size at most k + 1.

Proof
Given G, find a perfect elimination order v1, . . . , vn and build T using our lemma. We

84

©Fel
ix

Zh
ou

know ω(G) = maxi{indeg(vi)+1}, hence the bag-size is upper-bounded by the clique size.

Vice versa, given T , extract a p.e.o. v1, . . . , vn using another lemma. Since the maximum
clique occurs in some bag, ω(G) is upper-bounded by the maximum clique size.

85

©Fel
ix

Zh
ou

86

©Fel
ix

Zh
ouChapter 10

Treewidth

10.1 k-Trees

Lemma 10.1.1
The following are equivalent for graph with n ≥ 2.

1. G is a tree
2. G has a p.e.o v1, . . . , vn such that indeg(vi) = 1 for i > 1.
3. G is a chordal graph with maximum clique-size ω(G) = 2 and n− 1 edges.

Proof
(3) =⇒ (1) Trivial.

(2) =⇒ (3) Trivial.

¬(1) =⇒ ¬(3) Suppose G is not a tree but it is chordal and has n− 1 edges.

This implies G has a cycle and since it is chordal, a cycle of size 3. So ω(G) ≥ 3.

Definition 10.1.1 (k-Tree)
A graph G with m ≥ k + 1 vertices is a k-tree if G has a p.e.o. such that

indeg(vi) = k

for all k + 1 ≤ i ≤ n.

87

©Fel
ix

Zh
ou

10.1.1 Properties of k-Trees

Observe that the first k+1 vertices of v1, . . . , vk+1 must form a clique since indeg(vk+1) = k.

The maximum clique is has size

ω(G) = max
i

{indeg(vi)}+ 1 = k + 1

Furthermore, the number of edges is∑
i

indeg(vi) = 1 + 2 + . . . , (k − 1) +
∑
i>k

k = kn− k2

2
− k

2

and in particular m ∈ O(kn) which is linear for k constant.

Theorem 10.1.2
Let G be a graph with n ≥ k + 1. Then G is a k-tree if and only if

(i) G is chordal
(ii) ω(G) = k + 1

(iii) m = kn− k2

2
− k

2

Proof
Necessity is proven.

Suppose now that the three conditions hold.

We have indeg(vi) ≤ k for all i, but the first i ≤ k vertices has indeg(vi) ≤ i − 1. Thus
the number of edges is AT MOST

kn− k2

2
− k

2

but we have equality so the indegrees are actually exactly as described.

So G is a k-tree.

10.1.2 Planar k-Trees

Every tree is a 1-tree. In fact this is an if and only if relation.

Every maximal outer-planar graph is a 2-tree, since the canonical ordering satisfies the
properties of the theorem. However, not every 2-tree is maximal outer-planar. Indeed K2,3

is a subgraph of a 2-tree which cannot be a 2-tree.

88

©Fel
ix

Zh
ou

Every Apollonion network is a 3-tree, as its constructive vertex ordering satisfies the required
conditions. On the other hand, not every 3-tree is an Apollonion network. K3,3 is a subgraph
of an Apollonion network but it is not even planar.

Lemma 10.1.3
Every 2-tree is a 2-terminal SP-graph.

Proof
This holds for n = 2 since the graph is just an edge. For n ≥ 3, let v1, . . . , vn be a p.e.o.
of G such that indeg(vi) = 2 for all i ≥ 3.

The graph induced by v1, . . . , vn−1 is a 2-tree, and thus by induction is a 2-terminal
SP-graph.

Let vh, vj be the predecessors of vn. Replace the leaf node of the SP-tree holding vhvj
with the graph obtained by a series connection

vhvn, vnvj

and a parallel connection
vhvj, vhvnvj

While the converse does not hold, every 2-terminal SP-graph is a subgraph of a 2-tree.

10.2 Partial k-Trees

Definition 10.2.1 (Partial k-Tree)
A spanning subgraph of a k-tree.

Partial 1-trees are spanning subgraphs of trees, i.e. forests.

Every outer-planar graph is a partial 2-tree, as it is a spanning subgraph of a maximal
outer-planar graph, which is a 2-tree.

A partial 2-tree is an SP-graph, as it is a spanning subgraph of a 2-tree, which we have
shown to be a 2-terminal SP-graph.

outer-planar graphs ⊆ partial 2-trees ⊆ SP-graphs

It can be shown that every SP-graph is a partial 2-tree.

All partial Apollonion networks are partial 3-trees, since every Apollonion network is a partial
3-tree.

89

©Fel
ix

Zh
ou

Lemma 10.2.1
Any chordal graph G with ω(G) ≤ k + 1 is a partial k-tree.

Proof
If n ≤ k + 1, simply add edges to make it into a clique. So assume n > k + 1.

Fix a p.e.o. of G. We know

indeg(vi) ≤ ω(G)− 1 ≤ k

for all i. We show how to add edges so that indeg(vi) = k for i > k.

Initially add edges so the first k vertices form a clique.

For k + 1 ≤ i ≤ n let vh be the last predecessor of vi. If h ≤ k, then add all edges from
vi to

{v1, . . . , vk} = Ck

We then have pred(vi) = Ck and they form a clique.

If k < h < i, then by induction indeg(vh) = k and

Ch := {vh} ∪ pred(vh)

is a clique of size k = 1. We also know the predecessors of vi are a subset of Ch. If
vi currently has fewer than k predecessors, add edges to the vertices of Ch until it has
exactly k. This does not affect the validity of the p.e.o.

Notice that this shows us every partial k-tree is a partial `-tree for ` > k.

Corollary 10.2.1.1
If G is a subgraph of a k-tree H, G is a partial k-tree.

Proof
We know that H is chordal with ω(G) ≤ k + 1. Let H− be the induced subgraph of
vertices in G. Then H− is still chordal and the upper bound on clique sizes still holds.

Thus H− is again a partial k-tree, and so is its spanning subgraph G.

90

©Fel
ix

Zh
ou

10.3 Treewidth

Definition 10.3.1 (Tree Decomposition)
A (weak) tree decomposition of a graph G = (V,E) is a strong tree decomposition of
some super-graph of G.
Thus it is a tree T with nodes I and an assignment X : I → 2V of a bag Xi to each
node i ∈ I such that

(i) every vertex appears in at least one bag
(ii) for every v ∈ V , the bags containing v for a subtree of T
(iii) if vw ∈ E is an edge of G, there is a bag that contains both v, w

The tree decomposition does not tell us the edges of the represented graph. It does however
rule out some vertex-pairs that cannot be edges.

Every graph has a tree decomposition–simply put all vertices into one bag.

The tree decomposition is NOT unique.

Definition 10.3.2 (Width)
The width of a tree decomposition is

max
i

|Xi| − 1

Theorem 10.3.1
The following are equivalent for a graph G with n ≥ k + 1.

1. G is a partial k-tree
2. G is a subgraph of a chordal graph H with ω(G) = k + 1

3. G has treewidth at most k

Proof
(1) =⇒ (2) By definition.

(2) =⇒ (3) Get a strong tree decomposition of H where all bags have size at most k+1

(3) =⇒ (1) Pick a tree decomposition T of G with width k. Let H be the super-graph
for which T is a strong tree decomposition. ω(H) ≤ k + 1 thus H is the subgraph of a
k-tree by a previous lemma.

Hence G is a partial k-tree by a previous corollary.

Graphs of bounded treewidth are of interest as they are a generalization of trees, and therefore

91

©Fel
ix

Zh
ou

many of the dynamic programming techniques on trees can easily be extended to them.

10.3.1 Properties of the Treewidth

Proposition 10.3.2
For any tree decomposition T of G, and any clique C of G, there is a bag of T containing
C.
In particular

ω(G) ≤ tw(G) + 1

Proof
The chordal super graph H for which T is a strong tree decomposition also contains C
as a clique in H.

Obtain a p.e.o. from the T of H and use the fact that

C ⊆ {vi} ∪ pred(vi)

for some i ∈ [n].

Note that this bound is NOT tight.

Proposition 10.3.3
If tw(G) ≤ k then for any subgraph G′ of G we also have

tw(G′) ≤ k

Proof
G′ is still a partial k-tree.

Lemma 10.3.4
If G has treewidth at most k, and H is obtained by contracting an edge vw in G,
then H has treewidth at most k.

Proof
Fox a tree decomposition of width k for G. Let x be the vertex that replaced v and w.

Replace every occurrence of either v or w by x. It is easy to check that this tree decom-
position covers all edges.

To see why the subgraph of bags containing x is connected, notice that the subgraph
of bags containing v, w each were connected, and they had a node in common (the bag

92

©Fel
ix

Zh
ou

containing the edge vw), so the union of these two graphs is also connected.

Thus this yields a tree decomposition for H of width at most k.

Corollary 10.3.4.1
Graphs of treewidth at most k are closed under taking minors.

Corollary 10.3.4.2
Let H be a connected subgraph of G. Then in any tree decomposition T of G, the set
of bags containing a vertex from H is connected.

Proof
Let G/H be the graph obtained from G by contracting all vertices in H into one vertex
h. This is a minor of G.

If we modify the tree decomposition T as in the above proof, then we retain the same
bags and vertex h appears in all bags that had a vertex of H in it.

But such bags are connected and we are done.

10.3.2 Graphs with Big Treewidth

How to we show a lower bound on tree-width?

Proposition 10.3.5
Any graph which contains Kk+1 as a minor has treewidth at least k.

It is easy to see that the a× b-grid is a partial k-tree for k = min(a, b). On the other hand,

Lemma 10.3.6
The tree width of the k × k is exactly k for k ≥ 2.

Corollary 10.3.6.1
If a graph G contains a k × k-grid as a minor then

tw(G) ≥ k

10.3.3 Series-Parallel Graphs

Recall that 2-terminal SP graphs always have a vertex of degree 2 given n ≥ 3. Moreoever,
doubling or subdividing an edge maintains a 2-termianl SP graph as we can easily update

93

©Fel
ix

Zh
ou

the SP-tree.

SP-Graphs & Treewidth

Lemma 10.3.7
Every simple 2-terminal SP-graph has treewidth at most 2.

Proof
A tree decomposition of width 2 can be obtained directly from the SP-tree.

Label every node with the terminals of the graph it represents. For an S-node, also add
the vertex which resulted from identifying the terminals of the children.

Every vertex and edge is covered via the leaves. The connectivity condition is easily
verified by the observation that a vertex appears in two subtrees of a node i only if it was
a termianl in both graphs of the children of i.

Combining this with a previous lemma

2-trees ⊆ simple 2-terminal SP-graphs ⊆ partial 2-trees

Corollary 10.3.7.1
SP-graphs are the same as partial 2-trees.

Taking spanning subgraphs over all the classes, we see that SP-graphs are precisely partial
2-trees.

Corollary 10.3.7.2
SP-graphs are the same as partial 2-trees.

Recognizing SP-Graphs

Lemma 10.3.8
If G is a simple SP-graph, then any simple minor G′ of G has a vertex of degree at
most 2.

Proof
Since G is a partial 2-tree, so is its simple minor G′. Thus G′ is an SP-graph and a
(spanning) subgraph of some 2-terminal SP-graph, thus the claim holds.

94

©Fel
ix

Zh
ou

Given a graph G, we show an algorithm which either detects a minor G′ of G with minimum
degree 3, or build an SP-tree of a super-graph.

• If G is a single edge, then it has an SP-tree

• If G has a multiple edge, then delete one copy and test the remaining graph G′. If G′

has an SP-tree, we can expand this to one of G. Otherwise G cannot be an SP-graph

• If G has a vertex of degree 2, contract an edge to its neighbour and test the remaining
graph G′. As above, handle the success and failed cases

• If G has a vertex of degree 1 or 0, then simply delete it and test the remaining graph
G′. If this is successful, we will show that we can expand the SP-tree by adding some
edges to build an SP-gree of a super-graph of G.

Suppose the deleted vertex v has degree 1. Degree 0 does not happen assuming G is con-
nected. Let w be the unique neighbour of v, w has some other neighbour x.

