CS350: Operating Systems

Felix Zhou*

Spring 2020, University of Waterloo

*from Professor Leslie Istead’s Lectures

Contents

[(1__Introduction|
(1.1 What is an Operating System?|
(1.2 Views of an Operating System|.
(1.2.1 Application View|
(1.2.2 System View|
(1.2.3 Implementation View|
(1.3 Implementing an OS|
(1.3.1 Utility Programs| o
[1.3.2 Command Interpreters|
[1.3.3 Programming Libraries{.
(1.4 Typesof Kernels| o
(Lo OS Abstractionsl
2 Threads & Concurrency|

2.1 Intr ion Threadsl

2.1.2 Why Threads?|
2.2 OS/161: Thread Interface] oL
2.2.1 ther Thr Libraries and Functions|

2.5 Reviewl. Lo

[2.3.1 Sequential Program Execution|.

[2.3.2 MIPS Registers|

[2.4 Concurrent Program Execution (Two Threads)|

[2.5 Implementing Concurrent Threads|

[2.5.1 Hardware Support|

co o 0o W N 3 9 oo oo oo o o

[2.5.2 Timesharing|. oo 13

[2.5.3 Hardware Suppose & Timesharing] 13

2.6 Timesharing & Context Switches| 13
[2.6.1 High Level View| oo 13

2.7 MIPS: Context Switching| 14
[2.8 Causes for Context Switching| 15
2.9 Thread States 16
[2.10 OS/161: Thread Stack after Voluntary Context Switch| 16
[2.11 Timesharing & Preemption| 17
2.11.1 Timesharing|. 17
[2.11.2 Preemption| 17

2.11. 1eW] . . . 17
[2.11.4 Interrupts| 17
[2.11.5 OS/161 Thread Stack after an Interrupt| 18

[2.12° Preemptive Scheduling|o 18
[2.13 OS/161: Thread Stack after Preemption| 18
[3 Synchronization| 20
[3.1 Thread Synchronization|, 20
(3.2 Race Condition| 20
[3.3 Tips for Identitying Race Conditions| 21
[3.4 Enforcing Mutual Exclusion with Locks|. 22
[3.4.1 Lock Acquire & Releasel 22
[3.4.2 Hardware-Specific Synchronization Instructions| 23
[3.4.3 Lock Acquire & Release with Xchgl 23
[3.4.4 ARM Synchronization Instructions| 24
[3.4.5 Lock Acquire with LDREX, STREX| 24
[3.4.6 MIPS Synchronization Instructions| 24

[3.4.7 Lock Acquire with 11, sc[., 25

[3.5 OS/161: Spinlocks & Locks| 25
[3.5.1 Spinlocks| 25
[3.5.2 spinlock_acquire|. 25
BE3 _Tockdo 26
[3.5.4 Additional Notes oo 27
[3.5.5 Spinlock & Lock API|. 27

[3.6 Thread Blockingl 27

(3.7 OS/161: Wait Channels 28

[3.8 Semaphores| 28
[3.8.1 Types of Semaphores|. 28
[3.8.2 Difterences between Locks and Semaphoresf 29
[3.8.3 Mutual Exclusion Using a Semaphore|. 29
[3.8.4 Producer/Consumer Synchronization with Bounded Buffer| 29
[3.8.5 Semaphore Implementation| 30

3.9 Condition Variablesl. 31
[3.9.1 Bounded Buffer Producer/Consumer with Locks & CVs[. 32

[3.10 Volatile & Other Sources of Race Conditions 33

[3.11 Other Language & Instruction level Instructions| 34

[B.12 Deadlocks 34
[3.12.1 Techniques for Deadlock Preventionl 34

4__Processes and the Kernel 35

41 Whatisa Process? 35

(4.2 Process Management Calls|. 35
M2.1 fork, _exit, & waitpid 35
22 eXeCul . . . v v i 36
[4.2.3 Combining fork, execvl 37

[4.3 System Calls) 37

[4.4 Kernel Privilegel00 38
[4.5 How System Calls Work| 38
[4.5.1 Interrupts| 39
[4.5.2 Exceptions| 39
[4.5.3 MIPS Exception Types| 39

(4.6 How are System Calls Implemented| 40
[4.6.1 System Call Codes| 40
[4.6.2 System Call Parameters| 40
[4.6.3 Kernel Exception Handler| 41

(4.7 User and Kernel Stackl 0oL 41
1.7.1 User (Application) Stackl. L. 41
M72 Kermel Stackl 41

