
CS365: Models of Computation (Advanced)

Felix Zhou 1

April 7, 2021

1From Professor Eric Blais’s Lectures at the University of Waterloo in Winter 2021



2



Contents

1 Languages 9

1.1 Alphabets, String, and Languages . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 String Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Language Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Countability & Uncountability . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Finite Automata 17

2.1 Deterministic Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Separating Words Problem . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Nondeterministic Finite Automata . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Rabin-Scott Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Language of Regular Expressions . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Short Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Kleene’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Pumping Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Non-Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3



2.7.1 Limitations of the Pumping Lemma . . . . . . . . . . . . . . . . . . 33

2.8 Properties of Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8.1 Closure under Language Operations . . . . . . . . . . . . . . . . . . 33

2.8.2 Topological Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.3 Testing Emptiness & Equivalence . . . . . . . . . . . . . . . . . . . . 37

3 Context-Free Languages 39

3.1 Pushdown Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Regular Languages & PDAs . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Primitive Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Context-Free Languages . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Equivalence of CFGs and PDAs . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Chomsky Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Other Classes of Grammars . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Pumping Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Properties of Context-Free Languages . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Topological Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Computability 61

4.1 Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Decidable Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2 Recognizable Languages . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Church-Turing Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Turing Machines with Registers . . . . . . . . . . . . . . . . . . . . . 65

4



4.2.2 Subroutine Turing Machines . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Multitape Turing Machines . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Universal Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Turing Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Non-Deterministic Turing Machines . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Equivalence of Recognizability . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Decidable Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Context-Free Languages . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.2 Clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.3 Accepting DFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.4 Closure Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Undecidable Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.2 First Undecidable Language . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 More Undecidable Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7.1 Halting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7.2 Emptiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7.3 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Rice’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8.1 Properties of Decidable Languages . . . . . . . . . . . . . . . . . . . 77

4.9 Recognizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9.1 A Recognizable but Undecidable Language . . . . . . . . . . . . . . . 79

4.9.2 Decidability & Recognizability . . . . . . . . . . . . . . . . . . . . . 79

5



4.9.3 First Unrecognizable Language . . . . . . . . . . . . . . . . . . . . . 79

5 Time Complexity 81

5.1 TIME Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Time Cost & Complexity . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.2 First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.3 Linear Speedup Theorem . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Time Hierarchy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Weak Time Hierarchy Theorem . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Time Hierarchy Theorem . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.3 Necessity of Time Constructibility . . . . . . . . . . . . . . . . . . . 86

5.3 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 First Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Polynomial-Time Verifiers . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 P vs NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 NP-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 Polynomial-Time Reductions . . . . . . . . . . . . . . . . . . . . . . 92

5.5.2 NP-Hardness & Completeness . . . . . . . . . . . . . . . . . . . . . . 93

5.5.3 Existence of an NP-Complete Language . . . . . . . . . . . . . . . . 93

6



5.6 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6.1 Boolean Formulas & SAT . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6.2 Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.3 Tableau & SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Cook-Levin Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7.1 Cell Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7.2 Initial & Final Constraints . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7.3 Valid Tableau Constraints . . . . . . . . . . . . . . . . . . . . . . . . 97

5.8 Beyond P & NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8.1 coNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8.2 NP Intersect coNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.8.3 Ladner’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8.4 Polynomial Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Space Complexity 103

6.1 SPACE Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Space Cost & Complexity . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.2 Time & Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.3 PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Savitch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Nondeterministic Space Complexity . . . . . . . . . . . . . . . . . . . 105

6.2.2 The Derivation Language . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.3 Proof of Savitch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 L & NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7



6.3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.2 Space Complexity Classes . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.3 L & NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 NL-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Log-Space Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 NL-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.3 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 NL = co-NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 Non-Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.2 Non-Connectivity with Advice . . . . . . . . . . . . . . . . . . . . . . 112

6.5.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 More on Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6.1 PSPACE-Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6.2 Small Space Complexity Classes . . . . . . . . . . . . . . . . . . . . . 114

6.6.3 Time & Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8



Chapter 1

Languages

1.1 Alphabets, String, and Languages

Just like how graphs are fundamental to graph theory, alphabets, strings, and languages are
the main mathematical objects of study for computer science.

Definition 1.1.1 (Alphabet)
A nonempty finite set.

The elements of an alphabet are symbols.

Let k ∈ Z+ be fixed. While the definition of an alphabet allows for arbitrary symbols, we
may without loss of generality, by relabelling if necessary, take “the” alphabet with k symbols
to be

Σk := {0, 1, . . . , k − 1}.

Example 1.1.1
Two important alphabets are the unary alphabet Σ1 = {0} and the binary alphabet
Σ2 = {0, 1}.

Example 1.1.2
An alphabet with 3 symbols {α, β, δ} and “the” alphabet with 3 symbols Σ3 = {0, 1, 2}.
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Definition 1.1.2 (String)
A string over the alphabet Σ is a finite sequence of symbols from Σ.

Example 1.1.3
Any integer represented in base 10 is a string over Σ9.

We emphasize the importance that a string is finite.

Due to this definition, we may actually define a metric on the strings over an alphabet as
follows: Let x, y be strings over the alphabet Σ. Write xi to be the i-th symbol of x. Define
d(x, y) to be 2−j where j is the largest integer such that xi = yi for all i < j and d(x, y) = 0
if x = y. It is crucial that x, y are finite sequences for this to be a metric.

The length of the string x, denoted |x|, is the number of symbols in x.

The empty string is the unique string of length 0, denoted ε. For ε 6= x of length |x| = n, we
write

x = (x1, x2, . . . , xn)

so that xi is the i-th symbol in x.

We can encode Z as strings over Σ2 as follows: Fix z ∈ Z. Take the binary representation of
|z| and append a 0 at the beginning of the string if z < 0. With the exception of 0, all non-
negative integers begin with 1 in its most significant digit, hence we may easily distinguish
negative numbers, 0, and positive numbers.

We can also encode Q as strings over Σ2 with some wastefulness: Encode 0 as 0. Fix
0 6= p

q
∈ Q where gcd(p, q) = 1. Take the binary representations of |p|, |q|. If one of the

strings have smaller length, 0 pad its beginning to obtains strings x, y so that |x| = |y|.
Encode

p

q
7→

{
0xy, p

q
< 0

xy, else
.

We may distinguish positive numbers from non-positive numbers using the parity of the
length of encoding.

For text files, there is a alphabet Σ and the text file can be viewed as a string over Σ. Let
k := |Σ|. We can uniquely represent each symbol of Σ with a 0-padded string over Σ2 with
length dlog2 ke. Namely, the 0-padded binary representation of i for the i-th symbol. The
text file can then be encoded by encoding each individual symbol and then concatenating
the encodings. This is essentially the ASCII encoding.

Since we can encode text files, we can also encode graphs as text files of the adjacency list.
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Specifically, take Σ := {0, 1, . . . 9}∪{:, “,”, “\n”} to be the alphabet of the text file. Without
loss of generality, the vertices are numbers 0, 1, . . . , n − 1. Then an adjacency list can be
encoded in a text file as follows

0 : 1, 2, 3\n
1 : 2, 4, 7\n
. . .

n− 1 : n− 2, n− 1\n

We can then encode the text file using the method described above.

Each finite set of strings can be uniquely sorted lexicographically. We can thus store the
sorted strings of a set in a comma separted text file and apply the prior encoding. Namely,
if Σ is the alphabet from which our finite sets of strings are sourced, take Σ′ := Σ ∪ {“,”}
to be the alphabet of the text file, where “,” is ANY new separator symbol that does not
belong to Σ. Let w(1), . . . , w(n) be the lexicographically sorted set of strings. Then we may
encode the set in a text file

w(1), . . . , w(n)

and then apply the prior encoding.

We cannot in general encode real numbers over strings over Σ2. Indeed, there are uncountably
many real numbers but only countably many strings over Σ2.

Given any alphabet Σ, we can first encode its strings over Σ2 by encoding each symbol
as equally lengthed (0-padded) strings over Σ2 by mapping the i-th symbol of Σ to the the
binary representation of i. Thus the problem reduces to encoding strings over Σ2 with strings
over the unary alphabet. This is achieved by some enumeration of such strings (there are
countably many) and mapping the i-th string to the unary string of length i.

Definition 1.1.3 (Language)
A language over the alphabet Σ is a set of strings over Σ.

Observe that we do note require a language to be finite, ie contain a finite number of strings.
The cardinality of a finite language L is the number of strings in L, and is denoted |L|.

The empty language ∅ is the unique language with no strings.

The language containing all strings over Σ is denoted Σ∗.

The language containing all strings of length n over Σ is denoted Σn.
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1.2 String Operations

Definition 1.2.1 (Concatenation)
The concatenation of two strings x, y ∈ Σ∗ is the string

xy := (x1, . . . , xk, y1, . . . , y`).

Remark that concatentation is associative in general but not in general commutative. Indeed,
simply consider x = 0, y = 1.

Definition 1.2.2 (Power)
The n-th power of the string x ∈ Σ∗ is the string xn obtained by concatenating n
copies of x.

By convention, the 0-th power of x is x0 = ε.

For n = 2, we say x2 is the square of x. Observe that |x2| = 2|x| so that x2 = x if and only
if x = ε.

Definition 1.2.3 (Primitive)
A string x ∈ Σ∗ is primitive if x 6= yn for any y ∈ Σ∗ and n ≥ 2.

Definition 1.2.4 (Substring)
For any x, y ∈ Σ∗, we say x is a substring of y if there are w, z ∈ Σ∗ such that

y = wxz.

If there is z ∈ Σ∗ such that y = xz, then x is a prefix of y. Similarly, if there is z ∈ Σ∗ such
that y = zx, then x is a suffix of y.

Observe that every string is a prefix, suffix, and substring of itself. Moreover, x being a
substring of y implies |x| ≤ |y|. So it x, y are substrings of each other, then |x| = |y| =⇒
x = y.
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Definition 1.2.5 (Subsequence)
The string x is a subsequence of the string y if there exists indices

j1 < j2 < . . . , j|x|

such that xi = yji for each i = 1, 2, . . . , |x|.

The length of the shortest string over Σ2 containing all 16 strings of length 4 as subsequences
is 8. Indeed, it must be at least 8 since it must contain 0000, 1111 as subsequences, Moreover,
the string 01010101 attains the desired lower bound.

Definition 1.2.6 (Reversal)
The reversal of a string x is the string

xR = (xn, xn−1, . . . , xn).

We say the string x is a palindrome if x = xR.

Let x ∈ Σ∗
2. Observe that x contains a palindromic substring of length at least 4 if and

only if it contains a palindromic substring of length 4 or 5. Notice that if x does not
contain a palindromic substring of length at least 4, then any palindromic substring of xz
necessarily contains z. Thus we may iteratively find a lengthwise maximal string containing
no palindromic substring of length at least 4. The two strings achieving the maximum are
00010111 and 11101000.

1.3 Language Operations

The usual set operations of union, intersection, set difference, symmetric difference, and
complement all apply to languages.

Definition 1.3.1 (Concatenation)
The concatenation of two languages A,B over Σ∗ is the language

AB := {xy : x ∈ A, y ∈ B}.

Observe that A{ε} 6= A∅ since the latter is actually the empty language by definition.

Similary to strings, we can use concatenation to define the powers of a language.
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Definition 1.3.2 (Power)
The n-th power of a language L over Σ is the language

Ln := {x(1) . . . xn : x(i) ∈ L}.

By convention, L0 = {ε}.

We can also use concatenation to define another operation.

Definition 1.3.3 (Star)
For a language L, define

L∗ :=
⋃
n≥0

Ln.

The star operation is also called the Kleene star. Notice that A∗ 6= ∅ as A0 := {ε} ⊆ A∗

and A∗ is finite if and only if A = ∅, {ε}.

1.4 Countability & Uncountability

Assuming the axiom of choice, we can define a total order on the collection of all sets by

|S| ≤ |T |

if and only if there exists and injective map φ : S → T .

Equivalently, |S| ≤ |T | if and only if there exists a surjective map ψ : T → S.

Two sets S, T have the same cardinality, denoted

|S| = |T |

if and only if |S| ≤ |T |, |T | ≤ |S|.

From the Cantor-Shröder-Bernstein theroem, an equivalent definition is the existance of a
bijective map between S, T .

It is easy to check that this defines a partial order on the collection of all sets. However, to
prove that every pair of sets is comparable requires the axiom of choice.
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Definition 1.4.1 (Finite)
A set is finite if

|S| = |[n]|

for some n ∈ N.

The cardinality of natural numbers is denoted |N| = ℵ0.

Definition 1.4.2 (Countable)
The set S is countable if

|S| ≤ |N | = ℵ0.

Notice that countable sets can be either finite or infinite. The set of all strings over any
alphabet is countable.

Proposition 1.4.1
For any alphabet Σ, the set Σ∗ of strings over Σ is countable.

Proof
We will define an injection φ : Σ∗ → N.

Fix k ∈ N∪{0}. Notice that there are only a finite number of strings of length k. In fact,
there are |Σ|k such strings.

For each k, enumerate the strings of length k

wk,1, wk,2, . . . , wk,|Σ|k .

We then “flatten” these indices along the natural numbers to obtain the following injection

φ(wk,j) := j +
k−1∑
i=0

|Σ|k.

We say a set is uncountable if it is not countable.

Definition 1.4.3 (Power Set)
For any set S, the power set P(S) is the set of all subsets of S.
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Theorem 1.4.2 (Cantor’s Theorem)
For any set S,

|P(S)| 6≤ |S|.

Proof
Suppose towards a contradiction that there is some surjection ψ : S → P(S).

We claim that there is some T ∈ P(S) \ψ(S), which would contradiction the surjectivity
of ψ. Let T ∈ P(S) be defined as

T := {s ∈ S : s /∈ ψ(s)}.

Clearly, T ∈ P(S). Fix s ∈ S. We have T 6= ψ(s) since s ∈ T∆ψ(s). This concludes the
proof.

Corollary 1.4.2.1
If S is countably infinite, P(S) is uncountably infinite.

Proof
If P(S) is not uncountably infinite, then |√(S)| ≤ |S|, which contradicts Cantor’s theo-
rem.

Corollary 1.4.2.2
For any alphabet Σ, the set of languages over Σ is uncountable.

Proof
The set of all strings Σ∗ is countably infinite by our prior work. By definition, the set of
languages over Σ is exactly P(Σ∗).

The result follows by Cantor’s theorem.

16



Chapter 2

Finite Automata

2.1 Deterministic Finite Automata

A DFA is an abstract machine whose behavior can be described by directed graph.

Nodes indicate the state of the machine and arcs indicate the state transitions when the
machine reads the next symbol in a string.

Definition 2.1.1 (Deterministic Finite Automaton)
An abstract machine described by

M = (Q,Σ, δ, q0, F ).

Q is a finite set of states.
Σ is the input alphabet.
δ : Q× Σ → Q is the transition function.
q0 ∈ Q is the start state.
F ⊆ Q is the set of accepting states.

A machine accepts a string if and only if it ends in one of the accepting states.

Definition 2.1.2 (Accepts)
The DFA M = (Q,Σ, δ, s, F ) accepts the string w ∈ Σn if and only if there is a
sequence of states r0, r1, . . . , rn ∈ Q where r0 = q0, ri = δ(ri−1, wi) for each i =
1, 2, . . . , n and rn ∈ F .
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The size of the DFA M is the number of states in Q.

The DFA at the top of the section accepts the string 0010110. The certificate is the sequence
of states

q0, q0, q1, q2, q0, q1, q2.

A string is rejected by a DFA if it is not accepted.

Definition 2.1.3 (Language Recognized)
The language recognized by a DFA M is

L(M) := {x ∈ Σ∗ :M accepts x}.

2.1.1 Regular Languages

Definition 2.1.4 (Regular Language)
The language is regular if there is a DFA M such that A = L(M).

By swapping the accepting states with non-accepting states of the DFA, we see that Ā is
regular if and only if A is regular.

Proposition 2.1.1
Every finite language is regular.

Proof
Let A be a finite language over Σ. Let M be the DFA consisting of a trie. The accepting
states are at nodes representing the last symbol in each string of A.

Proposition 2.1.2
There are languages that are not regular.

Proof
We have shown the set of all languages is uncountably infinite. It suffices then to show
that the set of regular languages is countable.

Fix n ∈ Z+. There are only a finite number of DFAs of size n as there are only a finite
number of directed graphs of size n, each of which gives rise to at most 2n (finite) DFAs
depending accepting states.
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But since Z+ is countable, so is the number of DFAs.

2.1.2 Separating Words Problem

Proposition 2.1.3
For every two x 6= y ∈ Σn, there is a DFA with at most n + 2 states that accept x but
not y.

