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Introduction

1.1 Qubits, Quantum States, and Measurement

The quantum bit, or qubit, is the quantum equivalent of the classic unit of information: the
bit. Qubits are the elementary building blocks of quantum computers. We can think of a
qubit as a register in the classical computer.

The state of a qubit is described by a unit vector in C2. This space is imbued with the
natural Euclidean inner product.

Definition 1.1.1 (Ket)
A vector |ψ〉 ∈ C2.

Example 1.1.1
The following are examples of states of a qubit.

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
|+〉 = 1√

2
(|0〉+ |1〉)

|−〉 = 1√
2
(|0〉 − |1〉)
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Definition 1.1.2 (Probability Amplitude)
Given a quantum state α |0〉 + β |1〉. The coefficients α, β are the probability ampli-
tudes of |0〉 , |1〉 respectively.

Recall that an orthonormal basis of a finite dimensional inner product space is a basis of
unit vectors such that is pairwise orthogonal (inner product 0).

Example 1.1.2
The canonical basis |0〉 , |1〉 is an orthonormal basis of C2. The following are all orthonor-
mal bases of C2

{|+〉 , |−〉}
{|v0〉 , |v1〉} := {|0〉+ i |1〉 , |0〉 − i |1〉}

Definition 1.1.3 (Bra)
The linear algebraic dual (conjugate transpose) of |v〉 is denoted 〈v|.

Example 1.1.3
The following are duals

〈0| =
(
1 0

)
〈v0| =

1√
2

(
1,−i

)
We can succintly represent the inner product between vectors |u〉 , |v〉 ∈ Cd as 〈u|v〉.

Example 1.1.4
The following are examples of inner products expressed with bra-ket notation.

〈0|+〉 = 1√
2

|〈+|v0〉| =
∣∣∣∣12(1 + i)

∣∣∣∣
=

1√
2

10
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Definition 1.1.4 (Complete Projective Measurement)
Let B := {|u0〉 , |u1〉} be an orthonormal basis of C2.
The effect of a measurement in B on a qubit in state |v〉 is an outcome of either
|u0〉 , |u1〉, with probability |〈ub|v〉|2 for b = 0, 1.
The qubit is then left in the state |ub〉. In other words, the state collapses to |ub〉.

1.2 Bit Commitment

Consider a simple, single message protocol consisting of two stages.

Commit Stage:

1) Alice has a bit a ∈ {0, 1}. She sends a message m (depending on a) to Bob.
2) Bob receives m and stores it.

Reveal Phase:

1) Alice sends bit a, and message r to Bob.
2) Bob uses r to check that m is “consistent” with a. If so, he “accepts” and otherwise

“rejects”.

Requirements

1) Bob cannot learn bit a from the message m alone (Hiding Property).
2) Alice cannot send bit ā and some message r such that Bob accepts (Binding Property).

Classically, with probability 1, either Bob learns the bit a from m alone, or Alice can claim
she committed to ā and Bob is unable to distinguish.

1.2.1 A Quantum Protocol

Let |ψ0〉 be the state which is rotated π
8

from |0〉 to |1〉. Similarly, let |ψ1〉 be the state which
is rotated π

8
from |1〉 to |0〉. Explicitly,

|ψ0〉 = cos
π

8
|0〉+ sin

π

8
|1〉 , |ψ1〉 = sin

π

8
|0〉+ cos

π

8
|1〉 .

Commitment Stage

11
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1) Let a ∈ {0, 1} be Alice’s bit. She prepares a qubit M in the state |ψa〉.
2) She sends M to Bob, who stores this qubit.

Let
∣∣∣ψ̃0

〉
be some state orthogonal to |ψ0〉 and

∣∣∣ψ̃1

〉
be some state orthogonal to |ψ1〉.

Reveal Stage

1) Alice sends bit a, and no other message.

2) Bob measures qubit M in basis
{
|ψa〉 ,

∣∣∣ψ̃a

〉}
. He accepts a if the qubit is left in state

|ψa〉.

Proposition 1.2.1
The quantum protocol satisfies the hiding and binding properties probabilistically:

(a) Given the qubit M , mina∈{0,1} P (outcome = a) ≤ δ for some δ < 1. This happens
regardless of the measurement Bob makes.

(b) For any state in which Alice prepares M , if she wishes to claim bit b in the reveal
stage, minb∈{0,1} P (Bob accepts b) ≤ ε for some ε < 1.

Proof (a)
Here, we are considering the case when Bob can “cheat” and perform some other mea-
surement not as indicated in the protocol.

We can show that the optimal measurement for Bob is along the standard basis {|0〉 , |1〉}
as this maximizes P (outcome = a| |ψa〉).

By computation

P (outcome = 0| |ψ0〉) = cos2
π

8

P (outcome = 1| |ψ1〉) = sin2 π

8
.

Thus δ ≈ 0.85 and the hiding property is satisfied with this probability.

Proof (b)
Here, we are considering the case when Alice can “cheat” by preparing some state that is
not either |ψ0〉 , |ψ1〉, and claim she had the right answer later.

12



©Fel
ix

Zh
ou

Let |ψ〉 := 1√
2
(|ψ0〉+ |ψ1〉). |ψ〉 is a state maximizing

min
a∈{0,1}

|〈ψa|ψ〉|2 = P (outcome = a| |ψ〉 ,Alice claims a)

= cos2
π

8
≈ 0.85.

Hence the concealing property is satisfied with ε ≈ 0.85.

1.3 Multiple Qubits

As the quantum analog to the classical memory, we have sequences of, say n qubits. There
are 2n perfectly distinguishable states labelled as n-bit binary strings.

Definition 1.3.1 (Pure State)
A general pure quantum state is a unit vector in Cd where d = 2n.

Using the Dirac notation, we write

|ψ〉 :=
∑

x∈{0,1}n
αx |x〉 .

Since |ψ〉 is a unit vector, ∑
x∈{0,1}n

|αx|2 = 1.

Example 1.3.1
The following are examples of multiple qubit states

|ψ1〉 =
1√
2n

∑
x∈{0,1}n

|x〉

|ψ2〉 =
1√
2
(|01〉+ |10〉)

|ψ3〉 =
1√
2
(|000〉+ |111〉)

|ψ4〉 =
2

5
i |001〉+ 2

√
3

5
|011〉 − 3

5
|101〉 .

13
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1.3.1 Tensor Products

Definition 1.3.2 (Tensor Product)
For vectors |u〉 ∈ Cd1 , |v〉 ∈ Cd2 , the tensor product, denoted |u〉 ⊗ |v〉, is a vector in
Cd1×d2 .

Suppose {ei}, {fj} are the standard basis vectors for Cd1 ,Cd2 , respectively. Suppose we index
the standard basis vectors {gi,j} of Cd1d2 by pairs (i, j) for i ∈ [d1], j ∈ [d2].

Let |u〉 =
∑

i uiei ∈ Cd1 and |v〉 =
∑

j vjfj ∈ Cd2 . Then

|u〉 ⊗ |v〉 =

(∑
i

uiei

)
⊗

(∑
j

vjfj

)
:=
∑
ij

uivjgi,j

∈ Cd1d2 .

In Dirac notation,
|u〉 ⊗ |v〉 =

∑
ij

uivj |i, j〉 .

For simplicity, |u〉 ⊗ |v〉 is written as

|u〉 |v〉 , |u, v〉 , |uv〉

when there is no confusion.

Proposition 1.3.2
The tensor product operation is bilinear:

(a) For all α ∈ C, |u〉 ∈ Cd1 , |v〉 ∈ Cd2 ,

(α |u〉)⊗ |v〉 = α(|u〉 ⊗ |v〉) = |u〉 ⊗ (α |v〉).

(b) For all |u1〉 , |u2〉 ∈ Cd1 , |v〉 ∈ Cd2 ,

(|u1〉 = |u2〉)⊗ |v〉 = |u1〉 ⊗ |v〉+ |u2〉 ⊗ |v〉 .

(c) For all u ∈ Cd1 , |v1〉 , |v2〉 ∈ Cd2 ,

|u〉 ⊗ (|v1〉+ |v2〉) = |u〉 ⊗ |v1〉+ |u〉 ⊗ |v2〉 .

Thus the tensor product is a function ⊗ : Cd1 × Cd2 → Cd1d2 . The question is whether the
function is surjective.

14
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Proposition 1.3.3
|ψ2〉 = 1√

2
(|01〉+ |10〉) is not the tensor product of two vectors.

It follows that
Cd1d2 6= {|u〉 ⊗ |v〉 : |u〉 ∈ Cd1 , |v〉 ∈ Cd2}.

However,
Cd1d2 = span{|u〉 ⊗ |v〉 : |u〉 ∈ Cd1 , |v〉 ∈ Cd2} =: Cd1 ⊗ Cd2 .

Definition 1.3.3 (Product State)
Vectors which may be written as the tensor product of two vectors are product states.

The rest of the states unable to be written this way are entangled states.

1.3.2 Tensor Products of Operators

Definition 1.3.4 (Tensor Product)
Suppose U : Cd1 → Cd1 , V : Cd2 → Cd2 are linear. The tensor product U ⊗ V is a
linear operator on Cd1 ⊗ Cd2 given on product states by

|u〉 ⊗ |v〉 7→ U |u〉 ⊗ V |v〉

and extended by linearity throughout the entire space.

In matrix form, U ⊗ V is given by the block matrixU1,1V U1,2V . . .
U2,1V . . . . . .
. . . . . . . . .

 .

Properties

Let U,U1, u2 ∈ Cd21 , V, V1, V2 ∈ Cd22 and α ∈ C.

The tensor product is bilinear. That is

(a) (αU)⊗ V = α(U ⊗ V ) = U ⊗ (αV )

(b) (U1 + U2)⊗ V = U1 ⊗ V = u2 ⊗ V

15
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(c) U ⊗ (V1 + V2) = U ⊗ V1 + U ⊗ V2

Moreover,
(U1 ⊗ V2) · (U2 ⊗ V2) = (U1U2)⊗ (V2V2).

The adjoint of a tensor product is

(U ⊗ V )∗ = U∗ ⊗ V ∗.

The inverse of a tensor product is simply

(U ⊗ V )−1 = U−1 ⊗ V −1.

The operator norm of a tensor product is

‖U ⊗ V ‖ = ‖U‖ · ‖V ‖.

1.3.3 Inner Product

The inner product in Cd1 ⊗ Cd2 is inherited from the tensored spaces.

Suppose |u1〉 |v1〉 ∈ |u2〉 |v2〉Cd1 ⊗ Cd2 . Their inner product on prouduct vectors is

〈u1| 〈v1| · |u2〉 |v2〉 = 〈u1|u2〉 · 〈v1|v2〉 .

For general vectors, we simply extend by conjugate linearity.

1.3.4 Outer Product

Definition 1.3.5 (Outer Product)
Let |u〉 ∈ Cd1 , |v〉 ∈ Cd2 . The outer product of |u〉 , |v〉 is

|u〉 · 〈v| .

|u〉 〈v| =


u1v

∗

u2v
∗

. . .
ud1v

∗

 .

16
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The outer product is helpful in writing and manipulating matrices. Take U := (αij). Then

U =
∑
ij

αijeie
∗
j .

1.4 Measurement

A sequence of qubits (registers) M in state |ψ〉 ∈ Cd.

1.4.1 Complete Projective Measurement

Definition 1.4.1 (Complete Projective Measurement)
A complete projective measurement of M is specified by an orthonormal basis of Cd,
say

B := {|ui〉 : i ∈ [d]}.

When M is measured, we get a probabilistic outcome i ∈ [d]. Outcome i occurs with
probability

|〈ui|ψ〉|2.

When the outcome is observed to be i, the state of M collapsed to |ui〉.

Coarser measurements of states are given by projective measurements.

Definition 1.4.2 (Projective Measurement)
A measurement specified by a sequence of orthogonal projection operators{

Pi : i ∈ [k],
k∑

i=1

Pi = I

}
.

On measurement of M in the state |ψ〉 ∈ Cd, we observe a probabilistic outcome
i ∈ [k]. We observe outcome i with probability

‖Pi |ψ〉‖2.

On outcome i, the state of M becomes

Pi |ψ〉
‖Pi |ψ〉‖

.

17
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1.4.2 Measuring a Subsystem

Consider registers AB, with state space Cd1 ⊗ Cd2 . Say the state is |ψ〉.

We wish to measure register A according to the projective measurement {Pi : i ∈ [k]}. This
is equivalent to measuring the entire system according to

{Pi ⊗ I : i ∈ [k]}.

Example 1.4.1
Consider when the Pi’s correspond to a complete measurement in the orthonornal basis
{|ui〉}.

By the Schmidt decomposition theorem, we can write

ψ =

d1∑
i=1

α |ui〉 |ψi〉

where {ψj : j ∈ [d2]} is an orthonormal basis.

Then on measurement, we observe outcome i with probability |αi|2, and the state becomes

(Pi ⊗ I) |ψ〉
|αi|

= |ui〉 |ψi〉 .

Remark on measurements: Since
∑

i Pi = I for any projective measurement with the {Pi}′s
being orthogonal projectors, we have for each i 6= j,

ImPi⊥ ImPj

(or else the sum cannot be the identity) as well as

|ψ〉 =
d∑

i=1

Pi |ψ〉

1 = ‖|ψ〉‖2

=
d∑

i=1

‖Pi |ψ〉‖2.

So some outcome i ∈ [k] is observed and P (outcome = i) is well-defined.