4.8 Exception Handling in OS/161| 41
[4.9 Multiprocessing| 42
{4.10 Inter-Process Communication (IPC)| 42
[> Virtual Memory| 44
b1 Motivationl. 44
[5.2 Segmentation| Lo 44
[>.2.1 Translation Using Registers| 45
[5.2.2 Segment Table] oo 45

0.3 Paging| 45
b 3.1 MMU 45
[>.3.2 Page Table Entries|o 45
[>.3.3 Multi-Level Paging| oo 46

B4 Kernel & MMU| oo 46

1 Introduction

1.1 What is an Operating System?
Normally, an operating system is a program which

e manages resources
e creates execution environments
e loads programs

e provides common services and utilities

In a sense, the OS is both a facilitator and an enforcer.

1.2 Views of an Operating System
1.2.1 Application View

What services does it provide?
The OS’s main job is to provide an execution environment for running programs.
Such an environment is responsible for

(1) providing a program with the necessary resources to run

(2) providing a program interfaces, an abstract view of hardware components such as
networks, storage, and 1/0O devices

(3) isolating running programs and preventing them from interfering with each other

1.2.2 System View

What problems does it solve?
The OS

(1) manages the hardware resources of a computer system. Resources include

e processors
e Memory,

o disks & storage devices

« network interfaces

o 1/0 devices such as keyboards, mice, and monitors

(2) allocates resources among running programs.

(3) controls the sharing of resources among programs.

Remark that the OS itself utilizes resources which it must share with other programs.

1.2.3 Implementation View

How is it built?

Definition 1.2.1 (Concurrent)
Multiple programs/instructions running or appearing to run at the same time

Concurrency arises naturally in an OS when it supports concurrent applications.

Definition 1.2.2 (Real-Time)
Programs that must respond to events within specific timing constraints.

For example, hardware interactions impose timing constraints.

The OS is a concurrent, real-time program!

1.3 Implementing an OS

Definition 1.3.1 (Kernel)
The operating system kernel is the part which responds to system calls, interrupts
and exceptions

As a whole, an operating system includes the kernel and so other related programs that
provide services for applications.

1.3.1 Utility Programs

» task managers

o disk deframenting tools

1.3.2 Command Interpreters

e cmd.exe

e bash

1.3.3 Programming Libraries

« POSIX
e OpenGL

1.4 Types of Kernels

Definition 1.4.1 (Monolithic Kernel)
Almost everything, whether needed or not, is part of the Kernel.
This includes device drivers, file systems, virtual memory, IPC, etc

Definition 1.4.2 (Microkernel)
Only the absolutely necessary components are part of the kernel.
All others are user programs

Definition 1.4.3 (Real-Time OS)
An OS with stringent event response times, guarantees, and preemptive scheduling

Remark that Windows, Linux, Mac OSX, Android, and iOS are all monolithic operating
systems. In addition, NONE of them are real-time.

QNX is a real-time, micro-kernel which originated here!

1.5 OS Abstractions

The execution environment provided by the OS includes a variety of abstract entities ma-
nipulable by running programs. For example

o files / file systems correspond to secondary storage (disk)

o address spaces correspond to primary memory (RAM)

o processes and threads correspond to program execution

» sockets and pipes correspond to network or other message channels

2 Threads & Concurrency

2.1 Introduction to Threads

2.1.1 What is a Thread?

Definition 2.1.1 (Thread)
A sequence of instructions

A normal sequential program consists of a single thread of execution.
Threads provide a way for programmers to express concurrency in a program.

In threaded concurrent programs, there are multiple threads of execution, all occuring at the
same time.

A collections of threads may perform the same task but they may just as well perform
different tasks.

2.1.2 Why Threads?

Definition 2.1.2 (Blocking)
Threads may block, ceasing execution for a period of time, or until some condition
has been met.

When a thread blocks, it is not executing instructions (ie the CPU is idle). Concurrency
allows the CPU to execute a different thread during this time. Time - CPU Time - is money!
Resource Utilization Blocked/Waiting threads give up resources, ie the CPU to others
Parallelism Multiple threads executing simultaneously improves performance
Responsiveness We can dedicate threads to UI and others to loading/long tasks

Modularization Programmers can organize the execution of tasks/responsibilities

2.2 0S/161: Thread Interface

int thread_fork(

10

const char *name,
struct proc *proc,
void (*func) (void *, unsigned long),
void *datal,
unsigned long data2
)3

void thread_exit(void);

void thread_yield(void);

2.2.1 Other Thread Libraries and Functions

Definition 2.2.1 (Join)
A common thread function to force on ethread to block until another finishes

Joining is NOT offered by OS/161.