Proof
Consider the DFA M which which is a dipath with states

ε = x0, x1, x2, . . . , xn

with xn the accepting state. Add another “failure” state f which transitions to itself
always. We transition xi−1 7→ xi only if we see xi. Otherwise, we transition to f .

Clearly M accepts x. Since y 6= x, there is some minimal index i such that yi 6= xi. Then
xi−1 7→ f upon reading y and M will not accept y.

Lemma 2.1.4
If m < n ∈ Z+, there is some prime p ∈ O(log n) for which

m 6≡ n mod p.

Proof
Let p1 = 2, p2 = 3, . . . , p` be first ` primes.

Suppose m ≡ n mod pj for all 1 ≤ j ≤ `. Then by the chinese remainder theorem,

m ≡ n mod
∏̀
j=1

pj.

It can be proven using the first Chebychev function ϑ that the product of primes at most
x for x sufficiently large is strictly greater than 2x. See https://math.stackexchange.
com/a/2645232/734472.

Thus by choosing x ∈ O(log n), some prime at most x exists.
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Proposition 2.1.5
For every x ∈ Σn, y ∈ Σm where m < n, there is a DFA with O(log n) states accepting
x but not y.

Proof
Consider b(x), b(y), the binary string representation of |x|, |y|. The idea is to track length
of the string we have reaAd so far modulo p for some p ∈ Z+.

If p ∈ O(log n), then it is clear that the DFA has O(log n) states. By the previous lemma,
it suffices to take p ∈ O(log n) are required.

It can also be shown that we can separate two length n words with o(n) states. In fact, the
best bound we know, by Zachary Chase, is Õ(n 1

3 ). On the other hand, the only lower bound
is Ω(log n). Can we improve either?

2.2 Nondeterministic Finite Automata

Definition 2.2.1 (Nondeterministic Finite Automaton)
An abstract machine described by

M = (Q,Σ, δ, q0, F ).

Q is a finite set of states.
Σ is the input alphabet.
δ : Q× Σ ∪ {ε} → P(Q) is the transition function.
q0 ∈ Q is the start state.
F ⊆ Q is the set of accepting states.

An ε-transition in the NFA M is a transition of the form δ(q, ε) for some q ∈ Q. The NFA
can choose to do an ε-transition any time, without processing any symbol from its input.

Definition 2.2.2 (ε-Reachable)
A state r ∈ Q is ε-reachable from q ∈ Q in an NFA M if there are states si, 0 ≤ i ≤ `
that satisfy

s0 = q, s` = r, si ∈ δ(si−1, ε), i ∈ [`].

We say the state r ∈ Q is ε-reachable from a set S ⊆ Q of states if it is ε-reachable from
some state q ∈ S.
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Definition 2.2.3 (Accept)
The NFA M accepts w ∈ Σn if and only if there are states ri, 0 ≤ i ≤ n such that
r0 is ε-reachable from q0, ri is ε-reachable from δ(ri−1, xi) in M for each i ∈ [n] and
rn ∈ F .

Definition 2.2.4 (Language Recognized)
The language recognized by the NFA N is

L(N) = {x ∈ Σ∗ : N accepts x}.

Let M be an NFA. Let N be the NFA obtained from M by adding a new state f and an
epsilon transition from each accepting state of F (M) of f . The only accepting state of N
is f . Hence without loss of generality, we can always assume that an NFA has exactly 1
accepting state.

Consider the complete digraph on two states q1, q2 with arcs all being epsilon transitions.
Supppose F = {q1}. Then we can ε-transition from either state to the other and the NFA
accepts all strings regardless of which state is the accepting state.

Proposition 2.2.1
Every regular language can be recognized by an NFA.

Proof
Let N be the DFA corresponding to the language L. let M be the NFA obtained from N
by setting

δ(M)(q, s) := {δ(N)(q, s)}

and
δ(M)(q, ε) := ∅

for all q ∈ Q.

Then M accepts a string w if and only if N accepts w.

Let N1, N2 be two NFAs. Without loss of generality, both have exactly 1 accepting state.
Consider N obtained from N1, N2 as follows: Let s, a be 2 new states. f is the failure
state, from which we can only transition to itself. s is the new start state, with two epsilon
transitions to the state states of N1, N2, and transitions to the failure state otherwise. The
accepting states of N is the union F (N1) ∪ F (N2).

We can also do the same “union” operation for two DFAs M1,M2. Since we already showed
that regular languages are closed under complements, it suffices to show that the intersection
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of two regular languages is regular, then apply DeMorgan’s Law. We can create the DFA
with states Q1 ×Q2, for which delta(q1, q2) = (δ1(q1), δ2(q2)). The set of accepting states is
F1 × F2.

2.3 Rabin-Scott Theorem

Lemma 2.3.1
For every NFA N , there is a DFA M that recognizes L(N).

For a state q, let c(q) be the set of states which is ε-reachable from q. For R ⊆ Q,

c(R) :=
⋃
q∈R

c(q).

Proof
We construct a new DFA M .

Let the new states be Q′ := P(Q), the powerset of states of N .

Define the new transition function δ′ : P(Q)× Σ → P(Q) given by

(R, s) 7→
⋃
q∈R

c(δ(q, s)).

The new state start is the set q′0 := {q0} ∪ c(q0). Finally, F ′ ⊆ Q′ is the set of accepting
states where

F ′ := {R ∈ Q′ : Q ∩ F 6= ∅}.

Suppose N accepts string w. Let the certificate q0, q1, . . . , q` be some sequence of states.

Let r0 := {q0}. If ` = 0, then q` ∈ r0 ∩ F , and M accepts w. Otherwise,

q1 ∈ c(δ(q0, w1)) ⊆
⋃
q∈r0

c(δ(q, w1)) =: r1.

Inductively, suppose that qi ∈ ri. If i = `, then q` ∈ ri ∩ F and M accepts w. Otherwise,

qi+1 ∈ c(δ(qi, wi+1)) ⊆
⋃
q∈ri

c(δ(q, wi+1)).
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It follows by induction that w is accepted by M . Conversely, suppose w is accepted by
N . Let r0, r1, . . . , r` be the certificate of acceptance.

Put s0 := q0. The transition

(r0, w1) 7→
⋃
q∈r0

c(δ(q, w1)) = r1

means that r1 is the set of states reachable from q0 by one transition consuming w1 and
any number of ε-transitions. In general,

(ri−1, wi) 7→
⋃

q∈ri−1

c(δ(q, wi)) = ri

can be translated as starting from some state q ∈ ri−1, do exactly one transition consuming
wi, then performing some finite number of ε-transitions.

Thus each transition in N is translated to a sequence of transitions in M : a non-ε-
transition, followed by several ε-transitions. Since r` ∩ F 6= ∅,

Thus w is accepted by M as well.

Theorem 2.3.2
The set of languages that can be recognized by DFAs is the same as the set of
languages that can be recognized by NFAs.

Proof
We have proven earlier that every regular language is recognized by some NFA.

The previous lemma shows the converse.

2.4 Regular Expressions

Regular expressions are used to describe strings succintly.

23



Definition 2.4.1 (Regular Expression)
A regular expression over the alphabet Σ is a nonempty string r over

Σ ∪ {|, ∗, (, ), ε,∅}.

such that falls into one of the following conditions:

• r = ∅

• r = ε

• r ∈ Σ

• r = (s|t) for regex s, r

• r = (st) for some regex s, t

• r = (s∗) for some regex s.

In the definition, we assume that the special symbols are not included in Σ. For clarity,
we often omit the parentheses. We would then apply the operations in order of precedence:
star, concatenation, unions.

2.4.1 Language of Regular Expressions

Definition 2.4.2 (Language Described)
The language described by a regular expression r over Σ is the language L(r) ⊆ Σ∗

where
1. L(r) = ∅ if R = ∅
2. L(r) = {ε} if r = ε

3. L(r) = {r} if r ∈ Σ

4. L(r) = L(s) ∪ L(t) if r = (s|t) for some regex s, t
5. L(r) = L(s)L(t) if r = (st) for som regex s, t
6. L(r) = L(s)∗ if r = (s∗) for some regex s.

The regex 0∗110∗ describes the language

{0}∗11{0}∗.
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2.4.2 Short Regular Expressions

Definition 2.4.3 (Length)
The length of a regular expression r over Σ is the number of symbols from Σ in the
string r.

With the exception of the star operator repeated, the length of the string of the regular
expression is linearly proportional with the length of the regex.

Problem 1
Let Ak denote the language over Σk which contains all nonempty strings in which no
two consecutive symbols are identical.
What is the length of the shortest regular expression that can represent Ak.

The best bound we are aware is O(k2.17). It is conjectured that the tightest bound is O(k2).

Let us consider a similar problem stated within linear algebraic terms.

Consider matrices A,B ∈Mn(F).

For k ≥ 1, a word in A and B of length k is a product of the form C1 · · ·Ck for Ci ∈ {A,B}.
By convention, the only word in A and B of length 0 is In.

For our purposes, an algebra is a vector space over a field K with a multiplication operation.

Thus the vector space Mn(F) is an algebra with the matrix multiplication operation.

The algebra generated by A and B is the subspace

A := span{words in A and B of length k ≥ 0}.

The spanning length of A and B is the minimal positive integer ` such that

A := span{words in A and B of length 0 ≤ k ≤ `}.

It is not hard to see that A is an algebra since words consisting of A,B concatenated yield
more words over A,B.

Lemma 2.4.1
Any word of length n2 can be expressed as a linear combination of words at most
n2 − 1
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Proof
To begin, we note that since A ⊆Mn(F), dimA ≤ dimMn(F) = n2.

Let A0 be an arbitrary word of length n2.

It suffices to show that A0 is in the span of words of lengths at most n2 − 1

Let wi, i ∈ N be any word of length i.

Consider the following algorithm:

step 1: take {w1} ∪ {A0}, if they are dependent we are done else
step 2: take {w1, w2}∪ {A0}, so that w2 is not in the span of our previous set. If the union

is dependent we are done else
step 3: take {w1, w2, w3} ∪ {A0}, so that w3 is not in the span of our previous set. If this

union is dependent we are done else
step 4: repeat

The algorithm terminates at most with wn2−1 since the size of an independent set of words
is at most n2.

Thus, A0 can be expressed as a linear combinations of words at most n2 − 1 as desired
and we conclude the proof.

Proposition 2.4.2
The spanning length of A and B is at most n2.

Proof
We argue by induction.

Let Pm be the statement that we can express all words of length m in terms of words at
most n2.

(1) Base Case
Let An2+1 be any word of length n2 + 1.
then there is a word C of length n2 such that either An2+1 = CA or An2+1 = CB.
But by our lemma, C can be expressed as linear combinations of words at most
n2 − 1.
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Say
C = α0w0 + . . . αn2−1wn2−1

But then CA or CB can be expressed as words of length at most n2 and we are
done.

(2) Inductive Case
Suppose now, inductively that Pm−1 holds where m > n2 + 1.
Let Am be any word of length m.
There is a word C of length m− 1 such that either Am = CA or Am = CB.
By supposition, we can express C with words at most n2 and by the lemma, further
expand this into words at most n2 − 1.
But then CA or CB can be expressed as words of length at most n2 and we are
done.

By induction, we conclude that the spanning length of A is at most n2.

2.5 Kleene’s Theorem

Our goal is to prove that the class of regular languages is precisely the class of languages
described by regular expressions!

Theorem 2.5.1 (Kleene)
The language A is regular if and only if it can be described by a regular expression.

For the forward direction, it suffices to show that every language can be described with a
regular expression.

This direction is very intuitive. A language described by a regular expression is recursively
constructed from other languages described by smaller regular expressions. Thus we intu-
itively think about combining NFAs.

Lemma 2.5.2
For every regular expression r, the language L(r) described by r can be recognized
by an NFA.

Proof
We argue by structural induction on r.
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In the three base cases if r = ∅, ε, σ ∈ Σ, it is straightforward to see that some NFA
recognizes the languages described by r.

Suppose r = (s|t) for some regular expressions s, t. Let Ms,Mt be NFAs which recog-
nize L(s), L(t), respectively. Then the NFA which has new starting state and epsilon
transitions to the starting states of Mr,Mt. This NFA recognizes L(r).

Now consider r = (st) for some regular expressions s, t. Again, let Ms,Mt be NFAs
which recognize L(s), L(t), respectively. connect Ms → Mt by adding ε-transition from
the accepting states of Ms to the starting state of Mt and setting the accepting states of
Ms to ∅.

Finally, suppose r = (s)∗ for some regular expression r. Let Ms be a NFA which recognizes
L(r). Then, if none exist, add an ε-transition from each accepting state to the starting
state.

By structural induction, L(r) can be recognized by some NFA.

The converse is alot less constructive and we rely heavily on induction.

Lemma 2.5.3
Every language L that can be recognized by a DFA can be described with a regular
expression.

Proof
Let M = (Q,Σ, δ, q0, F ) be a DFA. Without loss of generality, relabel

Q = [m].

Pick any p, q ∈ Q and define Lq→r(k) as the language of strings which induce paths from
q → r in M while using only the states [k] as intermediate states. We by induction on k
that for all p, q ∈ Q,

Lq→r(k)

can be described by some regex.

Indeed, if k = 0, then the result is clear as we cannot use any intermediate states so either
p = q, in which case our language contains ε and possibly the (finite) loop symbols at
p, or p 6= q, and includes the single arc symbols between p, q. Since finite languages are
easily described by regex, Lp→q(0) can be described by a regex.

Now suppose k ≥ 0. Observe that

Lp→q(k + 1) = Lp→q(k) ∪ Lp→k+1(k)Lk+1→k+1(k)
∗Lk+1→q(k).
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The latter is the language which induced by p(k + 1)-dipaths, then k + 1-loops, and
(k + 1)q-dipaths.

But each of the constituant languages have been proven to be describable by a regular
expression. Unions and concatenations are also easily expressed through regex. Hence by
induction we are done.

Observe that L(M) =
⋃
q∈F Lq0→q(m). Hence it is indeed describable by a regex.

This concludes the proof.

2.6 Pumping Lemma

A language is non-regular if it is not a regular language.

We saw many ways to prove that a language is regular. How about the converse?

Proposition 2.6.1
The language L = {0n1n : n ≥ 0} is not regular.

Proof
Suppose towards a contradiction that there is some DFA M = (Q,Σ2, δ, q0, F ) for which
L(M) = L. Put m := |Q|. Choose n >> m and consider the path induced by the string
0n1n. Let P0 be the arcs taken by 0n and P1 the arcs taken by 1n.

Since n >> m, P0 necessarily contains a dicycle. Write

P0 = WCW ′

for some dicycle C. But then the string corresponding to the path

WCkW ′P1

is also accepted by M for all k ≥ 0.

In particular, there is some N > n for which

1N0n ∈ L(M) \ L.

By contradiction, L is not regular.
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Lemma 2.6.2 (Pumping Lemma for Regular Languages)
For every regular language L, there is a number p such that for any s ∈ L of length
at least p, we can write

s = xyz

where |y| > 0, |xy| ≤ p, and for each i ≥ 0, xyiz ∈ L.

A language L satisfying the condition of the lemma is said to satisfy the pumping property.

A value p for which L satisfies the pumping property is known as a pumping length of L.

Proof
First observe that if L is finite, then the lemma trivially holds. Indeed, we can simply
pick p to be longer than the longest string in L and the pumping condition vacuously
holds.

Let M = (Q,Σ, δ, q0, F ) be a DFA which recognizes L. Set m := |Q|. Since L is infinite,
we may choose some string w ∈ L such that |w| > m.

There is a unique walk W in M starting from q0 and ending at some accepting state in
F , whose arcs correspond to the symbols of w in the same order.

Since m > q, there is necessarily a dicycle C contained in W . Without loss of generality,
let us assume that C is the first dicycle. That is, the last state in C is the first repeated
state in W . Observe then that C ends at most at the m+ 1-st state in W .

Thus we can decompose W as
W = PCP ′

where P, P ′ are the states visited before C and after P ′, respectively.

Since M accepts w, W ends in an accepting state. But then so does PCiP ′ for all i ≥ 0.
Let x be the string corresponding to P , y the string corresponding to C, and z the string
corresponding to P ′.

We have |y| > 0 since the shortest dicycle contains at least 1 arc. Moreover, |xy| ≤ p by
the choice of C. Finally, by construction,

∀i ≥ 0, xyiz ∈ L.

The idea for the pumping lemma is that DFAs have no sense of “memory”, thus the only way
to produce longer strings is through “hardcoded” dicycles. The dicycles are “regularities”
within the language which we know to exist through the pumping lemma, but may not be
able to pinpoint. For example, for a machine to recognize the language {0n1n : n ≥ 0},
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it must somehow keep track of how many 0’s it has seen so far and to “expect” the same
amount of 1’s. This is not possible when our dicycles are “hardcoded”.