18
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1.4.3 General Measurements

Definition 1.4.3 (General Measurement)
A general measurement of a register M with state space Cd1 consists of preparing
another register M ′ with state space Cd2 in the fixed pure state |0̄〉, and measuring the
composite system MM ′ together according to a projective measurement on Cd1⊗Cd2 .

The register M ′ is an ancillary register or ancilla.

Any other kind of measurement can be formulated as a general measurement.

To see how general measurements are more powerful than projective measurements, consider
the following example. We have |ψi〉 , i = 0, 1, 2, each equi-angle in the real plane.

Proposition 1.4.2
If each of the 3 states occur with probability 1

3
, then with a projective measurement in

C2,
P (outcome is i, the correct index) ≤ 2

3
cos2

π

12
.

The proof is similar to the upper bound for bit commitment cheating probability. However
if we use a general measurement, the probability is 2

3
.

Proposition 1.4.3
Even with general measurements, the upper bound on cheating for bit commitment
holds:

min
a∈{0,1}

P (outcome is i :M in |ψi〉) ≤ cos2
π

8
.

1.5 Information Content

An n-qubit state

|ψ〉 =
∑

x∈{0,1}n
αx |x〉

requires Ω(2n) parameters to describe.

However, we may only reliably encode Θ(n) bits into n qubits (Holevo ’73).
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Theorem 1.5.1 (Nayak ’99)
Let X ∈ {0, 1}m be uniformly random. Suppose we encode x ∈ {0, 1}m by an n-qubit
state |ψx〉. Let Y be the outcome of any measurement of the state |ψX〉 ∈ Cd, d = 2n.
Then

P (Y = X) ≤ 2n

2m
.

Proof
Suppose we measure the state according to projection operators

{Py : y ∈ {0, 1}m},

where outcome y indicates our guess for the encoded string. The operators Py act on
Cd ⊗ Cd′ , where d := 2n and d′ is arbitrary but finite.

Given state |ψx〉, we append |0̄〉 ∈ Cd′ , and measure according to the projective measure-
ment {Py}.

Note that
∑

y Py = I and each Py being an orthogonal projector implies that there is a
orthonormal basis for Cd ⊗ Cd′ ,

{|fyi〉 : u ∈ {0, 1}m, i ∈ [d′]}

such that
Py =

∑
i

|fyi〉〈fyi| .

Consider the subspace H := span{|ψx, 0̄〉 : x ∈ {0, 1}m} with dimension at most 2n. Let
{|gj〉} be a basis of H. We can write

|ψx, 0̄〉 =
∑
j

〈gj|ψx, 0̄〉 |gj〉 .
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We have

P (Y = X) =
1

2m

∑
x

P (Y = x | |ψx〉)

=
1

2m

∑
x

‖Px |ψx, 0̄〉‖2

=
1

2m

∑
x

‖
∑
xi

∑
j

|fxi〉〈fxi| · 〈gj|ψx, 0̄〉 |gj〉‖
2

=
1

2m

∑
x

‖
∑
xi

∑
j

〈fxi|gj〉 · 〈gj|ψx, 0̄〉 |fxi〉‖
2

=
1

2m

∑
x

∑
xi

∑
j

〈fxi|gj〉2 · 〈gj|ψx, 0̄〉2

≤ 1

2m

∑
x

∑
xi

∑
j

〈fxi|gj〉2

=
1

2m

∑
j

∑
x

∑
xi

〈fxi|gj〉2

=
1

2m

∑
j

‖gj‖2

=
1

2m
dimH

≤ 2n

2m
.

If we wish to encode m random bits into n, and ask that P (Y = X) = p > 0, then

n ≥ m− log2
1

p
.

This is the same as the classical bound, thus there is no quantum advantage in terms of
encoding with distribution.

1.6 Operations on Quantum Bits

The evolution of a closed quantum system is

1) linear
2) reversible (invertible)
3) norm-preserving
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Thus they are given by unitary operators on Cd, the state space of the system.

Example 1.6.1
The hadamard matrix is unitary

H :=
1√
2

(
1 1
1 −1

)
.

Example 1.6.2 (Pauli Operators)
The following are all unitary

NOT = X :=

(
0 1
1 0

)
Z :=

(
1 0
0 −1

)
Y = iXZ :=

(
0 −i
i 0

)
.

Computation with qubits thus may be implemented by allowing the entire system to evolve
in isolation. If we allow subregister A of AB to evolve but not B. The evolution is described
by

U ⊗ I.

A sophisticated computation may involve a sequence of such unitary operations applied to
different subregisters.

All operations allowed by quantum physics can be reduced to a composition of

1) addition of ancillas
2) unitary evolutions of the entire system
3) projective measurments
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Superdense Coding & Teleportation

2.1 Superdense Coding

Theorem 2.1.1 (Bennett, Wiesner ’92)
Suppose Alice and Bob each hold single qubit registers E1, E2, where the joint state
of E1E2 is

1√
2
(|00〉+ |11〉)

(EPR pair).
Suppose Alice has two bits a, b ∈ {0, 1}. She can convey with no error, ab to Bob, by
sending only 1 qubit to Bob.

1. Alice applies the unitary operator Uab := XaZb on E1.
2. Alice sends E1 to Bob.
3. Bob measures E1E2 in an orthonormal basis B, the Bell basis {|φxy〉 : x, y ∈ {0, 1}}.
4. Bob gets outcome ab upon measurement.
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The Bell basis is

|φ00〉 :=
1√
2
(|00〉+ |11〉)

|φ01〉 :=
1√
2
(|00〉 − |11〉)

|φ10〉 :=
1√
2
(|10〉+ |01〉)

|φ11〉 :=
1√
2
(|10〉 − |01〉).

We can verify that
|φab〉 = (XaZb ⊗ I) |φ00〉 .

Thus Bob indeed gets the desired outcome.

2.1.1 Remarks

We cannot send any bits using the EPR pair and only local operations. Moreover, no classical
analogue of this protocol exists.

2.1.2 Bit Commitment Revisited

In analyzing the binding property when Alice cheats, we assumed she prepares qubit M in
a pure state, and later reveals a bit of her choice. Consider if Alice uses and entanged state
in M ′M , with some local register M ′ and later measure M ′. Can she improve her strategy?

In such a strategy, the bit she sends in the reveal stage may be random, and we need to
reformulate the cheating criterion.

Proposition 2.1.2
Even with the most general strategy allowed by quantum physics,

min
a∈{0,1}

P (Alice reveals a, Bob accepts) ≤ cos2
π

8
.

In other words, Alice still cannot reveal both values 0 and 1 and force Bob to accept with
probability 1 in each case.
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2.2 Teleportation

Suppose Alice and Bob are physically separated but are connected by a classical channel.
Suppose Alice has a qubit M in state |ψ〉 = α |0〉+β |1〉 and would like to help Bob construct
|ψ〉. With only classical messages, she would need to send infinite length messages to send
α, β exactly, even if she knew α, β.

Theorem 2.2.1 (Teleportation)
Suppose Alice and Bob share E1, E2, respectively, two qubits in the state

|φ00〉 =
1√
2
(|00〉+ |11〉).

She can help Bob construct |ψ〉 by sending 2 classical bits.

Alice has qubits M,E1 with M is state |ψ〉 = α |0〉+ β |1〉. Bob has E2 and E1E2 is in state
|φ00〉.

1) Alice measures qubits ME1 in the Bell basis {|φab〉 : a, b ∈ {0, 1}}.
2) She sends the 2-bit outcome to Bob.
3) Bob receives a, b ∈ {0, 1}, and applies the correctional operator XaZb.
4) E2 is in state |ψ〉.

Proposition 2.2.2
The final state of E2 is |ψ〉.

Recall that the Bell basis vectors were

za |φ00〉 =
1√
2
(|00〉+ |11〉)

|φ01〉 =
1√
2
(|00〉 − |11〉)

|φ10〉 =
1√
2
(|10〉+ |01〉)

|φ11〉 =
1√
2
(|10〉 − |01〉).
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Proof
The state of ME1E2 is

|ψ〉 |φ00〉

=
1√
2
(α |000〉+ α |011〉+ β |100〉+ β |111〉)

=
1√
2

[
α√
2
(|φ00〉+ |φ01〉) |0〉+

α√
2
(|φ10〉 − |φ11〉) |1〉+

β√
2
(|φ10〉+ |φ11〉) |0〉+

β√
2
(|φ00〉 − |φ01〉) |1〉

]
=

1

2
[|φ00〉 |ψ〉+ |φ01〉 (Z |ψ〉) + |φ10〉 (X |ψ〉) + |φ11〉 (ZX |ψ〉)]

Alice’s measurement of ME1 in the Bell basis yields the result ab and leaves the system
E1E2 in state ZbXa |ψ〉 with probability 1

4
. By sending a, b, Bob can then apply the

correctional operator XaZb to recover |ψ〉.

Example 2.2.3
Suppose Alice and Bob have an imperfect communication channel, which applies the Z
operator with probability 1% to any qubit sent over it.

Suppose Alice teleports |ψ〉, and instead sends 2 classical bits (through superdense coding
perhaps) using the communical channel. Then she can repeatedly send these 2-bits and
Bob can correctly apply the correctional operator with arbitrarily high probability.
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Quantum Circuits

|0〉 H U V

|0〉 H

|0〉 X H U

|0〉⊗3

U |11〉

Figure 3.1: Some quantum circuits.

3.1 Classical Circuits

Computers are physical devices which perform a prescribed set of instructions. We can model
them using the circuit model.

A classical computer is made of

1) memory, consisting of bits (registers)
2) logical gates, which perform operations on the memory
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A bit is a unit of memory taking values 0/1.

Logical gates are functions on a small constant number of bits, mapping them to other bits.

An algorithm (program/circuit) for computing a function f : {0, 1}n → {0, 1}m is specified
by

1) The number of bits in the memory (size). This holds the input as well as the workspace.
2) A string of s bits, to which the memory is initialized: the first n bits to x ∈ {0, 1}n

and the rest to 0.
3) A sequence of logic gates, from a fixed set G, along with the indices of memory bits on

which they act, as well as the indices of memory bits which contain the output: say
the last m bits.

The output of the circuit is the string in the output register after applying the gates in
sequence.

A circuit C that takes n-bit inputs and producesm-bit outputs computes a function {0, 1}n →
{0, 1}m. We refer to this function as C.

We say C computes a function f : {0, 1}n → {0, 1}m if C(x) = f(x) for all inputs x.

Theorem 3.1.1
Any function f : {0, 1}n → {0, 1}m can be computed by a boolean circuit over the
gate set

{NOT,AND}.

Definition 3.1.1 (Universal)
A set of gates G is universal if any function {0, 1}n → {0, 1}m can be computed by a
boolean circuit over G.

3.1.1 Efficiency of Circuits

We would like to compute boolean functions with as few resources (time, space) as we can.

The space complexity of a circuit is the amount of memory in bits it requires.

The time complexity of a circuit is the number of gates. We assume here that each gate takes
unit time.
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Some functions are easier to compute than others.

Definition 3.1.2 (Efficient)
A circuit / algorithm is efficient if its time complexity is O(nk) for some constant k,
where n denotes the number of input bits.

A point of subtlety is that we wish for the circuits for a problem/function to be uniform.
Informally, they should use the same method for all input lengths.

3.1.2 Randomized Circuits

A randomized algorithm is a circuit where some its memory bits are initialized to uniformly
random bits. The output of such a circuit is also random.

Definition 3.1.3 (High Probability)
Let f : {0, 1}n → {0, 1}m. We say a random circuit C computes f if

P (C(x) = f(x)) ≥ 2

3

for all inputs x.

3.2 Quantum Circuits

Definition 3.2.1 (Quantum Circuit)
A quantum circuit consists of

1) The memory, consisting of qubits (memory)
2) Quantum gates, which perform unitary operations on the memory
3) Measurements

We draw qubits as wires Figure 3.2.

|ψ〉

Figure 3.2: A qubit.

Quantum gates are unitary operators on a small constant number of bits. We depict them
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as labelled boxes Figure 3.3.

|ψ〉 H H |ψ〉

Figure 3.3: A quantum gate.

An important gate is the Toffoli gate Figure 3.4∑
a,b∈{0,1}

|ab〉〈ab| ⊗Xa·b.

The Toffoli gate, along with the ability to prepare ancilla in states |0〉 , |1〉, gives us universal
classical computation. Indeed, if c = 0, this it the AND gate. If b = c = 1, this is the NOT
gate.

The measurements are all single-qubit measurements in the standard (Z) basis Figure 3.5.

Measurements may be complicated in general, and may need a lot of resources. Our choice
allows us to quantify the time and space needed. We will see how to implement other
measurements using unitary gates and standard basis measurements.

A quantum algorithm/circuit with boolean inputs and outputs is specified by

1) the number of qubits (size s) in the memory. This holds the input and the workspace.
2) The s-qubit state, to which the memory is initialized: The first n qubits to |x〉 , x ∈

{0, 1}n and the rest to |0̄〉.
3) A sequence of quantum gates from a fixed set G, along with the induces of memory

qubits on which they act. The result of the gate is contained in the same qubits.
4) The indices of memory qubits which contain the output: say the last m bits.

To obtain the output of a circuit, we apply the gates in the specified sequence to the initial
state |x, 0̄〉.

UtUt−1 . . . U2U1 |ψ, 0̄〉 .

|a〉

T

|a〉

|b〉 |b〉

|c〉 |c⊕ (a · b)〉

Figure 3.4: The Toffoli gate.
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|ψ〉 0/1

Figure 3.5: A measurement.