The SP-tree of G′ has a leaf that stores the edge wx. We replace this by a P-node with one
child storing wx and the other an S-node which stores the path w, v, x.

Notice we added an edge vx which is not in G but this is permitted as SP-graphs are
subgraphs of 2-terminal SP-graphs.

95

©Fel
ix

Zh
ou

96

©Fel
ix

Zh
ouChapter 11

Branchwidth

11.1 e-Separations & Branch Decompositions

We can view the SP-tree as a partition of edges in the left and right subtrees.

Definition 11.1.1 (e-Separation)
A recursively defined partition of the edges.
If G has more than one edge, partition E into non-empty sets E1, E2, then recursively
partition E1, E2 again.

Definition 11.1.2 (Rooted Branch Decomposition)
A rooted binary tree that describes an e-separation.
It stores edges in its leaves and has an interior node for every recursive partition.

Definition 11.1.3 (Width)
Given a branch decomposition T of G, for any link/arc a of T , the separator defined
by a is the set of vertices v that have an incident edge in both subtrees defined by a.
The width of the branch decomposition T is the largest size of the separators of the
links of T .

Definition 11.1.4 (Branch-Width)
The branch-width bw(G) of a graph G is the smallest width of a branch decomposition
of G.

Every 2-terminal SP-graph has branchwidth at most 2.

97

©Fel
ix

Zh
ou

The k × k grid has branchwidth k.

What are closure properties of graphs of branchwidth k?

Definition 11.1.5 (Branch Decomposition)
A branch decomposition B consists of a tree T with maximum degree 3 such that the
edges of G have been mapped to distinct leaves of T .

Proposition 11.1.1
A graph with a rooted branch decomposition of width w if and only if it has a branch
decomposition of width w.

Proof
Any rooted branch decomposition is automatically also a branch decomposition with the
same width.

Vice versa, given a branch decomposition T , we can turn it easily into a rooted branch
decomposition as follows.

Delete (possibly repeatedly) any leaf of T which has no edge assigned to it.

Subdivide one link/arc if needed to create a node of degree 2. Root T at a node of degree
2.

If any node now has exactly one child, then contract the node into its child.

It is not difficult to see that neither operation affects the width and the result is a rooted
branch decomposition.

Lemma 11.1.2
If G has branchwidth at most k, then any minor H of G also has branchwidth at
most k.

Proof
Start with a branch decomposition of G that has tree T .

To delete an edge e of G equates simply to removing the leaf which stores that edge.

To contract an edge vw, replace any ocurrence of v, w by the identified vertex x, and
remove the leaf that stores vw. Let T ′ be the resulting tree. Assume x occurs in separator
σ(a) for some link a. Then both components of T ′ − a contains an edge incident to x.
One of the sides used to contain the leaf that stored vw. Let xy be an edge that is in the
other side of T ′ − a. Therefore this side of T − a originally contained an edge vy or wy.
Since vw is on the other side, at least one of v or w was in σ(a) for tree T , and the width

98

©Fel
ix

Zh
ou

has not increased.

Corollary 11.1.2.1
Every SP-graph has branchwidth at most 2.

11.2 Branchwidth & Treewidth

Theorem 11.2.1
For any graph G with bw(G) ≥ 2, we have

tw(G) ≤ 3

2
bw(G)− 1

Proof
Start with a branch decomposition of G of minimal width, and use the same tree T for a
tree decomposition.

The leaves of T are associated with an edge vw. Set its bags to be {v, w}. So leaves have
bag-size

2 ≤ 3

2
bw(G)

For each interior node i, there are 3 separators σ, σ′, σ′′ on the three adjacent links. Set
bag

Xi := σ ∪ σ′ ∪ σ′′

The connectivity condition is easily verified. Any vertex v appears on all bags of all paths
connecting two leaves with an edge incident to v, and they forn a connected subtree.

It remains to analyze the width of a bag Xi of an interior node. If v ∈ Xi, then v is in
one separator of an incident link of i. But then it must be in two of those separators
since some path between leaves containing edges incident to v went through i. Since the
3 separators at i together contain at most 2 bw(G) vertices

|Xi| ≤
3

2
bw(G)

This bound is not tight. One possible counterexample are the k × k-grids.

Theorem 11.2.2
For any graph G, we have bw(G) ≤ tw(G) + 1.

99

©Fel
ix

Zh
ou

Proof
Assume G has a tree decomposition T of width k. For each edge e = vw, find a bag X
that contains v and w and add a leaf-node with v, w incident to X. This covers edge e.

Then convert T into a tree decomposition of the same width for which the tree has
maximum degree 3. This can be done by splitting nodes repeatedly and duplicating bags.

Let a = ij be a link of the resulting (unrooted) branch decomposition. If v is a vertex
that appears on both subtrees T − a, then necessarily v must be in both Xi, Xj.

Therefore, the separator at link a has size at most

|Xi ∩Xj| ≤ k + 1

which proves the result.

Again this bound is not tight by the k × k-grid example.

Thus asymptotically, the branchwidth and treewidth are the same.

11.3 Branch Decomposition of Planar Graphs

In all examples we have seen so far, we were able to indicate the corresponding partitions of
edges via a noose (a closed Jordan curve intersecting the graph only at vertices). For planar
graphs, we can actually always do this while having minimum branchwidth.

Definition 11.3.1 (Sphere-Cut Decomposition)
Formally, call a branch decomposition of a planar graph G sphere-cut decomposition
if for every separator σa of a link a, there is a noose of G containing exactly the
vertices of σa.

Theorem 11.3.1
If a planar graph has branchwidth k, then it also has a sphere-cut decomposition of
width k.

Theorem 11.3.2
The branchwidth of a planar graph can be computed in quadratic time.

100

©Fel
ix

Zh
ou

11.3.1 Spanning Trees of Small Height

We later use branch decompositions to obtain upper bounds on the treewidth for some planar
graphs. For this, we need to connected branchwidth to the height of spanning trees.

Definition 11.3.2 (Co-Tree)
Given a spanning tree T in a connected planar graph G, let the co-tree T ∗ be the
graph in G∗ formed by the edges

(E − E(T))∗

i.e. take all edges of G that were not in T , and take their duals.

Lemma 11.3.3
Let G be a connected planar graph with spanning tree T . Then the co-tree T ∗ is a
spanning tree of G∗.

Proof
Recall that a cut in G corresponds to a cycle in G∗ and vice versa. If T ∗ were disconnected,
then G∗ has a cut separating parts of T ∗. This cut corresponds to a cycle in T , which is
a contradiction.

If T ∗ had a cycle, then this corresponds to a cut in G. This cut would make T disconnected.

So T ∗ is connected without a cycle, and hence a tree.

For triangulated graphs, we can use the co-tree to find a branch decomposition.

Lemma 11.3.4
Let G be a triangulated planar graph with a spanning tree T of height R. Then

bw(G) ≤ 2R + 1

Proof
Let r be the root of T , so any vertex has distance at most R from r, and any two vertices
have distance at most 2R from each other.

Let T ∗ be the co-tree of T . This will be the basis for our branch decomposition.

For every edge e of G, create a leaf-node `e that stores e. Attach it to T ∗ as follows:

If e /∈ T , then the dual edge e∗ belongs to T ∗. Subdivide e∗ and attach `e at the subdivision
vertex. Otherwise, if e ∈ T , then make `e adjacent to one of the nodes of T ∗ at a face

101

©Fel
ix

Zh
ou

incident to e.

Since G is triangulated, every node of T ∗ has at most 3 attached edges (some in T ∗, some
attached to the create leaf-nodes), thus the resulting tree has maximum degree 3 and is
a branch decomposition.

We claim this branch decomposition has width at most 2R+1. Clearly any link incident
to a leaf has a separator of size at most 2, namely, the two endpoints of the edge in the
leaf.

Let a be a link not incident to a leaf which means it corresponds to the dual of an edge
uv that was not in T . The unique uv-path in T forms a cycle C together with e.

Since all edges of C (except e) belong to T , the two subtrees of T ∗ − a are separated by
C. One subtree, say T1 is entirely incide C and the other, say C2 lives entirely outside C.

Because we attached leaves for edges only at incident faces, any edge stored in a leaf of
T1 must be on or inside C, while any edge stored in a leaf of T2 must be on or outside C.

So if v is a vertex that has incident edges both in T1, T2, then v must be on C. Hence the
separator at link a has length at most the number of vertices on cycle C, which is at most

2R + 1

Corollary 11.3.4.1
If G is planar with a spanning tree T of height R. Then G has branchwidth at most
2R + 1.

Proof
Add edges until it becomes a planar triangulated graph G+. T is still a spanning tree of
heigh R in G+. Thus

bw(G) ≤ bw(G+) ≤ 2R + 1

Corollary 11.3.4.2
Let G be a planar graph with a spanning tree of heigh R. Then G has treewidth at
most 3R.

102

©Fel
ix

Zh
ou

Proof
We have

tw(G) ≤
⌊
3

2
bw(G)− 1

⌋
≤
⌊
3

2
(2R + 1)− 1

⌋
=

⌊
3R +

1

2

⌋
= 3R

103

©Fel
ix

Zh
ou

104

©Fel
ix

Zh
ouChapter 12

Pathwidth

12.1 Path Decomposition

Definition 12.1.1 (Path Decomposition)
A tree decomposition T for which the tree is a path.

Definition 12.1.2 (Pathwidth)
The pathwidth pw(G) of a graph G is the smallest k such that G has a path decom-
position of width k.

Theorem 12.1.1
A graph G has pathwidth at most k if and only if G is a spanning subgraph of an
interval graph G′ with

ω(G′) ≤ k + 1

For any graph

tw(G) ≤ pw(G)

But this is not tight for some graphs. One such example is obtained by subdividing each
edge of K1,3.

For some graphs the trewidth is precisely the pathwidth. For example the k × k-grid.

105

©Fel
ix

Zh
ou

12.2 Pathwidth & Trees

Theorem 12.2.1
A tree has pathwidth at most k > 0 if and only if there is a path P in T such that
all subtrees of

T − P

have pathwidth at most k − 1.

Proof
(=⇒) Suppose pw(T) ≤ k, and let X1, . . . , X` be a path decomposition of width k. Pick
some vertices v` and vr that are in the leftmost and rightmost bag, respectively, and let
the main path P be the path from v` to vr in T .

It is entirely possible that v` = vr. Since P is connected, every bag contains at least one
vertex of P . But then at most k vertices in each bag belong to T − P .

Therefore for any subtree of T − P , the induced path decomposition has width at most
k − 1.

(⇐=) Assume that T has such a path P . Enumerate

P : v1, . . . , vK

and start with a path decomposition

{v1}, {v1, v2}, {v2}, . . . , {vK−1}, {vK−1, vK}, {vK}

The single vertex bags will get repeated a number of times.

For each subtree T ′ of T −P , there is a unique vertex vi of the path that has a neighbour
in T ′. Recursively compute a path decomposition of P ′ of T ′ with width at most k − 1.

Suppose P ′ has N bags. Repeat vi N times so we have N + 1 copies. Paste P ′ onto the
first N copies. This leaves one copy for use with other subtrees.

Repeating this for all subtrees of T − P gives the desired decomposition.

Definition 12.2.1 (k-Caterpillar)
A 0-caterpillar is a single vertex.
A k-caterpillar for k > 0 is a tree T that has a path P such that every component of
T − P is an `-caterpillar for some ` < k. Path P is also called a spine of T .

106

©Fel
ix

Zh
ou

Corollary 12.2.1.1
For any tree T , the pathwidth pw(T) equals the smallest k for which T is a k-caterpillar.

It is then easy to see that K1,3 has pathwidth 2, since it is not a caterpillar.

Let T be a rooted tree with height h. Then T is an h-caterpillar. This can be proven by
induction on h. So the pathwidth is at most the height for any rooted tree T .

This bound can be tight. Consider the complete ternary tree of height h for example. We
can prove by induction on h that pw(T) ≥ h.

One can compute the complete ternary tree has height

h = log3(2n+ 1)

so the pathwidth can be logarithmically larger than the treewidth.

In general, the height of rooted tree is a vast overestimation of the pathwidth.