POSIX Threads (pthreads) A well-supported, popular, and sophisticated thread API.
The C++ threading library is a wrapper aroudn this library.

OpenMP A cross-platform simple multi-processing and thread API.

GPGPU Programming General-purpose GPU programming APIs.

For example, NVidia’s CUDA create/run threads on GPU instead of CPU.

2.3 Review
2.3.1 Sequential Program Execution

The fetch-execute cycle consists of

1) fetch instruction PC (Program Counter) points
2) decode and execute instruction

3) increment the PC

11

2.3.2 MIPS Registers

Definition 2.3.1 (Caller-Save)
The calling function is responsible to save/restore values in these registers.

Definition 2.3.2 (Callee-Save)
The called function is responsible to save/restore values in these registers.

Below are some conventions enforced in the compiler and used in the OS.

Number | Name Use
0 z0 always 0
1 at assembler reserved
2 v0 | return value or syscall number
3 vl return value
4-7 a0-a3 subroutine arguments
8-15 t0-t7 | temporary values (caller-save)
16-23 | s0-s7 saved values (callee-save)

24-25 | t8-t9 | temporary values (caller-save)

26-27 | kO-k1 kernel temps
28 ep global pointer
29 sp stack pointer
30 s8/1p frame pointer (callee-save)
31 ra return address (for jal)

2.3.3 The Stack

Functions push arguments (a0-a3), return address, local variables, and temporary use regis-
ters onto the stack (backwards!).

12

2.4 Concurrent Program Execution (Two Threads)

Conceptually, each thread executes sequentially using its private register contents and stack.
However, the threads share the address space (ie code, data). Although we can think of
each thread having its own thread stack, what really happens is that threads are allocated a

portion of the address space and MAY overflow onto other spaces if too much data is pushed
onto the stack.

2.5 Implementing Concurrent Threads
2.5.1 Hardware Support

Suppose we have P processors, C' cores, with each core supporting M simultaneous threads.
Then PCM threads can execute simultaneously.

2.5.2 Timesharing

Threads share the CPU.

Multiple threads take turns on the same hardware. The processor rapidly switches between
threads to create the illusion that all are making progress simultaneously.

2.5.3 Hardware Suppose & Timesharing

PCM threads running simultaneously with timesharing.

Note that while cores of a single processor share caches (L2, L3), threads execute separately.

2.6 Timesharing & Context Switches

Definition 2.6.1 (Context Switch)
When timesharing, the switch from one thread to another is called a context switch

2.6.1 High Level View

1) decide which thread will run next (scheduling)

2) save register contents of current thread

13

3) load register contents of next thread

Thread context must be saved /restored carefully, since thread execution continuously changes
the context.

2.7 MIPS: Context Switching

switchframe_switch:

addi sp, sp, -40

sw ra, 36(sp)
sw gp, 32(sp)
sw s8, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

sw sp, 0(a0)

lw sp, 0(al)
nop

lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
1w s3, 12(sp)
1w s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
1w gp, 32(sp)

14

lw ra, 36(sp)
nop

j ra
addi sp, sp, 40
.end switchframe_switch

switchframe_switch is called by the C function thread_switch.
thread_switch is the caller. It saves/restores the caller-save registers.

On the other hand, switchframe_switch is the callee. It must save/restore the callee-save
registers.

switchframe_switch saves callee-save registers to the old thread stack. it restores the callee-
save registers from the new threads stack.

Definition 2.7.1 (Load-use Hazards)
Loaded values are used in the next instruction (before being actually loaded into the
register).

Definition 2.7.2 (Control Hazards)
When it is not known which instruction to fetch next.

MIPS R3000 is pipelined. Delay-slots are used to protect against load-use hazards and
control hazards.

2.8 Causes for Context Switching
e the running thread calls thread_yield and voluntariloy allows other threads to run
o the running thread calls thread_exit and is terminated
e the running thread blocks via a call to wchan_sleep, more later
e the running thread calls preempted, it involuntarily stops running

Notice that an OS should strive to maintain high CPU utilization. This means in addition
to timesharing, context switches occur whenever a thread ceases to execute instructions.