We measure the output qubits in the standard basis to obtain a random outcome C(x). The
probability of correctness if P (C(x) = f(x)).

We say the circuit computes f : {0, 1}n → {0, 1}m if the probability of sucess is at least 2
3

for all inputs x.

Note that we may have circuits that implement unitary operations, or measurements, or any
combination of those, which need not compute boolean functions.

Note that we use registers as superscripts to denote

(1) the registers on which an operator acts and which order (CNOTE2E1)
(2) the registeres which are in that state (|00〉E1E2)

Example 3.2.1
Consider the registers ABCD in state

1

2
(|0000〉+ |1010〉+ |0101〉+ |1111〉).

A compact way of expresing the state is

|φ00〉AC |φ00〉BD .

where the tensor factors are permuted, but the superscripts help represent the state
correctly.

Recall in the decoding phase for superdense coding, we are given bits a, b and apply XbZa

on E2. We can implement this as in Figure 3.6.

|a〉
|b〉

|φ00〉
E1

H X H X E2

Figure 3.6: Superdense Coding decoding phase.
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Example 3.2.2
A common trick is that

HXH = Z

HYH = i(HXZH)

= iHXHHZH

= iZX

= −Y.

We may think of −Y ≡ Y from the perspective of measurment. However, c− Y 6≡ c− (−Y )
since they no longer differ only by a global phase.

3.2.1 Measurement in Non-Standard Basis

Say we wish to measurement two qubits along the orthonormal basis {|φab〉}. Take the
unitary change of basis matrix U :=

∑
a,b |ab〉φab which sends
|φab〉 7→ |ab〉 .

1) Apply U to the registers being measured
2) Measure the registers in the standard basis
3) Apply U−1 = U∗

Example 3.2.3
Consider this in the example of the Bell basis. Recall that

|φ00〉 = CNOTE2E1(I ⊗H) |00〉E1E2 .

Observe that

CNOTE2E1(I ⊗H) |ab〉E1E2 = CNOTE2E1 |a〉 1√
2
(|0〉+ (−1)b |1〉)

=
1√
2
(|a0〉+ (−1)b |ā1〉)

= (XaZb ⊗ I) |φ00〉
= |φ00〉 .

Also notice that both gates are self-inverses. Hence
(I ⊗H) CNOTE2E1
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yields the inverse change of basis matrix.

3.3 Universality of Gate Sets

We say a quantum circuit C computes a unitary operator U on n qubits, if for every n-qubit
input state |ψ〉 ∈ Cd, d = 2n, the final state of the circuit is

U |ψ〉 |0̄〉

with probability 1.

Theorem 3.3.1
For any unitary operation U on Cd, d = 2n, there is a quantum circuit that uses only
the CNOT gate as well as single qubit gates, and computes U .

Definition 3.3.1 (Universal Gate Set)
A gate set G is universal if for any unitary operation U on Cd, d = 2n, there is a
quantum circuit that uses only gates from G and computes U .

Hence

{CNOT} ∪ U(2)

is universal.

Definition 3.3.2 (Operator Approximation)
We say that a unitary operator V on Cd, d = 2n approximates another, U , with error
ε ∈ (0, 1), if

‖U − V ‖ ≤ ε.

Definition 3.3.3 (Circuit Approximation)
We say a quantum circuit approximates a unitary operator U with error ε ∈ (0, 1) if
it computes a unitary operator V such that

‖U − V ‖ ≤ ε.
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Proposition 3.3.2
Suppose |ψ〉 , |ϕ〉 ∈ Cd are pure quantum states such that

‖|ψ〉 − |ϕ〉‖ ≤ ε

for some ε ∈ (0, 1).
Let p, q ∈ Rk be the distributions over outcomes obtained by measuring |ψ〉 , |ϕ〉 accord-
ing to some measurement, respectively. Then

‖p− q‖1 ≤ 2ε.

Proof
Suppose we add |0̄〉 and measure according to

{Pi : i ∈ [k]}.

Then pi = ‖Pi |ψ, 0̄〉‖2 and qi = ‖Pi |ϕ, 0̄〉‖2.

Then

‖p− q‖1 =
∑
i

|pi − qi|

=
∑
i

|√pi −
√
qi| · |

√
pi +

√
qi|

≤ ‖√p−√
q‖ · ‖√p+√

q‖.

Now,

‖√p−√
q‖ =

√∑
i

|‖Pi |ψ, 0̄〉‖ − ‖Pi |ϕ, 0̄〉‖|2

≤
√∑

i

‖Pi |ψ, 0̄〉 − Pi |ϕ, 0̄〉‖2 reverse ∆

=

√∑
i

‖Pi(|ψ, 0̄〉 − |ϕ, 0̄〉)‖2

=

√
‖|ψ, 0̄〉 − |ϕ, 0̄〉‖2

≤ ε.
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On the other hand,

‖√p+√
q‖ ≤ ‖√p‖+ ‖√q‖

= 2

as p, q being unit vectors under the 1-norm means that √p,√q are unit vectors under the
2-norm.

This concludes the proof.

Say a circuit C computes a boolean function f with probability 2
3

and we approximate the
unitary operator U implemented by all its gates together by V with

‖U − V ‖ ≤ ε.

Then the new circuit C ′ computes f with probability at least

2

3
− 2ε.

Proposition 3.3.3
Let p, q be probability distributions on [k], and E be any event. Then

|p(E)− q(E)| ≤ 1

2
‖p− q‖1.

Definition 3.3.4 (Universal Gate Set)
Let G be a gate set. We say G is universal if for any unitary operation U on Cd, d = 2n,
and any ε ∈ (0, 1), there is a quantum circuit that uses only gates from G and computes
a unitary operation V on Cd such that

‖U − V ‖ ≤ ε.

Theorem 3.3.4
The gate set

{CNOT, H, T}

is universal

The intuition is to approximate arbitrary rotations by rotations of degree θ such that θ
2π

is
irrational.
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Example 3.3.5
We can implement c-Y, c-CNOT exactly with CNOT, H, T .

Theorem 3.3.6 (Solovay-Kitaev)
For any ε ∈ (0, 1) and any operator U ∈ U(2), there is a sequence of

O

(
logc

1

ε

)
gates from {H,T} which computes V ∈ U(2) such that

‖V − U‖ ≤ ε,

where c is a universal constant.

Proposition 3.3.7
If ‖Ui − Vi‖ ≤ εi for i ∈ [t], then

‖VtVt−1 . . . V1 − UtUt−1 . . . U1‖ ≤ tε.

Proof
Observe that

‖V2V1 − U2U1‖ ≤ ‖(V2 − U2)V1‖+ ‖U2(V2 − U2)‖
≤ 2ε.

The rest follows from induction.
To get an overall error ε when approximating m gates in the circuit C, we need only ap-
proximate each with error ε

m
. Thus to approximate a circuit of m gates, we need at most a

sequence of

O
(
m logc

m

ε

)

gates.

Due to the above result, we may as well assume any gate is available to us!
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3.4 Implementing Measurements

As seen before, we can implement a complete measurement in terms of a change of basis
basis to the standard basis, a measurement in the standard basis, and the inverse change of
basis matrix.

Consider a projective measurement according to {Pi : i ∈ [k]}. Recall we can decompose

Pi =
∑
j

|vij〉〈vij| .

We implement the basis change operator

U :=
∑
i,j

|i, j〉〈vij|

and

(a) Apply U to get the indices in registers A1A2.
(b) Copy A1 containing the first index into an ancilla B.
(c) Measure B in the standard basis.
(d) Apply U∗ to A1A2.

In other words, we apply the unitary operator UP

|vij〉 |0〉 7→ |vij〉 |i〉 ,

then measure the ancilla in the standard basis.

A general measurement involves addition of an ancilla before a projective measurement. This
is straightforward in a circuit. In summary, the complexity of implementing a measurement
is captured by that of the basis change operation.

3.5 Efficiency of a Quantum Circuit

The space complexity, or memory size is the number of qubits in the memory. The time
complexity or size of the circuit is the number of quantum gates in the circuit.

We say that a family of quantum circuits is efficient if its time complexity is O(nc) for a
constant c, AND the family is uniform. Here n is the size of the input.
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Definition 3.5.1 (Polynomial Time)
The complexity class P consists of all families of boolean functions

{fn : {0, 1}n → {0, 1}}

(decision problems) which have efficient deterministic classical circuits.

Definition 3.5.2 (Bounded-Error Probabilistic Polynomial Time)
The complexity class BPP consists of all families of boolean functions

{fn : {0, 1}n → {0, 1}}

(decision problems) which have efficient randomized classical circuits.

Definition 3.5.3 (Bounded-Error Quantum Polynomial Time)
The complexity class BQP consists of all families of boolean functions

{fn : {0, 1}n → {0, 1}}

(decision problems) which have efficient quantum circuits.

3.5.1 Simulating Classical Computation

Since classical physics is a special case of quantum physics, we expect to be able to efficiently
simulate classical computation with quantum computation.

We have seen that the Toffoli gate can simulate {AND,NOT}, given ancillas in state |0〉 , |1〉.

However, classical computation leaves “side-effects”, which is not in general unitary. To be
specific, we can compute f : {0, 1}n → {0, 1}m by a unitary operation

Uf : |x, 0̄, 0̄〉 7→ |x, f(x), 0̄〉 .

However, classical computation may leave intermediate results and instead have

Ũf : |x, 0̄, 0̄〉 7→ |x, f(x), g(x)〉 ,

where g(x) are the intermediate results.

Instead, we can implement the circuit in Figure 3.7.
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1) Compute Ũf .
2) Copy f(x) into fresh ancilla
3) Reverse the computation Ũf

|x〉

Ũf Ũ−1
f

|x〉

|0̄〉 |0̄〉

|0̄〉 |0̄〉

|0̄〉 f(x)

|x〉

f(x)

g(x)

Figure 3.7: reversible classical computation.

If the classical computation Uf takes space s, time t, and m-bit output. Then the quantum
space is at most

s+ 2t+m

accounting for bits, ancilla for gates, and ancilla for output. The quantum time is at most

2t+ 2t+m

accounting for the NOT, c-CNOT,CNOT gates.

Thus if the deterministic circuit is efficient, so is the quantum simulation.

Theorem 3.5.1
The two complexity classes P ,BQP satisfy

P ⊆ BQP .

3.5.2 Simulating Randomized Circuits

A randomized classical circuits are deterministic circuits with some memory bits inititalized
to uniformly random bits. See Figure 3.8 where r indicates some random bits. Then

P (C(x) = y) = P (h(x,R) = y)

where R is uniformly distributed over {0, 1}k.

In order to simulate this randomized circuit, we first simulated the deterministic circuit,
then apply H⊗k to the registers corresponding to the randomized bits r. See Figure 3.9.
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x

h
garbager

0̄

0̄ h(x, r)

Figure 3.8: randomized classical computation.

|x〉

Ũh

|x〉

|0̄〉 H⊗k

|0̄〉

|0̄〉 output

Figure 3.9: quantum simulation of randomized classical computation.

Observe that
|ψ〉 := H⊗k

∣∣0k〉 = 1√
2k

∑
r∈{0,1}k

|r〉 .

Then before the measurement, the output state is

|ϕ〉 := Ũh |x〉 |ψ〉 |0̄〉

=
1√
2k

∑
r

|x〉 |r〉 |g(x, r)〉 |h(x, r)〉 .

Upon measuring the output registers,

P (output = y) = P (h(x,R) = y).

Thus if the randomized circuit computes f : {0, 1}n → {0, 1}m, so does the quantum simu-
lation. Moreover, if the randomized circuit is efficient, so is the quantum simulation.

Theorem 3.5.2
The complexity classes BPP ,BQP satisfy

BPP ⊆ BQP .
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Quantum Algorithms

4.1 Early Quantum Algorithms

Let us warm-up with the black-box or query model of computation.

Definition 4.1.1 (Black-Box/Oracle)
Given a function f : D → {0, 1} for some domain D and a circuit that computes it.
We call the circuit a black-box/oracle for f .

x Cf f(x)

|x〉
Of

|x〉

|b〉 |b⊕ f(x)〉

Figure 4.1: classical and quantum oracles.

Example 4.1.1
Given a boolean formula ϕ over n variables x in CNF, an assignment a ∈ {0, 1}n of truth
values to x satisfies ϕ if ϕ(a) = 1.

Then a classical circuit Cϕ or a quantum circuit Oϕ for checking if a given assignment a
satisfies ϕ is an oracle with domain D := {0, 1}n and function is ϕ.

Given the circuit Cϕ, how many assignments do we need to evaluate to determine if it is
satisfiable?
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The number of queries is the query complexity.

4.2 The Deutsch-Jozsa Problem

We say a function f : {0, 1}n → {0, 1} is constant if f(x) = 0 for all x or f(x) = 1 for all x.

On the other hand, f is balanced if f(x) = 0 for exactly half of the domain and f(x) = 1 for
the other half of the domain.

Problem 1 (Deutsch-Jozsa)
Given an oracle f : {0, 1}n → {0, 1} where f is either constant or balanced, decide if
f is constant or balanced with as few queries as possible.

For deterministic algorithms, we need at least 2n−1 + 1 queries in the worst case.

Theorem 4.2.1 (Deutsch-Jozsa)
There is a quantum algorithm DJ making 2 queries which gives the correct output
with probability 1.