Lemma 12.2.2
Any tree with n nodes has

pw(T) ≤ log n ∈ O(log n)

12.3 Linear Arrangements

A linear arrangement is a vertex ordering.

Let v1, . . . , vn be a lienar arrangement of a graph G.

Definition 12.3.1 (Cut-Edges)
Cut[i− 1 : i] is the edges that are in the cut induced by

{v1, . . . , vi−1}

Definition 12.3.2 (Separation-Vertices of the Cut)
Vs[i− 1 : i] are the vertices in {v1, . . . , vi−1} that have incident edges in Cut[i− 1 : i].

107

©Fel
ix

Zh
ou

Definition 12.3.3 (Cutwidth)
We say that G has cutwidth at most k

cutwidth(G) ≤ k

if there is a linear arragement such that

|Cut[i− 1 : i]| ≤ k

for all i.

Definition 12.3.4 (Vertex-Separation Number)
We say that G has vertex-separation number at most k

vs(G) ≤ k

if there is a linear arragement such that

|Vs[i− 1 : i]| ≤ k

for all i.

We have

cutwidth(G) ≥
⌈
∆(G)

2

⌉
where ∆ denotes the maximum degree. This is because the cut before and after a vertex v
of maximum degree must together include all edges at v, so at least one of them has size at
least half the maximum degree.

It is also apparent that

vs(G) ≤ cutwidth(G) ≤ ∆ · vs(G)

More precisely, in any linear arragement and any cut [i− 1 : i], we have

|Vs[i− 1 : i]| ≤ |Cut[i− 1, i]| ≤ ∆ · |Vs[i− 1 : i]|

since for every vertex in Vs[i−1, i], there is at least one and at most ∆ edges in Cut[i−1 : i].

There are graphs where the cutwidth is much bigger than the vertex-separation number.
Consider K1,n for example.

One important distinction of cutwidth is that it is NOT closed under taking minors.

108

©Fel
ix

Zh
ou

12.4 Pathwidth-Equivalence

It turns out that the vertex-separation number is actually just a different way to describe the
pathwidth! We already have two other ways to describe pathwidth (aka path decomposition
and interval graphs) and can add more equivalences.

Theorem 12.4.1
The following are equivalent for a graph G

(1) pw(G) ≤ k

(2) G has a path decomposition where all bags contain at most k + 1 vertices
(3) G is a subgraph of an interval graph H with ω(H) ≤ k + 1

(4) We can assign intervals I(v) to vertices such that for every edge vw, the intervals
I(v) and I(w) interset, and at most k + 1 intervals intersect in a point.

(5) G has vertex-separation number at most k.

Proof
The only non-trivial claims are (4) ⇐⇒ (5).

(4) =⇒ (5) Sort the vertices by left endpoint of the intervals as v1, . . . , vn, breaking ties
arbitrarily.

Consider an arbitrary Cut[i − 1 : i] and let ` be the left endpoint of I(vi). For any
vh ∈ Vs[i− 1 : i] there is some neighbour vj of vh with h < i ≤ j.

Vertex vj was picked after vi, which means that its left endpoint is no further left than `,
and so I(vj) does NOT intersect point `− ε for any ε.

Since I(vh) intersects I(vj), therefore I(vh) intersects `. But then all vertices in Vs[i−1 : i]
intersect `. Also by definition I(vi) intersects `.

Since vi /∈ Vs[i− 1 : i], there are

|Vs[i− 1 : i]|+ 1

intervals that mutually intersect at point `, hence

|Vs[i− 1 : i]| ≤ k

(5) =⇒ (4) Let v1, . . . , vn be a linear arrangement with

|Vs[i− 1 : i]| ≤ k

for all i.

109

©Fel
ix

Zh
ou

For vertex vi, define I(vi) to be the interval that begins at i and ends at the index of the
rightmost successor of vi.

Clearly this is an interval representation of G. We know that any maximum clique C is
achieved at the left endpoint of the interval for some vertex, so at integer i for some i.

Consider Cut[i − 1 : i], and let vh 6= vi be a vertex whose interval intersects i. By the
definition of I(vh) this implies h < i and vh must have a neighbour vj with j ≥ i.

In consequence vh ∈ Vs[i− 1 : i]. Since I(vi) also intersects i, we have

|C| ≤ 1 + Vs[i− 1 : i] ≤ k + 1

as desired.

12.5 Cutwidth & Pathwidth

Definition 12.5.1 (Line Graph)
Graph obtained from G that has a vertex ve for each e ∈ E(G) and an edge (ve, ve′)
if e, e′ ∈ E(G) share an edge.

Lemma 12.5.1
For any graph G, we have

pw(L(G)) ≤ cutwidth(G) +

⌊
∆

2

⌋
− 1

Lemma 12.5.2
For any connected graph G with n ≥ 3 vertices, we hvae

cutwidth(G) ≤ pw(L(G))

So now we have the inequality

cutwidth(G) ≤ pw(L(G)) ≤ cutwidth(G) +

⌊
∆(G)

2

⌋
110

©Fel
ix

Zh
ou

Corollary 12.5.2.1
Let G be a graph with

∆(G) ≤ 3

Then
cutwidth(G) = pw(L(G))

12.6 NP-Hardness of Computing Width Parameters

Definition 12.6.1 (Weighted Cutwidth)
Let G be a graph with positive edge-weights w : E → R+. We say that G has weighted
cutwidth at most k if G has a linear arrangement such that∑

e∈Cut[i−1:i]

w(e) ≤ k

for all cuts.

Theorem 12.6.1
Computing the weighted cutwidth of a graph is NP-hard even in trees.

Proof
We give a reduction from the Partition, which is a special case of the subset sum
problem and known to be NP-hard since it can actually be used to decide the subset sum
problem.

Given an instance of Partition, create an edge-weighted tree as follows: Start with K1,n,
and let c be the universal vertex and v1, . . . , vn be the other vertices.

Assign weight ai to the edge cvi.

Now consider any vertex order of this K1,n, and let I be the indices of vertices athat
appear before c. Then the cut to the left of c has weight∑

i∈I

ai

which is the cut to the right of c has weight∑
i/∈I

ai = 2S −
∑
i∈I

ai

111

©Fel
ix

Zh
ou

It follows that K1,n has weighted cutwidth at most S if and only if there is a solution to
Partition.

Definition 12.6.2 (Strongly NP-Hard)
A weighted decision problem where the weights are polynomial in the input-size.

It can be shown that computing the weighted cutwidth is strongly NP-hard. The current
proof does not work since Partitionis not strongly NP-hard.

Theorem 12.6.2
Computing the weighted cutwidth of a graph is strongly NP-hard, even in trees.

Corollary 12.6.2.1
Computing the cutwidth is NP-hard even in a simple series-parallel graph of pathwidth
3.

Proof
We do a reduction from weighted cutwidth in a spider G. This is a graph obtained from
K1,n by (repeatedly) subdividing edges.

First copy all vertices of G. Then for every edge e = uv in G, define w(e) new vertices in
H and make them adjacent to u, v.

It is easy to check verify that H is series-parallel. It also has pathwidth 3 by using a main
path/spine argument. Moreoever, the cutwidth of H is the weighted cutwidth of G.

Theorem 12.6.3
Computing the cutwidth is NP-hard even in planar graphs with maximum degree 3.

Corollary 12.6.3.1
Computing the pathwidth is NP-hard even in planar graphs with maximum degree 4.

Proof
We reduce from the proble of computing the cutwidth in a graph G that is planar and
has maximum degree 3.

Observe that the line graph L(G) then is also planar and has maximum degree 4. The
result follows that

cutwidth(G) = pw(L(G))

by our prior work.

112

©Fel
ix

Zh
ou

12.7 NP-Hardness of Treewidth

As it turns on, computing the treewidth is also NP-hard. However the proof is quite involved.

Computing the treewidth for planar graphs is an open problem whether it is truly NP-hard.

The related branchwidth IS polynomial in planar graphs. However the proof constructs
graphs whose treewidths are very large.

113

©Fel
ix

Zh
ou

114

©Fel
ix

Zh
ou

Part III

Treewidth & Algorithms

115

©Fel
ix

Zh
ou

©Fel
ix

Zh
ouChapter 13

Dynamic Programming in Partial
k-Trees

13.1 Dynamic Programming in Trees

13.1.1 Maximum Weight Independent Set

Problem 3 (Maximum Weight Independent Set)
Let G be a graph and w : V → R a weight-function on the vertices. A maximum-
weight independent set of G is a I ⊆ V without edges between and v, w ∈ I that
maximizes the weight ∑

v∈I

w(v)

over all independent sets I.

The idea is that at every subtree Tv rooted at v of a tree T , we can recursively compute the
maximum weight independent sets of Tv − v, and bring them together.

Specifically, we want to compute the best independent set which MUST contain v and the
best independent set which is NOT allowed to contain v.

Let α(v, 0), α(v, 1), α(v, ?) be denote the weight of the maximum weight independent set at
Tv which CANNOT, and must include v, and maximum overall.

117

©Fel
ix

Zh
ou

α(v, 0) =
∑
c child

α(c, ?)

α(v, 1) = w(v) +
∑
c child

α(c, 0)

α(v, ?) = max{α(v, 1), α(v, 0)}

We did not specify the base cases since they are trivial.

13.1.2 Maximum Matching

Problem 4
Let G be a graph and w : E → R be a weight-function on the edges. A maximum-
weight matching of G is a set M of edges with no common endpoint that maximizes

w(M) :=
∑
e∈M

w(e)

over all such sets

We will again describe the dynamic programming in terms of µ(v, Z) where

Z = {0, 1, ?}

For a leaf `

µ(`, 0) = 0

µ(`, 1) = −∞

The second case is −∞ since there are no matchings for singleton graphs.

The recursive formula is given below. ci enumerates all the children of v.

µ(v, 0) =
∑
ci

µ(ci, ?)

µ(v, 1) = max
cj

{w(vcj) + µ(cj, 0) +
∑
ci 6=cj

µ(ci, ?)}

=
∑
ci

µ(ci, ?) + max
cj

{w(vcj)− µ(cj, ?) + µ(cj, 0)}

Putting the formula for µ(v, 1) in the second format makes the entire algorithm run in linear
time.

118

©Fel
ix

Zh
ou

13.1.3 Solution

The idea is similar so we omit this content

13.1.4 Crucial Idea & Outlook

Dynamic Programming works in trees because the part-solution at subtrees do not influence
each other once the situation at the root is specified.

We would hope that if a graph has small separators, similar logic would help us solve the
same problems with some brute force enumeration at the separators themselves.

13.2 Dynamic Programming in 2-Terminal SP-Graphs

We now go up in treewidth to study partial 2-trees.

13.2.1 Independent Set

Observe that the SP-tree gives a natural tree-decomposition. Define

α(G,Z)

to be the maximum weight of an independent set I in G satisfying

I ∩ {s, t} = Z

for some Z ⊆ {s, t}.

The base case is when the graph is just the edge st.

α(G,∅) = 0

α(G, {s}) = w(s)

α(G, {t}) = w(t)

α(G, {s, t}) = −∞

The recursive formula is more complicated, especially if G was obtained from the series
combination of graphs G1, G2.

119

©Fel
ix

Zh
ou

For the parallel combination of G1, G2, it is much simpler. We need only avoid double
counting.

α(G,∅) = α(G1,∅) + α(G2,∅)

α(G, {s}) = α(G1, {s}) + α(G2, {s})− w(s)

α(G, {t}) = α(G1, {t}) + α(G2, {t})− w(t)

α(G, {s, t}) = α(G1, {s, t}) + α(G2, {s, t})− w(s)− w(t)

The reason which the series combination recursive formula is complicated is due to the fact
that the identified vertex can be either in or not in the maximum weight independent set.
We must try both possibilities. Suppose G is a series combination of G1, G2, whose terminals
are s, x and x, t respectively.