The contrapositive of the pumping lemma is useful for showing that some languages are
non-regular.

Lemma 2.6.3 (Pumping Lemma; Contrapositive)
If for every integer p, there is a string s ∈ L of length at least p such that for every
decomposition s = xyz with |y| > 0 anad |xy| ≤ p, there exists a value i ≥ 0 for
which xyiz /∈ L, then L is not a regular language.

2.7 Non-Regular Languages

Proposition 2.7.1
The language L := {0n1n : n ≥ 0} is not regular.

Proof
Pick p ≥ 1 and choose s = 0p1p. Then s ∈ L and |s| ≥ p.

Any decomposition s = xyz with |xy| ≤ p and |y| > 0 must then have y = 1k for some
k ≤ p. But

xy2z

then has an uneven number of 0’s and 1’s and cannot be in L.

By the pumping lemma, L is not regular.

Proposition 2.7.2
The language

L< := {0m1n : n > m ≥ 0}

is not regular.

Proof
Pick p ≥ 1 and choose s = 0p1p+1. Then s ∈ L and |s| ≥ p.

Any decomposition s = xyz with |xy| ≤ p and |y| > 0 must then have y = 1k for some
k ≤ p. But

xy2z

has at least as many 0’s as 1’s and hence does not belong to L.
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It follows by the pumping lemma that L is not regular.

Proposition 2.7.3
The language

L> := {0m1n : m > n ≥ 0}

is not regular.

Proof
Pick p ≥ 1 and choose s = 0p1p−1. Then s ∈ L and |s| ≥ p.

Any decomposition s = xyz with |xy| ≤ p and |y| > 0 must then have y = 1k for some
k ≤ p. But

xy0z = xz

has at most as many 0’s as 1’s and hence does not belong to L.

It follows by the pumping lemma that L is not regular.

There also languages over even the unary alphabet that are not regular.

Proposition 2.7.4
The language

L :=
{
02

n

: n ≥ 0
}

is not regular.

Proof
Pick p ≥ 1 and choose s = 02

p . Then s ∈ L and |s| ≥ p.

Any decomposition s = xyz with |xy| ≤ p and |y| > 0 must then have y = 1k for some
k ≤ p. But

2p = |s|
< |xy2z|
≤ |s|+ p

= 2p + p

< 2p+1.

It follows by the pumping lemma that L is not regular.
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2.7.1 Limitations of the Pumping Lemma

Proposition 2.7.5
The language

Lpal+ = {wwRx ∈ Σ∗
2 : |w| ≥ 1}

satisfies the pumping property but is not regular.

Thus the pumping condition is a necessary but NOT sufficient condition to garantee regu-
larity. The Myhill-Nerode thereom provides a characterization of regular languages.

Given a language L and a pair of strings x, y, define a distinguishing extension to be a string
z such that exactly one of the two strings xz, yz belongs to L.

Define a relation RL on strings by the rule that xRLy if there is no distinguishing extension
for x, y. This is an equivalence relation on strings and thus partitions L into equivalence
classes.

Theorem 2.7.6 (Myhill-Nerode)
L is regular if and only if RL has a finite number of equivalence classes, and moreover
the number of states in the smallest DFA recognizing L is equal to the number of
equivalence classes in RL.

2.8 Properties of Regular Languages

In the same sense of how continuous functions are rare but have extremely nice structure,
most languages are not regular but those that are enjoy many structural properties.

2.8.1 Closure under Language Operations

We have previously shown in these notes that if A,B are regular languages, then Ā, A ∩
B,A ∪B,AB,A∗ are regular as well.

Since we can express

A \B = A ∩ B̄
A∆B = (A \B) ∪ (B \ A),

set difference and symmetric difference also preserve regularity.
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Our goal is to introduce more operations which preserve the regularity of languages.

Definition 2.8.1 (Language Expansion)
Then expansion of the language A over Σ is the language

A↑ := {x ∈ Σ∗ : ∃y ∈ A, |y| = |x|, H(x, y) ≤ 1}.

Here H(·, ·) indicates the Hamming distance.

Proposition 2.8.1
For every regular language A, the language A↑ is also regular.

Proof
Let M = (Q,Σ, δ, q0, F ) be a DFA recognizaing A. The idea is to first turn M into an
equivalent NFA with no ε-transitions. Then we somehow allow this NFA a “one-time
wildcard” arc which allows it to transition from state q ∈ Q to any neighbour of q.

Indeed, first fix some state q ∈ Q and s ∈ Σ. Suppose δ(q, s) = q′. Create |Σ| − 1 copies
of M , say {Mq,t : t ∈ Σ, t 6= s} and ignore their starting states. Add an arc from M to
Mq,t through the transition

(q, t) 7→ q′.

Then, repeat this operation for every q ∈ Q, s ∈ Σ and let M ′ be the DFA obtained this
way.

Clearly, if x ∈ A, then x ∈ L(M ′). Moreover, if x ∈ A↑ \ A, we can find some y ∈
A,H(x, y) = 1. We can take the path induced by y in M up until the different symbol,
and transition to a copy of M where the remaining path induced by y leads to a final
accepting state.

If an accepting path does not leave M , then it is an accepting path of M . Suppose now
that our path leaves M , say it transitions from q in M to some state q′ of Mq,t. Then
there was some s ∈ Σ for which

δ(q, s) = q′.

The rest of the accepting path (less this one arc) is in Mq,t. Moreover, tracing the same
path in M yields an accepting path in M . This the two paths “differ by a one-tiem
wildcard arc”.

See Figure 2.1.
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Figure 2.1: An illustration of the DFA corresponding to expansion.
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2.8.2 Topological Separation

Theorem 2.8.2
There exists a language L over Σ2 such that every infinite language L′ ⊆ L is non-
regular.

Proof
Simply take L := {0n1n : n ≥ 0}. Any infinite subset L′ ⊆ L thus consists of some infinite
subset of Z ⊆ Z+ such that

L′ = {0n1n : n ∈ Z}.

Pick p ≥ 1 and choose the smallest k ∈ Z, k ≥ p. Then s = 0k1k ∈ L and |s| ≥ p.

Any decomposition s = xyz with |xy| ≤ p and |y| > 0 must then have y = 1` for some
` ≤ p. But

xy2z

then has an uneven number of 0’s and 1’s and cannot be in L′.

By the pumping lemma, L′ is not regular.

Proposition 2.8.3
For every infinite regular language L, there is an infinite language L′ ( L that is regular.

This is sort of a cheat proof.

Proof
Take any nonempty finite subset K ⊆ L. Then K,L are both regular and hence

L′ := L \K

is an infinite regular language.

Theorem 2.8.4
For every infinite regular language L, there is a regular language L′ ⊆ L such that L′

and L \ L′ are both infinite regular languages.

Proof
Let M = (Q,Σ, δ, q0, F ) be a DFA which recognizes L. Since L is finite, M cannot be
acyclic or else are only a finite number of paths to accepting states.
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Let q be any state which is in some dicycle. For i = 0, 1, put

Li = {w ∈ L : the number of times the path induced by w visits q has parity i}.

Then L = L0∪̇L1.

Moreover, Li is regular! The idea is to take the DFA

Mi = (Q× {0, 1},Σ, δ′, (q0, 0), F × {i}).

Thus the extra coordinate tracks the parity of times we visited q.

2.8.3 Testing Emptiness & Equivalence

Proposition 2.8.5
Given a DFA M = (Q,Σ, δ, q0, F ), we can determine whether L(M) = ∅ or not in
O(|Q| · |Σ|) time.

Proof
If F = ∅, the task is trivial.

Now, observe that if L := L(M) 6= ∅, there is some string s ∈ L of minimal length.
The path induced by s must be simple, or else we can can find a strictly shorter string
accepted by M . Conversely, if there is a simple path from q0 to an accepting state, L is
clearly not the empty language.

It follows that we can use any graph exploration algorithm (ie DFS, BFS, etc) which runs
in linear time in order to decide if L = ∅. There are |Q| states and |Q| × |Σ| arcs, hence
the run-time guarantee holds.

Proposition 2.8.6
Givens DFA M1 = (Q1,Σ, δ1, q1,0, F1) and M2 = (Q2,Σ, δ2, q2,0, F2), we can determine
whether L(M1) = L(M2) or not in O(|Q1| · |Q2| · |Σ|) time.

Proof
It suffices to reduce this problem to testing emptiness in a DFA with |Q1| · |Q2| states.

Observe that

L(M1) = L(M2) ⇐⇒ L(M1) \ L(M2) = ∅, L(M2) \ L(M1) = ∅
⇐⇒ L(M1) ∩ L(M2) = ∅, L(M2) ∩ L(M1) = ∅.
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Hence we have reduced the problem to testing emptiness.

Now, we have shown earlier in these notes that a DFA recognizing L(Mi) is

(Qi,Σ, δi, qi,0, Qi \ Fi).

Moreover, we have shown that a DFA recognizing the L(Mi) ∩ L(M1−i) is

(Qi ×Q1−i,Σ, δi × δ1−i, (qi,0, q1−i,0), Fi × (Q1−i \ F1−i)).

Thus with two iterations of our algorithm to test emptiness, we are done. This terminates
in

O(|Q1| · |Q2| · |Σ|)

time.
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Chapter 3

Context-Free Languages

3.1 Pushdown Automata

The main limitation of finite automata is the lack of memory. The pushdown automaton
model gives us to access a stack, which allows us to recognize a richer class of languages.

Informally, imagine a NFA where the transitions become

a; b→ c.

An arc of this form can be followed when we read the symbol a as input, and the symbol
popped from the stack is b. Following this transition causes c to be pushed onto the stack.

Any of a, b, c can be ε. When a = ε, we do not read or advance the input string. When
b = ε, we do not read or pop a symbol from the stack. When c = ε, no symbol is pushed
onto the stack.

An ε-transition in which a = b = c is labelled with ε.

We now introduce the notation

Σε := Σ ∪ {ε}

where we add a new symbol ε to Σ.
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Definition 3.1.1 ((Nondeterministic) Pushdown Automaton)
A nondeterministic pushdown automaton (PDA) is an abstract machine defined by

M = (Q,Σ,Γ, δ, q0, F ).

• Q is a finite set of states

• Σ is the input alphabet

• Γ is the stack alphabet

• δ : Q× Σε × Γε → P(Q× Γε) is the transition relation

• q0 ∈ Q is the start state

• F ⊆ Q is the set of accepting states

We can obtain a deterministic PDA by modifying the definition of a DFA. But since we only
discuss nondeterministic PDAs, we refer to them as simply PDAs.

Definition 3.1.2 (Accept)
A PDA M accepts the string w ∈ Σ∗ if and only if there exist a parameter m ≥ |w|,
symbols y1, . . . , ym ∈ Σε, states r0, . . . , rm ∈ Q, and strings s0, . . . , sm ∈ Γ∗ such that

1. w = y1 . . . ym

2. r0 = q0 an s0 = ε

3. rm ∈ F

4. For each i = 1, . . . ,m, there is some a, b ∈ Γε and t ∈ Γ∗ such that

(ri, b) ∈ δ(ri−1, wi, a)

si−1 = at

si = bt.

Note that if we wanted to design a queue automata which is a PDA except with access to a
queue instead of a stack, we can change the last few lines so that

si−1 = ta, si = bt.

How about other data structures? What if we replace stack by a random access arrray? How
about a priority queue which pops respects some “order” to the alphabet Σ and always pops
the “biggest” symbol?
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Definition 3.1.3 (Language of PDA)
The language of a PDA M is

L(M) := {w ∈ Σ∗ :M accepts w}.

We say that M recognizes L(M).

Proposition 3.1.1
For every PDA M , there is a PDA M ′ with

L(M ′) = L(M)

and the property that M ′ only accepts when its stack is empty.

Proof
We can ensure that the first state which is pushed onto the stack is a new symbol α. For
each final state f ∈ F , create a copy f ′ and the transition

δ(f, ε, α) = (f ′, ε).

Then set the new final states to F ′ := {f ′ : f ∈ F}.

There is a path from q0 → f such that the stack is empty if and only if there is path from
q0 → f in the new PDA ending with α in the stack.

3.1.1 Regular Languages & PDAs

Proposition 3.1.2
Every regular language can be recognized by a pushdown automaton.

The idea here is that if we simply ignore the stack, then a PDA is essentially an NFA.

Proof
Let M = (Q,Σ, δ, q0, F ) be an NFA. Consider the PDA

M ′ := (Q,Σ,∅, δ′, q0, F ).

The only change is the transition relation. For each q ∈ Q and s ∈ Σε, define

δ′(q, s, ε) := δ(q, s)× {ε}.

All other transitions relations are defined to be ∅.
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Thus we simply ignore the stack and

L(M ′) = L(M).

Proposition 3.1.3
There is a pushdown automaton recognizing the language

L = {0n1n : n ≥ 0}.

Proof
See Figure 3.1 for a PDA recognizing L.

Note that the ε-transition is so that our PDA also recognizes ε.

This proves that PDAs are strictly more powerful than DFAS. Is there a class of languages
which is a strict superset of context-free languages but not the set of all languages? Can we
recognize every single language with (finite) automaton?

The language {0n1n2n : n ≥ 0} is not context-free. However, it can be recognized by a
automaton with 2 stacks. Does adding stacks always improve the ability of our automata’s
ability to recognize languages?

The language {ww : w ∈ Σ∗} is not context-free. However, it can be recognized by a queue
automaton. Can we classify the languages which are not context-free but recognizable by a
queue automaton? How about adding multiple queues?

Proposition 3.1.4
There is a PDA which recognizes

Lpal = {w ∈ Σ∗ : w = wR}.

Proof
See Figure 3.2 for a PDA recognizing L.

Note that the ε-transition is so that our PDA also recognizes ε.

The arcs involving the symbol s runs over all s ∈ Σ. Thus from q1, q2, there are |Σ|
self-loops. Also, there are |Σ| arcs from q1 → q2.

3.1.2 Primitive Strings

Below is an open problem:
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Figure 3.1: A PDA recognizing {0n1n : n ≥ 0}.
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Figure 3.2: A PDA recognizing palindromes.
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Problem 2 (Primitive Strings)
Does there exist a PDA that recognizes the language

L = {w ∈ Σ∗
2 : w is primitive}.

Intuitively, the PDA would need to be able to “loop” for each n ≥ 2 that w is not yn for some
string y. We conjecture this is not possible without being able to read the string multiple
times. Perhaps this would be possible with a queue automaton which somehow implements
the greedy O(n2) algorithm which verifies primitivity.

3.2 Context-Free Grammars

Informally, a context free grammar is a set of rules that can be applied to individual variables
to generate strings of variables and symbols. To generate a string from a grammer, we start
with a special start variable and apply rules to one of the variables in the current string until
no variables remain.

Definition 3.2.1 (Context-Free Grammar)
A context-free grammar (CFG) is a 4-tuple

G = (V,Σ, R, S)

where

• V is a set of variables (non-terminal symbols)

• Σ is a set of (terminal) symbols (terminals)

• R is a finite set of rules mapping V → (V ∪ Σ)∗

• S is the start variable in V

Definition 3.2.2 (Yield)
The string uAv yields the string uwv in the CFG G = (V,Σ, R, S), denote

uAv =⇒ uwv,

when A ∈ V is a variable, u, v, w ∈ (Σ∪ V )∗ are strings, and the rule A→ w is in R.
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Definition 3.2.3 (Derive)
The string u derives the string v in the CFG G, denoted

u
∗

=⇒ v,

when u = v, u =⇒ v, or there is a sequence of k ≥ 1 strings u1, . . . , uk ∈ (V ∪ Σ∗)
such that u =⇒ u1 =⇒ · · · =⇒ uk =⇒ v.

Note that if the rule A→ ε exists in our grammar, the string AAA ∗
=⇒ ε.

3.2.1 Context-Free Languages

CFGs give us another way to define languages.

Definition 3.2.4 (Languaged Generated)
The language generated by the CFG G = (V,Σ, R, S) is

L(G) = {w ∈ Σ∗ : S
∗

=⇒ w}.

These languages are already very powerful! See http://www.quut.com/c/ANSI-C-grammar-y.
html. Note that the set of semantically correct files for any language is most likely context-
free. However, the set of files which will compile is most likely not context-free.

Example 3.2.1
A CFG generating {0n1n : n ≥ 0} is

S → ε

S → 0S1.

Example 3.2.2
A CFG generating the language of valid parentheses is

S → ε

S → (S)

S → SS.
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Example 3.2.3
A CFG generating the language of binary palindromes is

S → 0 | 1 | ε
S → 0S0

S → 1S1.