Note that in fact only one query suffices. See Figure 4.2 for a circuit.

|0n〉 H⊗n

Of Of

H⊗n

ORn

|0〉 Z

Figure 4.2: The Deutsch-Jozsa algorithm.

For n-bit strings x, y

x · y := ⊕n
i=1xiyi.
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Given an arbitrary x ∈ Zn
2 ,

H⊗n |x〉 = ⊗n
i=1

1√
2
(|0〉+ (−1)xi |1〉)

= ⊗n
i=1

1√
2
((−1)0·xi |0〉+ (−1)1·xi |1〉)

=
1√
2n

⊗n
i=1

∑
yi∈{0,1}

(−1)yi·xi |yi〉

=
1√
2n

∑
y∈Zn2

(−1)x·y |y〉 .

Proposition 4.2.2
For n-bit strings x, y, ∑

x

(−1)x·y =

{
2n, y = 0n

0, y 6= 0n

Proof
Observe that

1

2n

∑
x

(−1)x·y = 〈0n|H⊗n ·H⊗n |y〉

= 〈0n|y〉

=

{
1, y = 0n

0, y 6= 0n
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Let |ψi〉 be the state of the system after the i-th gate.

|ψ1〉 =
1√
2n

∑
x∈Zn2

|x〉 |0〉

|ψ2〉 =
1√
2n

∑
x∈Zn2

|x〉 |f(x)〉

|ψ3〉 =
1√
2n

∑
x∈Zn2

(−1)f(x) |x〉 |f(x)〉

|ψ5〉 =
1√
2n

∑
x∈Zn2

(−1)f(x) |x〉 |0〉

|ψ5〉 =
1√
2n

∑
x∈Zn2

(−1)f(x)H⊗n |x〉 |0〉

=
1√
2n

∑
x∈Zn2

(−1)f(x)
1√
2n

∑
y∈Zn2

(−1)x·y |y〉 |0〉

|ψ6〉 =
1

2n

∑
y

(∑
x

(−1)f(x)⊕x·y

)
|y〉 |ORn(y)〉

Case I(a): f(x) = 0 for all x

|ψ6〉 =
1

2n

∑
y

(∑
x

(−1)x·y

)
|y〉 |ORn(y)〉

= |0n〉 |ORn(0
n)〉

= |0n〉 |0〉 .

Case I(b): f(x) = 1 for all x

|ψ6〉 = − 1

2n

∑
y

(∑
x

(−1)x·y

)
|y〉 |ORn(y)〉

= − |0n〉 |ORn(0
n)〉

= − |0n〉 |0〉 .
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Case II: f(x) is balanced

|ψ6〉 =
1

2n

∑
y

(∑
x

(−1)f(x)⊕x·y

)
|y〉 |ORn(y)〉

= 0 · |0n〉 |0〉+ 1

2n

∑
y 6=0n

(∑
x

(−1)f(x)⊕x·y

)
|y〉 |ORn(y)〉

=
1

2n

∑
y 6=0n

(∑
x

(−1)f(x)⊕x·y

)
|y〉 |1〉

Thus on the input |0n〉, the last register will be in state |0〉 if and only if f is constant. It is
|1〉 otherwise.

Hence with 2 queries to the oracle, we decide with a circuit with O(n) gates and O(n) qubits
whether f is constant or balanced. This is an exponential speed-up.

4.2.1 Randomized Classical Algorithm

1) Pick x, y uniformly at random from {0, 1}n.
2) Output 0 if f(x) = f(y) and 1 otherwise.

If the function is constant, this succeeds with probability 1. If it is balanced, the probability
of success if 1

2
. By repeating this algorithm t times, we can boost the worst case probability

to 1− 1
2t

.

Hence by making 2t queries, the randomized algorithm solves the Deutsch-Jozsa problem
with one-sided error at most 1− 1

2t
.

Hence quantum algorithms do not have any asymptotic advantage in term of query com-
plexity when compared to randomized algorithms allowing for small constant error.

4.3 The Simon Problem

Recall that Zn
2 is an n-dimensional vector space over the finite field Z2.

Suppose f : {0, 1}n → {0, 1}n is such that there exists s ∈ Zn
2 for which

∀x, y ∈ Zn
2 , f(x) = f(y) ⇐⇒ y = x⊕ s.
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We say that f hides the string s.

Problem 2 (Simon)
Given an oracle for the function f : {0, 1}n → {0, 1}n that hides a non-zero string s,
output s.

Consider a classical and quantum oracle as in Figure 4.3.

x Cf f(x)

|x〉
Of

|x〉

|a〉 |a⊕ f(x)〉

Figure 4.3: classical and quantum oracles.

How many queries do we need to find s? What about the size of the circuit needed?

4.3.1 A Classical Algorithm

The idea is based on the birthday paradox. We wish to find two distinct elements x, y such
that f(x) = f(y). Then s = x⊕ y.

There are 2n−1 pairs {x, x⊕ s}. If we pick t elements x1, . . . , xt uniformly random from Zn
2

for t := 2
√
2n, then the probability that the f(xi)’s are all distinct are at most 1

4
. However,

it is possible that xi = xj for some i 6= j.

Given f(xi) = f(xj) we have with probability 1
2

that xi 6= xj. Hence we find s with
probability at least 1

2
· 3
4
= 3

8
.

Theorem 4.3.1
There is a randomized algorithm that finds s with probability at least 2

3
, the string s

that the function f hides with O
(
2
n
2

)
queries to the oracle for f .

Theorem 4.3.2
Any randomized algorithm that solvces the Simon problem with success probability
at least 2

3
makes Ω

(
2
n
2

)
queries.
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4.3.2 The Simon Algorithm

The heart of the algorithm is the hehaviour of the Hadamard operator on the uniform
superpositions over a subspace of Zn

2 . Fix 0 6= s ∈ Zn
2 , then S := {0n, s} is a subspace of Zn

2 .

Indeed,

H⊗n 1√
2
(|0n〉+ |s〉) = 1√

2

(
1√
2n

∑
y

|y〉+ 1√
2n

∑
y

(−1)s·y |y〉

)

=
1√
2n+1

∑
y

(1 + (−1)s·y) |y〉

If s · y = 0, then the amplitdue is 1√
2n−1

. Otherwise, it is 0.

Recall that
S⊥ := {x ∈ Zn

2 : x · s = 0}

is a subspace of Zn
2 with dimension n−1. Hence H⊗n 1√

2
(|0n〉+ |s〉) is an equal superposition

of the orthogonal complement of S.

More generally, consider any coset of S, namely x+ S := {x, x⊕ s}. Then

H⊗n 1√
2
(|x〉+ |x⊕ s〉) = 1√

2

(
1√
2n

∑
y

(−1)x·y |y〉+ 1√
2n

(−1)(x⊕s)·y

)

=
1√
2

(
1√
2n

∑
y

(−1)x·y |y〉+ 1√
2n

(−1)(x·y)⊕(s·y)

)

=
1√
2n+1

∑
y

(−1)x·y(1 + (−1)s·y) |y〉

=
1√
2n−1

∑
y∈S⊥

(−1)x·y |y〉 .

The idea now is to repeatedly sample vectors from S⊥ until we have a basis. We are then
able to recover s.

Proposition 4.3.3
Let Y1, Y2, . . . , Yt be iid random variables uniform over the subspace S⊥. Then the
probability that the Yi’s span S⊥ when t = 8n is at least 3

4
.
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Proof
Suppose we have sampled Y1, . . . , Ym and Vm := span{Y1, . . . , Ym}. If Vm = S⊥, we are
done. Suppose otherwise.

We argue that
P (Ym+1 /∈ Vm) ≥

1

2
.

Then with probability at least 1
2
,

dimVm+1 = dimVm + 1.

In particular, the expected number of samples needed for the dimension of the samples to
increase by 1 is at most 2. Thus the expected number of samples needed for the dimension
to attain n− 1 is at most 2(n− 1). Let T be the random variable equal to the number of
samples needed to obtain dimension n− 1. By Markov’s inequality,

P (T ≥ 8n) ≤ E[T ]

8n

≤ 2(n− 1)

8n

≤ 1

4
.

In other words,
P (T ≤ 8n) ≥ 3

4
.

To see the claim, we know that Ym+1 ∈ S⊥. If Ym+1 /∈ Vm, then Ym+1 ∈ S⊥ \ Vm. We
know that there is some y ∈ S⊥ \ Vm. For each z ∈ V m, y ⊕ z ∈ S⊥.

However y ⊕ z /∈ Vm, or else
y = (y ⊕ z)⊕ z ∈ Vm

which is absurd. Moreover, if z1 6= z2 ∈ Vm, then z1 ⊕ y 6= z2 ⊕ y. Hence translation by y
is an injective function Vm → S⊥ \ Vm.

It follows that |Vm| ≤ |S⊥\Vm| and that we pick an element outside of Vm with probability
at least 1

2
.

Thus using 8n samples from S⊥, we can find a basis for S⊥ with probability at least 3
4
. Say

y1, . . . , yn−1 ∈ Zn
2 spans S⊥. Then we can find the hidden substring s by solving the linear

equations
yi · s = 0,∀i ∈ [n− 1].

A key subroutine of Simon’s algorithm is SAMPLE(f) illustrated in Figure 4.4. The random
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variable Y is uniform over S⊥.

|0n〉 H⊗n

Of

H⊗n Y

|0n〉

Figure 4.4: The SAMPLE(f) subroutine.

Let |ψi〉 be the state of the system after the i-th gate. Put F := f(Zn
2 ) as the image of f .

|ψ1〉 =
1√
2n

∑
x

|x〉 |0n〉

|ψ2〉 =
1√
2n

∑
x

|x〉 |f(x)〉

=
1√
2n−1

∑
f(x)∈F

1√
2
(|x〉+ |x⊕ s〉) |f(x)〉

|ψ3〉 =
1√
2n−1

∑
f(x)∈F

1√
2n−1

∑
y∈S⊥

(−1)x·y |y〉 |f(x)〉 .

After measurement, we see some y ∈ S⊥ with probability

1

22(n−1)

∑
f(x)∈F

|(−1)x·y|2 = 2n−1

22(n−1)

=
1

2n−1
.

‘

The Algorithm

1) Run SAMPLE(f) for t := 8n times using fresh qubits initialized to |0n+1〉 for each run
2) Let Yi, i ∈ [t] be the t measurement outcomes obtained. Solve the system of linear

equations {Yi · w = 0 : i ∈ [t]} over the variable w ∈ Zn
2 (using Gaussian elimination).

This is a basis for the solution space.
3) If the solution space has dimension more than 1, output “fail”. Otherwise, output s̃,

the unique non-zero element.

Note that Gaussian elimination over Z2 takes O(n3) time and O(n2) space.
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Theorem 4.3.4
Simon’s algorithm has query complexity O(n), uses O(n2) qubits, and O(n2) quantum
gates. It has classical post-processing using O(n2) bits of memory and time complexity
O(n3). Moreover, it produces an output s̃ with probability at least 3

4
, and

P (s̃ = s : not fail) = 1.

Proof
The complexity of the algorithm is clear.

Remarks

We can combine all the steps of Simon’s algorithm into one quantum circuit. The simulation
of classical computation is already clear. Thus the difficulty lies in the composition of
quantum circuits. Observe the circuit identity Figure 4.5.

U

V

U

V

Figure 4.5: The composition of two SAMPLE(f) subroutines.

The identity holds as the two sequences of operations have the same distribution over final
states. But it is easier to conceptually understand algorithms as subroutines, hence we may
similarly design other algorihtms by composing simpler quantum circuits.
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4.3.3 Extensions

The Simon problem is a special instance of the Hidden Subgroup Problem (HSP). Simon’s
algorithm extends to efficient quantum algorithms for HSP over abelian groups.

In fact, integer factorization and discrete logarithm, two problems underlying public key
cryptography, can both be reduced to abelian HSP. The famous algoirhtms for these probelms
due to Shor were inspried by the Simon algorithm.

4.4 Phase Estimation

Let ϕ := 2πθ

Recall the beam-splitter experiment which applies the gates

HR(ϕ)H

where R(ϕ) is the phase gate of corresponding angle. Then we observe the light at detector
D1 with probability

sin2 ϕ

2
.

If ϕ << π
2
, then sin2 ϕ

2
≈ ϕ2

4
. Hence by repeating the experiment, we can approximate ϕ.

Consider the binary representation of θ

θ = 0.θ1θ3 . . . .

Then

2mϕ = 2π2mθ

= 2π

(
2m−1θ1 + 2m−2θ2 + · · ·+ θm +

1

2
θm+1 +

1

22
θm+2 + . . .

)
≡ 2π

(
1

2
θm+1 +

1

22
θm+2 + . . .

)
.

The idea is to then learn each bit in succession.
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Theorem 4.4.1 (Kitaev)
Given a circuit for applying U2k where

U :=

(
1 0
0 22πiθ

)
, k ∈ [m],

we can learn θ up to m bits of precision using O(m) qubits and O(m) other gates and
measurements.

4.4.1 Efficient Phase Estimation

Let U denote hte phase gate

U :=

(
1 0
0 e2πiθ

)
.

Recall that Kitaev’s algorithm applies the powers U2k for 0 ≤ k < m and

U2kH |0〉 = 1√
2
(|0〉+ e2πi(2

kθ)).