α(G,∅) = max{α(G1,∅) + α(G2,∅), α(G1, {x}) + α(G2, {x})− w(x)}
α(G,∅) = max{α(G1, {s}) + α(G2,∅), α(G1, {s, x}) + α(G2, {x})− w(x)}
α(G,∅) = max{α(G1,∅) + α(G2, {t}), α(G1, {x}) + α(G2, {x, t})− w(x)}
α(G,∅) = max{α(G1, {s}) + α(G2, {t}), α(G1, {s, x}) + α(G2, {x, t})− w(x)}

We avoid double counting w(x) by subtracting the value off.

SP-Graphs

Recall that the SP-graph recognition algorithm either returns the SP-tree of one of its super
graphs, or that we do not have an SP-graph.

We need only run the algorithm for that supergraph while ignoring edges which are not in
in the SP-graph.

13.3 Dynamic Programming in Graphs of Pathwidth 3

Now we move up the treewidth again. To keep things simple, we will start with graphs of
pathwidth 3.

13.3.1 Nice Path Decompositions

The first step is to preprocess the path decomposition so that it is easier to describe the
dynamic programming formulas.

120

©Fel
ix

Zh
ou

Let v1, . . . , vn be a linear arrangement of G with vertex-separation number 3. Create a path
decomposition as follows:

Start with a one bag X1 containing v1, . . . , v4. We refer to X1 as the leaf-bag.

There are at most 3 vertices in {v1, . . . , v4} that have neighbors in {v5, . . . , vn}, due to the
cut [4 : 5]. Let X2 consist of these vertices. If there are only one or two such vertices, then
arbitrarily add more vertices from X1 to X2. Observe that one of the vertices, {v1, . . . , v4}
exists ONLY in X1. This is why we will refer to X2 as a forget-bag, and that sole vertex the
forgotten-vertex.

Bag X3 consists of the vertices of X2 and the next vertex v5. We refer to X3 as an introduce-
bag, and v5 as the introduced-vertex.

In general, bag X2i for i ≥ 1 consists of all those vertex in the vertex-separation of cut

[i+ 3 : i+ 4]

with more vertices added from X2i−1 if needed so that |X2i| = 3, and X2i is referred to as a
forget-bag.

On the other hand, Bag X2i+1 consists of all vertices in X2i, plus the next vertex in the
vertex-separation order (ie vi+4). So |X2i+1| = 4, and we call X2i+1 an introduce-bag.

Definition 13.3.1 (Nice Path Decomposition)
A path decomposition obtained with the description above.

Observe that X2(n−4)+1 introduces vn, and with this the entire graph is represented. So there
are O(n) bags in total.

Lemma 13.3.1
Any graph with pathwidth k has a nice path decomposition of width k.

Proof
The process described above did not rely on pw(G) = 3 and thus would create a nice path
decomposition

X1, . . . Xξ

such that |Xi| = k + 1 for odd i, and |Xi| = k for even i. Moreover Xi, Xi+1 differs by
exactly one vertex for all i < ξ.

121

©Fel
ix

Zh
ou

13.3.2 Subgraphs

For trees and 2-terminal SP-graphs, the subgraphs in which we solve subproblems and com-
bine them naturally derives from their structure.

For graphs of pathwidth 3, we set
Yi :=

⋃
j≤i

Xi

and process the subgraphs G[Yi] for increasing i.

13.3.3 Maximum Weight Independent Set

For node i of the host path and some Z ⊆ Xi, define

α(i, Z) = maximum-weight of an independent set I in G[Yi] such that I ∩Xi = Z

The base case occurs at the leaf-node X1 and is very simple. Y1 = X1 so we are just brute
force checking if Z is an independent set.

α(1, Z) =

{
w(Z), Z is an independent set
−∞, else

For an introduce bag X2i+1 with introduced vertex x.

α(2i+ 1, Z) =

−∞, Z is not an independent set
α(2i, Z), Z is an independent set and x /∈ Z

α(2i, Z − x) + w(x) Z is an independent set and x ∈ Z

The importance of the introduce-vertex is illustrated here. We know that if there is an
independent set I containing Z − x in G[Y2i], then since x only appears in X2i+1, any
neighbor of x in Yi also appears in X2i+1. In particular, we would not be violating the
definition of an independent set if we just add x to I as I ∩N(x) = Z ∩N(x) = ∅ since Z
is an independent set.

The case for a forget-bag is similar for an S node in SP-graphs. If x is the forget-vertex,
Z ⊆ X2i, and I is an independent set in G[Y2i] such that I ∩ Z = Z, then either x ∈ I or
not.

If so then α(2i− 1, Z ∪ {x}) is the best among such I’s. Otherwise α(2i− 1, Z) is also the
best among such I’s. We take the maximum of the two.

α(2i, Z) = max{α(2i− 1, Z ∪ {x}), α(2i− 1, Z)}

122

©Fel
ix

Zh
ou

For arbitrary k, we need to store 2k+1 subsets Z ⊆ Xj for O(n) j’s. We must also test if
Z is an independent set, which can be done in O(k) time since every vertex has at most k
predecessors in the vertex-separation order.

Theorem 13.3.2
Let G be a graph with path decomposition of width k.
We can find the maximum-weight independent set in G in

O(2kn)

time

Notice that our dynamic programming techniques require that we are given a path decom-
position. Computing the minimal decomposition is equivalent to computing the pathwidth
and is NP-hard.

13.4 Dynamic Programming in Partial k-Trees

We have nearly all the ingredients. Only minor modifications are required.

13.4.1 Nice Tree Decomposition

Definition 13.4.1 (Nice Tree Decomposition)
A tree decomposition T is nice if its tree can be rooted such that any node i have
one of following types:

leaf node Node i has no children

introduce node Node i has exactly one child j, and Xi = Xj ∪ {x} for some intro-
duced vertex x /∈ Xj.

forget node Node i has exactly one child j, and Xi = Xj − x for some forgotten
vertex x

join node Node i has exactly two children j1, j2 where Xi = Xj1 = Xj2

Lemma 13.4.1
Any partial k-tree has a nice tree decomposition of width k with O(n) nodes.

123

©Fel
ix

Zh
ou

Proof
It suffices to show this for when G is a k-tree, since adding edges until G has a p.e.o.
v1, . . . , vn such that

indeg(vi) = k

for all i > k and getting a nice tree decomposition of the super graph will do the trick
when G is strictly a partial k-tree.

Let T1 be the strong tree decomposition built from the p.e.o. This creates a bag Xi with

pred(vi) ∪ {vi}

for vertex vi.

We delete the bags X1, . . . , Xk since they are subsets of Xk+1 and root the tree decompo-
sition at Xk+1. With this every bag has size k+1. Moreover, bag Xi was attached to Xh

where vh is the last predecessor of vi. Since

pred(vi) ⊂ pred(vh)

any two adjacent bags have k vertices in common.

Let us modify T1 to get T2.

If i is a node in T1 with d ≥ 2 children

j1, . . . , jd

then replace i by a binary tree with d − 1 interior nodes (forming a path) and d leaves.
All replacement nodes receive the same bag that i had. This makes T2 a binary tree.

We need to make any node with 2 children a join node. If node h has children i, j, then
subdivide the edges

hi, hj.

The identified vertices both have Xh. Then the original Xh is now a join node with
identified vertices being forget nodes.

This makes T2 a nice tree decomposition.

13.4.2 Subgraphs

We need to define the subgraphs for which we solve the problem. For node i of the nice
tree decomposition, let Yi be the union of all bags that are descendants of i. We solve the
subproblem on G[Yi] for all i in post order.

124

©Fel
ix

Zh
ou

13.4.3 Independent Set

For any node i and Z ⊆ Xi, define

α(i, Z) = maximum-weight of an independent set i in G[Yi] that satisfies I ∩Xi = Z

The formulas are exactly the same for leaf, forget, and introduce nodes for graphs with path
decomposition of size k since they all have indegree and outdegree equal to 1. The only
difference lies in the join nodes.

Say h is a join node with children i, j. Then Xh = Xi = Xj means that

α(h, Z) = α(i, Z) + α(j, Z)− w(Z)

where we subtract w(Z) to avoid double counting.

Theorem 13.4.2
Let G be a graph with a tree decomposition of width k. Then we can find the
maximum weight independent set G in

O(k2kn)

time.

13.5 Fixed-Parameter Tractability

The above algorithm for independent set in partial k-trees is one example of a problem that
is fixed-parameter tractable in some graphs.

Definition 13.5.1 (Fixed-Parameter Tractable)
Given a problem with n being the input size and an additional parameter k.
The problem is fixed-parameter tractable if there is an algorithm with run time

O(f(k) · poly(k, n))

13.6 Monadic Second-Order Logic

It turns out that weighted matching and weighted dominating sets can be solved with dy-
namic programming in partial k-trees as well.

125

©Fel
ix

Zh
ou

While an explicit dynamic programming formulation can be developed for many problems,
it is quite tedious to write them down.

The idea is to state a property of a graph as a logic formula, then evaluate that logic formula
bottom up in the graph.

Definition 13.6.1 (Monadic Second-Order Logic)
A logic formula consisting of

Variables vertices or vertex sets

Membership Tests ie v ∈ I

Boolean Operations ie ¬,∧,∨, =⇒

Second-Order Predicates roughly means a two-variable boolean function. ie
adj(v, w) is true if and only if vw ∈ E

Monadic Quantifiers ie ∃, ∀ for variables but NOT predicates

We will write MSOL for short.

13.6.1 Examples

G has a triangle can be expressed as

∃v1, v2, v3 : adj(v1, v2) ∧ adj(v2, v3) ∧ adj(v3, v1) ∧ v1 6= v2 ∧ v2 6= v3 ∧ v3 6= v1

To state that v ∈ V has degree at least 2, state that it has two adjacent vertices.

Building on this, the statement that G has minimum degree 2 is the statement that ∀v ∈
V, deg(v) ≥ 2.

To describe that G is bipartite. Consider the following.

Partition(A,B, V) := ∀v ∈ V : (v ∈ A ∨ v ∈ B) ∧ (v ∈ A ⇐⇒ v /∈ B)

Bipartite(V) := ∃A,B ⊆ V : Partition(A,B) ∧ ∀v, w ∈ V : adj(v, w) =⇒ (v ∈ A ∧ w ∈ B) ∨ (v ∈ B ∨ w ∈ B)

To state G is connected can be done by stating that G is not disconnected.

13.6.2 MSOL2

The property that “G has a perfect matching” cannot be expressed. This is formally provable
with formal language theory.

126

©Fel
ix

Zh
ou

However, if we allow a subset E ′ ⊆ E of edges as variables, and we assume we have a
predicate

adj(u, v, E ′)

which is true if and only if uv ∈ E ′.

This variation is denoted MSOL2.

We can now for example describe a perfect matching as a subset of edges such that the graph
formed by them has minimum degree and maximum degree 1.

More difficult is the Hamiltonian Cycle property. This can be stated as an edge set with
minimum and maximum degree 2, for which the graph formed by it is connected.

∃C ⊆ E : ¬Disconnected(V,C) ∧ MinDegree2(C) ∧ MaxDegree2(C)

13.6.3 Courcelle’s Theorem

Theorem 13.6.1 (Courcelle)
Let Π be a graph property that can be expressed in MSOL2.
The problem of testing if a graph satisfies Π is fixed-parameter tractable in the
treewidth. The run-time is lienar if the treewidth and size of the formula used to
describe Π is constant.

13.7 Wrap Up

If we want to solve a problem in partial k-trees, the first thing is to try and express the
problem in MSOL2.

If this fails it might be worth it to other options. Finally, if nothing works, a direct dynamic
programming approach might be necessary.

127

©Fel
ix

Zh
ou

128

©Fel
ix

Zh
ouChapter 14

k-Outer-Planar Graphs

In this chapter, we study k-outer-planar graphs and specifically how to use them for approx-
imation algorithms in planar graphs.

14.1 Combinatorial Properties

Proposition 14.1.1
Let G be a plane graph with onion peels

L1, . . . , L`

Any edge connects the same or adjacent onion peels.

Proposition 14.1.2
For any i, k ≥ 1, the graph induced by onion peels

Li+1, . . . , Li+k

is k-outer-planar.