Suppose G1, G2 are two CFGs. We can let S be the new start string, with rules

S → S1, S → S2.

Thus context-free languages are closed under unions.

Definition 3.2.5 (Context-Free Language)
A language is context-free if it can be generated by a context-free grammar.

3.3 Equivalence of CFGs and PDAs

We now show that the set of languages that can be recognized by pushdown automata is
precisely the set of context-free languages.

Theorem 3.3.1
For every context-free grammar G = (V,Σ, R, S), the language L(G) can be recog-
nized by a pushdown automaton.

First suppose we have a string aAbBc where A,B are non-terminals. Then applying a rule
A→ S,B → T in either order makes no difference.

aAbBc =⇒ aSbBc =⇒ aSbTc

aAbBc =⇒ aAbTc =⇒ aSbTc

Thus we can always use a rightmost derivation, where we always expand the leftmost non-
terminal symbol.

Proof
Consider the PDA depicted in Figure 3.3.

M =

{q0, q1} ∪
⋃

(A→x)∈R

{x(1), x(2), . . . , x(|x|−1)},Σ, V ∪ Σ, δ, q0, {q1}


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Figure 3.3: A PDA recognizing the language generated by a CFG.
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where δ is given by

δ(q0, ε, ε) = {(q1, S)}

δ(q1, ε, A) =
⋃

(A→x)∈R

{(x(|x|−1), x|x|)} ∀(A→ x) ∈ R

δ(x(i), ε, ε) = {(x(i+1), xi)} ∀(A→ x) ∈ R, ∀i ∈ [|x| − 2]

δ(x(1), ε, ε) = {(q1, x1)} ∀(A→ x) ∈ R

δ(q1, a, a) = {q1, ε} ∀a ∈ Σ

and all other transition relations are ∅.

Essentially, we greedily parse the string from the leftmost side to “build” a leftmost
derivation of the string, while using the stack to store intemediate derivations. We begin
by pushing S onto the stack.

At each step, if the top stack symbol is a terminal, we “match” it with the next input
symbol. Otherwise, the top stack symbol is non-termianl, and we “expand” it by pushing
one of its expansion rule results onto the stack.

The only twist is that we are only allowed to push 1 symbol onto the stack at a time. Thus
we need to implement pushing whole strings through a dicycle where each arc pushes the
symbols of a string in reverse.

The other direction is most difficult, just as how showing that there is always a regex gen-
erating any regular language is more difficult than the converse. We simply this by first
restricting our attention to a nicer class of PDAs.

Lemma 3.3.2
For every pushdown automaton M , there is a pushdown automaton

M ′ = (Q,Σ,Γ, δ, q0, F )

which satisfies
1. F consists of a single accept state.
2. M ′ always empties the stack before accepting.
3. Each transition a; b → c in δ has exactly one of b, c equal to ε, thus each

transition either pushes or pops a symbol from the stack.
and L(M) = L(M ′).

Proof
If F has multiple accept state, delete them, make a new accept state f with ε-transitions
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from the previous accept states, and no transitions from f . Let M1 be the PDA obtained
this way.

To make M1 accept only when the stack is empty, add a new stack symbol, say ∧. By
creating a new start state S ′, whose only transition leads to S (old start state) and pushes
∧ onto the stack, all intermediate stack states now have ∧ at its bottom. Then, for the
sole accept state f , create loops which pops stack symbols other than ∧. Finally, create
the new sole accept state f ′ with an arc from f which pops the symbol ∧. Let M2 be the
PDA obtained this way.

Now, to make M2 always push or pop a symbol from the stack, we replace some arcs with
dipaths of length 2. Indeed, if some transition does not push or pop, then replace this
by a dipath which pushes then pops some garbage symbol. If some transition both pops
and pushes, then replace this by a dipath which pops, then pushes. Let M ′ be the PDA
obtained this way.

By construction L(M) = L(M ′) and satisfies each of the 3 properties.

Theorem 3.3.3
For every PDA M = (Q,Σ, V, δ, q0, F ), the language L(M) can be described by a
context-free grammar.

Proof
We may assume without loss of generality that M satisfies the properties from the previous
lemma. Let f ∈ Q be the unique accepting state.

On a high-level, a leftmost derivation in our constructed grammar yields a path in the
PDA.

Suppose Apq
∗

=⇒ w ∈ Σ∗. We interpret this as a path of computation starting from p,
ending in q, consuming input w, and finishing by leaving the stack in the state of having
popped A. Thus Apq is a “promise” to pop.

In the case that we wish to transition from state q by reading s and popping A from the
stack, we expand Apq → s. Intuitively, the promise to pop A was “fulfilled”.

Remark that any inital transitions from q0 necessarily push a symbol onto the stack, since
we cannot pop and all transitions do exactly one of the two.
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Consider the CFG G = ({Apq : A ∈ Γ, p, q ∈ Q},Σ, R, S) where

S → εq0f

Apq → sBpq′Aq′q (q′, B) ∈ δ(p, s, ε), “push”
Apq → s (q, ε) ∈ δ(p, s, A), “pop”

By induction, S ∗
=⇒ w if and only if there is a path of computation in M starting from

q0, ending at f , which leaves the stack empty.

This proves the following theorem

Theorem 3.3.4
A language can be generated by a context-free grammar if and only if it can be
recognized by a pushdown automaton.

3.4 Chomsky Normal Form

In general, CFGs have too much variety in their rules and it can be difficult to reason about
them. It is thus useful to restrict ourselves to a more limited set of rules while still generating
the same set of languages.

Definition 3.4.1 (Chomsky Normal Form)
The CFG G = (V,Σ, R, S) is in Chomsky normal form (CNF) if every production
rule is of the form

A→ BC

A→ a

S → ε

for some A ∈ V , some terminal symbol a ∈ Σ, and other variables B,C ∈ V \ {S}.

Example 3.4.1
A CFG generating the language {02n : n ≥ 1} is

S → AE | ZZ
A→ AE | ZZ
E → ZZ

Z → 0.
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Example 3.4.2
A CFG generating the language (01)∗ is

S → AE | ZO | ε
A→ AE | ZO
E → ZO

Z → 0

O → 1.

Example 3.4.3
A CFG generating the language L = {0m1n : m ≥ n ≥ 0} is

S → A | ε
A→ BO

B → AZ

Z → ZZ | 0
O → 1.

Theorem 3.4.4
For every context-free grammar G, there is a context-free grammar G′ in CNF such
that L(G) = L(G′).

Proof
First, by adding the rule S → A for a new variable A and substituting all previous
instances of S’s in the rules with A’s, we can ensure the start symbol does not appear on
the right-hand side of any rule.

If the rule A → ε exists for some non-start variable A, we can simply remove this rule.
If there is a rule B → aAb for some strings a, b, then add the rule B → ab. Note it is
possible that a, b = ε so we create a new rule B → ε. But recursive repetition of this
procedure eventually removes all but perhaps the ε rule S → ε. This ensures that there
are no ε rules for non-start variables.

If there is a unit rule A→ B, we can also remove this rule. Then, for each rule C → aAb,
we can add the rule C → aBb to accomodate the deletion. This means there are no unit
rules.

Next, by creating a new variable Vs for each s ∈ Σ and adding the rule Vs → s, we can
substitute the appearances of s in the right hand sides of rules with Vs.
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It remains to replace rules that generate variable strings of length greater than 2. Consider
a rule C → ABa for some variables A,B,C and variable string a. Create a new variable
VAB with the rule VAB → AB. Then, replace C → ABa with C → VABa.

This completes the proof.

3.4.1 Other Classes of Grammars

Definition 3.4.2 (Right-Regular Grammar)
A right-regular grammar is a CFG where every rule is of the form

A→ aB

A→ a

A→ ε

There is a direct correspondance between NFA computations and right-regular grammar
derivations. Thus the languages generated by a right-regular grammar are precisely the
regular languages.

Definition 3.4.3 (Left-Regular Grammar)
A left-regular grammar is a CFG where every rule is of the form

A→ Ba

A→ a

A→ ε

Intuitively, these are the reverses of right-regular generated languages and hence the regular
languages once again.

Definition 3.4.4 (Linear Grammar)
A linear grammar is a CFG where every rule is of the form

A→ aB

A→ Ba

A→ a

A→ ε

Since regular languages can be generated by right-regular grammars, they can certainly be
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generated by linear grammars. However, the linear grammar

S → A

A→ 0B | ε
B → A1

generates the language {0n1n : n ≥ 0}, hence linear grammars are strictly more powerful
than DFAs/NFAs/Regex.

3.5 Pumping Lemma

While the pumping lemma was established by considering DFAs, it is easier to consider
CFGs in CNF.

The first thing we notice is that if a CFL in CNF describes a finite language, the strings in
those finite languages is bounded by the number of variables in the CFG.

Proposition 3.5.1
If G = (V,Σ, R, S) is a context-free grammar in CNF with |V | = m variables and G
generates a string x of length |x| ≥ 2m, then L(G) is an infinite language.

Proof
We argue by the contrapositive. Suppose G is finite. We wish to bound the number of
leaves in the parse tree, which is precisely the length of x.

If m = 1, then the language consists of only ε. Hence we proceed assuming m ≥ 2.

Consider a path P from the root of the parse tree S to a leaf of the tree. Observe that
any internal node leads to at least 2 leaves. Therefore, if any variable A is repeated on
P , then we can repeat the sequence of rules used between the first and second occurance
of A as many times as we want to make x arbitrarily long.

Since L(G) is finite, this cannot happen. Thus no variables can repeat on P and it contains
at most m nodes. But the number of leaves is at most 1 more than the number of internal
nodes.

The depth of any internal node is bounded above by m−1. Hence there are at most 2m−1

internal nodes and
2m−1 + 1 < 2m

leaves.

54



Lemma 3.5.2 (Pumping Lemma, CFLs)
For every context-free language L ⊆ Σ∗, there is a number p such that for every s ∈ L
of length |s| ≥ p, we can decompose

s = uvxyz

where

• |v|+ |y| > 0

• |vxy| ≤ p

• For all i ≥ 0, uvixyiz ∈ L

Proof
Let G be a CFG in CNF with m variables that generates L. Set p := 2m + 1.

Let x ∈ L be such that |x| ≥ p. By the proof of the previous proposition, there must be
a path P in the parse from the root node S to a leaf node with at least m + 1 internal
nodes.

Consider the last m+1 internal nodes. By the pigeonhold principle, at least one variable
A is repeated.

Let x be the string formed by leaves of the subtree at the second instance of A. Then set
vxy be the string formed by the leaves of the subtree at the first instance of A. Thus we
can write

s = uvxyz

where uvxyz is the string formed by leaves of the entire parse tree.

Now, the first instance of A has a subtree which does not contain the second instance of
A. Hence at least one of v, y is not ε.

Moreover, |vxy| is at most 1 more than the leaves of a depth m binary tree. This is at
most 2m + 1 =: p as required.

Finally, consider the subpath P ′ between the first and second instance of A which includes
the first instance of A but not the second. For any i ≥ 0, we may repeat P ′ times in the
parse tree with the same derivation rules. This results in

uvixyiz ∈ L

for all i ≥ 0.
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Observation 3.5.3
Both the pumping lemmas for regular languages and CFLs are achieved by analyzing
the structure of their underlying characterizations. For regular languages, we observed
that the only way to produce arbitrarily long strings in a DFA is through directed
cycles. On the other hand, we utilize the “parse tree” of CFLs in CNF and identity
strings in the CFL with leaves of the parse tree. Then by elementary graph theory,
the only way to produce generate arbitrarily long strings is to repeat derivation rules
in some path from the root to a leaf node.

Proposition 3.5.4
The language L = {0n1n2n : n ≥ 0} is not context-free.

Proof
Suppose towards a contradiction that L is context-free and fix some pumping length
p ≥ 1 of L. Then w = 0p1p2p ∈ L and satisfies |w| ≥ p. By the pumping lemma, we can
decompose

w = uvxyz.

Case I: Suppose vxy contains only 0’s, only 1’s, or only 2’s. Then clearly uv2xy2z is not
in L.

Case II: Suppose vxy contains 0’s and 1’s or 1’s and 2’s. It cannot contain all 3 symbols
since |vxy| ≤ p.

But then uv2xy2z contains an imbalanced number of 0’s, 1’s, and 2’s.

In either case, we contradict the pumping lemma. Thus by the arbitrary choice of p, we
conclude that L is not context-free.

Conjecture 3.5.5
Let f : Z3

+ → {0, 1} be a boolean function. Then

L := {0m1n2` : f(m,n, `) = 1}

is a CFL if and only if the value of f is independent of at least one of its arguments.

Proposition 3.5.6
The language

L := {ww : w ∈ Σ∗
2}

is not context-free.

56



Proof
Suppose towards a contradiction that L is context-free and that p ≥ 1 is a pumping length
of L. Consider w := 0p1p0p1p. Then |w| ≥ p and w ∈ L.

Suppose we can decompose
w = uvxyz

as in the pumping lemma.

Case I: Suppose vxy contains only 0’s or only 1’s. Then uv2xy2z is not in L.

Case II: Suppose vxy is a substring of 0p1p so that v = 0k, y = 1` for some k + ` > 0.
Again, uv2xy2z is not in L.

Case III: Finally, suppose vxy is a substring of 0p1p. Thus v = 1k, y = 0` for some
k + ` > 0. But then uv2xy2z is not in L again.

We have exhausted all cases since |vxy| ≤ p. Thus we conclude that L cannot be context-
free.

Conjecture 3.5.7
Is there a grammar which corresponds to automatons with multiple stacks and queue
automatons? It seems that {0n1n2n : n ≥ 0} can be easily recognized by an automaton
with 2 stacks and {ww : w ∈ Σ∗

2} is easily recognized by a queue automaton. What
would those grammars look like?

3.6 Properties of Context-Free Languages

The class of context-free languages is a strictly larger set of languages than the regular
languages. They are characterized by a strictly more powerful class of automaton. CFLs
retain but also lose some properties of regular languages.

Proposition 3.6.1
CFLs are closed under

(i) unions
(ii) concatenation
(iii) star operation
(iv) reversal
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Proof
Let G1, G2 be CFGs with start state S1, S2, respectively.

The CFG G consisting of the union of rules from G1, G2 as well as

S → S1 | S2

generates the L(G1) ∪ L(G2).

The CFG G consisting of the union of rules from G1, G2 as well as

S → S1S2

generates the L(G1)L(G2).

Let M be a PDA which recognizes L and has exactly one accepting state f which accepts
if and only if the stack is empty. Then add an ε-transition from f to q0 if none exist.
Then, add an ε-transition from q0 to f is none exist. The PDA M ′ recognizes the language
L∗.

Let G be a CFG in CNF form. Thus it only contains rules of the form

S → ε

A→ BC

A→ a.

Let G′ be the CFG obtained from G by changing rules of the form A→ BC to

A→ CB.

Then G′ generates LR.

Conjecture 3.6.2
CFLs are closed under language expansion.

Proposition 3.6.3
CFG’s are not in general closed under intersection and complementation.

Proof
Observe that the non context-free language

{0n1n2n : n ≥ 0} = (0∗{1n2n : n ≥ 0}) ∩ ({0n1n : n ≥ 0}2∗)
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is an intersection of CFLs.

Now, suppose towards a contradiction that CFLs are closed under complementation. But
then any CFLs L1, L2,

L1 ∩ L2 = L̄1 ∪ L̄2

would be a CFL, which we have just disproven.

Observation 3.6.4
Let f, g : Σ∗ → {0, 1} be booleans functions which are true if the input satisfies some
condition. Consider two CFLs of the form

A = {x ∈ Σ∗ : f(x) = T}
B = {y ∈ Σ∗ : g(y) = T}.

Then the intersection
A ∩B = {z ∈ Σ∗ : f(z) ∧ g(z)}

expresses then logical and of the f, g.
DFAs, we only have access to finite memory, thus the logical and can still be computed
with finite memory. However, CFLs have access to a form of infinite memory, hence
the logical and is in some sense too powerful to be preserved.

It is a bonus challenge to provide a formal definition of deterministic pushdown automata
(DPDA) and deterministic context-free languages (DCFLs). The class of DCFLs is a strict
subset of CFLs.

They also share more properties with regular languages than CFLs. DCFLs ARE closed
under complementation and therefore intersections as well.

Theorem 3.6.5
The classes of deterministic and standard CFLs satisfy strict inclusion.

Proof
It is clear that any DCFL can be simulated by a CFL, whose transition relation is reduced
to a singleton.

Conversely, let
L := {0n1n2n : n ≥ 0}

and consider L̄. We can write it as
L̄ = 0∗1∗2∗ ∪ {0m1n2` : m 6= n} ∪ {0m1n2` : n 6= `} ∪ {0m1n2` : m 6= `}

This is a union of regular language and 3 CFLs. Thus L̄ is a CFL.
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We claim that L̄ is not a DCFG. Indeed, if it is, L would be a DCFG and therefore a
CFG, which is a contradiction.