Now, let |ψθ〉 be the tensor product of the above for 0 ≤ k < m.

|ψθ〉 :=
1√
2m

⊗0
k=m−1 (|0〉+ e2πi(2

kθ) |1〉)

=
1√
2m

⊗0
k=m−1 (e

2πi(2kθ)·0 |0〉+ e2πi(2
kθ)·1 |1〉)

=
1√
2m

⊗0
k=m−1

∑
yk∈{0,1}

e2πi(2
kθ)·yk |yk〉

=
1√
2m

∑
y∈{0,1}m

e
2πiθ

(∑0
k=m−1 2

kyk

)
|y〉

=
1√
2m

2m−1∑
y=0

e2πiθy |y〉 .

Suppose θ = a
2m

for some a ∈ Z2m . Then

e2πiy
a

2m = ωay

for the 2m-th root of unity ω := exp
(
2πi
2m

)
. Define

|χx〉 :=
1√
2m

2m−1∑
y=0

ωxy |y〉 .
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Then from complex analysis,

〈χa|χb〉 =
1

2m

2m−1∑
y=0

ω(b−a)y

=

{
1, a = b

0, a 6= b

Definition 4.4.1 (Fourier Basis)
The Fourier basis is the set

{|χx〉 : 0 ≤ x < 2m}.

We have just shown that the Fourier basis is an orthonormal basis of C2m . Hence if θ = a
2m

for some a, we need only measure in the Fourier basis, and we determine θ exactly.

Definition 4.4.2 (Quantum Fourier Transform)
The quantum fourier transform (over Z2m) is the change of basis operator

F2m :=
2m−1∑
x=0

|χx〉〈x| .

In order to implement this measurement, we need an efficient implementation of the quantum
fourier transform.

What if θ is NOT an integer multiple of 1
2m

? Let a be such that a
2m

is the closest integer
multiple of 1

2m
to θ. If we measure |ψθ〉 in the Fourier basis,

P (outcome = a) = |〈χa|ψθ〉|2

=
1

22m

∣∣∣∣∣
2m−1∑
y=0

exp
(
− a

2m
+ θ
)
y

∣∣∣∣∣
2

=
1

22m

∣∣∣∣∣ exp
(
θ − a

2m

)
· 2m − 1

exp
(
2πi(θ − a

2m
)
)
− 1

∣∣∣∣∣
2

geometric sum

=
1

22m
sin2

(
2mπ

(
θ − a

2m

))
sin2

(
π(θ − a

2m
)
)

=:
1

22m
sin2 α

sin2
(

α
2m

) .
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Lemma 4.4.2
For ϕ ∈

[
0, π

2

]
,

ϕ

2
≤ sinϕ ≤ ϕ.

Since ∣∣∣ a
2m

− θ
∣∣∣ ≤ 1

2
· 1

2m
,

the absolute value of the angle α in the numerator is at most

2mπ
1

2m+1
≤ π

2
.

The absolute value of the angle α
2m

is positive and at most
π

2m+1
.

By our work above,

P (outcome = a) =:
1

22m
sin2 α

sin2
(

α
2m

)
≥ 1

22m

(
α
2

)2(
α
2m

)2
=

1

4
.

Thus with probability at least 1
4
, the measurement outcome a is such thaat a

2m
gives us an

approximation of θ with error at most 1
2m+1 .

Theorem 4.4.3 (Cleve, Ekert, Macchiavello, Mosca)
Let

U :=

(
1 0
0 exp(2πiθ)

)
.

With probability at least 1
4
, the algorithm described above produces outcome a ∈ Z2m

such that ∣∣∣θ − a

2m

∣∣∣ ≤ 1

2m+1
.

We can boost the probability by using more qubits and taking the most popular output
among repetitions.

The memory size is m qubits. The time complexity is O(m) gates, the size of the circuit for
F2m , the quantum fourier transform.
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4.5 Quantum Fourier Transform

Recall the state used for phase estimation. Let

U :=

(
1 0
0 exp(2πiθ)

)
.

Then (⊗0
k=m−1U

2k)H⊗n maps

|0m〉 7→ |ψθ〉 =
1√
2m

2m−1∑
y=0

e2πiθy |y〉 .

If we take θ := x
2m

,
|0m〉 7→ |χx〉 .

To see how we implement U2k ,

U2k :=

(
1 0
0 exp(2πiθ)

)2k

=

(
1 0
0 exp

(
2πi(2kθ)

)) .
Now,

2π(2kθ) = 2π(0.θk+1θk+2 . . . ) mod 2π.

Hence
2π(θ) = 2π

( x

2m

)
= 0.xm−1−kxm−2−k . . . x1x0 mod 2π.

We can write

e2πi(2
kθ) =

m−1∏
j=0

e2πi
xm−1−k−j

2j+1 .

Let αj := 0. 00 . . . 0︸ ︷︷ ︸
j−1

1 and

Rj :=

(
1 0
0 exp(2πiαj)

)
=

(
1 0
0 exp

(
2πi
2j

)) .
Then

U2k =
m−k∏
j=1

R
xm−j−k
j .
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For the special case of R1,
R

xj
1 = Zxj

and
R

xj
1 H |0〉 = Zxj |+〉 = H |xj〉 .

So we simply apply the H gate.

We can apply the c-Rj gate controlled by the (m− j − k)-th bit. The order is such that we
apply U20 =

∏m−j
j=2 R

xm−j
j H to |xm〉 first, as it is conditioned on all other qubits. Then in

decreasing order of qubits, we can apply U2k with increasing powers. This ensures we are
“done” with all qubits as controls before applying a non-identity operator.

All in all, we have a circuit sending

|x〉 7→ |χx〉 .

Theorem 4.5.1
There is a quantum circuit for F2m over Z2m that uses m qubits, has no measurements,
and has O(m2) single or two-qubit gates.

4.6 Eigenvalue Estimation

Problem 3 (Eigenvalue Estimation)
Given a quantum state |ψ〉 ∈ Cd which is an eigenvector of V with eigenvalue e2πiθ

for θ ∈ [0, 1), and accuracy parameter ε ∈
[

1
2m
, 1
)
, output an estimate θ̃ ∈ [0, 1) such

that |θ̃ − θ| ≤ ε.

The idea is to use phase estimation. It suffices to implement

U2k =

(
1 0
0 exp

(
2πi(2kθ)

)) .
Observe that

(c-V2k H)(|0〉 |ψ〉) = 1√
2

(
|0〉 |ψ〉+ |1〉V 2k |ψ〉

)
=

1√
2

(
|0〉+ e2πi2

kθ
)
|ψ〉 .
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We can simply this further Figure 4.6.

|ξ1〉 := H⊗m |0m〉 ⊗ |ψ〉

=
1√
2m

∑
x∈{0,1}m

|xm−1 . . . x0〉 |ψ〉

|ξ2〉 :=
m∏
j=1

c-V2m-jEjEψ |ξ1〉

=
1√
2m

2m−1∑
x=0

|x〉 ⊗ V x |ψ〉 .

|0m〉 H⊗m F ∗
2m 2mθ̃

|ψ〉 V x |ψ〉

Figure 4.6: The simplified eigenvalue estimation circuit.

Theorem 4.6.1
Let m := blog 1

ε
c. With probability at least 1

4
, the circuit depicted in Figure 4.6

produces an estimate θ̃ ∈ [0, 1) such that |θ− θ̃| ≤ ε, when |ψ〉 is an eigenvector of V
with eigenvalue e2πiθ.

4.7 Period Finding

For n > 1, let Z∗
n denote its multiplicative group

Z∗
n := {a ∈ Zn : gcd(a, n) = 1}.

Problem 4 (Period Finding)
Given an integer n > 1 and a ∈ Z∗

n, output the order of a mod n.

The brute force algorithm is exponential with respect to the input n.

Using an algorithm for this problem as a subroutine, we can factor the integer n efficiently
using a classical algorithm. No efficient classical algorithm for this problem is known.
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4.7.1 Main Idea

Multiplication modulo n is in general not invertible, but since gcd(a, n) = 1, multiplication
by a modulo 10 is invertible!

Lemma 4.7.1
Le 1 < n ∈ Z and gcd(a, n) = 1. The function fa : Zn → Zn given by

fa(x) := ax mod n

is invertible.

Consider the unitary operator Va on Cn given by

|x〉 7→ |ax mod n〉 .

Thus it permutes the basis elements via multiplication modulo n.

Let r denote the order |a| of a modulo n, and ω := e−
2πi
r . Define the quantum state

|ψ1〉 :=
1√
r

r−1∑
j=0

ωj
∣∣aj mod n

〉
.

We have

Va |ψ1〉 =
1√
r

r−1∑
j=0

ωj
∣∣aj+1 mod n

〉
=
ω−1

√
r

r−1∑
j=0

ωj+1
∣∣aj+1 mod n

〉
= ω−1 |ψ1〉

= e
2πi
r |ψ1〉 .

Thus we can use the eigenvalue estimation algorithm to determine r! The precision needed
is an error bound of < 1

2n
since 1 ≤ r ≤ n. Thus given a register initialized to |ψ1〉, we can

efficiently compute r, provided we can implement

c-V2k

a , 0 ≤ k ≤ m

efficiently, where m := O(log n).
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4.7.2 Controlled Phase Gates

The brute force implementation of V 2k takes 2k operations and is exponential in the input
length of n. The more efficient method is the repeated squaring method.

Let T be the classical operator which sends

a 7→ a2.

Then we can compute a2k as
T ka.

Note that we need at most O(log n) applications for this method. Since this can be done
classically, we can also simulate this with a quantum operator.

4.7.3 Preparing the State

Consider the related states

|ψk〉 =
1√
r

r−1∑
j=0

ωkj
∣∣aj mod n

〉
, 0 ≤ k ≤ r − 1.

The state |ψk〉 is also an eigenvector of Va, with eigenvalue ω−k.

Recall that
r−1∑
k=0

ωkj =

{
r, j = 0

0, j 6= 0

We have

1√
r

r−1∑
k=0

|ψk〉 =
1√
r

r−1∑
k=0

1√
r

r−1∑
j=0

ωkj
∣∣aj mod n

〉
=

1

r

r−1∑
j=0

(
r−1∑
j=0

ωkj

)∣∣aj mod n
〉

=
1

r
· r
∣∣a0( mod n)

〉
= |1〉 .

Thus |1〉 is a uniform superposition of the r eigenvectors |ψk〉. If we run the eigenvalue
estimation algorithm on |1〉, we will get an approximation of k

r
in the component |ψk〉.
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|0m〉 H⊗m F ∗
2m

|1〉 V x
a

Figure 4.7: The order sampling circuit.

Consider the circuit depicted in Figure 4.7. Put |ξ〉 as the state of the system before the
measurement. We have

|ξ〉 = 1√
r

r−1∑
k=0

|ξk〉 |ψk〉 .

Measuring |ξk〉 gives 2mθ̃k, where θ̃k is within 1
2m+1 of k

r
with probability at least 1

4
.

Since the |ψk〉 Are orthonormal, we get outcome 2mθ̃k with probability at least 1
4r

for each
k = 0, 1, . . . , r − 1.

Now, we can extract k
r

from θ̃k using the method of continued fractions. This involves an
efficient classical algorithm, which requires an acccuracy parameter m such that

1

2m
≤ 1

n2
.

Hence m ∈ O(log n) suffices.

We can recover r from k
r

provided that k, r are coprime, given k
r

is expressed as a fraction
in the lowest terms.

Proposition 4.7.2
The number of k ∈ [r − 1] that are coprime with r is

Ω

(
r

log log r

)
.

Hence if we repeat the sampling procedure O(log log r) ⊆ O(log log n) times, we sample 2mθ̃k
for k coprime with r at least once. Thus with high probability, we can extract r.

We do not know when we get a useful sample, but we can check that the denominator r̃
that we compute is correct by checking if ar̃ ≡ 1 mod n. Indeed, if k, r share a common
factor, then we output a strictly smaller r̃ < r and ar̃ 6≡ 1. Thus we can make the algorithm
zero-error.
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4.7.4 Period Finding Algorithm

1) Let m := 2 log n and t := 25 log log n.
2) For i ∈ [t]:

(a) Let 2mθ̃ be the output of our sampling algorithm.

(b) Compute a fraction k̃
r̃

in lowest terms such that
∣∣∣θ̃ − k̃

r̃

∣∣∣ ≤ 1
2n2 .

(c) If ar̃ ≡ 1 mod n, stop and output r̃.

3) If none of the iterations succeed, output “FAIL”.

Theorem 4.7.3
There is a polynomial time algorithm which outputs the order of a mod n with
probability at least 2

3
. Moreover, the algorithm does not output incorrect answers

and outputs “FAIL” if it fails to find the order.

4.8 Integer Factorization

Problem 5 (Integer Factorization)
Given an integer n > 1, output “prime”, or 1 < n1 < n such that n1 | n.

No polynomial time classical algorithm is known for this problem. The best known classical
algorithm runs in time

e
O
(
log

1
3 n(log logn)

2
3

)
.

The computational hardness of this problem is the basis of the RSA public-key encryption
scheme that has been used for decades.

4.8.1 Reduction to Period Finding

If n = pk for some prime p and k ≥ 1, we can classically verify this efficiently, and factor n.

Suppose now that n has at least two distinct prime factors.
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Theorem 4.8.1
If the integer n > 1 has at least two distinct factors, at least a constant fraction of
numbers a ∈ Z∗

n satisfy the following property:
Let r := |a| be the order of a mod n. Then r is even and a

r
2 − 1 has a non-trivial

factor in common with n.

To apply this theorem, we repeat the following a constant number of times:

1) Pick a ∈ Zn uniformly at random.
2) If gcd(a, n) 6= 1, we have a non-trivial factor on n.
3) Otherwise, we compute r, the order of a mod n with the period finding algorithm.
4) If r is even, we compute b := a

r
2 − 1 and gcd(b, n).