Lemma 14.1.3
Let G be a planar graph with spanning tree T of height k when rooted at r ∈ V .
Then G is (k + 1)-outer-planar.

Proof
Fix an embedding with r on the outer face.

129

©Fel
ix

Zh
ou

Removing r removes all vertices of depth 0. Removing the children of r removes then all
vertices of depth 1.

We can remove at most all vertices on depth k + 1 before all vertices are removed. This
inductively G is (k + 1)-outer-planar.

14.2 Treewidth of k-Outer-Planar Graphs

We want to show that all k-outer-planar graphs have treewidth O(k). To do so we create a
supergraph H of G with a spanning tree of small height.

Lemma 14.2.1
Let G be a k-outer-planar graph and r a vertex on the outer face.
We can add edges to G while maintaining planarity such that G has a spanning tree
T rooted at r with height at most k.

Proof
Let L1, . . . , Lk be the onion peels of G. We will prove by induction on i that we can add
edges such that any vertex in Li has distance at most i to r.

With this, a breadth-first search tree rooted at r gives the desired spanning tree.

The base case i = 1 is easy. Simply add edges through the outer face until r is adjacent
to all vertices in L1.

Now consider some v ∈ Li, i > 1. It belongs to Li and not any Lj for j < i. since after
removing

L1, . . . , Li−2,

v was NOT on the outer face. It belongs to Li and not any Lj where j > i since it was
on the outer face after removing

L1, . . . , Li−1

This is possible only if at least one face f incident to v contained a vertex w belonging to
Li−1. Add the edge vw if it did not exist.

Since d(w, r) ≤ i− 1 by induction, we are done.

Theorem 14.2.2
Every k-outer-planar graph has treewidth at most 3k.

130

©Fel
ix

Zh
ou

Proof
Add edges to G so that it has a spanning tree of height k or less. By our prior work, this
spanning tree can be used to obtain a tree decomposition of width 3k of the supergraph
of G. This is also a tree decomposition of G.

Theorem 14.2.3
Any k-outer-planar graph can be made triangulated by adding edges such that the
result is (k + 1)-outer-planar.

Proof
First add edges to G so that it has a spanning tree T of height k or less.

Then add more edges if needed to triangulate G. T continues being a spanning tree of
height at most k.

The result then follows by our earlier lemma.

14.3 Baker’s Approximation Scheme

The class of k-outer-planar graphs came to prominence through Baker’s result which gave a
PTAS. While it was discovered independently to treewidth, it can be re-phrased much more
easily via treewidth.

14.3.1 Obtaining Outer-Planar Graphs

Lemma 14.3.1
Any planar G has an induced subgraph H that is outer-planar and has at least

n

2

vertices.

Proof
Fix a planar embedding of G and compute the onion peels Li.

Let us consider two sets of vertices. V1 consists of every other onion peel, and V2 is the
rest. Thus

V1 := L ∪ L3 ∪ . . . , V2 := L2 ∪ L3 ∪ . . .

Define G1 = G \ V1. These have no edges between them by planarity and each onion peel

131

©Fel
ix

Zh
ou

is a outer-planar graph. Hence G1 is outer-planar as well.

The larger of G \ V1, G \ V2 must have at least n
2

vertices.

14.3.2 A 1
2-Approximation

Lemma 14.3.2
Fix a planar embedding and compute onion peels Li.
Set V1 to be the union of all odd peels and V2 the even ones.
Each Vi is outer-planar and thus has treewidth at most 3. We can compute the
maximum weighted independent set Ii in G \ Vi in linear time. Return the one with
larger weight.
To see this is indeed within a factor of 1

2
of any optimal independent set I∗, let

Di := I∗ ∩ Vi, i = 1, 2

Since the V1, V2 forms a bipartition of V

wD1 + wD2 = wI∗

and so
min

i
wDi ≤

wI∗

2

But I∗ −Di is an independent set in Gi. Thus

wI∗

2
≤ wI∗ − wDi ≤ wIi ≤ wI∗

as required.

14.3.3 Obtaining k-Outer-Planar Graphs

Theorem 14.3.3
Any planar graph can be made into a k-outer-planar graph by removing at most

n

k + 1

vertices.

132

©Fel
ix

Zh
ou

Proof
For 1 ≤ i ≤ k + 1 define

V
(k+1)
i L = Li ∪ Li+(k+1) ∪ Li+2(k+1).

In other words V
(k+1)
i contains every (k + 1)st onion peel, and the index i indicates with

which onion peel we start.

Define
Gi := G \ Vi.

Notice is is missing every (k + 1)-st onion peel. Thus any connected component resides
within k consecutive onion peels.

Any connected component of Gi is thus k-outer-planar. Therefore so is Gi.

By vertex-disjointness
min

i
|V (k+1)

i | ≤ n

k + 1

Say the minimum is achieved at i∗, then

Gi∗

is k-outer-planar and has at least
k

k + 1
n

vertices as required.

14.3.4 Baker’s PTAS

A PTAS for independent set consists of a class of algorithms which finds and independent
set I of weight

wI ≥ (1− ε)w(I∗)

Theorem 14.3.4
There exists a PTAS for independent set in planar graphs.

Proof
Let ε > 0 and define k to be the smallest integer such that

1

k + 1
< ε

Let V
(k+1)
i and Gi from before. Then tw(Gi) ≤ 3k by k-outer-planarity.

133

©Fel
ix

Zh
ou

With dynamic programming, we can find the maximum independent set Ii in Gi. Let I
be the best of these independent sets I1, . . . , Ik+1, so

wI = max
i

wIi

To see I attains the approximation guarantee, let I∗ be an optimal solution and

Di := I∗ ∩ Vi

By vertex-disjointness
min

i
wDi ≤

wI∗

k + 1

But as before
wI∗ − wDi ≤ wIi

Putting it all together

wI = max
i

wIi

≥ max
i

wI∗ − wDi

≥ wI∗ − 1

k + 1
wI∗

≥ (1− ε)wI∗

by the choice of k.

14.3.5 Final Comments

The run time for Baker’s PTAS is

O(k23kn)

which is snail-like for all but the smallest k. Anything beyond an approximation of 1
10

would
be hopelessly slow in practice.

To appreciate the power of PTAS, observe that it is NP-hard to approximate independent set
within any factor better than nε. This holds even for graphs of bounded maximum degree.

Baker’s scheme extends naturally to other problems which are polynomial on graphs of
bounded treewidth.

Unfortunately the scheme does not work for finding the longest path. More sophisticated
methods are required for these “global” problems.

134

©Fel
ix

Zh
ou

The running time of the provided scheme runs in time

O

(
f

(
1

ε

)
n

)

The PTAS provided is fixed-parameter tractable in 1
ε
. This is sometimes called a efficient

PTAS (EPTAS). However the presented algorithm is NOT a full-PTAS (FPTAS) where the
function f

(
1
ε

)
would have to be a polynomial.

There is an earlier PTAS for independent set in planar graphs. However the other one relies
on planar separators and is slower. Moreover it is not a EPTAS.

Finally, observe that we would have instead defined onion peels by picking an arbitrary root
and running a breadth-first search to use the layers of the BFS tree as onion peels.

Assume the graph class has locally bounded treewidth in the sense that a spanning tree of
height k guarantees having treewidth O(f(k)) for some f , then all other steps of the PTAS
can work using these layers instead of planar onion peels.

Thus Baker’s approximation scheme can be generalized to any graph with locally bounded
treewidth. This includes graphs of bounded genus and 1-planar graphs.

The concept can be further generalized using so-called nowhere dense graphs.

135

©Fel
ix

Zh
ou

136

©Fel
ix

Zh
ouChapter 15

Separators

Our previous work with dynamic programming in partial k-trees relied heavily on having
separators of constant size. In the following chapter, we will assume graphs are vertex-
weighted with non-negative weights.

15.1 Separators

Definition 15.1.1 (α-Separator)
For α ∈ (0, 1), an α-separator is a separator S ⊆ V such that every flap C of S
satisfies

wC ≤ αwV

S = V is always a separator. But this is next to useless. Thus we are interested in separators
of small cardinality.

Any α-separator is also an α′-separator fo α′ > α. For the same reason as above, we would
like to focus on finding separators where α is small.

For many applications, we are specifically interested in graphs of which have vertex weight
1 for all vertices.

Definition 15.1.2 (Uniform Weights)
w(v) = 1 for all v ∈ V .

We will always mean vertex-separators in this chapter.

137

©Fel
ix

Zh
ou

15.2 Some Examples

Lemma 15.2.1
The a× b-grid has a 1

2
-separator of size min(a, b).

Proof
This is not completely trivial when weights are not uniform.

Without loss of generality suppose that a ≤ b. Let c1, . . . , cb be the columns of G. There
is some i such that

i−1∑
j=1

wcj <
1

2
wV,

i∑
j=1

wcj ≥
1

2
wV

Taking ci suffices.

Lemma 15.2.2
The k × k-grid does NOT have a 1

2
-separator of size 1

2
k, even for uniform weights.

Proof
Suppose for a contradiction that such a separator S exists. Then at least half the k rows
do not contain any vertex of S. Moreoever, at least half the k columns do nto contain
any vertex of k.

The union of those rows and columns form a connected component of G − S. The
⌈
k
2

⌉
rows alone contain

k ·
⌈
k

2

⌉
≥ k2

2

vertices.

Thus
wC >

k2

2
=

1

2
wV

which is a contradiction.
Create a 3-tree as follows. Start with K4 with each vertex set to weight 0. Insert into each
face of K 3 additional vertices of weight 1 incident to each of the 3 vertices of the face.

Lemma 15.2.3
The 3-tree described does not have an α-separator of size 3 or less for the given
vertex-weights and α < 3

4
.

138

©Fel
ix

Zh
ou

Proof
Suppose such a separator S exists.

If S contains at most 2 vertices of K4, then G− S is connected and

w(V − S) ≥ 12− 3 =
3

4
wV

On the other hand, if S contains exclusively vertices of K4, the remaining vertex in K4−S
is adjacent to 9 other vertices in G− S. Thus

w(V − S) ≥ 9 =
3

4
wV

Either way we arrive at a contradiction.

15.3 Trees

Root any T arbitrarily at r. For v ∈ V , define Tv to be the subtree rooted at v.

v = r
x = max_weighted_child(v)
while w(T_x) > w(V)/2:

v = x
x = max_weighted_child(v)

return v

Proposition 15.3.1
The returned vertex v∗ is a 1

2
-separator of T .

Proof
We know that

wTv∗ >
1

2
wV

but every child x of v∗ has wTx ≤ 1
2
wV .

But then the only other component of T − v is T − Tv. This has weight at most

wV − 1

2
wV =

1

2
wV

but the choice of v∗.

139

©Fel
ix

Zh
ou

15.3.1 Pathwidth of Trees

We claimed that
pw(T) ≤ log2 n

We now provide an easy proof.

Lemma 15.3.2
Every tree has pathwidth at most log2 n.

Proof
The argue by induction on n. For n = 0, this clearly holds.

Consider now n > 1. Find a 1
2
-separator of T with respect to uniform weights. Thus all

connected components of T \ v contain at most n
2

vertices.

By induction, each connected component of T − v has pathwidth at most

log
(n
2

)
= log n− 1

The result follows from the fact that T is a log2 n-caterpillar with v being the spine.

15.4 Partial k-Trees

Theorem 15.4.1
Every partial k-tree G has a weighted 1

2
-separator of size at most k + 1.

Proof
Take a tree decomposition of width k and let T be its tree.

For every v ∈ V (G), there is a bag X which contains v. Add a leaf `v to X which contains
only v. Give `v weight equal to w(v). Set the weight of all original bags to 0.

Compute a 1
2
-separator i∗ in the resulting tree. Then take

S := Xi∗

It looks like k+1 is “1 more” than necessary. It turns out not every k-tree has a 1
2
-separator

of size k. This can be generalized to show that k-tree do not have a α-separator of size k for
α < k

k+1
. On the other hand, every partial k-tree DOES have a k

k+1
-separator of size k.

140

©Fel
ix

Zh
ou

Lemma 15.4.2
The k × k-grid has treewidth at least k

2
.