15

2.9 Thread States

There are three thread states

running currently executing
read ready to execute

blocked waiting for something, so not ready to execute

ready

dispatch

wake_al ake_one

blocked

preemption/thread_yield

running

thread exit

done

2.10 0OS/161: Thread Stack after Voluntary Context Switch

It is important to keep in mind that the context switching API is still composed of function
calls and therefore the same rules for regular function calls apply in MIPS.

1) current thread calls thread_yield to yield the CPU

16

2) thread_yield calls thread_switch to perform a context switch

3) thread_switch chooses a new thread, calls switchframe_switch to perform low-level
context switch

2.11 Timesharing & Preemption
2.11.1 Timesharing

How rapidly should a processor switch between threads? We impose a limit on CPU time.

Definition 2.11.1 (Scheduling Quantum)
An upper bound on how long a thread can run before it MUST yield the CPU.

2.11.2 Preemption
However, how do we stop a running thread that never yields, blocks, or exits when the
quantum expires?

Preemption forces a running thread to stop running, so that another thread can have a
chance.

In order to implement this, the thread library MUST have a means of “getting control” (ie
causing thread library code to execute) even though the running thread has not called a
thread library function.

This is normally accomplished through interrupts.

2.11.3 Review

2.11.4 Interrupts

Definition 2.11.2 (interrupt)
An event that occurs during the execution of a program.

Interrupts are caused by system devices (hardware) such as a timer, a disk controller, or a
network interface.

When an interrupt occurs, the hardware automatically transfers control to a fixed location in
memory. At this location, the thread library places a procedure called an interrupt handler.

17

Definition 2.11.3 (Interrupt Handler)
Responsible for
(i) creating a trap frame to record the thread context at the time of the interrupt

(ii) determining which device caused the interrupt and performs device-specific pro-
cessing

(iii) restoring the saved thread context from the trap frame and resumes execution
of the thread

2.11.5 0OS/161 Thread Stack after an Interrupt

At the momement of the interrupt, a trap frame is created. This emulates an immediate
function call and saves the necessary registers before the interrupt handler then proceeds to
do what it has to do.

2.12 Preemptive Scheduling

Definition 2.12.1 (Preemptive Scheduler)
A preemptive scheduler uses the scheduling quantum to impose a time limit on run-
ning threads

Threads may block or yield before their quantum has expired. However, periodic timer
interrupts allows the running time to be tracked. If a thread has run too long, the timer
interrupt handler preempts the thread by calling thread_yield.

The preempted thread changes state from running to read, and it is placed on the ready
queue.

Each time a thread goes from ready to running, the runtime starts out at 0. Runtime does
NOT accumulate.

Note that the OS/161 threads use preemptive round-robin scheduling.

2.13 0S/161: Thread Stack after Preemption

Assume the trap frame and interrupt handler stack frames have been correctly pushed
onto our stack. Then, the interrupt handler calls thread_yield, this function in turn calls
thread_switch, which finally calls switchframe.

18

Example 2.13.1
This is a possible high level sequence of events.

Suppose there are only two threads and Thread 2 called thread_yield, following which
the frames for itself and thread_switch and switchframe are both succesfully pushed onto
the Thread 2 stack. Then, suppose Thread 1 is dispatched and its runtime has exceeded
the scheduling quantum.

1) Thread 1 Stack

a) timer interrupt
) trap frame pushed
(c) interrupt handler stack frame pushed
) thread_yield frame pushed
) thread_switch frame pushed
(f) switchframe frame pushed
2) Thread 2 Stack
(a) switchframe frame popped
) thread_switch frame popped
) thread_yield frame popped
(d) Thread 2’s context is restored and it runs its regular program
) thread_yield frame pushed
) thread_switch frame pushed
(g) switchframe frame pushed
3) Thread 1 Stack
(a) switchframe frame popped
(b) thread_switch frame popped
(¢) thread_yield frame popped
(d) Thread 1’s context is restored and it runs its regular program

4) repeat

19

3 Synchronization

3.1 Thread Synchronization

All threads in a concurrent program share access to the same global variables and heap.

Definition 3.1.1 (Critical Section)
The part of a concurrent program in which a shared object is accessed

We can have issues when several threads attempt to access the same global variables or heap
object at the same time.

3.2 Race Condition

int volatile total = 0;

void add() {
int 1i;
for(i=0; i<N; i++) total++;

}

void sub() {
int 1i;
for(i=0; i<N; i++) total--—;

What happens when one thread executes add and another executes sub? What is the total
value of total when they have finished?