5) If the GCD is not 1, we succeed.

Thus we get a non-trivial factor of n with constant probability.

Theorem 4.8.2 (Shor)
There is an efficient quantum algorithm for integer factorization that computes all
the prime factors of a given integer n, in time poly(log n), with probability at least 2

3
.

4.9 NP-Hard Problems

Definition 4.9.1 (Non-Deterministic Polynomial Time)
NP consists of computational problems solvable by non-deterministic Turing ma-
chines.
In other words, for which given a potential solution, we can verify if it is a valid
solution efficiently.

It seems intuitive that the classical NP-complete problem 3-SAT can be tackled using quan-
tum parallelism. We shall see that quantum effects alone do NOT suffice for this purpose.

4.9.1 Oracle Lower Bound

Let Oϕ be an oracle for the boolean formula ϕ. How many queries does a quantum algorithm
need to determine if ϕ is satisfiable?
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Problem 6 (Unordered Search)
Given an oracle for f : {0, 1}n → {0, 1}, output 1 if there is some a such that f(a) = 1
and 0 otherwise.

Theorem 4.9.1 (Bennet, Bernstein, Brassard, Vazirani)
Any quantum algorithm for the unordered search problem with oracle access requires
Ω
(
2
n
2

)
queries.

Proof
Consider any quantum circuit that uses m ≥ n+ 1 qubits of memory, makes t queries to
f , and outputs the correct answer with probability at least 2

3
. We show that t ∈ Ω(2

n
2 ).

We may as well assume that Of is only applied on the first n + 1 qubits, by applying a
linear number of SWAP gates of the correct dimensions. Moreover, we measure on the
last qubit in the standard basis and output the result. Hence the circuit consists of

Ut(Of ⊗ I)Ut−1(Of × I) . . . U0

and a measurement, where each Ui is unitary and acts on the entire system.

We claim that there is an element y ∈ {0, 1}n that is queried with squared amplitude at
most t

2n
over the entire course of the algorithm.

Suppose we run the algorithm on f0 ≡ 0. Let |ψi〉 be the state of the memory just before
the (i+ 1)-th query for i = 0, 1, . . . , t− 1, and let |ψt〉 the state before measurement.

Express
|ψi〉 =

∑
x∈Zn2 ,b∈Z2

αixb |x〉 |b〉 |ψixb〉 ,

where |ψixb〉 are some quantum states of the remaining qubits and
∑

x,b|αixb|2 = 1 for all
i = 0, . . . , t.

Summing all squared amplitudes over i,

t−1∑
i=0

∑
x,b

|αixb|2 = t

∑
x

t−1∑
i=0

∑
b

|αixb|2 = t.
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Hence there must be some y ∈ {0, 1}n such that

t−1∑
i=0

∑
b

|αiyb|2 ≤
t

2n
.

In other words, the element y is quried with probability at most t
2n

, over the course of
the algorithm.

Now suppose we run the algorithm with an oracle fy such that f(y) = 1 and f(x) = 0 for
all x 6= y. Let the final state be |φt〉. We claim that

‖|ψt〉 − |φt〉‖ ≤ 2
√
2
t

2
n
2

.

We apply the “Hybrid Argument”. Consider t+ 1 runs of the algorithm. In the j-th run,
we give the algorithm the oracle for f0 for the first j queries, and then the oracle for fy
for the remaining (t− j) queries.

Let |ξj〉 be the final state just before measurement on the j-th run. Then

|ξ0〉 = |φt〉
|ξt〉 = |ψt〉 .

Now,

‖|φt〉 − |ψt〉‖ = ‖|ξ0〉 − |ξt〉‖

≤
t−1∑
j=0

‖|ξj〉 − ‖ξj+1‖‖.

Let us bound ‖|ξj〉 − |ξj+1〉‖. Now, unitary operators preserve norm difference. Moreover,
the circuits between the j, j + 1-th runs differ only by a single oracle call. Thus

‖|ξj〉 − |ξj+1〉‖ =
∥∥Ofy |ψj〉 −Of0 |ψj+1〉

∥∥.
Recall that

|ψj〉 =
∑
x,b

αjxb |x〉 |b〉 |ψjxb〉 .

By definition, Ofy |ψj〉 = |ψj〉 and

Ofy |ψj〉 =
∑
b

αjyb |y〉 |b⊕ 1〉 |ψjyb〉+
∑
x 6=y,b

αjxb |x〉 |b〉 |ψjxb〉 .
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Thus

∥∥Ofy |ψj〉 −Of0 |ψj〉
∥∥ ≤

∥∥∥∥∥∑
b

αjyb |y〉 |b〉 |ψjyb〉+
∑
b

αjyb |y〉 |b⊕ 1〉 |ψjyb〉

∥∥∥∥∥
≤ 2

∑
b

|αjyb|.

Substituting this back,

‖|φt〉 − |ψt〉‖ ≤
t−1∑
j=0

‖|ξj〉 − |ξj+1〉‖

≤ 2
t−1∑
j=0

∑
b

|αjyb|

≤ 2
√
2t

(∑
jb

|αjyb|2
) 1

2

Cauchy-Schwartz

≤ 2
√
2t

√
t

2n

= 2
√
2
t

2
n
2

.

Finally, we claim that ‖|φt〉 − |ψt〉‖ ≥ 1
3

(exercise). Intuitively, the algorithm has error at
most 1

3
, hence the probability that the measurement outcome is 1 MUST be very different

for the two states.

Combining this inequality with the one obtained above,

1

3
≤ 2

√
2t

2
n
2

t ≥ 2
n
2

6
√
2
.

Note that the ame proof gives an Ω(
√
m) bound if f had a domain of size m. We can also

adapt this argument for classical algorithms, and obtain a Ω(2n) query lower bound.

This lower bound is actually tight!
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4.9.2 Grover’s Search Algorithm

Theorem 4.9.2 (Grover)
There is a quantum algorithm for the unordered search problem, that has query
complexity O

(
2
n
2

)
and O(n2

n
2 ) other single/two-qubit gates.

Moreover, the algorithm makes no error when f ≡ 0, and makes error at most 1
3

otherwise.

For functions f : [m] → {0, 1} the theorem holds with query complexity O(
√
m). By

repeating the argument t ties, we can reduce the error arbitrarily small.

4.9.3 Implications

Unordered search is a component in many classical algorithms.

Problem 7 (Element Distinctness)
Given a list of numbers x1, . . . , xn ∈ [n], output 1 if they are all distinct and 0
otherwise.

This can be reduced to sorting and comparing adjacent elements.

Theorem 4.9.3
Any classical algorithm for element distinctness requires Ω(n log n) comparisons.

There is a straightforward quantum algorithm: Define f : [n]× [n] → {0, 1} as

f(i, j) :=

{
1, i 6= j, xi = xj

0, else

The function can be computed with one comparison (per evaluation). We run the Grover
search algorithm with f as the oracle. We output 1 if there is no collision and 0 otherwise.
The number of comparisons is O(

√
n2) = O(n).

In fact, we can obtain a more efficient algorithm that uses Grover search in a nested fashion
and solves the problem with

O
(
n

3
4 log n

)
comparisons.
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There is an even more sophisticated algorithm for element distinctness using quantum walk
that achieves the optimum O

(
n

2
3

)
comparisons.

4.10 Grover’s Algorithm

We first restrict to the scenario when f takes on value 1 at most at a single element x ∈ Zn
2 .

The intuition is to start with the uniform super position

|u〉 := 1√
2n

∑
x∈Zn2

|x〉

and rotate it towards the vector |a〉 at which f(a) = 1.

Consider the rotation
Rf := I − 2 |a〉〈a| .

For |ψ〉 = αa |a〉+
∑

x 6=a αx |x〉, we get

Rf |ψ〉 = −αa |a〉+
∑
x 6=a

αx |x〉 .

To implement Rf . consider the circuit depicted in Figure 4.8. Note we employ the phase
kickback method.

|ψ〉
Of

Rf |ψ〉

|−〉 |−〉

Figure 4.8: The circuit implementing Rf .

Now consider the rotation R := 2 |u〉〈u| − I. R flips the phase of any state perpendicular to
|u〉, but not that of |u〉.

Recall that |u〉 = H⊗n |0n〉. Hence we may as well implement the rotation reflection about
|0n〉.

|0n〉 7→ |0n〉
|x〉 7→ |x〉 x 6= 0n
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Lemma 4.10.1
There is an efficient quantum circuit that implements the reflection about |0n〉 without
any queries to f with O(n) single and two-qubit gates.

So we can rotate the whole space by H⊗n, reflect about |0n〉, and the rotate the space back.
Indeed,

R = 2 |u〉〈u| − I

= 2H⊗n |0n〉〈0n|H⊗n − I

= H⊗n(2 |0n〉〈0n| − I)H⊗n.

Let C denote some circuit implementing 2 |u〉〈u| − I. We can implement R as in the circuit
depicted in Figure 4.9.

|ψ〉 H⊗n

C
H⊗n R |ψ〉

|0̄〉 |0̄〉

Figure 4.9: The circuit implementing R.

When f ≡ 0, both Rf , R = I. When f has a 1, the input state |u〉 is slowly rotated towards
|a〉. We can distinguish the two cases by evaluating f on the query register and measuring
the answer register.

4.10.1 The Algorithm

1) Initialize the query register Q, the answer register A, the work register W to all |0̄〉.
2) Appy H⊗n to Q to prepare |u〉.
3) Apply HX to A to prepare |−〉.
4) Apply (RRf )

t to registers QA, using W , where t := b π
2θ
c where θ := arcsin

(
2−

n
2

)
.

5) Apply XH to A to reset it to |0〉. query f , and measure A to obtain the output.

4.10.2 Complexity

The algorithm uses O(n) qubits, O(n
θ
) gates, and makes O(1

θ
) queries to the oracle for f .

Since
1√
2n

= sin θ ≤ θ,
1

θ
≤

√
2n,
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the complexity is as stated in the theorem.

4.10.3 Correctness

When f ≡ 0, the output is always 0. Suppose f(a) = 1 for some a ∈ Zn
2 , and f(x) = 0 for

x 6= a. We analyze the state of the circuit before measurement.

Note that

|u〉 := 1√
2n

∑
x

|x〉

|v〉 := 1√
2n − 1

∑
x 6=a

|x〉

sin θ := 〈a|u〉

=
1√
2n
.

Lemma 4.10.2
Let Rf := I − 2 |a〉〈a| and F := 2 |0n〉〈0n| − I. Suppose V := span{|a〉 , |v〉} is the 2-
dimensional subspace spanned by |a〉 , |v〉. Then RRf preserves the subspaces V, V ⊥,
and acts as the rotation [

cos 2θ − sin 2θ
sin 2θ cos 2θ

]
through angle 2θ in the basis |a〉 , |v〉 on V , and as −I on V ⊥.

The initial state of the query register Q is

|u〉 = sin θa+ cos θ |v〉 .

After t iterations of RRf , the state of Q is

|ut〉 := sin((2t+ 1)θ) |a〉+ cos((2t+ 1)θ) |v〉 .

So the probability of outputting 1 is sin2((2t+ 1)θ). Since t := b π
4θ
c,

π

2θ
− 1 ≤ 2t+ 1 ≤ π

2θ
+ 1

π

2
− θ ≤ (2t+ 1)θ ≤ π

2
+ θ.
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So the probability of correctness is

sin2((2t+ 1)θ) ≥ cosθ

= 1− sin2 θ

= 1− 1

2n
.

Note that this algorithm can be adapted for functions f : [m] → {0, 1} and has query
complexity O(

√
m).

There is a generalization of this algorithm for when there are multiple 1’s. When then are k
1’s, the expected query complexity is O

(√
m
k

)
. When f ≡ 0, it is O(

√
m).

In all versions of the algorithm, we get a uniformly random element of the pre-image f−1(1).
The algorithm may be used to speed up a host of classical algorithms by a polynomial in
the run-time.
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Error Correction

Quantum states are fragile. Unwanted evolution may occur since perfect isolation is not
possible. Moreover, implementations of quantum gates themselves may not be exact, and
may introduce the system to external noise.

How can we model noise mathematically and make quantum memory and computation
robust in the presence of noise?

5.1 Classical Codes

We can represent 0 as 000, 1 as 111. If there is a bit flip in one of the bits, we can detect
this by comparing the value of the 3 bits.

However, if there are two or more bit flips, this redundancy is insufficient. In general, we
would like to use as little redundancy as possible to correct as many errors as possible.

For two strings x, y ∈ Zn
2 ,

∆(x, y) := |{i ∈ [n] : xi 6= yi}|.

We would like to encode k-bit strings into n-bit strings that are far apart from each other
in Hamming distance.

Definition 5.1.1 (Error-Correcting Code)
A (n, k, d)2 error-correcting code is a subset C ⊆ Zn

2 of size 2k such that

min{∆(x, y) : x 6= y ∈ C} = d.
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n is the block-length, k is the message length, and d is the minimum distance of C. The
subscript 2 indicates that the alphabet is {0, 1}, which is the default when the subscript is
omitted.

Elements of the code are codewords and the ratio k
n

is the information-rate of the code.

Thus the Hamming code {000, 111} is a (3, 1, 3)2 code.

Lemma 5.1.1
Suppose we encode a k-bit string x as C(x) using an (n, k, d)2 code C. Suppose the
codeword C(x) is subject to t errors, giving us the “received word” y ∈ Zn

2 . We can
recover x provided that

t ≤ d− 1

2
.