Proof
If it had treewidth k

2
− 1 or less, then it would have a 1

2
-separator of size k

2
.

This contradicts our previous result.

15.5 Planar Graphs

Theorem 15.5.1 (Planar Separator)
Every planar graph G has a weighted 1

2
-separator of size

O(
√
n)

Proof
make the graph k-outer-planar by removing a set S1 of at most

n

k + 1

vertices.

We know that G−S1 has treewidth at most 3k. Thus G−S1 has a weighted 1
2
-separator

S2 of size at most 3k + 1.

Combining them gives a weighted 1
2
-separator

S := S1 ∪ S2

of size
n

k + 1
+ 3k + 1

Using
k :=

√
∗n
3
− 1

we get a separator of size at most
2
√
3
√
n− 2

It is worthwhile to mention that the planar separator can be found in O(n) time. This is
non-trivial but essentially follows from following the proof.

141

©Fel
ix

Zh
ou

15.6 Divide & Conquer

Separators natually lend themselves to divide and conquer algorithms.

15.6.1 Shortest Cycles

Problem 5
Given a directed G with non-negative edge-weights, find a directed cycle C in G
minimizing wC.

We can find a 1
2
-separator S ,recursively compute the shortest cycle in each flap, and keep

the shortest of those.

Then we try to improve the solution by allowing it to include a vertex s of the separator.

This reduces to finding the shortest ss-dipath for each s ∈ s. We can to this by splitting a
vertex into si, sf where incoming edges to si are diverted to si, outgoing edges from s are
moved to sf , and the edge sisf is added. Djikstra’s algorithm solves this in

O(m+ n log n) ⊆ O(n log n)

time for planar graphs.

The recursion for running time T (n) is then

T (n) =
∑

flap Ci

T (ni) +O(
√
nn log n) ∈ O

(
n

3
2 log n

)

15.6.2 Global Minimum Cut

Recall that global minimum cuts in planar graphs correspond to shortest cycles in the dual
graph and vice versa.

We have already solved this for directed graphs. There is a way to solve it for undirected
graphs as well.

15.6.3 Matching

Fix a 1
2
-separator S and recursively find the best matching in each flap. Set M ′ to be the

union of all those matchings.

142

©Fel
ix

Zh
ou

For each s ∈ S, add it back to G one-by-one. Any augmenting paths introduced necessarily
begins at s. Find the best augmenting path can be done in

O(m log n) = O(n log n)

for planar graphs.

To find the best overall matching in G, the recursion satisfies

T (n) =
∑

flap Ci

T (ni) +O(
√
nn log n) ∈ O

(
n

3
2 log n

)

15.7 Sparator Hierarchies

The idea of finding a separator and then a separator for each flap is an important idea.

Definition 15.7.1 (α-Hierarchy)
An α-separator of a weighted G is a rooted T such that each node i is labelled with
S(i) 6= ∅. where

(i) each v ∈ V is stored at exactly one node
(ii) for every internal node i, S(i) is an α-separator of G(i), the graph formed by

nodes stored at i or its descendents
(iii) for each internal node i, the graph of the children of i correspond to flaps of

G(i)− S(i)

Let us write
n(i)

to denote the number of vertices in G(i).

Proposition 15.7.1
Fix an α-separator hierarchy with respect to uniform weights.
Then any node i at depth d has

n(i) ≤ nαd

and the heigh of the hierarchy is at most

log 1
α
n

15.7.1 Path Decompositions

Given a separator hierarchy, create a path decomposition as follows.

143

©Fel
ix

Zh
ou

For each leaf `, set X` to be the union S(a) of all nodes a that are ancestors of `.

Arrange these bags according to the order of the leaves from left to right in the separator
hierarchy.

Proposition 15.7.2
The resulting

X1, . . . , Xξ

is a path decomposition of G.

Proof
We argue by induction on the height of node i that the bags at the leaves below i are a
path decomposition for G(i).

Clearly this holds at a leaf `, since all vertices of G(`) are added to X`.

If i is not a leaf, say it has children

j1, . . . , jd

then the path decomposition can be viewed as follows.

First list all bags for G(j1), . . . , G(jd), and add S(a) to those bags. Any edge of G(a)
is within one of the flaps, within S(a), or connects a vertex in S(a) with a neighbour in
some flap.

Since no edge connect vertices in different flaps of S(a), this covers all cases and so we
have a path decomposition.

We can use this to obtain path decompositions of any graph class G for which all graphs
have an α-separator and which is closed under taking induced subgraphs (induced-closed).

Theorem 15.7.3
Any induced-closed graph class G with α-separators of size σ(n) has pathwidth at
most

σ(n) log 1
α
(n)

Proof
Build a α-hierarchy and get the path decomposition described. Any bag X satisfies

|X| ≤ 1 +
h−1∑
d=0

σ(n) ≤ 1 + σ(n) log 1
α
n

144

©Fel
ix

Zh
ou

Corollary 15.7.3.1
Every partial k-tree has pathwidth at most

(k + 1) log n

For planar graphs, applying this theorem would show that the pathwidth is at most

O(
√
n log n)

But since the sizes of the separators decreases with each level, they follow a geometric series
and we can get a better bound.

Lemma 15.7.4
If an induced-closed graph class G has α-separators of size O(

√
n), then all graphs in

G have pathwidth
O(

√
n)

Proof
Build an α-separator hierarchy, continuing to split until all leaves store only one vertex.
We can do this such that

|S(i)| ≤ c
√

n(i)

for all nodes i and some constant c.

Each bag X then has size

|X| ≤ c
√
n+ c

√
αn+ · · · ≤ c

√
n

∞∑
i=0

√
a
i ∈ O(

√
n)

Corollary 15.7.4.1
Any planar graph has

tw(G) ≤ pw(G) ∈ O(
√
n)

Notice that this bound is asymptotically tight. A k × k-grid has k2 vertices and tw = k.

145

©Fel
ix

Zh
ou

15.8 Generalized Separator Theorem

Theorem 15.8.1 (Generalized Separator)
If an induced-closed graph class G has α-separators of size O(

√
n), then for any ε > 0,

it also has ε-separators of size

O

(√
n

ε

)

15.8.1 Approximation Schemes

Recall Baker’s PTAS for independent set in planar graphs. We give an older PTAS which is
not quite as good in many aspects but contains useful ideas.

The Approximation

1) Use uniform weights. Set ε = log logn
n

and compute a separator hierarchy
2) Each leaf ` has weight at most εwV ≤ log log n, so its graph G(`) has at most log log n

vertices. Find the optimal independent set with brute force in O
(
n(`)2log logn

)
=

O (n(`) log n) time
3) Set I to be the union over all leaves. This is the optimal independent set in G− S.

4) We know S ∈ O
(√

n
ε

)
= O

(
n√

log logn

)
, say |S| ≤ cn√

log logn
for constant c. The sublin-

earity will be crucial below
5) We know any optimal independent set I∗ of G contains at least n

4
vertices by the 4-color

theorem. In particular, the size of the optimal set is linear.
6) Since I∗ − S is an independent set in G− S, |I|

I∗
≥ 1− |S|

|I∗| ≥ 1− 4c√
log logn

Analysis

As n → ∞, the algorithm finds an independent set arbitrarily close to the maximum inde-
pendent set in size.

How does this compare with Baker’s Scheme? Baker’s scheme is more versatile in that
vertices are not necessarily uniformly weighted and we can choose the desired approximation
ratio.

On the other hand, the current approach works without change to ANY graph class with
α-separators and which is k-colourable for some constant k. This holds for toroidal graphs,

146

©Fel
ix

Zh
ou

where Baker’s scheme would require significantly more work to adapt.

147

©Fel
ix

Zh
ou

148

©Fel
ix

Zh
ouChapter 16

Approximation Treewidth

16.1 Approximating Treewidth

The idea is to test for the existence of a 1
2
-separator of size k + 1. Not having this sepa-

rator implies that G is not a partial k-tree. Otherwise, use this separator to build a tree
decomposition.

Definition 16.1.1 ((α,W)-Separator)
Let G be a graph and W ⊆ V .
An (α,W)-separator is an α-separator with respect tot the weight function

χW

Notice that a (α,W)-separator may have flaps of VERY uneven size. We only force there to
be at most α|W | vertices of W in each flap.

Clearly any α-separator is an (α,W)-separator.

16.1.1 Separations

Even testing the existence of a (α,W)-separator is not easy. We will pivot to a slight variant.

149

©Fel
ix

Zh
ou

Definition 16.1.2 (2-Way Separation)
A (2-way) separation of G is a partition

V = A1 ∪ S ∪ A2

such that there are no edges between A1, A2.

Definition 16.1.3 (Balance)
We say a 2-way separation has balance α if

wA1, wA2 ≤ αwV

Definition 16.1.4 (Separation Size)
|S|.

Clearly any separation of balance α gives a α-separator. The converse is not necessarily true.

Lemma 16.1.1
If G has an α-separator S, then G has a separation (A1, S, A2) with balance

max

{
α,

2

3

}

Proof
Let C1, . . . , Cd be the flaps of G− S where C1 has maximum weight among them. Let i
be the minimum index such that

i∑
j=1

wCj >
1

3
wV

To see that wA1 ≤ 2
3
wV , we have two cases.

The first case is where wC1 >
1
3
wV , for which we set A1 := C1 and get

wA1 = wC1 ≤ αwV

Then
wA2 ≤

2

3
wV

150

©Fel
ix

Zh
ou

Otherwise wC1 >
1
2
wV and i ≥ 2. By the choice of C1, we have

wC1 ≤
1

3
wV

But then by the choice of i
i∑

j=1

wCj ≤
1

3
wV

Thus

wAi =
i−1∑
j=1

wCj + wCi ≤
2

3
wV

16.1.2 W -Separations

We say a separation with respect to χW having balance α to be a W -separation with balance
α.

Lemma 16.1.2
Let G be a graph and W ⊆ V .
For any α ≥ 2

3
, there is an algorithm which finds the smallest W -separation of balance

α in time
O
(
2|W ||W |(n+m)

)
Proof
If |W | = 1, the only possible W -separation uses S = W . Thus we may assume |W | ≥ 2.

Let us first characterize such a W -separation (A1, S, A2). We have

|W ∩ Ai| ≤ α|W |, i = 1, 2

Set Wi := W ∩ Ai and then add the vertices of W ∩ S to W1,W2 such that |Wi| ≤ α|W |
for i = 1, 2. This is possible since α ≥ 2

3
(if |W |i = 2

3
|W |, fill the other one) and |W | ≥ 2.

We then have a (W1,W2)-separation where W = W1∪W2 is a bipartition with |Wi| ≤ α|W |
such that G has a separation (A1, S, A2) with

Wi ⊆ Ai ∪ S

It suffices to search for the smallest (W1,W2)-separation over all possible partitions. There
are at most 2|W | such partitions. to find the smallest (W1,W2)-separation, we add a vertex
si adjacent to each Wi and compute the number of vertex-disjoint s1s2-paths.

151

©Fel
ix

Zh
ou

This can be solved in O(k(n+m)) time.

Clearly no (W1,W2)-separation can have fewer than k vertices. Since no k + 1 vertex-
disjoint paths exist, there must be a set S of size k which separates s1, s2.

Define Ai to be the set of all vertices reachable from Si in G− S. This gives the desired
partition (A1, S, A).

Repeating this for all possible partitions of W means we can find the smallest W -
separation of balance α.

16.1.3 W -Separations to Tree Decompositions

We now show that if a graph has small α-separators, it also has small treewidth.

Definition 16.1.5 (W -Tree-Decomposition)
Let G be a graph and W ⊆ V a vertex set.
A W -tree-decomposition of G is a tree decomposition of G where all vertices of W
appear in one bag.

Lemma 16.1.3
Let G be an induced-closed graph class where any G ∈ G has a

(
D−1
D

,W
)
-separator

of size at most w, for any vertex set |W | ≤ Dw + 1 and D = 2, 3, 4.
Then G has a W -tree-decomposition T of width at most

(D + 1)w

Theorem 16.1.4
Let G be an induced-closed graph class with D−1

D
-separators of size at most w for

some D = 2, 3, 4.
Any graph in G has treewidth at most D + 1w.