In theory, total should be 0 at the very end. However, if sub mutates total right after the
read in aad and before the write in add, the program will not behave as we wish.

Definition 3.2.1 (Race Condition)
When the program result depends on the order of execution

Race conditions occur when multiple threads are reading and writing the same memory at
the same time.

For now, assume the only source of race conditions is implementation.

20

3.3 Tips for Identifying Race Conditions

int list_remove_front(list *1p) {
int num;
list_element *element;

assert(!is_empty(1ls));

element = 1lp->first;
num = lp->first->item;

if (lp->first == lp->last) {
lp->first = lp->last = NULL;

b
else {

lp->first = element->next;
}

lp—>num_in_list--;
free(element);

return num;
void list_append(list *1lp, int new_item) {
list_element *element = malloc(sizeof(list_element));
element->item = new_item;
assert(!is_in_list(1lp. new_item));
if (is_empty(1p)) {

lp—>first = element;
lp->last = element;

X

else {
lp—>last->next = element;
lp->last = element;

b

lp—>num_in_list++;

To identity potential race conditions, we first find the critical sections.
Inspect each variable. Is it possible for multiple threads to read/write it at the same time?

Constants and memory that all threads only READ do not cause race conditions.

21

Assuming we found the critical section, how can we prevent race conditions?

3.4 Enforcing Mutual Exclusion with Locks

Acquire/Release ensures that only one thread at a time can hold the lock. Even if multiple
threads attempt to acquire at the same time, only one will successfully do so. If a thread
cannot acquire the lock right away, it must wait until the lock is available.

Definition 3.4.1 (Mutex)
Mutual Exclusion.
Provided by locks.

int volatile total = 0;
bool volatile total_lock

void add() {
int 1i;
for(i=0; i<N; i++) {
Acquire(&total_lock);
total++;
Release(&total_lock);

}

void sub() {
int 1i;
for(i=0; i<N; i++) {
Acquire(&total_lock);
total--;
Release(&total_lock);

3.4.1 Lock Acquire & Release

Consider the following implementation. Does it work as intended?

void Acquire(bool *lock) {
while(*lock == true);
*lock = true;

22

void Release(bool *lock) {
*lock = false;

}

Unfortunately, the same problems as before occur as our test and set operation is NOT
atomic. If multiple threads are spinning in wait for the lock to be free, it is possible that
more than one thread “obtains” the lock.

3.4.2 Hardware-Specific Synchronization Instructions

We must provide a way to implement atomic test-and-set for synchronization primitives like
locks.

An example in MIPS is the atomic x86 (and x64) xchg instruction:
xchg src, addr

where src, addr is a register and memory address, respectively. The instruction swaps the
values stored in src, addr.

The logical behavior of xchg is an atomic function which basically performs the following

Xchg(value, addr) {
old = *addr;
*addr = value;
return(old) ;

This allows the simple implemention of a spinlock.

3.4.3 Lock Acquire & Release with Xchg

Acquire(bool *lock) {
while (Xchg(true, lock) == true);
}

Release(bool *lock) {
*lock = false;

}

If Xchg returns true, the lock was already set and we must keep looping. Otherwise, the lock
was free and we now acquired it.

23

This is known as a spin-lock since a thread busy-waits (loops) in Acquire until the lock is
free.

3.4.4 ARM Synchronization Instructions

ARM offers exclusive load (LDREX) and store (STREX) operations.
The operations act as a barrier and MUST be used together.

LDREX loads a value from address addr while STREX will ATTEMPT to store a value to address
addr. However, STREX will fail to store value at the address if it was touched between LDREX
and STREX.

STREX may fail even if the distance between the two is small. However, it should succeed
after a few attempts.

3.4.5 Lock Acquire with LDREX, STREX

ARMTestAndSet (addr, value) {
tmp = LDREX addr
result = STREX value, addr
if (result == SUCCEED) return tmp
return TRUE
}

void Acquire(bool *lock) {
while (ARMTestAndSet (lock, true) == true);
}

Notice that the first function returns false only if we successfully set the result as well as the
lock was false. So we only acquire the lock if it was free and we were the ones to “lock” it.

3.4.6 MIPS Synchronization Instructions

Similar to ARM instruction in the form of 11, sc.

load linked: loads value at address addr.

set conditional: conditionally stores a new value at addr if the value at addr has not
changed since 11.