Example 5.1.2 (Hadamard Code)
The code maps x ∈ Zk

2 to a 2k-bit string C(x). The y-th bit in C(x) is x · y, y ∈ Zk
2. This

yields a (2k, k, 2k−1)2 code.

Suppose we wish to encode k bits into n wiht sufficient redundancy so that we can correct ε
fraction of errors in the codewords. How large can k be?

Let
H(p) := −p log2 p− (1− p) log2(1− p)

be the binary entropy function.

Theorem 5.1.3
For any error rate ε ∈

[
0, 1

4

)
and information rate r < 1−H(2ε), for all n sufficiently

large, there are (n, k, d) error correction codes with

k := brnc, d ≥ 2ε+ 1.

Thus there are codes that have constant information rate and can withstand a sufficiently
small error-rate. Moreover, there are good codes with efficient encodings, error-correction,
and decoding procedures.

5.1.1 Binary Symmetric Channel

A simple error model is one in which each bit in a codeword is flipped with probability
p ∈

[
0, 1

2

)
, independently.
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If a codeword of length n is subjected to such noise, the fraction of errors that occur are at
most p+ ν for a small constant ν, with high probability. Hence it suffices to use a code that
can handle p+ ν fraction errors.

5.1.2 Linear Error-Correcting Codes

A code is linear if the sum of codewords in Zn
2 is also a codeword. Both the Hamming and

Hadamard codes are linear.

Definition 5.1.2 (Linear Code)
An (n, k, d) code is linear if the encoding function

C : Zk
2 → Zn

2

is linear.

We denote such a linear ocde as an [n, k, d] code.

It suffices to give the matrix representing the linear function C to specify the corresponding
linear code. This matrix is the generator matrix for C.

Recall the (3, 1, 3) Hamming code. Let y ∈ Z3
2 denote the received word and we compute

the error syndrome
y1 ⊕ y2, y2 ⊕ y3.

We can determine the error (if any) simply by looking at these two bits and correct it.

There is a similar error detection procedure for every linear error-correcting code. It com-
putes a sequence of parities of the bits of the received word, the error syndrome. The location
of the errors can be unquely determined from the syndrome, assuming the number of errors
is at most d−1

2
, where d is the minimum distance. The errors can thus be corrected.

5.2 Quantum Error Correction

Extending classical error correction techniques is very non-trivial. This is due to the existence
of infinite possibilities for noise and we are unable to clone arbitrary unknown quantum
states, unlike classical states.

Another issue is that measuring a quantum state may potentially disturb it, due to the
collapse phenomenon. How can we recover from errors when the action is not unitary?
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Finally, we also wish for the error correction to be done efficiently.

5.2.1 Bit Flips

Let us start with simple errors, say a unitary analogue of the bit flip: X. We can try to
encode a qubit state by repetition in the standard basis. Thus we encode

α |0〉+ β |1〉 7→ α |000〉+ β111.

Suppose there is a flip in the first bit. We cannot directly measure the outcome, but we can
compute its error syndrome through ancillary qubits:

(α |100〉+ β |011〉) |00〉 7→ (α |100〉+ β |011〉) |10〉 .

Thus we can conditionally apply X ⊗ I to correct the error.

5.2.2 Phase Flips

Another type of error is the Z gate:

α |0〉+ β |1〉 7→ α |0〉 − β |1〉 .

Recall that
HZH = X

hence phase flips ARE bit flips in the hadamard basis. We can use repetition in the Hadar-
mard basis to protect against phase flips.

α |0〉+ β |1〉 7→ α |+〉 |+〉 |+〉+ β |−〉 |−〉 |−〉 .

Computation of the error syndrome and correction is identical.

5.2.3 Shor Code

We can handle XZ errors on one qubit by composing the encoding procedures for Z,X
errors:

1) First encode 1 qubit into 3 for an Z error.
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2) Then encode each of the 3 qubits into 3 qubits for an X error.

α |0〉+ β |1〉 7→ α

[
1√
2
(|000〉+ |111〉)⊗3

]
+ β

[
1

2
√
2
(|000〉 − |111〉)⊗3

]

We first correct for X errors and then for Z errors.

Suppose an XZ error occurs in the 1st qubit.

1

2
√
2
(|100〉 − |011〉)⊗ (|000〉+ |111〉)⊗2.

The error syndrome for qubits 1, 2, 3 is |10〉 and |00〉 for the other two triplets. Thus we
can correct the X error.

Once the X error is corrected, this leads to the state

1

2
√
2
(|000〉 − |111〉)⊗ (|000〉+ |111〉)⊗2.

Reversing the repetition code for bit flips yield

1

2
√
2
(|−〉 |00〉)⊗ (|+〉 |00〉)⊗2.

Follwoing the error correction procedure for a phase flip in qubits 1, 4, 7 allows us to recover

1

2
√
2
(|+〉 |00〉)⊗ (|+〉 |00〉)⊗2.

The 9-qubit Shor code can be summarized as

1) Compute the syndrome for a bit flip for each consecutive triplet of qubits.
2) Apply the error reversal for a bit flip to each triplet, using the corresponding syndrome.
3) Decode the repetition code for bits withint each triplet. Qubits 1, 4, 7 now contain

the state encoded for a phase flip error, potentially with an error.
4) Use the error-correction procedure for a phase flip to correct any Z errors.
5) Encode qubits 1, 4, 7 using the repetition code for a bit flip to reverse step 3). This

recovers the original 9-qubit codeword.

In fact, this procedure correct an X-error and a Z-error, even if they occur in different
qubits.
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5.2.4 Unitary Errors

Lemma 5.2.1
The operators I,X, Z,XZ form a basis for the vector space of 2×2 complex matrices.

Proof
Any element of the standard basis |i〉〈j| can be expressed using these operators.

When a 1-qubit unitary error occurs on any of the 9 qubits of the Shor codeword
∣∣∣ψ̂〉, the

error-correction procedure results in
∣∣∣ψ̂〉 in tensor product with the superposition over error

syndromes for I,X, Z,XZ at the location of the error.

Thus the Shor code code can be used to correct any 1-qubit unitary error.

5.2.5 General Single-Qubit Errors

Recall a general error on the qubit in state |ψ〉 and environment in state |ϕ〉 is a unitary
operator U on the qubit and environment. We can write

U =
∑

i,j∈{0,1}

|i〉〈j| ⊗ Ui,j

where we split U into 4 submatrices Ui,j.

Since each of the standard basis can be expressed as a linear combination of the Pauli basis,
we can also write

U = I ⊗ V0 +X ⊗ V1 + Z ⊗ V2 +XZ ⊗ V3

where each Vi is a linear combination of the matrices Ui,j.

Thus a general single-qubit error also manifests itself as one of X,Z,XZ.

Takeaways

1) Even though there maybe an infinite number of possibilities for noise, we need only
correct bit-flip or phase-flip errors.

2) An arbitrary unknown quantum state cannot be cloned, but need only introduce re-
dundancy for bit-flip and phase-flip errors
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3) Measuring a quantum state may disturb it, but we can compute and measure the error
syndrome, which is independent of the state itself.

4) The action of an error on the state is not necessarily unitary, but we need only reverse
X and Z errors, and these are unitary

5) Quantum codes with constant information rate and ability to correct a contant frac-
tion of error exist. However, such codes with efficient encoding, error correction, and
decoding operations are not yet known.

5.2.6 Calderbank-Shor-Steane Codes

Suppose we wish to encode a k-qubit state |ψ〉 as an n-qubit state
∣∣∣ψ̂〉. Let us derive

sufficient conditions for it to correct t-qubit errors. We need only consider a combination of
X,Z errors.

In order to correct X errors, is suffices for
∣∣∣ψ̂〉 to be a super position over codewords of a

classical code C1 with length n and minimum distance d ≥ 2t+ 1. Say∣∣∣ψ̂〉 :=
∑
x∈C

αx |x〉 .

Similarly, to be able to handle phase-flip errors, it suffices for
∣∣∣ψ̂〉 to be a superposition over

a similar code in the Hadamard basis. That is, we would like H⊗n
∣∣∣ψ̂〉 to be a superposition

over codewords of an (n, k, d)-classical code C2. Thus

H⊗n
∣∣∣ψ̂〉 =

∑
x∈C

αx
1√
2n

∑
y

(−1)x·y |y〉

=
1√
2n

∑
y

(∑
x∈C

(−1)x·yαx

)
|y〉 .

If αx is arbitrary, then H⊗n
∣∣∣ψ̂〉 has no hope of being another code. However, recall that

H⊗n |S〉 =
∣∣S⊥〉

and if C is a linear code, then its image is a linear subspace. Hence we would like codes
where C⊥ is also a linear code!
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Lemma 5.2.2
If C is an [n, k1, d1] code and C⊥ is an [n, k2, d2] code with d1, d2 ≥ 2t+ 1, the state∣∣∣ψ̂〉 :=

1√
2k1

∑
x∈C

|x〉

is a quantum codeword that can correct t errors.

This gives a codeword to encode a single state.

Proposition 5.2.3
Let C1 be an [n, k, d1]-code and C2 be an [n, k2, d2]-code such that C1 ⊆ C2. Then the
cosets of C1 in C2 are also (n, k1, d2) codes.

Lemma 5.2.4
For two elements a, b ∈ C2, either

(1) a⊕ C1 = b⊕ C1, or
(2) (a⊕ C1) ∩ (b⊕ C1) are disjoint

Proof
The number of cosets of C1 in C2 is

|C2|
|C1|

= 2k2−k1 .

Fix a set of C1 coset representatives

{u1, . . . , u2`} ⊆ C2

and define ∣∣∣ψ̂i

〉
:= |ui ⊕ C1〉 =

1√
2k1

∑
c∈C1

|ui + c〉 .

These are all orthogonal, as they correspond to distinct cosets. They all correct t bit-flip
errors by construction.

Recall that
H⊗n |a⊕ C1〉 =

1√
2n−k1

∑
c∈C⊥

1

(−1)a·c |c〉 .

Hence if C⊥
1 is also an error-correction code with distance at least 2t + 1, we can correct t

phase flips.
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This gives us all the conditions we need to construct codes for multi-qubit states that can
handle multi-qubit errors.

Summary

Let C1 be an [n, k1, d1] code, and C2 be an [n, k2, d2] code such that

1) C1 ⊆ C2

2) C⊥
1 is an [n, n− k1, d3] code

3) k1 < k2 and d2, d3 ≥ 2t− 1

Let {u1, . . . , u2`} be a set of representatives for the cosets of C1 in C2, where ` := k2 − k1.

define for each i ∈ [2`], and n-qubit state∣∣∣ψ̂〉 := |ui ⊕ C1〉 =
1√
2k1

∑
c∈C1

|ui + c〉 .

Since the
∣∣∣ψ̂〉’s are orthogonal, the mapping

|i〉 7→
∣∣∣ψ̂i

〉
defines a quantum error-correction code with which we can encode `-qubit states.

The code can correct t-qubit errors, using the error-correction procedures for C2 in the
standard basis and for C⊥

1 in the Hadamard basis.

There are such codes C1, C2 for sufficiently large n such that k2−k1
n

and t
n

are both constant.
In fact, for any ε ∈

[
0, 1

2

)
and constant ε ∈ k ∈ [k, 1− 2h(2ε)), where h is the binary entropy

function, we can achieve
k2 − k1
n

≥ k,
t

n
≥ ε.

Theorem 5.2.5 (CSS)
Good quantum error-correction codes exist.

We can construct CSS codes for encoding more qubits, and correcting more errors from
classical Reed-Muller codes. CSS codes are special cases of stablizer codes. They can be
used to design algorithms that are resistant to errors in memory and gate-implementations.
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Encryption

6.1 Encryption

Encryption are methods to discretely send messages between two parties.

6.1.1 Vernam Cypher

Consider the following scenario.

1) Alice and Bob share a uniformly random string K ∈ Zn
2 (private key), that is known

only to them.
2) When Alice wishes to send a message X ∈ Zn

2 , she computes C(X) := X⊕K (cypher-
text) and sends this to Bob.

3) Bob decrypts the message as D := C ⊕K = X.

Any eavesropper who has no information about K, gets no information about K as C is
uniformly random and independent of X.

This scheme has perfect security, but has disadvantages:

(i) The private key must be kept secret from everyone else. Hence a different private key
must be used to communicate between Alice and Charlie.

(ii) A private key can be used only once. If two messages X1, X2 are encrypted with the
same key K, anyone who intercepts the cyphertexts can learn X1 ⊕X2.

(iii) In order to keep the private key K secret, there must be a safe way for them to
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communicate the key.

Public key encryption was proosed to overcome these limitations.

6.1.2 Public Key Encryption

1) Bob generates a pair of keys (K1, K2), keeps K2 a secret (private key), and publishes
K1 (public key).

2) To encrypt X, Alice computes some function f(X,K1), and sends this to Bob.
3) Bob uses the private key K2 to compute g(C,K2), where C is the ciphertext, and g is

some function, to recover X.

This scheme is based on the assumption that K2 is computationally hard to compute, given
the public key K1 (ie f is hard to invert given only K1). Such schemes have several advan-
tages:

(i) Only one private key per recipient is required.
(ii) The public key cna be reused.
(iii) The public key can be published or transmitted in the open.

Unfortunately, current such schemes assume either the hardness of integer factorization
(RSA) or the hardness of discrete logarithm over an elliptic curve. Both these problems
can be solved efficiently with a quantum computer.