3.6.1 Topological Separation

One of the previous properties of regular languages was that for any infinite regular language
L, there is an infinite regular language L′ ⊆ L such that L̄′ was also infinite.

Whether this holds for CFLs is an open problem!

Problem 3
Prove or disprove. Every CFL L whose complement L̄ is infinite, there exists a CFL
L′ ⊇ L such that L′, L̄′ are both infinite.
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Chapter 4

Computability

4.1 Turing Machines

Definition 4.1.1 (Deterministic Turing Machine)
A deterministic Turing machine is an abstract machine

M := (Q,Σ,Γ, δ, q0, qacc, qrej)

where

• Q is a finite set of states

• Σ is the input alphabet

• Γ is the tape alphabet

• δ : Q× Γ → Q× Γ× {L,R} is the transition function

• q0 ∈ Q is the initial state

• qacc ∈ Q is the accept state

• qrej ∈ Q \ {qacc} is the reject state

A transition from state A to B along the arc a → b;R is understood as the transition that
is followed when the current state is A, and the symbol at the current head is a. We then
overwrite a with b and move the tape head one to the right. Note that either a, b can be �,
which is used to denote blank cells with no content.
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To be a valid Turing machine specification, the tape alphabet must include all of Σ as well
as �.

The intended meaning of qacc, qrej is that the Turing machine halts whenever it arrives at the
accepting or rejecting state. Thus even though we must define transitions from qacc, qrej, we
will never specify such transitions.

Definition 4.1.2 (Configuration of Turing Machine)
A configuration of a TM T is a string wqy with wy ∈ Γ∗ and q ∈ Q where

• q is the current state of the automaton

• wy is the current string on the tape

• the position of the tape head is on the first symbol in y

The inital configuration on input x is q0x.

We say that the configuration wqy is an accepting configuration if q = qacc, an rejecting
configuration if q = qrej, and a halting configuration if it is an accepting or rejecting config-
uration.

Definition 4.1.3 (Yield)
For any strings w, y ∈ Γ∗, symbols a, b, c ∈ Γ, and states q, q′ ∈ Q, the configuration
waqby in M yields wq′acy, denoted by

waqby ` wq′acy

when δ(q, b) = (q′, c, L). Moreover,

qby ` q′�cy

when δ(q, b) = (q′, c, L).
Similarly,

waqby ` wacq′y

when δ(q, b) = (q′, c, R). As well as

waqb ` wacq′�

when δ(a, b) = (q, c, R).
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Definition 4.1.4 (Derive)
We say the configuration wqy derives the configuration w′q′y′ in M , denote by

wqy `∗ w′q′y′

if there is a finite sequence of configurations wiqiyi, i ∈ [k] such that

wqy ` w1q1y1 ` · · · ` wkqkyK ` w′q′y′.

Definition 4.1.5
The TM M with initial state q0

• accepts x is (q0, x) derives an accepting configuration

• rejects x if (q0, x) derives a rejecting configuration

• halts on x if it either accepts or rejects x

4.1.1 Decidable Languages

Definition 4.1.6 (Decides)
A TM M decides L ⊆ Σ∗ if it accepts every x ∈ L and rejects every x /∈ L.

A language is decidable if there is a TM that decides it.

Observation 4.1.1
It is possible that a TM M never halts on some input x! In this case, M does
not decide any language. This is in contratary to PDAs and NFAs which ALWAYS
corresponds to some language.

The set of decidable languages is also known as the set of recursive languages.

63



4.1.2 Recognizable Languages

Definition 4.1.7 (Recognize)
The TM M recognizes the langauge L if it accepts every x ∈ L and either rejects or
does not halt for every x /∈ L.

A language is recognizable when there is some TM that recognizes it.

Conjecture 4.1.2
The set of recognizable languages is also known as the set of recursively enumerable
languages. Is there a collection of enumerable languages? If so, what is the relation
to the recursively enumerable languages?

Note that although not every TM decides a language, every TM recognizes a language.
Moreover, the set of decidable languages is a subset of the set of recognizable languages.

4.2 Church-Turing Thesis

Although a TM seems like a very restricted model of computation, we believe that it is just
as powerful as ANY other reasonable model of computation.

Hypothesis 4.2.1 (Church-Turing Thesis)
Any decision problem that can be solved by an algorithm on any computer that we
can construct in this universe corresponds to a language that can be decided by a
Turing machine.

We cannot prove the Church-Turing Thesis as it requires a formal mathematical definition
of the terms involved in the statement.

Even if we cannot prove it, we can heuristically verify it on various models of computation.

Question 4.2.2
It feels as if the Church-Turing Thesis is basing the concept of computation on classical
physics. As we know now, there are problems for which there exist efficient quantum
algorithms but no known classical counterparts.
Is there a generalization of the Church-Turing Thesis which takes into account quan-
tum physics?
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4.2.1 Turing Machines with Registers

Definition 4.2.1 (Register Turing Machine)
A register TM has a finite number of registers which can each store one symbol from
the tape alphabet. The transitions of these register TM are determined by the current
state, the content of the tape at the current head position, and the content of all the
registers.
On each transition, the register TM can overwrite the content of the current tape cell
as well as all of the registers.

Proposition 4.2.3
Every language that can be decided by a register TM M can also be decided by a TM
M ′.

Proof
Let C be the set of possible register configurations. Let M ′ be a TM with state set
Q(M)× C.

A transition from state A to B through the arc a → b;L with register operation S → S ′

in M corresponds to the transition from state (A, S) to (B, S ′) through the arc a → b;L
in M ′.

The case for a→ b;R is symmetric.

4.2.2 Subroutine Turing Machines

Definition 4.2.2 (Subroutine Turing Machine)
A subroutine TM is a TM that can call TMs to run as black-box subroutines on the
input. A call to a subroutine can be represented as a special type of state in the
subroutine TM. All actions on the input tape (including movement of the current
head position) persist after the subroutine halts, and two transitions are followed out
of its special state; one for when the subroutine accepts and the other for when it
rejects.

Proposition 4.2.4
Every language that can be decided by a subroutine Turing machine can also be decided
by a TM.
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Proof
It suffices to show that we can simulate subroutine TMs with register TMs with one
register.

The states of our TM is obtained by taking the union of all non-subroutine states in the
subroutines TM as well as any of the ones it could call and new “return states” JM for
each possible subroutine M .

The tape operations are unchanged upon entering a subroutine. Upon exiting, whether
we halted by accepting the string or rejecting the string is indicated by transitioning to
the state JM with a 1 or 0 in the register.

Then we transition from JM depending on the value in the return register to the appro-
priate state in “parent” machine.

Observation 4.2.5
Our previous proof can be tweaked to work with arbitrary recursion. However, we
need a “stack” to store the state of the “parent” machine to which we should transition
after recursing.
To do this, we introduce a separator symbol “|” which divides the tape into 2 segments:
the “stack” and the “heap”. Moreover we add a pointer indicator symbol # used on the
heap which serves to track where the pointer should return to following an operation
on the stack.
Each element on the stack indicates the previous level of recusion. Specifically, it
stores the state upon which we should transition following a subroutine.
The idea is identical to implementing recursion in assembly.

4.2.3 Multitape Turing Machines

Definition 4.2.3 (Multitape Turing Machine)
A multitape TM is a TM with k ≥ 1 tapes instead of one. It also has k tape heads,
one per tape, which can move independently of each other, and the current symbol
on each tape can be read and overwritten on each transition.
In otherwords, the transition function of a multitape TM is a function of the form

δ : Q× Γk → Q× (Γ× {L,R,N})k,

where N indicates no movement.
Initially, the input is written in tape 1 and the other tapes are empty.
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Theorem 4.2.6
Every language that can be decided by a multitape TM can also be decided by a TM.

Proof
It suffices to show that we can simulate a multitape TM with a register TM.

We “compress” the k tapes into one. First observe that in finite time, each of the k tapes
only contain a finite number of non-� symbols. Let “|” be a new separator symbol and #
be a new symbol indicating that the next symbol should be where the pointer is placed
on the current tape.

Thus given an input string x, the initial configuration is

| q0#x | # | # | # |

for k = 4.

For each transition, we move the pointer k − 1 times, stopping each time we see a # (we
keep the pointer at the first #). Then, we apply the desired operation on the i-th tape.

When we wish to shift the ith-tape to the left, we will copy all strings to left of the
pointer one cell to the left (adding a new empty character if necessary). Then we write
� to the newly freed up cell. This might be necessary when moving the # indicator as
that requires us to shift the tape to the right when moving the indicator to the left and
shifting the tape to the left when moving it to the right. The other case where this is
necessary is when we extend the i-th tape to the left.

The cases for the right are analogous.

Observation 4.2.7
It can be shown that the lambda calculus model of computation can be simulated by
TMs.

4.3 Universal Turing Machines

Definition 4.3.1 (Universal Turing Machine)
A universal TM is a TM U such that any input M,x which encodes a TM M and a
string x accepts if M accepts x and rejects if M rejects x.
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Theorem 4.3.1
There exists a Universal TM.

Proof
It suffices to show that there is a universal TM with 1 register and 2 tapes. The first tape
only stores the input TM M and x. The second tape simulates the tape of M . Finally,
the register stores the current state of the simulation.

There are only 3 states q0, qacc, qrej. We transition from q0 → qacc if the register indicates
the we are in the accepting state of simulation and similary q0 → qrej if the register
indicates the simulation rejects x. All other transitions are loops at q0.

To simulate a transition from states A → B through the arc a → b;L, the head at the
second tape must be over a cell containing the symbol a and the register holds the state
A. We overwrite the register to B, the seconday tape to b and move the head of the
secondary tape to the left.

4.3.1 Turing Completeness

A Turing-complete model of computation is one that is “as poweful” as TMs. The Church-
Turing thesis states that such models are the “most powerful” models of computation.

Definition 4.3.2 (Turing Complete)
A model of computation is Turing-complete if for every decidable language L, there
is a machine/algorithm in this model that decides L.

Proposition 4.3.2
If a universal Turing machine can be implemented in the model of computation M, then
M is Turing-complete.

Proof
Fix a decidable language and let M be a TM which decides L. By implementing a
universal TM U in M, we can decide L simply by feeding it the input M,x.

By definition, M is Turing-complete.

Observation 4.3.3
Piano arithmetic is Turing-complete.
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4.4 Non-Deterministic Turing Machines

Definition 4.4.1 (Nondeterministic Turing Machine)
A Nondeterministic Turing machine (NTM) is an abstract machine defined by

M = (Q,Σ,Γ, δ, q0, qacc, arej)

where

• Q is a finite set of states

• Σ is the input alphabet

• Γ is the tape alphabet

• δ : Q× Γ → P(Q× Γ× {L,R}) is the transition relation

• q0 ∈ Q is the initial state

• qacc ∈ Q is the accept state

• qrej ∈ Q \ {qacc} is the reject state

Definition 4.4.2 (Decide)
The NTM M decides L ⊆ Σ∗ if and only if

(i) for every x ∈ L, there is a computational path that accepts x
(ii) ALL computational paths for x halt
(iii) for x /∈ L, all computational paths reject x

Definition 4.4.3 (Recognize)
The NTM M recognizes L ⊆ Σ∗ if and only if

(i) for every x ∈ L, there is a computational path that accepts x
(ii) for x /∈ L, no computational paths accepts x

Theorem 4.4.1
The set of languages that can be decided by TMs is exactly the same as the set of
languages that can be decided by NTMs.
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Proof
Let M be a TM. Let M ′ be the NTM obtained from M by changing the transition function
to a transition relation where the image of any input is a singleton given by the transition
function of M . Then M ′ decides L if and only if M decides L.

Conversely, consider a NTL M ′ and an input string x. We can simulate M ′ with a TM
M which performs “backtracking”.

Indeed, let M be a TM with 2 tapes. We introduce a new separator symbol | and a head
indicator symbol #. The primary tape is a stack holding copies of the tape of M ′ separated
by | with # indicating the head location of the “current” tape. The secondary tape is
stack of states of M , with | indicating that the next state on the stack is a “backtrack”
state.

Suppose we are simulating M ′ with configuration aqb. Enumerate

δ(q, b1) = {(qi, ti, Ti) : i ∈ [m]}.

Let Si(ab) be the tape after overwriting b1 with ti and translating according to Ti. Initially,
add | S1(ab) | S2(ab) | · · · | Sm(ab) to the primary tape. and | q1q2 . . . qm to the secondary
tape. We then continue the simulation as if we are in state qm with tape Sm(ab).

If the current symbol in the secondary tape is not |, then we arrived at the current state
through a forward arc. Thus we would add all possible next states to the tapes. If the
current symbol in the secondary tape is |, then we have exhausted all computational paths
from some configuration and we “pop” the primary and secondary tape to “backtrack” to
a parent configuration.

If we ever land in an accept state, the simulation terminates and we accept x. If the
primary and secondary tapes become empty, then we reject x.

Observation 4.4.2
Although we can simulate NTMs with TMs, it is not “efficient” in the sense that we
are simply brute force attempting every possible computation path.

4.4.1 Equivalence of Recognizability

The equivalence between deterministic and nondeterministic Turing machines hold for the
case of recognizing langauges as well.
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Theorem 4.4.3
The set of languages that can be recognized by TMs is exactly the same as the set of
languages that can be recognized by NTMs.

Question 4.4.4
Why are NFAs equivalent to DFAs, NTMs equivalent to TMs, but PDAs are not
equivalent to deterministic PDAs?

4.5 Decidable Languages

In order to understand what languages we can decide with any computer, it suffices by the
Church-Turing thesis to consider Turing machines.

4.5.1 Context-Free Languages

Theorem 4.5.1
Every context-free language is decidable.

Proof
Let L be context-free. We must show that there is a NTM T for which w ∈ L if and only
if there is a computational path in T which accepts w. Moreover, all computation paths
of T terminate.

Let G be a CFG of L in CNF. We simulate the derivation of w by using the tape to store
intermediate derivations. To ensure that all computation paths terminate, we observe
that each rule of G of the form A → BC increases the length of the final string by 1,
hence we permit at most |w| − 1 applications of these types of rules.

To see that there is a computation path which accepts w if and only w ∈ L, observe that
this is the definition of G.

Observation 4.5.2
We could have simply simulated PDAs with Turing machines. However, it is harder
to show that all computational paths terminate.
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Proposition 4.5.3
The language L := {0n1n2n : n ≥ 0} is decidable.

Proof
A 4-tape TM T for which the input is read in the first tape, and the 2nd, 3rd, 4th tapes
are used to track the number of 0s, 1s, 2s, respectively easily decides L.

4.5.2 Clique

Proposition 4.5.4
The language LCLIQUE consisting of the encoding of every graph G on n ≥ 1 vertices
that contains a clique of size at least n

2
is decidable.

Proof
Remark that if there is a clique of size at least n

2
, if and only if there exists a clique of

size S = dn
2
e.

Suppose the graph G is encoded into an adjacency matrix. For every subset V ′ ⊆ V of
the vertices such that |V |′ = S, we check if every pair of vertices v, w ∈ V ′ is adjacent. If
there is some such V ′, then we accept G. Otherwise, we reject G.

4.5.3 Accepting DFAs

Proposition 4.5.5
Let ADFA be the language of all encodings of (M,x) where M is a DFA and x is a string
accepted by M . Then ADFA is decidable.

Proof
Our algorithm simply simulates M on the input x.
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4.5.4 Closure Properties

Theorem 4.5.6
The class of decidable languages are closed under

• union

• intersection

• complementation

• set difference

• star operation

• reversal

Proof
Union: Let T1, T2 be two TMs which decide L1, L2. Then we can run T1 on an input x
and then T2 on an input x to decide if x ∈ L1 ∪ L2.

Complementation: Simply swap the accepting and rejecting states for a TM T which
decides L.

Intersection We know that L1 ∩ L2 = L̄1 ∪ L̄2. Hence the result follows from our work
above.

Set Difference: We know that L1 \L2 = L2 ∩ L̄2, hence we have already proven the claim.

Star Operation: First we claim that decidable languages are closed under concatenta-
tion. Let L1, L2 be decidable and x an input, For each i ∈ {0, 1, . . . , |x|}, guess that
x[1, . . . , i], x[i+ 1, . . . , |x|] are in L1, L2 and verify if it is the case. Then x ∈ L1L2 if and
only this is true for some i.

Recall that L∗ =
⋃
k≥0 L

k. We then guess some 0 ≤ k ≤ |x| such that x ∈ Lk. Then,
we split x in the finitely many possible configurations of k substrings and test that each
substring belongs to L. Then x ∈ Lk if and only if this is true for some configuration.