24

sc returns SUCCESS if the value stored at the address has not changed since 11. The value
stored at the address can be any 32 bit value. The instruction does NOT check what the
value at the address is, it only checks if it has changed!

3.4.7 Lock Acquire with 11, sc

MIPSTestAndSet (addr, value) {
tmp = 11 addr
result = sc addr, value
if (result == SUCCEED) return tmp
return TRUE
}

void Acquire(bool *lock) {
while (MIPSTestAndSet (lock, true) == true);
}

The logic behind this program is similar to the ARM spinlock.

3.5 0OS/161: Spinlocks & Locks
3.5.1 Spinlocks
A spinlock is a lock that repeatedly tests lock availability in a loop until the lock is available.

Threads actively use the CPU while they wait for the lock. In OS/161, spinlocks are already
defined.

struct spinlock {
volatile spinlock_data_t 1lk_lock;
struct cpu *1k_holder;

};

void spinlock_init(struct spinlock *1k);
void spinlock_acquire(struct spinlock *1k);
void spinlock_release(struct spinlock *1k);

Remark that spinlock_acquire calls spinlock_data_testandset in a loop until the lock is
acquired.

3.5.2 spinlock_acquire

25

spinlock_data_testandset(volatile spinlock_data_t *sd) {
spinlock_data_t x, y;
y=1

__asm volatile(

(x), (y) : (sd)
)3
if(y == 0) return 1;
return x;
}
3.5.3 Locks

OS/161 also has locks in addition to spinlocks. The purpose of the mechanisms is also to
enforce mutual exclusion.

struct lock *mylock = lock_create()
lock_acquire (mylock) ;

lock_release(mylock)

Note that spinlocks spin and locks BLOCK. So a thread which calls spinlock_acquire spins
until acquiring the lock while a thread which calls lock_acquire blocks until the lock can be
acquired.

Locks are a type of mutex suitable for protecting large critical sections without being a

26

burden on the CPU. Remark that Locks have owners.

3.5.4 Additional Notes

Spinlocks and locks both have owners. This is to prevent them from being involutarily
released.

A spinlock is owned by a CPU. A lock is owned by a thread.

Spinlocks disable interrupts on their CPU. This preemption is disabled on that CPU (hence
owned by CPU but not others).

We should minimize spinning to maximize the utility of the CPU. In particular do NOT use
spinlocks to protect large critical sections.

3.5.5 Spinlock & Lock API

void spinlock_init(struct spinlock *1k);

void spinlock_acquire(struct spinlock *1k);
void spinlock_release(struct spinlock *1k);
void spinlock_do_i_hold(struct spinlock *1k);
void spinlock_cleanup(struct spinlock *1k);

void lock *lock_create(const char *name);
void lock_acquire(struct lock *1k);

void lock_release(struct lock *1k);

void lock_do_i_hold(struct lock *1k);
void lock_destroy(struct lock *1k);

3.6 Thread Blocking

Sometimes a thread will need to wait for something. For example

o sdata to be released by another thread
 data from a (relatively) slow device
e input from a keyboard

e busy device to become idle

When a thread blocks, it stops running.

27

The scheduler then chooses a new thread to run. A context switch from the blocking thread
to the new thread occurs. Then, the blocking thread is queued in a wait queue (NOT on
the ready list).

Eventually, a blocked thread is signaled and awakened by another thread.

3.7 0S/161: Wait Channels

void wchan_sleep(struct wchan *wc);
void wchan_wakeall (struct wchan *wc);
void wchan_wakeone(struct wchan *wc);

void wchan_lock(struct wchan *wc);

There can be many wait channels, holding threads that are blocked for completely different
reasons. These channels are implemented with queues in OS/161.

3.8 Semaphores

Definition 3.8.1 (Semaphore)
An object that has an interger value supporting two atomic operations

P wait until the value is greater than 0, then decrement it.

V increment the value of the semaphore

A semaphore is a synchronization primitive that can be used to enforce mutual exclusion
requirements. It can also be used to solve other kinds of synchronization problems.

3.8.1 Types of Semaphores

binary semaphore a semaphore with a single resource. It behaves like a lock, but does
NOT keep track of ownership

counting semaphore a semaphore with an arbitrary number of resources
barrier semaphore a semaphore used to force one thread to wait for others to complete.