Proof
If G has at most Dw vertices, all vertices can be put into one bag at we are done. Assume
then |W | ≤ Dw + 1.

Find a
(
D−1
D

,W
)
-separator S of size at most w.

Define Subgraphs & W -Sets Let C1, . . . , Cd be the flaps of S. For i ∈ [d], let Ui be the
vertices of W appearing in Ci.

152

©Fel
ix

Zh
ou

Since we had a D−1
D

-separator, we get

|Ui| ≤
D − 1

D
|W | ≤ (D − 1)w +

1

D

which by integrality means
|Ui| ≤ (D − 1)w

Let Gi be the graph induced by Ci, S. Set

Wi := Ui ∪ S

and notice that
|Wi| ≤ Dw < |W |

Specifically, Gi is strictly smaller than G.

Get Wi-Tree-Decompositions for the Subgraphs By induction, there is a Wi-Tree-Decomposition
Ti of Gi with width at most (D + 1)w.

Combine the Tree Decompositions Combine

T1, . . . , Td

by creating a bag X storing W ∪ S.

This bag has size
|W |+ |S| ≤ (D + 1)w + 1

and is the bottleneck for the width of this decomposition.

Connect S to the bags in Ti that contains Wi. This gives the desired tree decomposition.

Observe that this gives a converse of the fact where partial k-trees have 1
2
-separators of size

k + 1. This is seen with D = 2, w = k + 1.

Corollary 16.1.4.1
Let G be an induced-closed graph class with 1

2
-separators of size k+1. Then the graphs

in G have treewidth at most 3k + 3.

153

©Fel
ix

Zh
ou

16.1.4 Approximation of Treewidth

Lemma 16.1.5
There is an algorithm which either correctly reports that tw(G) > k, or finds a W -
Tree-Decomposition of width at most 4k + 4.
The run-time of this algorithm is

O(8kk2n2)

Proof
Assume that m ≥ kn, or else it cannot be a partial k-tree.

With D = 3, w = k + 1, search for a W -separation of G with balance 2
3

and size k + 1.

If tw(G) ≤ k, then this succeeds. G has a 1
2
-separator S of size k + 1 for any weight

function (ie for χW). This can be turned into a separation of balance 2
3

and size k + 1.

So if we cannot find such a separation, then tw(G) > k. If we do, define subgraphs as
in the previous lemma and recurse in the subgraphs. If the algorithm fails for either of
those two, then we know tw(G) > k.

If both recursions succeed, we can build a W -tree-decomposition for G and return it.

The next approximation is an “asymptotic” 4-approximation, which means that we ignore
lower-order terms in the approximation factor.

Theorem 16.1.6
There is an asymptotic 4-approximation of treewidth with run time

O(8tw(G) tw(G)n2)

Proof
Run the algorithm for k = 1, 2, . . . , n.

16.2 Grid Minors

For planar graphs, there are simpler methods to approximation treewidth.

For example, recall that the branchwidth of a planar graph G can be computed in polynomial
time. Moreover,

bw(G) ≤ tw(G) ≤ 3

2
bw(G)− 1.

154

©Fel
ix

Zh
ou

So just computing the branchwidth gives a 3
2
-approximation of treewidth.

However this approach takes O(n2) time to get the value of the branchwidth and O(n4) to
get the actual branch (tree) decomposition.

For planar graphs, observe that finding a k × k-grid as a minor of a graph G, then surely
the treewidth of G is bigger than k.

Lemma 16.2.1
Let G be a plane graph and W a set of at most 4k − 4 vertices on the outer face.
Then either G has a k× k-grid as a minor, or we can find a W -tree-decomposition of
width at most 5k − 5.

Proof
Let us assume that n ≥ 5k − 4, or else put all vertices into one bag and we are done.

Furthermore, assume that G has at least 4k − 4 vertices on the outer face. Otherwise,
set W to be the outer face vertices, delete an edge e on the outer face and recurse on
G′ := G − e. If we have a k × k-grid minor, then it is also a minor of G. Otherwise a
W -tree-decomposition of G′ also covers e, thus it is also a W -tree-decomposition of G.

The main case is then when G has at least 4k − 4 vertices on the outer face, meaning we
can pad W so that |W | = 4k − 4 exactly.

Add 4 new vertices vN , vE, vS, vW on the outer face of G. Connect vN to the first k vertices
of W in clockwise order. Connect vE to the last of the k vertices and also the next k − 1
vertices. Similarly, connect vS to the last of the previous vertices and the next k − 1
vertices. Analogously for vW . Clearly the new graph is still planar.

Find the maximum number of vertex-disjoint vNvS-paths in G ∪ {vN , vS} as well as the
maximum number of vertex-disjoint vEvW -paths in G ∪ {vE, vW}.

Case I: Suppose there are at most k − 1 vNvS-paths. By Menger’s theorem. there exists
a cutting set S with |S| ≤ k − 1.

Let Ci be any connected component of G− S. Then Ci contains at most 3k − 4 vertices
of W since it cannot contain both a neighbor of vN and a neighbor of vS by the definition
of S. It follows that S is a (3k − 4 ≤ 3

4
|W |,W)-separator.

Similar to the previous lemma, Let Ui be the vertices of W appearing in Ci. Define
Gi := G[Ci ∪ S] and Wi := Ui ∪ S. Observe that Wi must be on the outer face of Gi.

Either Gi contains a k × k-grid minor, or we can combine all tree decompositions to get
a W -tree-decomposition of width

(D + 1)w = 5k − 5.

155

©Fel
ix

Zh
ou

Case II: Suppose there are at most k − 1 vWvE paths. Symmetrically, we can recurse in
subgraphs and either find a k × k-grid minor or get a W -tree-decomposition of G with
width at most 5k − 5.

Case III: There are at least k vertex-disjoint vNvS-paths

P1, . . . , Pk

and at least k vertex-disjoint vEvW -paths

P ′
1, . . . , P

′
k.

Among all such path systems, pick the one minimizing the total number of edges. Let
Vi,j be the set of vertices in common to Pi, P

′
j .

It can be shown that Vij is necessarily a consecutive set of vertices along Pi. If two paths
meet, separate, and meet again, then by re-routing paths appropriately, we can find a
path system with fewer edges.

After contracting each Vi,j into one vertex along the edges of Pi, we hence get a k×k-grid
minor of G.

Corollary 16.2.1.1
For any planar graph G and any fixed k, there is a O(n2) algorithm that either returns
a k × k-grid that is a minor of G or returns a tree decomposition of width at most

5k − 5.

Proof
Follow the steps of the previous proof. The bottleneck is to test for k vertex-disjoint
paths.

This is the Menger problem and can be solved in linear time with right-first search. Thus
each recursion is linear time. Clearly then the run-time is

O(n2)

Although the algorithm has the same run-time as the branchwidth approximation with a
much worse approximation guarantee, it does return a grid-minor certificate, which is very
useful.

156

©Fel
ix

Zh
ou

Theorem 16.2.2
Let G be a planar graph.
The either G contains a k × k-grid as a minor so that

tw(G) ≥ k

or
tw(G) ≤ 5k − 5.

16.2.1 Planar Minors

We are interested in finding minors.

Theorem 16.2.3
Testing whether H is a minor of G can be done in

O(f(h, tw(G)) · n)

time for some function f .

Proof
We show how to phrase H is a minor of G in MSOL, where the size of the formula depends
only on the size of H. Then Courcelle’s theorem applies to give the result.

Enumerate the vertices of H as
v1, . . . , vh.

Assuming that H was a minor of G, there is a sequence of edge contractions from a
subgraph of G at the end of which is H.

Let Vi be the vertices of G contracted to create vi of H. since we only contract edges, Vi

is connected. Also, Vi is disjoint from Vj for i 6= j.

Finally for each edge vivj of H, there must have existed at least one edge from some
vertex in Vi to some vertex in Vj so that this edge is preserved during contraction and
represents vivj.

It is clear that the existence of such vertex-sets implies that H is a minor of G. We have
given the formulas in MSOL to test for these properties. This concludes the proof.

If both H,G are planar, then this insight in combination with the previous corollary gives
an algorithm to test whether H is a minor even if G does not have small treewidth.

157

©Fel
ix

Zh
ou

Theorem 16.2.4
Let H,G be two planar graphs on h, n vertices.
We can test in

O(f(h)n+ n2)

time whether H is a minor of G.

Proof
Set k := 3h and run the previous algorithm with this k. This takes quadratic time and
either returns tw(G) ≤ 5k = 15h (dependent only on h), or G contains a k×k-grid minor.

In the first case, We can test for the existence of a H-minor in O(f(h)n)-time. For the
second case, any planar graph on h vertices is the minor of a 3h× 3h-grid, so no further
work is needed.

16.2.2 Non-Planar Graphs

Theorem 16.2.5
There is a function f(k) such that any graph of treewidth at least f(k) contains a
k × k-grid minor.

Corollary 16.2.5.1
Let H be a planar graph with h vertices and G an arbitrary graph.
We can test in O(f(h) poly(n)) time whether H is a minor of G.

So testing for planar minors is polynomial time.

16.3 Exploiting Dichotomies

16.3.1 Longest Path and DFS

Problem 6 (Longest Path)
Given G and ` ≥ 0, decide if G has a path of length at least `.

Clearly this is NP-hard since setting ` = n is the Hamiltonian Path problem.

158

©Fel
ix

Zh
ou

Theorem 16.3.1
There is an algorithm to test if G has a path of length ` with run-time

O(f(`)(n+m)).

Proof
Run DFS on G. If the resulting DFS tree T has height ` or more, clearly the answer is
YES.

Assume then that T has height at most `− 1, we claim that pw(G) ≤ `− 1. This is seen
by the DFS-tree property that no subtrees have edges between them. Thus we can easily
construct a separator hierarchy from the DFS-order with each separator having size 1.
Then the path decomposition from in which bags are ancestors has maximum width `−1.

We can easily phrase the existence of a path of length at least ` in MSOL2 of size O(`).
Thus if the DFS-tree T has height at most ` − 1, then we can solve the longest-path
problem on G in time

O(f(`) · n)

by Courcelle’s theorem.

Bi-Dimensionality

We know show that for planar graphs, the dependency can be changed to f(
√
`).

Theorem 16.3.2
Given a planar graph G and an integer `, there is an

O(f(
√
`)n+ n2)

algorithm that tests whether G has a path of length `.

Proof
Define k := d

√
`− 1e and retrieve in quadratic time either a k × k-minor or a tree

decomposition at most 5k ∈ O(
√
`).

In the first case, walk along the rows of the grid left-to-right down then right-to-left etc
to find a path of length k2 − 1 ≥ `.

Otherwise, using the given tree decomposition, we can solve the longest path problem in
O(f ′(k)n)

time using dynamic programming.

159

©Fel
ix

Zh
ou

Observe that f ′(k) = f̂(
√
`) for some f̂ . This yields the result.

This type of result works for any problem P that contraction (minor) bi-dimensional.

Definition 16.3.1 (Contraction Bi-Dimensional)
If the problem P has solution size ` in a graph G, then it has a solution size at most
` in any minor of G.
In a k × k-grid, problem P has solution size at least ck2 for some constant c.
Finally, P is fixed-parameter tractable in the treewidth of the graph.

160

©Fel
ix

Zh
ouChapter 17

The Graph Minor Theorem

17.1 H-Free Graphs

Recall that the H-minor-free graphs are the graphs which do not contain a graph from H as
a minor.

The induced-H-free graphs are the graphs which do not contain a graph from H as an
induced subgraph.

For example, the chordal graphs are the induced-{C4, C5, C6, . . .}-free graphs.

The third of “free” graphs are the H-subgraph-free graphs, which are the graphs which do
not contain a graph of H as a subgraph.

An easy example are the bipartite graphs which are the {C3, C5, C7, . . .}-subgraph-free
graphs.

To avoid repetition, we write H-α-free, α-subgraph, and α-closed for

α ∈ {subgraph, induced, minor}.