6.1.3 Quantum Key Distribution

This is an unconditionally secure protocol whose validity is bcased on quantum theory alone.
In addition, it only requires the ability to prepare simple single-qubit states (|0〉 , |1〉 , |+〉 , |−〉).

We need only a way to communicate a private key securely between Alice and Bob. the
Vernam Cypher does the rest.

Consider the following setting:

1) Alice and Bob have secure computers, to which the eavesdropper Eve does not have
access.

2) Alice and Bob can commmunicate over two channels, a classical one, and a quantum
one. Both are bi-directional.
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3) Alice and Bob know they are not talking to impersonations (the classical channel is
authenticated). Moreover, Alice and Bob can detect if any message over that channel
has been tampered.

4) Eve is computationally unbounded, and can intercept messages over both channels.

5) Alice, Bob, and Eve start in a tensor product state |0̄〉A |0̄〉E |0̄〉B. Alice and Bob
communicate with each other over the two channels and compute either “FAIL” or
“PASS” and strings KA, KB, respectively.

6) When there is no eavesdropper, the output is PASS with probability 1, and KA = KB,
with KA uniformly distributed.

7) When an eavesdropper is present, with high probability, one of the following two events
occur:

(a) Both Alice and Bob output FAIL
(b) Both Alice and Bob output PASS, and compute uniformly random strings KA =

KB, and the eavesdropper has “very little information” about KA.

The idea is to share some number of Bell state pairs |φ〉⊗k where one qubit is with Alice and
the other with Bob. A measurement in the standard basis yields the uniformly random key.

Suppose at the end of a protocol, the final state before measurement of any registers is

|PASS〉A0B0 ⊗ (|φ〉⊗k)A1B1 ⊗ |ψ〉A2B2E ,

then whatever measurement Eve makes will be independent from that of the generated key.

First Attempt

Alice prepares 2k qubits in state |φ〉⊗k, and sends one qubit from each Bell pair to Bob.

The issue is that Eve may make a copy of the state in the standard basis

|φ〉⊗k 7→ 1√
2k

(|000〉+ |111〉)⊗k

so she learns the key exactly.

We must be able to detect eavesdropping. Eavesdropping manifests itself as errors in the
system state. Hence we check the Bell states for errors.

Alice and Bob can measure their qubits in the standard basis and compare the results to
detect bit flip errors. For a phase flip error, Alice and Bob can measure in the Hadamard
basis and compare the results to detect phase errors.
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Unfortunately, they can measure either in the standard basis OR in the Hadarmard basis,
but not both. The solution is to uniformly randomly measure half the Bell states in the
standard basis, and the other half in the Hadamard basis. This helps us estimate with a
small constant, the fraction of each kind of error.

The issue is that no more Bell states are left for generating the key. Thus we can measure a
uniformly random subset of half the Bell states as before, but leave the rest for the key.

Now, the unmeasured Bell states may have errors. The solution is to output FAIL if the
estimated fraction of errors is larger than a threshold ε ∈

(
0, 1

2

)
. Fewer than ε fractions can

be corrected with quantum error-correction.

Decide in advance which Bell states will be used to error-estimation, and which for key-
generation. Use a suitable code to encode the key qubits, and send both kinds of qubits to
Bob. Since Eve does not know which qubits are checked and which are used, the error-rate
in both will be roughly the same.

Protocol II

All steps starting from the 5th step are done through the (authenticated) classical channel.

1) Alice prepares k Bell states |φ〉⊗k in registers A1B1.
2) Alice encodes the state in register B, using a CSS code C with message length k that

can handle error-rate ε ∈
[
0, 1

2

)
. Let the block-length of the code C be n, and the

encoded state be in register B′
1.

3) Alice prepares n Bell states |φ〉⊗n in registers A2B2, with one qubit of each Bell state
in A2 and the other in B2.

4) Alice permutes the qubits in registers B′
1 and B2 uniformly at random, and sends all

these qubits to Bob over the quantum channel.
5) Bob acknowledges recept of 2n qubits.
6) Alice sends the permutation she used for the qubits in B′

1 and B2.
7) Bob inverts the permutation of the qubits and obtains the registers B′

1 and B2.
8) Alice selects a uniformloy random string S ∈ {0, 1}n and sends it to Bob.
9) Alice measures the i-th qubit in A2 in the standard basis if Si = 0, and in the Hadamard

basis if Si = 1.
10) Alice sends the outcome of the measurement to Bob.
11) Bob measures the i-th qubit in B2 in the standard basis if Si = 0, and in the Hadamard

basis if Si = 1.
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12) Bob compares his outcomes with those sent by Alice.
13) Bob compares his outcomes with those by Alice. Let δ0 be the fraction of indices such

that Si = 0 and the outcomes of Alice’s and Bob’s measurements of the i-th qubits of
A2 and B2. respectively, are different. Similarly, let δ1 be the fraction of indices such
that Si = 1 but the outcomes of Alice and Bob’s measurements of the i-th qubits of
A2, B2, respectively, are different.

14) If either δ0n or δ1n is at least (ε− ν)n
2
, Bob informs Alice and they output FAIL. Here

ν ∈ (0, ε) is a constant parameter.
15) Otherwise, Bob uses the error-correction procedure for CSS to decode the state in B′

1

into register B1.
16) Alice and Bob measure the k-qubits in A1, B1 in the standard basis, and output PASS

as well as the outcomes KA, KB, respectively.

The protocol Π for QKD can be shown to be unconditionally secure. We consider some
simple cases within the proof to illustrate the key ideas.

When there is no eavesdropper, with probability 1, Alice and Bob output PASS, KA = KB,
and KA is uniformly distributed over {0, 1}k.

Proposition 6.1.1
For any m ≥ 1 and integer 0 ≤ ` ≤ m

2
,

∑̀
i=0

(
m

i

)
≤ 2mh(`/m),

where h is the binary entropy function.
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Proposition 6.1.2
Suppose Eve applies a unitary operator U := P ⊗ V to 2n qubits sent by Alice and a
private register E. Suppose P := ⊗2n

i=1Pi, where each Pi is one of the four operators
{I,X, Z,XZ}.
If at least ε(2n) of the Pi ∈ {X,XZ}, then Alice and Bob output FAIL with probability
at least

1− 2e−cn

for a positive constant c that depends only on ε, ν.
Let T be the set of indices i for which Pi ∈ {X,XZ}. We have |T | ≥ ε(2n) by assump-
tion. We argue that the probability that Alice’s choice of permutations that fewer than
(ε− ν/2)n locations in T contain check qubits is at most e−cn.
If the check qubits located in T are measured in the standard basis, a bit-flip is detected.
We expect close to a half fraction of these check qubits to be measured in the standard
basis.
By the Hoeffding bound, the probability that fewer than (ε− ν)n

2
out of the (ε− ν/2)n

check qubits in T are measured in the standard basis is at most e−cn.
By the union bound, the probability that either one of the above overlaps is at most
2e−cn. When the overlap of T ∩B2 and {i : Si = 0} is at least (ε− ν)n

2
. Alice and Bob

detect this number of bit-flips, and output FAIL.
Now we show the probabilistic upper bound. The probability is

(ε−ν/2)n−1∑
i=0

(
2εn
i

)(
2n(1−ε)
n−i

)(
2n
n

)
From the binomial expansion of (1 + 1)2n and (1 + 1)2n(1−ε), we have(

2n

n

)
≥ 22n

2n+ 1(
2n(1− ε)

n− i

)
≤ 22n(1−ε).

It follows from these bounds as well as the previous proposition that the probability is
bounded above by

22n(1−ε)

22n/(2n+ 1)

(ε−ν/2)n−1∑
i=0

(
2εn

i

)
. ≤ (2n+ 1)2−2εn22εn·h(α)

≤ e−cn

α :=
ε− ν/2

2ε

Here c is a suitable constant.
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Since B′
1 is the encoding of a state in a CSS code which can correct ε fraction errors, Bob

can decode the state correctly. The joint state of Alice, Bob, and Eve is then

|PASS〉 ⊗ (|φ〉⊗k)A1B1 ⊗ |ψ〉ABE ,

where A,B are all the remaining registers of Alice, Bob, respectively.

In general, Eve’s action is a linear combination of different cases. Hence the analysis extends
to the general case by the linearity of quantum operations. The security guarantee must be
formulated carefully to account for the range of possible eavesdropping.
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Implementation

DiVicenzo Criteria for implementing a quantum computer.

1. Scalable physical system with well-characterized qubits.
2. Ability to initialize the state of the qubits to a simple fiducial state.
3. A universal set of quantum gates.
4. A qubit-specific measurement capability.
5. Long relevant decoherence times, much longer than the gate operation time.

7.1 Nuclear Magnetic Resonance

Qubits are encoded in the magnetic moment (spin) of certain nuclei in molecules. Many
molecules are used to simulate a few qubits since measurement of a single molecule is difficult.

One qubit gates are implemented as Rabi-oscillations with RF pulses. to force rotations
about the Bloch sphere.

As for two-qubit gates, nuclei already interact in a phenomenon known as “J-coupling”. Thus
our challenge is to regulate this coupling process. We are able to implement a CNOT gate
this way.

Rotating fields will induce a current in the detection coils. The detected current is used to
determine the final state of the qubits as an ensemble measurement. This is the reason to
use many molecules: It is simply impossible to detect the current from a single molecule.
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Note that we can initialize the nuclei in a pseudo-pure state. In the sense that “most” nuclei
as in the |0〉 state and the rest contribute a net effect of zero.

The decoherence time is on the order of seconds while the 1-qubit gates takes on the order
of microseconds and the 2-qubit gates the order of milliseconds.

7.1.1 Strengths & Weaknesses

This is a well-studied technology and there is excellent control with a few qubits.

However, the scalability is limited by molecules and signal to noise ratio.

7.2 Linear Optical Quantum Computing

The accessibility and cost of required devices are relatively better. The equipment does not
need cooling. Moreover, photons interact weakly with the environment and thus we have
longer decoherence times.

7.2.1 Qubits

One implementation is with spontaneous emission, where we rely on the energy level of an
atom to drop and emit a photon in some random direction. We know the exact frequency
of the photon but need an isolated quantum system. Moreover, the photon is emitted in a
random direction (but can be fixed).

Another implementation is weak coherent light. The idea is that for a sufficiently weak light,
it is approximately 1 photon. This is easy but not consistent or reliable. But it could be
sufficient for QKD.

A third implementation is with Heralded single photons. We pump a non-linear crystal which
emits 2 photons. We can detect one of them to know the existence of the other. However,
most photons pass through and we cannot create a qubit on-demand.

States are typically implemented as dual-rail encoding, where the phonton being in the top
rail encodes the |0〉 state and vice versa.
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7.2.2 Measurements

We wish to convert optimal signals to electric signals.

The first way is through the photoelectric effect, where we can free electrons from a charged
plate by hitting it with a sufficiently powerful photon.

Another implementation is through photomultiplier tubes. Once a photon hits the photo-
cathode, it releases an electron which in turns releases more electrons, etc, until there is a
sufficiently strong electrical signal we can detect.

7.2.3 Single Qubit Gates

These are accomplished through linear optical elements such as polarizers, wave plates, and
polarizing beam splitters.

The Z-gate is a phase shifter which causes the phase to shift on the second rail. The Y -gate
is a beam splitter on both rails.

7.2.4 Two Qubit Gates

We are able to implement a probabilistic control-Z gate. The success rate is enhanced
through quantum teleportation while error-correction can reduce the resources needed.

7.2.5 Docoherence

The decoherence times can be very large while both 1 (time to go through optimal element)
and 2-qubit (depends on measurement/feedback times) gates are very fast.

7.2.6 Strengths & Weaknesses

Multiple photons can be generated in terms of scalability.

The Decoherence times can be very large and the gate times can be very fast.
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7.3 Trapped Ion

The qubits are encoded as electonic states of a trapped ion. We can scale through modular
traps connected together.

Initialization is done through laser cooling and optimal pumping.

1-qubit gates are implemented as Rabi oscillations/Raman transitions with RF fields. On
the other hand, 2-qubit gates are done via the motional state of the ion.

Measurements are implemented through state-dependent fluroescence.

The decoherence time is on the scale of 101 − 105 milliseconds while the 1-qubit gates take
0.001 ms with the 2-qubit gates taking 0.1 ms.

7.3.1 Strengths & Weaknesses

The best part of this implementation are the long coherence/gate times with high gate
fidelities. Moreover, all qubits are inherently identical which is excellent for reproducibility
and reduction of calibration time.

However, gate operation times are very slow and the number of lasers scale linearly with the
number of qubits. We also need to sort out the modular structures.

7.4 Superconducting Quantum Computing

The qubits are encoded as the electronic states of a superconducting LC circuit.

Initialization is done through cooling in a dilution fridge.

1-qubit gates are implemented as microwave field connected to a resonator. On the other
hand, 2-qubit gates for tunable qubits consist of adjusting the frequency and for fixed qubits
consists of driving the resonator.

Measurements consist of measuring the transmission spectra.

Decoherence times are on the order of 1 ms. 1-qubit gates take around 10-30 ns and 2-qubit
gates around 10-100 ns.
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7.4.1 Strength & Weaknesses

The main strengths of this implementation are the ability to tailor the qubit properties,
stronger coupling to field than natural atoms (larger dipole moments) with faster rates, as
well as the familiarity of silicon based architecture.

Unfortunately, we must cool our material much further than ions and we achieve worse
gate/coherence times.
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