Reversal: Observe that

LR = {wR : w ∈ L} = {w : wR ∈ L}.

Hence on an input x, we can simply make a reverse copy of x and check if a TM deciding
L accepts xR.
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4.6 Undecidable Languages

4.6.1 Existence

Proposition 4.6.1
There exist undecidable languages.

Proof
For any alphabet Σ, the class of all languages over Σ is uncountable. We argue there
are only a countable number of Turing machines. To see this, fix integers k ≥ 2 and
` ≥ |Σ|+ 1.

Fix a tape alphabet Σ of size `. Then there are only a finite number of TMs with input
alphabet Σ, tape alphabet Γ, using k states.

Now, any valid tape alphabet is differentiated only by its length. Thus there are only
countably many tape alphabets. Then, there are only countably many TMs since the
number of possible states is countable.

4.6.2 First Undecidable Language

Definition 4.6.1 (Accepting Language)
The accepting language is given by

ATM := {〈M,x〉 :M is a TM that accepts x}.

Theorem 4.6.2
ATM is undecidable.

Proof
Suppose towards a contradiction that there is a TM A which decides ATM.

Let B be the TM obtained from A which rejects 〈T 〉 if A accepts 〈T, 〈T 〉〉. Otherwise, B
accepts 〈T 〉 if A rejects 〈T, 〈T 〉〉.

Suppose B accepts 〈B〉. Then A accepts 〈B, 〈B〉〉. But by definition, B then rejects 〈B〉.

Suppose now that B rejects 〈B〉. Then A rejects 〈B, 〈B〉〉. But by definition, B then
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accepts 〈B〉.

By contradiction, we conclude that B and therefore A cannot exist.

Observation 4.6.3
We can decide the subset of ATM consisting of 〈M,x〉 where M is a DFA. Why does
this not in general work for TMs?
It seems like the issue is the ability of TMs to simulate other TMs, an ability which
is not possible for DFAs.

4.7 More Undecidable Languages

4.7.1 Halting

Definition 4.7.1 (Halting Language)
The halting language is

HTM := {〈M,x〉 :M halts on input x},

the set of encodings of TMs M and strings x such that M halts when it is run on
input x.

Theorem 4.7.1
The language HTM is undecidable.

Proof
Suppose towards a contradiction that there is a TM T that decides HTM.

On an input 〈M,x〉, Let M ′ be the TM obtained from M by creating a new state l for
which all transitions lead back to itself (loop). Then all transitions to qrej are re-routed
to l. Clearly M accepts x if and only if M ′ halts on x.

Thus we can decide ATM using the TM

T 〈M ′, x〉.
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Question 4.7.2
It seems like the Halting language/problem is introduced in lower level courses first.
However, we introduced the accepting language first. Is there a reason for doing so?
Maybe the concept of “Halting” is much more intuitive and requires less background
to understand than the concept of accepting a string?

4.7.2 Emptiness

Definition 4.7.2
The language

EMPTYTM := {〈M〉 : L(M) = ∅}.

Theorem 4.7.3
The language EMPTYTM is undecidable.

Proof
Suppose there is a TM T which decides EMPTYTM. On an input 〈M,x〉, let M ′ be the
TM obtained from M which first checks by brute force that the input string is exactly x,
then feeds it to M .

Then L(M ′) 6= ∅ if and only if M accepts x. Hence we can decide ATM by checking

EMPTYTM(〈M ′, x〉).

4.7.3 Equality

Definition 4.7.3 (Equality)
The language

EQTM := {〈M1,M2〉 : L(M2) = L(M2)}

is the set of encodings of TM pairs that recognize the same language.

Theorem 4.7.4
EQTM is undecidable.
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Proof
Let T be a TM which decides EQTM. We can decide EMPTYTM using the TM

EQTM(〈M,∅〉),

where ∅ indicates some TM which decides the empty language.

4.8 Rice’s Theorem

Rice’s theorem generalizes the idea that when L is represented using a TM that recognizes
it, we cannot decide whether L includes a given string x, even if L = ∅.

4.8.1 Properties of Decidable Languages

Definition 4.8.1 (Property)
A property of recognizable languages is a subset of the set of all recognizable lan-
guages.

We say that a property of recognizable languages is non-trivial if it is not the empty set nor
the set of all recognizable languages.

Definition 4.8.2
For every Turing machine language P , let

LP := {〈M〉 : L(M) ∈ P}

denote the language of all encodings of Turing machines that recognize a language in
P .

Theorem 4.8.1 (Rice)
For every non-trivial property P of recognizable languages, the language LP is unde-
cidable.

Proof
By taking P̄ if necessary, we may assume without loss of generality that ∅ /∈ P .

Suppose there is a TM TP which decides LP . Our goal is to obtain a TM which decides
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ATM.

First, observe that since P is non-trivial, we can find some TM T such that L(T ) ∈ P .

Given an input 〈M,x〉, let M̃ be the machine which acts on input y as follows:

1. Simulate M on the input x.
2. If M accepts x, proceed. If M rejects x, loop in place instead (thus M either accepts

or does not halt on x).
3. Simulate T on y.

Thus if M accepts x, L(M̃) = L(T ) ∈ P . Otherwise, L(M̃) = ∅ /∈ P .

Hence the machine H such that on input 〈M,x〉 feeds M̃ to TP decides ATM. But ATM

is undecidable and hence so is LP .

Observation 4.8.2
Even though Rice’s theorem seems very powerful, a key limit is that the language in
question must be “related” to the action of Turing machines. Thus it does not say
much about a general language whether it is decidable or not.
Is there some sort of “Pumping Lemma” for decidable languages? It might be difficult
to get a necessary and sufficient condition for a language to be decidable, but what
about some non-trivial necessary conditions?

4.9 Recognizability

So far, we have been focusing on decidable languages. Clearly, any decidable language is
recognizable, since a TM which decides L also recognizes L.

Moreover, we know that there are only countably many TMs over an alphabet with a fixed
tape alphabet. Hence there can only be countably many recognizable languages while the
class of all languages is uncountable.

Question 4.9.1
Each progressively larger class of languages we have considered (regular, context-free,
decidable, recognizable) have been countable.
Is there some interesting class of languages that is uncountable (excluding the class
of all languages)?
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4.9.1 A Recognizable but Undecidable Language

Theorem 4.9.2
ATM is recognizable.

Proof
Since we know universal TMs exist, this is not too hard.

Indeed, on an input 〈M,x〉, simply simulate M on x. Then return “accept” if M accepts
x.

4.9.2 Decidability & Recognizability

Theorem 4.9.3
A language is decidable if and only if both L and its complement L̄ are recognizable.

Proof
The forward direction is easy. The decidable languages are closed under complements,
hence if L is decidable, both L, L̄ are decidable and therefore recognizable.

Suppose now that L, L̄ are recognizable. Let M,M ′ be TMs that recognize L, L̄. Using
two universal TMs, we can simulate M,M ′ on an input x.

Then x ∈ L if M accepts x and x /∈ L if M ′ accepts x. Hence we can decide if x ∈ L
using this machine and L is decidable.

Definition 4.9.1 (Corecognizable Language)
A language is corecognizable if its complement is recognizable.

4.9.3 First Unrecognizable Language

Corollary 4.9.3.1
The language ATM is not recognizable.
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Proof
If it were, then by the above theorem, ATM would be decidable.

Observation 4.9.4
We can extend this result to any recognizable but undecidable language. The com-
plement of any such language is necessarily not recognizable.
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Chapter 5

Time Complexity

5.1 TIME Complexity Classes

We have previously focused on computability theory, the idealized scenarios where machines
have unlimited resources. We now shift to complexity theory, where computers have bounded
resources.

5.1.1 Time Cost & Complexity

Definition 5.1.1 (Time Cost)
The time cost of the Turing machine M on input x is the number of transitions it
follows before it halts.

Note that we will restrict our attention to TMs that always halt.

Definition 5.1.2 (Worst-Case Time Cost)
The (worst-case) time cost of the TM M is the function t : N → N where t(n) is the
maximum time cost of M on any input x of length |x| = n.

Observation 5.1.1
We can alternatively define average, expected, and best-case time costs.

The tie cost is a measure of efficienty of individual TMs. We use this to measure the notion
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of the complexity of decidable languages.

Definition 5.1.3 (Time Complexity Class)
For every function t : N → N, the time complexity class TIME(t) is the set of all
languages that can be decided by a multitape TM with worst-case time cost bounded
above by O(t).

Note that we defined TIME(t) is based on multitape TMs.

5.1.2 First Examples

The class TIME(n) is the set of languages that can be computed by linear-time TMs and is
particularly interesting.

Proposition 5.1.2
The class TIME(n) is a strict superset of the class of all regular languages.

Proof
By simulating DFAs, there is a linear-time TM which decides any regular language

However, there is clearly a 2-tape TM which decides {0n1n : n ≥ 0} in linear time. Hence
the inclusion is strict.

Proposition 5.1.3 (Bonus)
The language L := {0n1n2n : n ≥ 0} is not context-free but satisfies L ∈ TIME(n).

Proof
We have already shown it cannot be context-free.

Consider the 3-TM M for which the primary tape holds the input. Let x be an input
string. First ensure x ∈ 0∗1∗2∗ in linear time.

Then, as we iterate through the 0’s, use the secondary and tertiary tape to keep 2 copies
of the count. As we iterate through the 1’s, subtract a counter from the secondary tape
per symbol and reject the string if we ever see “too many” 1’s. As we iterate through the
2’s, subtract a counter from the tertiary tape per symbol and reject the string if we ever
see “too many” 1’s. Then we accept if and only if the seconday and tertiary heads are on
an empty cell.

We can thus decide L in linear-time.
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Proposition 5.1.4 (Challenge)
TIME(1) consists of the languages where membership can be decided by examining a
constant prefix of the string.

Proposition 5.1.5
For every t ∈ o(n), TIME(t) = TIME(1).

Proof
Suppose towards a contradiction that there is some L ∈ TIME(t) \ TIME(1). We claim
that for each N ∈ N, there is some x ∈ L, |x| =: n ≥ N such that there is y /∈ L with

x1 . . . xn
2
= y1 . . . yn

2
.

If the claim holds, then by choosing a sufficiently large N such that n ≥ N implies

t(n) <
1

2
n,

we see that no TM can distinguish x, y in time t(n) and arrive at the desired contradiction.

To see the claim, suppose that there is some N0 ∈ N such that for all x ∈ L, |x| =: n ≥ N
implies there are no y /∈ L that agrees with x on the first 1

2
n symbols.

There is at least one string x̄ ∈ L of length at least N0 since L is necessarily infinite. Let
n0 := |x̄|. There are no strings y /∈ L which agrees with x̄ on the first 1

2
n0 symbols.

Thus any y /∈ L either has length less than 1
2
n0, or differs from x̄ in the first 1

2
n0 characters.

In other words, any |z| ≥ 1
2
n0 belongs in L as long as it agrees with x0 on the first 1

2
n0

symbols.

But n0 is a constant! Moreover, there are only a finite number of strings with length less
than 1

2
n0. Thus we actually have L ∈ TIME(1), proving the claim by contradiction.

5.1.3 Linear Speedup Theorem

The reason why we defined TIME(t) with multitape TMs is that the definition of (single-
tape) TMs are essentially equivalent.
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Theorem 5.1.6 (Linear Speedup)
For every ε > 0, if there is a multitape TM M that decides L with time cost t(n),
then there is also a multitape TM M ’ that decides L and has time cost

εt(n) + n+ 2.

Proof
We may as well assume that t ∈ Ω(n), since otherwise, there is only TIME(1).

The idea is to compress multiple tape cells into a single symbol from a larger alphabet.

Let m be a constant. The new tape alphabet is Γ ∪ Γm. We may introduce new states
but only finitely many. We also add an additional tape. The head position within each
tape is stored as states.

First, compress the input onto an additional tape by iterating through the n input tape
cells and compressing every m symbols into a single tuple in the new tape. Note that we
need 2 extra steps. The first step lands past the end of the input. The second “ends” the
copying step since m does not necessarily divide n and we might be “midway” through
an m-tuple.

Note that the naive description outlined above requires n
m

extra steps to realign the tape
head. We can eliminate this by only copying as required during the simulation.

Now, at any given configuration, our TM can read all m cells to the left and right of its
head position in a tape by moving left, right, right, left. Then, in at most 4 more steps, it
can updaate the cells within m of its current position. In other word, with only 8 steps,
we can simulate m steps within the original TM.

The overall time cost is at most

2 + n+
n

m
+

8

m
t(n) ≤ 9

m
t(n) + n+ 2.

By choosing m ≥ 9
ε
, we are done.
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Observation 5.1.7
The statement (as well as proof) of the linear speedup theorem is analogous to “hard-
ware” improvements in the everyday computer. Given a slow piece of hardware, we
can copy over an input to a faster piece of hardware (the transfer is limited by the
slower hardware), then speed up computation by a constant factor.
What more, we even have the hardware trick of “lazy evaluation” in which we only
transfer the input when necessary for the computation. Unlike most of the results
we have seen in this class, this theorem seems very deeply inspired by hardware (or
hardware is very inspired by this theorem)!

5.2 Time Hierarchy Theorem

Generally, giving TMs more time to run allows them to decide more languages.

5.2.1 Weak Time Hierarchy Theorem

Theorem 5.2.1 (Weak Time Hierarchy)
TIME(n) ( TIME(n3).

Proof
Let T be the TM such that on input 〈M,x〉, simulates M on x for at most |x|2 steps. If
M accepted, output reject. If M did not halt or rejects, output accept.

Now, T always halts and thus T decides L := L(M). Taking into consideration the
O(log n) time per step to decrement a counter, L ∈ TIME(n2 log n) ⊆ TIME(n3). We
now argue that L /∈ TIME(n).

Suppose there is a TM H that decides L in O(n) time. Consider the input 〈H, 1k〉 where
k is a sufficiently large so that T can simulate the entire execution of H on 〈H, 1k〉. Thus
T outputs the opposite of what H outputs on 〈H, 1k〉. It follows that H does NOT decide
the same language as T .
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5.2.2 Time Hierarchy Theorem

Definition 5.2.1 (Time-Constructible)
The function T : N → N is time-constructible if for every n, there is a Turing machine
that writes t(n) ones on the tape in time O(t(n)).

Theorem 5.2.2
For every time-constructible function t : N → N,

TIME(t(n)) ( TIME(t(n) log t(n)).

Proof
Let T be the TM such that on input 〈M,x〉, simulates M on x for at most t(|x|) steps. If
M accepts, output “reject”. If M does not halt or reject, output “accept”.

Now, T always halts and thus T decides L := L(M). By construction, L ∈ TIME(t(n) log t(n)),
since simulation incurs logarithmic overhead. We now argue that L /∈ TIME(t(n)).

Indeed, suppose there is some machine H which decides L in time t(n). Consider the input
〈H, 1k〉 where k is sufficiently large so that n := |〈H, 1k〉| ∈ Θ(k) and T can simulate the
entire execution of H on 〈H, 1k〉. Thus T outputs the opposite of what H outputs on
〈H, 1k〉. It follows that H does NOT decide the same language as T .

5.2.3 Necessity of Time Constructibility

Theorem 5.2.3
There exist non-time-constructible functions t : N → N with t ∈ ω(n) for which

TIME(t(n)) = TIME(t(n) log t(n)).

Proof
Suppose towards a contradiction that all functions nx, x > 1, satisfy

TIME(nx) ( TIME(nx log n).

We can uniquely pick some Lx ∈ TIME(nx log n)\TIME(nx). Observe that for any y < x,

Lx /∈ TIME(ny log n) ⊆ TIME(nx).
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Thus have an injective function
x 7→ Lx.

Since R>1 is uncountable, we have a contradiction.

There is some x̄ > 1 at which this statement necessarily fails. Note that then nx̄ is
necessarily non-time-constructible.

5.3 P

Definition 5.3.1 (Polynomial-Time Turing Machine)
A polynomial-time TM is a TM with time cost O(nk) for some k ≥ 1.

Definition 5.3.2 (P)
The class P is the set of all languages that can be decided by some polynomial-time
TM. Thus

P :=
⋃
k≥0

TIME(nk).

Note that P =
⋃
k≥C TIME(nk) for any C ≥ 0. But it is NOT equal when k is bounded

above.

5.3.1 Motivation

Strength

One reason to study P is the strength of the conclusion that L /∈ P.