The initial count is typically 0

28

3.8.2 Differences between Locks and Semaphores

e V does not follow P

o A semaphore can start with 0 resources. It calls V to increment the count. This forces
a thread to wait until resources are produced before continuing

o Semaphores do NOT have owners

3.8.3 Mutual Exclusion Using a Semaphore

volatile int total = O;
struct semaphore *total_sem;
total_sem = sem_create(, 1)

void add() {
for (int i=0; i<N; ++i) {
P(sem);
++total;
V(sem) ;

}

void sub() {
for (int i=0; i<N; ++i) {
P(sem);
--total;
V(sem);

3.8.4 Producer/Consumer Synchronization with Bounded Buffer
Suppose we have threads (producers) that add items to a buffer and threads (consumers)
that remove items from the buffer.

We want consumers to wait if the buffer is empty and producers to wait if the buffer is full.
This requires synchronization between consumers and buffers which semaphores can provide.

struct semaphore *items, *spaces;
items = sem_create(, 0)
spaces = sem_create(,)

29

produce() {

P(spaces) ;
V(items);
}
consume () {
P(items);
V(spaces);

Remark that we can still have race conditions as no mutual exclusion is enforced in the
critical sections. To complete the pseudocode above, we should add a binary semaphore or
more conventionally, a lock.

3.8.5 Semaphore Implementation

P(struct semaphore *sem) {
spinlock_acquire(&sem->sem_lock) ;
while(sem->sem_count == 0) {

wchan_lock(sem->sem_wchan) ;
spinlock_release(&sem->semlock) ;
wchan_sleep(sem->sem_wchan) ;
spinlock_acquire(&sem->sem_lock) ;

—-—sem->sem_count;
spinlock_release(&sem->sem_lock);

V(struct semaphore *sem) {
spinlock_acquire (&sem->sem_lock) ;
++sem->sem_count;
wchan_wakeone (sem->sem_wchan) ;
spinlock_release(&sem->sem_lock);

Remark that we must call wchan_lock manually before wchan_sleep. This allows us to release
the spinlock but still maintain mutual exclusion as the internal lock of the wait channel is
held. Indeed, before wchan_sleep is called, wchan_wakeone spins/blocks as it internally tries
to obtain the wait channel lock. Only when the P thread sleepes will V release the semaphore
spin lock and finish execution.

30

All other wait channel functions automatically lock and unlock internally but when we call
wchan_sleep, it is normally with another (spin)lock held. Sleeping with a (spin)lock held
leads to poor performance or even deadlocks as no thread is able to release the (spin)lock
until the sleeping thread is woken up.

In this particular case, it would be impossible for V to increment the counter as it requires
acquisition of the semaphore’s internal spinlock, which would have been held in P (and not
released before sleeping).

3.9 Condition Variables

0OS/161 supports another common synchronization primitive: condition variables.

Each CV is intended to work together with a lock. CVs are only used from within the critical
section that is protected by the lock.

Three operations are possible on a CV

wait causes the calling thread to block and releases the lock associated with the CV. Once
the thread is unblocked, it reacquires the lock

signal if threads are blocked on the signaled CV, one of those threads is unblocked

broadcast similar to signal, but unblocks all threads that are blocked on the CV

Condition variables get their name as they allow threads to wait for arbitrary conditions

to become true inside of a critical section. Normally, each CV corresponds to a particular
condition that is of interest to an application.

For example, in the bounded buffer producer/consumer scenario, the two conditions are
(i) count > 0
(ii) count < N

When a condition is NOT true, a thread can wait on the corresponding CV until it becomes
true. When a thread detects that a conditions is true, it uses signal or broadcast to notify
any threads that may be waiting.

Remark that signals/broadcasts do not accumulate. This means that signalling/broadcasting
a CV without waiters has NO effect.

Example 3.9.1

int volatile number0fGeese = 100;
lock geeseMutex;

31

int SafeToWalk() {
lock_acquire(geeseMutex) ;
while (numberOfGeese > 0) {
lock_release(geeseMutex) ;
lock_acquire(geeseMutex) ;

int volatile number0fGeese = 100;
lock geeseMutex;
cv zeroGeese;

int SafeToWalk() {
lock_acquire(geeseMutex) ;
while (numberOfGeese > 0) {
cv_wait (zeroGeese, geeseMutex);

cv_wait will handle releasing and re-acquiring the lock passed in. It also puts the calling
thread onto the conditions wait channel to block. cv_signal and cv_broadcast are used to
wake threads waiting on the cv.

When a blocked thread is unblocked, it reacquires the lock before returning from the wait
call.