Lemma 17.1.1
If a graph class G is α-closed, then G is the same as the H-α-free graphs for some H.

Proof
Just take H := G.

161

©Fel
ix

Zh
ou

Corollary 17.1.1.1
There exists a set H of graphs such that the interval graphs are exactly the induced-H-
free graphs.

Proposition 17.1.2
There exist graph classes G that are α-closed. but any description as H-α-free graphs
require an infinite list H.

Proof
Consider the chordal graphs, which are closed under taking induced subgraphs.

Any finite list however, cannot capture all Ck, k ≥ 4.

However, specifically for minor-closed graphs classes we have seen so far (planar graphs), the
list was always finite. In fact Robertson & Seymour proved this always holds in a series of
20 papers and over 500 pages.

The proof is clearly beyond the scope of this course, but we will see a glimpse of how it was
accomplished.

17.2 The Minor-Poset

Any collection of finite graphs G admits a partial order by

H � G ⇐⇒ H is a minor of G.

Recall that a chain in a partial order is a totally ordered subset. In the context of G, we call
this a minor chain.

17.2.1 Infinite Anti-Chains

Definition 17.2.1 (Anti-Chain)
The anti-chain of a partial order is a set of mutually incompatible elements.

Lemma 17.2.1
Suppose for any graph class F , the minor poset defined by F has no infinite anti-chain.
Then for any minor-enclosed graph class G, there is a finite set H of graphs such that
G is precisely the H-minor-free graphs.

162

©Fel
ix

Zh
ou

Proof
Set H0 := G. We know that G is precisely the H0-minor-free graphs.

For every H ∈ H0, let

HH :=

{
H0, H has no minor in H0

H0 \ {H}, ∃H ′ � H ∈ H0

Observe that if any G contains H as a minor, it would contain H ′ as a minor. Thus G is
also the HH-minor-free graphs for each H.

Let
Hω :=

⋂
H∈H0

HH .

By construction. Hω is an anti-chain of H0. By assumption this is finite.

So Hω is the finite list of forbidden minors characterizing G.

Well-Quasi-Ordered

Definition 17.2.2 (Sink)
For a sequence of graphs

G1, G2, . . .

A sink is a graph Gi such that there is no j > i with

Gi � Gj.

Definition 17.2.3 (Sink Sequence)
A sequence of graphs in G where all graphs are sinks.

In other words, we are weakening the condition of anti-chain to go only in one direction. We
allow

Gi � Gj =⇒ i > j.

Lemma 17.2.2
If for any graph class F , the partial order defined by F has no infinite sink-sequence.
Then for any graph class G, the minor poset defined by G has no infinite anti chain.

163

©Fel
ix

Zh
ou

Proof
Suppose that G has an infinite anti-chain. Enumerate a countable subset.

Clearly this is an infinite sink-sequence.

Definition 17.2.4 (Well-Quasi-Ordered)
A partial order is well-quasi-ordered (WQO) if it has no infinite sink sequence.
Correspondingly, for any infinite sequences of graphs in G, there are indices i < j
such that

Gi � Gj.

Theorem 17.2.3 (Robertson-Seymour)
For any graph class G, the minor poset is WQO.

17.3 Well-Quasi-Ordered Graph Classes

Lemma 17.3.1
The stars are WQO with respect to the minor relation.

Proof
Consider any infinite sequence of starts S1, S2, . . . and let s be the size of S1.

If some Si, i > 1 has size at least s, then S1 � Si.

Otherwise, all starts S2, S3, . . . have size at most s − 1. Since there are infinitely many
stars, some size must repeat say Si = Sj. Then

Si � Sj.

17.3.1 Chain Subsequences

Lemma 17.3.2
Let G be a graph class that is WQO. Any sequence G1, G2, . . . contains an infinite
minor chain as a subsequence.

Proof
Only a finite number of graphs in G1, G2, . . . can be sinks, else we are not WQO.

164

©Fel
ix

Zh
ou

Let j0 be the largest index of a sink and set

j1 := j0 + 1.

Since Gj1 is not a sink, there is some j2 > j1 such that

Gj1 � Gj2 .

Since Gj2 is not a sink, we can repeat to get the desired minor sequence.

17.3.2 Star Pairs & Connected Components

Write
G − G ′

to be all graphs with two connected components; one from G and one from G ′.

Lemma 17.3.3
If G,G ′ are WQO, then so is G − G ′.

Proof
Say that Gi is an infinite sequence in G − G ′ where

Gi = Ci ∪ C ′
i.

Take an infinite minor subsequence Cij . Then apply the definition of WQO to C ′
ij

to get
C ′

ij
� C ′

ik
.

Then
Gij � Gik

by construction.

For a graph class G, let G∗ be the graph class where connected components belong to G.

Lemma 17.3.4
If G is WQO, then so is G∗.

Theorem 17.3.5 (Kruskal)
The set F of forests is WQO.

165

©Fel
ix

Zh
ou

17.3.3 More WQO Classes

Lemma 17.3.6
The class of partial k-trees is well-quasi-ordered.

Theorem 17.3.7
The class of planar graphs is WQO.

Proof
Let Gi be a sequence of planar graphs. Let n be the number of vertices of G1.

Case I: Suppose all graphs in the sequence have treewidth at most 15n, then this is a
sequence of partial 15n-trees, thus there are two graphs Gi, Gj with

Gi � Gj.

Case II: If there is some graph Gj where tw(Gj) > 15n, then it has a 3n× 3n-grid minor.
But then G1 is a minor of a 3n× 3n grid. Thus G1 � Gi and we are done.

The ideas here can be generalized.

Let G1, G2, . . . be a sequence of graphs such that G1 is planar. There is a function f(k) such
that any graph of treewidth greater than f(k) contains a k × k-grid. Apply this with f(3n)
and argue as in the previous theorem.

Now suppose G1 has genus g > 0. We can apply induction on the genus to find i < j with

Gi � Gj.

This requires a “cutting” operation in which we reduce a graph of large genus to two sub-
graphs that are “smaller” (think smaller genus). With an alternative definition of “minor”,
the proof works.

This proves the result for any sequence of graphs which starts with a graph of finite genus.
By letting the genus go to infinity (in a way which makes sense), we can finally attain the
result.

17.4 Implications

An immediate corollary is that for every minor enclosed graph class, there exists polynomial
time algorithm to test for membership of arbitrary G. Simply test if any of the finite list of

166

©Fel
ix

Zh
ou

forbidden minors is a minor of G. This was shown if the forbidden minors are planar, but it
is still generally true.

167

	Introduction
	Motivation
	Points of Inquisition

	Graph Assumptions
	Weighted Dominating Set in Paths

	I Planar Graphs
	Planar Graphs
	Definitions
	Planar Drawing
	Planar Embedding
	Multiple Planar Embeddings

	Exploting the Planar Embedding
	Right-First Search
	The Menger Problem in st-planar graphs
	Pseudocode
	Analysis

	Dual Graphs
	Computing & Storing G*
	Algorithmic Implications

	Euler's Formula
	Algorithmic Implications
	Colouring
	Testing Adjacency
	Clique

	Problems in Planar Graphs
	NP-Hard Problems in Planar Graphs
	Coloring
	3-Coloring Reduction

	Planar 3-SAT
	Independent Set
	Planar Reduction

	Maximum-Flow
	st-Cuts
	Undirected Flow in st-Planar Graphs
	Restricting to st-Planar Graphs

	Planarity Testing
	Bush Forms
	The Algorithm by Haeupler & Tarjan
	Depth-First Search & Bush Forms
	High-Level Idea
	PQ-Trees
	Reductions

	Data Structures
	Descendants Consisting of Finished Children
	The Active Child

	Summary
	Initialization
	Tree Edge Update
	None-Tree Edge Update
	Tree Edge Retreat Update

	Final Thoughts

	Triangulated Graphs
	Maximal Planar Graphs
	Related Graph Classes
	Canonical Ordering
	Properties
	Existence of the Canonical Order
	Splitting into Trees
	Arboricity

	Visibility Representation
	Straight-Line Embeddings

	Friends of Planar Graphs
	Super Classes of Planar Graphs
	Graphs in 3D
	Graphs of Bounded Genus
	Near Planar Graphs

	Subclasses of Planar Graphs
	Trees
	Outer-Planar Graphs
	Maximal Outer-Planar Graphs
	Problems

	k-Outer-Planar Graphs
	Series-Parallel Graphs
	2-Terminal Series-Parallel Graphs
	The SP-Tree
	SP-Graphs

	Apollonion Networks
	Relationships between Subclasses of Planar Graphs

	II From Interval Graphs to Treewidth
	Interval Graphs & Friends
	Interval Graphs
	Chordal Graphs
	Perfect Elimination Order
	Problems in Chordal Graphs
	Coloring
	Clique
	Independent Set
	Dominating Set

	Friends of Interval Graphs
	Intersection Graphs
	H-Free Graphs
	Perfect Graphs

	Recognizing Chordal Graphs & Interval Graphs
	Finding a Perfect Elimination Order
	Finding Simplicial Vertices
	Maximum Cardinality Search
	Lexicographic BFS

	Testing a Putative Perfect Elmination Order
	An Idea

	Recognizing Interval Graphs
	PQ-Trees
	Other Algorithms

	Tree Decompositions
	Strong Path Decomposition
	Strong Tree Decomposition
	Perfect Elimination Orders & Tree Decompositions

	Treewidth
	k-Trees
	Properties of k-Trees
	Planar k-Trees

	Partial k-Trees
	Treewidth
	Properties of the Treewidth
	Graphs with Big Treewidth
	Series-Parallel Graphs
	SP-Graphs & Treewidth
	Recognizing SP-Graphs

	Branchwidth
	e-Separations & Branch Decompositions
	Branchwidth & Treewidth
	Branch Decomposition of Planar Graphs
	Spanning Trees of Small Height

	Pathwidth
	Path Decomposition
	Pathwidth & Trees
	Linear Arrangements
	Pathwidth-Equivalence
	Cutwidth & Pathwidth
	NP-Hardness of Computing Width Parameters
	NP-Hardness of Treewidth

	III Treewidth & Algorithms
	Dynamic Programming in Partial k-Trees
	Dynamic Programming in Trees
	Maximum Weight Independent Set
	Maximum Matching
	Solution
	Crucial Idea & Outlook

	Dynamic Programming in 2-Terminal SP-Graphs
	Independent Set
	SP-Graphs

	Dynamic Programming in Graphs of Pathwidth 3
	Nice Path Decompositions
	Subgraphs
	Maximum Weight Independent Set

	Dynamic Programming in Partial k-Trees
	Nice Tree Decomposition
	Subgraphs
	Independent Set

	Fixed-Parameter Tractability
	Monadic Second-Order Logic
	Examples
	MSOL2
	Courcelle's Theorem

	Wrap Up

	k-Outer-Planar Graphs
	Combinatorial Properties
	Treewidth of k-Outer-Planar Graphs
	Baker's Approximation Scheme
	Obtaining Outer-Planar Graphs
	A 1/2-Approximation
	Obtaining k-Outer-Planar Graphs
	Baker's PTAS
	Final Comments

	Separators
	Separators
	Some Examples
	Trees
	Pathwidth of Trees

	Partial k-Trees
	Planar Graphs
	Divide & Conquer
	Shortest Cycles
	Global Minimum Cut
	Matching

	Sparator Hierarchies
	Path Decompositions

	Generalized Separator Theorem
	Approximation Schemes
	The Approximation
	Analysis

	Approximation Treewidth
	Approximating Treewidth
	Separations
	W-Separations
	W-Separations to Tree Decompositions
	Approximation of Treewidth

	Grid Minors
	Planar Minors
	Non-Planar Graphs

	Exploiting Dichotomies
	Longest Path and DFS
	Bi-Dimensionality

	The Graph Minor Theorem
	H-Free Graphs
	The Minor-Poset
	Infinite Anti-Chains
	Well-Quasi-Ordered

	Well-Quasi-Ordered Graph Classes
	Chain Subsequences
	Star Pairs & Connected Components
	More WQO Classes

	Implications