Observation 5.3.1
A quasi polynomial is a function of the form

2O(logc n)

where c ≥ 1 is a constant. Note that c = 1 means that it is linear.
For c > 1, any quasi polynomial is not bounded above by any polynomial. This is the
smallest time complexity class I can identify which still could still contain a language
L /∈ P .
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Closure

P is closed under subroutine calls. If a polytime subroutine TM uses black-box calls to
another polytime TM, the total time complexity remains polynomial.

Robustness

Hypothesis 5.3.2 (Cobham-Edmonds Thesis)
Any decision problem that can be solved in polynomial time by an algorithm on any
physically-realizable computer corresponds to a language that is in P.

Observation 5.3.3
In some sense, the Cobham-Edmonds thesis stipulates that P completely captures
essence of what it means to be “easy, fast, tractable”. However, it ignores factors such
as constants, the size of the exponent of the polynomial, and the typical size of the
input.
The linear speedup theorem partially addressses the first factor, since it shows that
hardware improvements make constants irrelevant. However, (classical) hardware
improvements are limited by the physical laws of the world, hence it is unreasonable
to assume hardware improvements will continue unimpeded.
The exponent of the polynomial matters significantly when the typical input size
is very large. Indeed, the simplex method is very fast in practice. Its smoothed
analysis has a running time of Õ(n3) where the Õ notation hides a polylogarithmic
factor. But on even moderate sized linear programs, the textbook simplex algorithm
struggles (without using other speedup techniques).

There is much less consensus on the validity of the Cobham-Edmonds Thesis than on the
Church-Turing thesis. Quantum computers might disprove the Cobham-Edmonds thesis if
there exists a polytime quantum algorithm that can decide any language L /∈ P .

5.3.2 First Observations

Proposition 5.3.4
Every regular language is in P.

Proof
Every regular language is in TIME(n) ⊆ P.
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Proposition 5.3.5
The languages L0n1n , L0n1n2n are in P.

Proof
There is a 3-tape and 4-tape TM which decides both languages in linear time, respectively.

Definition 5.3.3 (E)
The class

E :=
⋃
k≥0

TIME(2kn).

Definition 5.3.4 (Exp)
The class

Exp :=
⋃
k≥0

TIME
(
2n

k
)
.

Theorem 5.3.6
P ( E ( Exp.

Proof
We argue by the time hierarchy theorem.

For any k ≥ 0,
nk log nk ∈ o(2n).

Hence P ( Exp.

Now,
20·n log 20·n = 1 ∈ o(2n

1

).

Hence E ( Exp.

5.4 NP

The class P is especially interesting to study in relation to the class NP.
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Definition 5.4.1 (Time Cost)
The time cost of the NTM M on input x is the maximum number of transitions it
follows before it halts, over all computation paths.

Question 5.4.1
Why is the time cost defined as the maximum on the number of transitions over all
computation paths and not just the minimum/average/median/etc? Does it change
anything if we modify the definition to one of the following above?

Definition 5.4.2 (Worst-Case Time Cost)
The (worst-case) time cost of a NTM is the function t : N → N where t(n) is the
maximum time cost of M on any input x of length |x| = n.

Definition 5.4.3 (Nondeterministic Time Complexity Class)
For every function t : N → N, the nondeterministic time complexity class NTIME(t)
is the set of all languages that can be decided by a nondeterministic multitape TM
with worst-case time cost bounded by O(t).

Definition 5.4.4 (NP)
NP :=

⋃
k≥0NTIME(nk).

5.4.1 Polynomial-Time Verifiers

Definition 5.4.5 (Verifier)
A verifier is a TM with an additional certificate tape. The input to a verifier is a pair
(w, c) with the input string w written on the main tape and the certificate string c
written on the certificate tape.

Definition 5.4.6 (Languaged Recognized)
The language recognized by the verifier V is

L(V ) := {w ∈ Σ∗ : ∃c, V accepts (w, c)}.

The verifier decides L(V ) if it always halts. A polynomial-time verifier is a verifier with time
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cost O(nk) for some k ≥ 0.

Theorem 5.4.2
A language L is in NP if and only if it can be decided by a polynomial-time verifier.

Proof
( =⇒ ) Let T be an NTM which decides L and has time cost O(nk), k ≥ 0. Now, the
verifier V be obtained from T such that V interprets the input (x, c) as an encoding of
some O(nk) length computation path along which T can take on x, and simulates T on x
through that path.

Then x ∈ L(T ) if and only if there is some path encoded as c such that T accepts c if and
only if x ∈ L(V ).

( ⇐= ) Let V be a poly-time verifier which decides L and has time cost O(nk), k ≥ 0. Let
T be the NTM obtained from V which on an input x, |x| = n, chooses some string c with
length O(nk) and simulates V on (x, c).

Then x ∈ L(V ) if and only if there is some c such that V accepts (x, c) if and only if
x ∈ L(T ).

Question 5.4.3
It has been mentioned in other courses that if a lanugage is in both NP and co-NP,
it is very likely to be in P (ie matchings, b-matchings, and many combinatorial opti-
mization problems).
Why is this the case?

5.4.2 P vs NP

Clearly P ⊆ NP. Whether we have equality is one of the biggest open problems in computer
science today.

Part of the reason for the popularity of this problem is the philosophical question whether
it is just as easy to find solutions to a problem than to just verify a solution for teh same
problem. Intuitively, the answer is no but a proof with respect to the P vs NP problem
eludes us!

Proposition 5.4.4
NP ⊆ Exp.
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Proof
Any NTM with time cost O(nk) can be simulated by a TM with time cost O(2nk) which
essentially implements backtracking on all possible computation paths.

5.5 NP-Completeness

We seek to capture the notion of being the “hardest” languages in NP to compute.

5.5.1 Polynomial-Time Reductions

Definition 5.5.1 (Polynomial-Time Reducible)
Given two languages A,B ⊆ Σ∗, the language A is polynomial-time reducible to B,
denoted

A ≤P B

if there is a function f : Σ∗ → Σ∗ such that
1. For every x ∈ Σ∗, we have x ∈ A ⇐⇒ f(x) ∈ B.
2. There is a polynomial-time TM M that on input x ∈ Σ∗, erases it and repaces

it with f(x) on the tap and then halts.

Reductions that satisfy the conditions in the definition are also known as Karp reductions.

Lemma 5.5.1
For every pair of languages A,B such that A ≤P B,

(i) B ∈ P =⇒ A ∈ P
(ii) B ∈ NP =⇒ A ∈ NP

Proof
Suppose B ∈ P and let T be a TM that decides it. We can decide A in polytime using
the polytime TM M which computes f and then simulates T .

Suppose B ∈ NP and let V be a polytime verifier for it. We can attain a polytime verifier
M for A which on input (x, c), simulates V on (f(x), c).
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5.5.2 NP-Hardness & Completeness

Definition 5.5.2 (NP-hard)
The language L is NP-hard if every language A ∈ NP satisfies

A ≤P L.

Definition 5.5.3 (NP-Complete)
The language L is NP-complete if it is NP-hard and satisfies L ∈ NP.

Proposition 5.5.2
If any NP-hard language L is in P , then P = NP.

Proof
We already know that P ⊆ NP. Let A ∈ NP. Since A ≤P L, then A ∈ P as well. It
follows that NP ⊆ P and we conclude the proof.

5.5.3 Existence of an NP-Complete Language

Theorem 5.5.3
There exists an NP-complete language.

Proof
Define

TMSAT := {〈V, x, 1m, 1t〉 : ∃c ∈ Σ∗, |c| ≤ m,V accepts (x, c) in at most t steps}.

Note that TMSAT ∈ NP. Indeed, an NTM which decides TMSAT would try all strings
c ∈ Σ∗, |c| ≤ m and simulate V on (x, c). This is polytime since the length of the encoding
is proportional to |x|+m+ t.

Now, let L be any language in NP and V a polytime verifier for L with time cost O(nk).
For each x ∈ L, there is some certificate cx such that V accepts (x, cx) in tx steps. Write
nx := |x|. Define f : Σ∗ → Σ∗ by

f(x) := 〈V, x, 1O(nkx), 1O(nkx)〉

Clearly, x ∈ L ⇐⇒ f(x) ∈ TMSAT.
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To see that f is polytime computable, Now, it takes time |V |+nx+O(nkx) to erase x and
replace it with f(x). This is certainly a polynomial of the input size.

5.6 Satisfiability

We showed the existence of an NP-complete language. We strive towards a simple, natural
language that is also NP-complete.

Observation 5.6.1
The NP-complete language we explored in the previous section is helpful in that its
NP-completeness follows also immediately from the definition of NP-completeness.
However, it feels very artificial and difficult to work with. One of the powers of NP-
complete languages is that any language in NP reduces to it. But working with our
previous language does not give any insight towards more natural problems in which
we are interested.
On the other hand, there are very simple reductions between 3-SAT and other classical
NP-complete problems such as independent set, clique, vertex cover, etc.

5.6.1 Boolean Formulas & SAT

A Boolean variable is one that takes on values either True or False. A literal is a variable x
or its negation x̄. A clause is the OR (disjunction) of one or more literals.

Definition 5.6.1 (Boolean Formula in Conjunctive Normal Form)
A Boolean formula in CNF is an AND (conjunction) of one or more clauses.

Definition 5.6.2 (Satisfiable)
A boolean formula is satisfiable if there exists some assignment of True or False values
to its underlying variables that causes the formula to evaluate to True.

Definition 5.6.3 (Satisfiability Language)
The satisfiability language is

SAT := {〈φ〉 : φ is satisfiable}.
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Lemma 5.6.2
SAT ∈ NP.

Proof
Consider the verifier V such that on input 〈φ, c〉 verifies that c is an assignment of variables
such that φ evaluates to True. This requires verifying each clause has at least one literal
which evaluates to true and is linear in the input size of φ.

5.6.2 Tableaux

The NP-completeness of SAT is obtained by considering tableaux.

Definition 5.6.4 (Tableau)
A tableau is a sequence of configurations of a TM.

Definition 5.6.5 (Valid Tableau)
A tableau is valid if the sequence corresponds exactly to the configurations of a
TM starting from its initial configuration all the way to the configuration where the
machine halts.

Definition 5.6.6 (Accepting Tableau)
A valid tableau is accepting when the TM is in an accepting state in its last configu-
ration.

The name tableau comes from the fact that we can represent one using a table, with each
row representing a configuration.

The height of a tableau is the number of rows of the table that represents it, which is the
number of configurations of the TM from the start of its execution to the moment that it
halts. This also represents the time cost of a TM on a given input.

The width of a valid tableau is the length of the strings representing the configuration. For
convenience, we add blank symbols to represent empty tape cells so that the configurations
all have the same length and line up.
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5.6.3 Tableau & SAT

In order to prove that SAT is NP-complete, we need to show that every language L ∈ NP
and every string w, we can construct in polytime a boolean formula φw that is satisfiable if
and only if w ∈ L.

5.7 Cook-Levin Theorem

We now complete the proof of the Cook-Levin theorem, which stipulates that SAT is NP-
complete.

For L ∈ NP and M a NTM that decides L in polytime. We want to show that w ∈ L if and
only if there is an accepting tableau for M on input w.

For a tableau T of size h× w, we define

xi,j,σ :=

{
T, Ti,j = σ

F, Ti,j 6= σ

for each i ≤ j, j ≤ w and σ ∈ Q ∪ Γ. We wish to construct φw so that it is satisfied if and
only if the Boolean variables xi,j,σ represent an accepting tableau for M on input w. We
can do this by introducing constraints to enforce the different conditions that the Boolean
variables must satisfy to represent such a tableau.

5.7.1 Cell Constraints

The first step is to ensure that the Boolean variables xi,j,σ really encode some tableau. For
this to occur, each cell (i, j) of the tableau must contain EXACTLY one symbol.

Lemma 5.7.1
For each cell (i, j), there is a Boolean formula φi,j that is satisfied if and only if there
is exactly one symbol σ for which xi,j,σ is True.
Furthermore, there is a Boolean formula φcell that is satisfied if and only if the con-
dition above is true for all cells (i, j) in the tableau.

Proof
Take

φi,j := (∨σ∈Q∪Γφi,j,σ) ∧ (∧σ 6=π∈Q∪Γ¬xi,j,σ ∨ ¬xi,j,π)
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and
φcell := ∧i≤h,j≤wφi,j.

5.7.2 Initial & Final Constraints

Our next step is to verify that this tableau corresponds to the configurations of M when it
runs on w.

Lemma 5.7.2
There is a Boolean formula φstart,w that is satisfied if and only if the first row of the
tableau encoded in the Boolean variables corresponds to the initial configuration of
M on input w.

We assume every row of the tableau is indexed by −w ≤ j ≤ w and that the first row of the
tableau must start with q0 in the 0-th position.

Proof
Consider the formula

φstart,w := (∧j<0x1,j,�) ∧ x1,0,q0 ∧ (∧nj=1x1,j,wj) ∧ (∧wj=n+1x1,j,�)

Lemma 5.7.3
There is a Boolean formula φacc that is satisfied by some Boolean variables that
satisfy φcode if and only if the last row of teh tableau encoded in the Boolean variables
corresponds to an accepting configuration.

Proof
Take

φacc := ∨j≤wxh,j,qacc .

5.7.3 Valid Tableau Constraints

We need to check that every row is obtained by a transition in M from the previous row.

Lemma 5.7.4
For each cell (i, j), there is a Boolean formula φvalid that is satisfied by some Boolean
variables that satisfy φcode if and only if they encode a valid tableau for M .
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Proof
Consider the rows j, j + 1 and a 2× 3 window in these two rows.

a,b, c

d,e, f

For row i, row i+ 1 can differ from it by at most 3 consecutive positions.

a,q, c

a,c′, q

a,q, c

q,a, c′

a,b, q

a,b, c′

a,b, q

a,q, b

q,b, c

b′,q, c

q,b, c

a,b′, c

a,b, c

q,b, c

a,b, c

a,b, q

If row i+1 does not follows from a transition from row i, some window must not be valid.
Hence we simply check that all windows are valid using a conjunction over all subformulas
which stipulate each window is valid.

Theorem 5.7.5 (Cook-Levin)
The language SAT is NP-complete.
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Proof
We have already showed that SAT is a member of NP. Let L ∈ NP and M an NTM
which decides L.

For each x ∈ L, let
φ(x) := φcell ∧ φstart,w ∧ φacc ∧ φvalid

denote the boolean formula which is satisfiable if and only if there is a tableau describing
an accepting computation path in M if and only if M accepts x. This is certainly polytime
computable since each formula is polytime computable.

By definition,
L ≤P SAT

and SAT is NP-complete.

Observation 5.7.6
The guided proof of the Cook-Levin theorem relies heavily on tableaux. The main
advantage of this is the 2×3 window which allows us to reduce the problem of checking
whether each row follows from a transition in the previous row to checking whether
the two rows satisfy a linear number of finite subproblems.
Alternatively, we can build our boolean formulas directly from the configurations of
an accepting computation path. This is more direct and intuitive from my perspective
since the tableau seems to abtract out too much from TMs.

5.8 Beyond P & NP

There many fascinating problems related to the classes P, NP that go beyond the P vs NP
question itself.

5.8.1 coNP

The class coNP is defined as

Definition 5.8.1 (coNP)
coNP is the language

coNP := {L ⊆ Σ∗ : L̄ ∈ NP}.
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Proposition 5.8.1
If NP 6= coNP, then P 6= NP.

Proof
We argue by the contrapositive. Suppose P = NP. Then

coNP = {L ⊆ Σ∗ : L̄ ∈ P}.

But if L̄ ∈ P, then we can easily decide if L ∈ P by outputing the opposite of a TM which
decides L̄. Hence

coNP = P = NP

as desired.

5.8.2 NP Intersect coNP

Proposition 5.8.2
P ⊆ NP ∩ coNP.

Proof
If L ∈ P ⊆ NP, then L̄ ∈ P as well. Hence L̄ ∈ coNP by definition. It follows that
P ⊆ NP ∩ coNP.

Proposition 5.8.3
The language

FACTOR := {〈M,N〉 :M < N, d | N for some 1 < d < M}

is in NP ∩ coNP.

Proof
We know that FACTOR is in NP since an NTM which tries if any 1 < d < M divides N
decides FACTOR in polytime.

Moreover, FACTOR is in coNP. Indeed, observe that

FACTOR = {〈M,N〉 :M ≥ N ∨ ∀1 < d < M, d - N}.

This language is certainly in NP since an NTM which first checks if M ≥ N then verifies
if N has a divisor between (1,M) in parallel decides it in polytime.
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5.8.3 Ladner’s Theorem

If P 6= NP, there are still many questions about the structure of the class NP. For instance,
it is not true that every language in P is either in P or is NP-complete.

Theorem 5.8.4 (Ladner)
If P 6= NP, there exist some languages in NP \ P that are not NP-complete.

Proof
Consider the padded SAT language

L := {〈φ, 1|φ|H(φ)〉}

where H is defined as follows:

Enumerate all TMs M1,M2, . . . such that for every TM M and some N ∈ N, there is
some k ≥ N for which M =Mk.

Then H(n) is the minimum number i < log log n such that Mi decides if x ∈ L or not in
at most 1 + i · |x|i steps, for each x of length |x| < log2 n. If no such number exists, then
H(n) = log log n.

Clearly, L ∈ NP, since H(n) is polynomial time computable, and we can nondeterminis-
tically check if φ is satisfiable.

L /∈ P: Suppose L ∈ P. Then there is some TM M that decides L in O(nc) steps for some
constant c > 0. We can pick some i > c such that M =Mi. Hence n > 22

i
, H(n) ≤ i.

It follows that H(n) ∈ O(1). But then the length of 〈φ, 1|φ|O(1)〉 is O(|〈φ〉|) and we can
decide SAT in polytime with a TM which decides L in polytime.

This is absurd given the assumption that P 6= NP.

L is not NP-complete: First we claim that for each i, H(n) = i for only finitely many n.
Otherwise, consider any x ∈ Σ∗

2 and choose n > 2|x| such that H(n) = i. By definition,
this means Mi decides if x ∈ L in i · |x|i time. Specifically, L ∈ P, which is a contradiction.

Suppose now there is a poloytime reduction f from SAT to L such that

φ ∈ SAT ⇐⇒ f(φ) = 〈ψ, 1ψH(|ψ|)〉 ∈ L.

But then for sufficiently large |φ|,
|ψ| < |φ|.
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This means for a sufficiently large Boolean formula, we can recursively apply this reduction
until it reduces to a sufficiently small formula for which we can solve in constant time.

Thus SAT ∈ P, contradicting the assumption that P 6= NP.

We have shown that L cannot be in P nor be NP-complete, concluding the proof.

5.8.4 Polynomial Hierarchy

We can extend the notion of verifiers to obtain richer conditions for acceptance.

Definition 5.8.2 (∀∃-Verifier)
A ∀ε-verifier is a TM V with two extra tapes that include certificates c1, c2 that
recognizes the language

L(V ) = {w ∈ Σ∗ : ∀c1,∃c2, V accepts (w, c1, c2)}.

Definition 5.8.3 (Πp
2)

Πp
2 is the class of all languages that can be decided by polytime ∀∃-verifiers

Theorem 5.8.5
If P = NP, then P = Πp

2 as well.

Proof
Suppose P = NP. Pick any L ∈ Πp

2 which is decided by the polytime verifier V . Now,
consider the language

L′ := {〈w, c1〉 : w, c1 ∈ Σ∗,∃c2 ∈ Σ∗, V accepts (w, c1, c2)}.

Then it is clear that L′ ∈ NP = P since V is essentialy a polytime verifier for L′ as well.

There is a polytime TM M ′ that decides L′ by assumption. Observe that x /∈ L if and
only if exists c1, M ′ rejects 〈x, c1〉. Thus L̄ ∈ NP = P = coNP by our prior work.

Since P is closed under complementation, L ∈ P as well. It follows by the arbitrary choice
of L that

P = ΠP
2 .

By extending the above generalization, we can obtain an infinite class of complexity classes
whose union is known as the polynomial hierarchy.

102



Chapter 6

Space Complexity

6.1 SPACE Complexity Classes

6.1.1 Space Cost & Complexity

Definition 6.1.1 (Space Cost)
The space cost of the TM M on input x is the total number of distinct tape cells that
are visited by M ’s tape head before M halts.

We can extend this notion to multitape TMs as the total number of visited cells in all the
tapes to obtain the space cost.

Definition 6.1.2 (Worst-Case Space Cost)
The worst-case space cost of the TM M is the function s : N → N where s(n) is the
maximum space cost of M on any input x of length |x| = n.

It is clear that TIME(s) ⊆ SPACE(s) since it takes s(n) steps to visit s(n) cells.

Definition 6.1.3 (Space Complexity Class)
For every function s : N → N, the space complexity class SPACE(s) is the set of all
languages that can be decided by a multitape TM with worst-case space cost bounded
above by O(s).

103



Example 6.1.1
Any regular language can be decided with a TM in O(1) space. Indeed, simply simulate
a DFA.

We define
SPACE1(s)

to be the set of languages that can be computed by single-tape TMs with space cost s. Note
that we always have SPACE1(s) = SPACE(s) since we can simulate a k-tape TM with a
single tape TM where symbols are k-tuples.

6.1.2 Time & Space

Theorem 6.1.2
For every function s : N → N,

NTIME(s) ⊆ SPACE(s) ⊆ TIME(2O(s)).

Proof
NTIME(s) ⊆ SPACE(s): For any single computation path, on an input of length n, a TM
deciding a language in NTIME(s) can only visit O(s(n)) cells.

SPACE(s) ⊆ TIME(2O(s)): Let M be a k-tape TM which decides We claim that on an
input w of length n, M has at most 2O(s(n)) possible configurations.

Indeed,
|Q| · (O(s))k · |Γ|O(s(n)) ≤ 2O(s(n)).

Thus after 2O(s(n)) steps, M must be in an infinite loop, which is impossible since it decides
a language.

6.1.3 PSPACE

Definition 6.1.4 (PSPACE)
PSpace :=

⋃
k≥1 SPACE(n

k)

Corollary 6.1.2.1
P ⊆ NP ⊆ PSpace ⊆ Exp
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Proof
We have already shown the first two inclusions. To see that PSpace ⊆ Exp, simply
apply the previous theorem with s(n) = nk for some constant k.

Since P ( Exp, at least one of the inclusions in the chain is proper. It is believed that
all are proper, but so far all of them are open problems. Establishing any of them would
represent a significant breakthrough in complexity theory.

Problem 4
Show either P 6= PSpace and/or PSpace 6= Exp.

6.2 Savitch’s Theorem

We can consider the space complexity of the P vs NP problem by considering the space cost
of NTMs.

6.2.1 Nondeterministic Space Complexity

Definition 6.2.1 (Space Cost)
The space cost of the NTM M on input x is the maximum total number of distinct
tape cells that are visited by M ’s tape head before M halts, with the maximum taken
over all possible computational paths.

Definition 6.2.2 (Worst-Case Space Cost)
The (worst-case) space cost of the NTM M is the function s : N → N where s(n) is
the maximum space cost of M on any input x of length |x| = n.

Definition 6.2.3 (NSPACE)
For every function s : N → N, the time complexity class NSPACE(s) is the set of
all languages that can be decided by a multitape NTM with worst-case space cost
bounded above by O(s).
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Definition 6.2.4 (PSPACE)
NPSPACE :=

⋃
k≥1NSPACE(n

k)

6.2.2 The Derivation Language

Definition 6.2.5 (Derivation Language)
The language Derive := {〈N, x, c1, c2, t〉 : on x, NTM N transitions c1 → c2 in ≤ t steps}.

Lemma 6.2.1
There is a TM that decides Derive and has space cost O(s log t) on input 〈N, x, c1, c2, t〉
when N has space cost O(s) on input x.

Proof
The problem is equivalent to seeking a path of length at most t between two nodes u,w
of a digraph on at most |V | ≤ 2O(s) vertices. We can recursively solve this by asking if
there is an intermediary node v such that there are uv, vw-dipaths of lengths at most t

2
.

The recursion depth is O(log t). If we implement the recusion using a stack, then there
will always only by log t subproblems on the stack. Since each configuration takes O(s)
space to store, the total space complexity is O(s log t).

6.2.3 Proof of Savitch’s Theorem

Theorem 6.2.2 (Savitch)
For every s : N → N,

NSPACE(s(n)) ⊆ SPACE(s(n)2).

Proof
Let N be an NTM with time cost s(n). To decide deterministically whether x ∈ L(n),
we can ask if

〈N, x, q0, qacc, 2O(s)〉 ∈ Derive .

By the previous lemma, this can be decided in time

O(s log 2O(s)) ⊆ O(s2)
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as desired.

Corollary 6.2.2.1
PSpace = NPSPACE

Proof
Any language L which can be decided by an NTM of space cost O(nk) can be decided by
a TM of space cost O(n2k).

Savitch’s theorem does indeed leave one more fundamental open problem: is the quadratic
blowup necessary to go from nondeterministic to deterministic TMs?

Problem 5
Does

NSPACE(s(n)) ⊆ SPACE(s(n)c)

hold for any c < 2?

6.3 L & NL

Althought any TM which read the entire input has space cost at least linear, but it is possible
that a TM has sublinear “extra” space cost.

6.3.1 Basic Definitions

Definition 6.3.1 (Input/Work Tape)
An input/work tape TM is a multitape TM whose input is on the first read-only tape
and where the other tapes are standard read/write tapes.

Definition 6.3.2 (Space Cost)
The space cost of an input/work tape TM M is the minimal function s : N → N such
that on every input of length n, the matchine M scans at most s(n) distinct cells in
the work tapes.
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6.3.2 Space Complexity Classes

Definition 6.3.3
SPACE(s) is the set of all languages that can be decided by a deterministic input/work
tape TM with worse-case space cost bounded above by O(s).
NSPACE(s) is teh set of all languages that can be decided by a nondeterministic
input/work tape TM with worst-case space cost bounded above by O(s).

Note that for s ∈ Ω(n), the classes SPACE(s),NSPACE(s) are identical to the previous
definition.

6.3.3 L & NL

Definition 6.3.4
We define L := SPACE(log n) and NL := NSPACE(log n).

Proposition 6.3.1
L ⊆ NL ⊆ P ⊆ NP.

Proof
It is clear that L ⊆ NL and P ⊆ NP. Thus we argue that NL ⊆ P. Recall that a
TM which halts with space cost O(s) can have at most 2O(s) distinct configurations. In
particular, any NTM with space cost O(log n) has time cost at most 2O(logn) and thus the
language it decides is in P.

It seems intuitive that some of these inclusions are strict, however, all of them are open
problems!

Problem 6
Prove that L ( NP.

6.4 NL-Completeness

Savitch’s theorem shows that NL ⊆ SPACE(log2 n), but this does not resolve whether
L = NL. We would like to study languages which are complete for NL.
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6.4.1 Log-Space Reductions

Let us first define a new type of reduction.

Definition 6.4.1 (Log-Space Reducible)
Given two languages A,B ⊆ Σ∗, the language A is log-space reducible to B, denoted

A ≤L B

if there is a function f : Σ∗ → Σ∗ such that
1. For every x ∈ Σ∗, we have x ∈ A ⇐⇒ f(x) ∈ B

2. There is a logarithmic-space TM M that on input x ∈ Σ∗, erases it and replaces
it with f(x) on the tape and then halts.

Observation 6.4.1
Recall that a O(log n)-space TM has at most 2O(logn) distinct states and thus must
be computable in polynomial time.
The converse does not hold! Indeed, a polytime TM might take more than logarithmic
space.

Lemma 6.4.2
For every two languages A ≤L B,

1. B ∈ L implies A ∈ L
2. B ∈ NL implies A ∈ NL

Proof
Let TB be a TM which decides B in logspace. To decide if a given string x in A, we can
simply compute f(x) in logspace and feed it to TB.

The case for NL is identical.
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6.4.2 NL-Completeness

Definition 6.4.2 (NL-Complete)
The language L is NL-complete if

1. Every language A ∈ NL satisfies A ≤L L

2. L ∈ NL

6.4.3 Connectivity

Problem 7 ((s, t)-connectivity)
Given a digraph G = (V,E) and two vertices s, t ∈ V , does there exist a path from s
to t in G?

The correponding language is

CONN := {〈G, s, t〉 : there is an st-dipath in G}.

Lemma 6.4.3
CONN ∈ NL.

Proof
This is equivalent to asking if there is an st-dipath of length at most n := |V |, since any
simple dipath has length at most n.

We can nondeterministically guess a next vertex, and store both a counter for the length
of the current path computed, as well as the current vertex. This uses logarithmic space.

If the length of the path exceeds n, we terminate the computation. Since all computation
paths terminate, we conclude that the described TM decides CONN in logspace.

Theorem 6.4.4
CONN is NL-complete.

Proof
Let Gx be the configuration graph for a logspace NTM M which decides some A ∈ NL
acting on the input x of length n. We may assume without loss of generality that M only
accepts on an empty tape.
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Since M uses O(log n) space, there are at most 2O(logn) = O(n) distinct configurations.
Let sx denote the initial configuration and tx the unique accepting configuration.

Define f(x) := 〈Gx, sx, tx〉. Clearly, f is logspace computable. Hence to decide if x ∈ A,
it suffices to decide if f(x) ∈ CONN as desired.

Problem 8
Is CONN in L?

6.5 NL = co-NL

Definition 6.5.1 (coNL)
We define

coNL := {L ⊆ Σ∗ : L̄ ∈ L}.

Proposition 6.5.1
If L = NL, then NL = coNL.

Proof
Consider any NL-complete language A. Observe that Ā is coNL-complete. Since NL =
L, there is a logspace deterministic TM M which decides A. The TM which accepts a
string if and only if M rejects the string then decides Ā in logspace.

Hence
NL = L = coNL

as desired.

Theorem 6.5.2 (Immerman-Szelepscenyi)
NL = coNL.

6.5.1 Non-Connectivity

Our goal is to show that there is some NL-complete language L in coNL. Equivalently,
since L̄ is coNP-complete, we want to show that L̄ ∈ NL.

We do so by considering the complement of CONN.
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6.5.2 Non-Connectivity with Advice

Lemma 6.5.3
Let

• G is a directed graph

• s, t ∈ V (G)

• ` ∈ N is a length parameter

• k denotes the number of vertices reachable from s by paths of length at most `
in G

There exists a logspace NTM that accepts 〈G, s, t, `, k〉 if and only if there is a path
from s→ t of length at most ` within G.

Proof
For each vertex v ∈ V − t, we guess if v is reachable from s by a path of length at most
` and verify each guess with a single path of length at most ` (we might fail to verify a
correct guess). Reject if we make any wrong guesses.

Let κ be the number of vertices guessed. If κ = k, reject. Else if κ = k − 1, guess a path
of length at most ` to t and accept if our guess is correct. Otherwise, reject.

Since κ ∈ O(log|V |), our TM is certainly logspace.

If there is an st-dipath of length at most `, then there is at least one computational path
where we accept the string. Conversely, if no such path exists, there is no computational
path which leads to acceptance.

6.5.3 The Proof

Theorem 6.5.4
CONN ∈ NL.

Proof
It suffices to show how we may compute k from the previous lemma.

Note that initially, for ` = 0, we have k0 = 1. Thus suppose we know k`−1.
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Initialize c := 0. Then for each arc uv ∈ E, if the previous TM accepts

〈G, s, u, `− 1, k`−1〉,

then update c := c+ 1. Return k` := c.

Since we may reuse variables, this algorithm certainly only uses logarithmic space.

6.6 More on Space Complexity

6.6.1 PSPACE-Completeness

Recall that the question of whether P and PSpace are distinct is currently open.

Definition 6.6.1 (PSpace-Complete)
The language L is PSpace-complete if

• Every A ∈ PSpace satisfies A ≤P L

• L ∈ SPACE.

Proposition 6.6.1
If L is PSpace-complete and P ( PSpace, then L /∈ P.

Proof
If L ∈ P, then every language in PSpace is in P as well.

We consider the language of every true totally quantified boolean formulas, denoted TQBF.

Theorem 6.6.2
TQBF is PSpace-complete.

The P vs PSpace question would be resolved if we can determine whether TQBF is in P
or not.

Problem 9
Prove or disprove that TQBF ∈ P.
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6.6.2 Small Space Complexity Classes

We now turn to languages which use very small amounts of space.

Theorem 6.6.3
The class SPACE(1) is the set of regular languages.

Proof
A TM which uses only constant extra space can be turned into one which uses no extra
space by increasing the number of states.

Hence we may simulate such a TM with an NFA.

Problem 10 (Challenge)
For every s ∈ o(log log n), SPACE(s) = SPACE(1).

6.6.3 Time & Space

Definition 6.6.2 (SC)
The class SC is the class of languages that can be decided by a TM with time cost
O(nk) and space cost O(log` n) for some constant k, ` ∈ N.

The name SC was chosen to stand for Steve’s Class after Stephen Cook for his work on this
class.

Definition 6.6.3 (PolyL)
The class

PolyL :=
⋃
`≥1

SPACE(log` n).

Proposition 6.6.4
SC ⊆ P ∩ PolyL.

Proof
Let L ∈ SC be decided by a TM M in polytime and polylogspace.
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Then L ∈ P and L ∈ PolyL by definition. Hence the result holds.

Problem 11 (Open)
Is SC = P ∩ PolyL?
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