It follows that a thread in the critical section when it calls wait will still be in the critical
section upon return. However, between the call and the return, while the caller is blocked,
the caller is out of the critical system, and other threads may enter.

This describes Mesa-style CVs, which are used in OS/161. There are alternative CV seman-
tics (Hoare semantics), which differ from the semantics described here.

3.9.1 Bounded Buffer Producer/Consumer with Locks & CVs

int volatile count = 0;
struct lock *mutex;
struct cv *notfull, *notempty;

Produce(itemType item) {

32

lock_acquire(mutex) ;
while (count == N) {
cv_wait(notfull, mutex);

}

count += 1;
cv_signal (notempty, mutex);
lock_release(mutex);

}

itemType Consume() {
lock_acquire(mutex) ;
while(count == 0) {
cv_wait (notempty, mutex);

}

count -= 1;

cv_signal (notfull, mutex);
lock_release(mutex) ;
return item;

3.10 Volatile & Other Sources of Race Conditions

Notice that throughout these slides, shared variables were declared volatile.

Race conditions can occur for reasons OTHER than the programmer’s control. Specifically
that of the compiler or the CPU.

In both cases, the compiler and CPU introduces race conditions due to optimizations.

Definition 3.10.1 (Memory Models)
Description of how thread access to memory in shared regions behave

A memory model tells the compiler and CPU which optimizations can be performed.

For example, it is faster to access values from a register than from memory. Compilers
optimize for this by storing values in registers for as long as possible.

volatile disables this optimization, forcing a value to be loaded/stored to memory with
each use. It also prevents the compiler from re-ordering loads and stores for that variable.

33

This is precisely what we want for shared variables and thus shared variables should be
declared volatile in your code.

3.11 Other Language & Instruction level Instructions

Many languages supprot multi-threading with memory models and language-level synchro-
nization functions (ie locks).

The compiler is aware of critical sections via language-level synchronization functions and
does NOT perform optimizations which cause race conditions. The version of C used by
0OS/161 does NOT support this!

The CPU also has a memory model as it also re-orders loads and stores to improve perfor-
mance.

Modern architectures provide barrier or fence instructions to disable and reenable these
CPU-level optimizations to prevent race conditions at this level. The MIPS R3000 CPU
used in this course does not have or require these instructions.

3.12 Deadlocks

Deadlocks happen when two threads holding locks attempt to acquire the locks of the other
thread. Neither thread can make progress. Waiting will not resolve the deadlock and the
threads are permanently stuck.

3.12.1 Techniques for Deadlock Prevention

No Hold and Wait A thread is NOT allowed to request for resources it if currently has
resources allocated to it. A thread may hold several resources but must make a single
request for all of them

Resource Ordering Order the resource types and require that each thread acquire re-
sources in increasing resource type order. That is, a thread may make no requests for
resources of type less than or equal to ¢ if it is holding resources of type .

34

4 Processes and the Kernel

4.1 What is a Process?

Definition 4.1.1 (Process)
An environment in which an application program runs.

A process includes virtualized resources that its program can use, including

1+ threads

virtual memeory for the program’s code and data

as well as others such as file and socket descriptors.

Processes are created and managed by the kernel. Each program’s process isolates it from
other programs in other processes.

4.2 Process Management Calls

Processes can be created, managed, and destroyed. Each OS supports a variety of functions
to perform these tasks.

Usage Linux 0S/161
Creation fork, execv fork, execv
Destruction _exit, kill _exit
Synchronization wait, waitpid, pause, .. waitpid
Attribute Management | getpid, getuid, nice, getrusage, .. getpid

4.2.1 fork, _exit, & waitpid

fork creates a new process (the child) that is a clone of the original (the parent). After fork,
both parent and child are executing copies of the same program. Virtual memories
of parent and child are identical at the time of the fork, but may diverge afterwards.
Lastly, fork is called by the parent, but returns in BOTH the parent and the child.
The parent and child see DIFFERENT return values from fork

35

_ exit terminates the process that calls it. Processes can supply an exit status code when
it exits. The kernel records the exit status code in case another process asks for it (via
waitpid)

waitpid allows a process to wait for another to terminate. The exit status code is then
retrieved.

Example 4.2.1

main() {
rc = fork();

if(rc == 0) {
my_pid = getpid();
x = child_code()

_exit(x);

}

else {
child_pid = rc;
parent_pid = getpid();
parent_code();
p = waitpid(child_pid, &child_exit, 0);
if (WIFEEXITED(child_exit)) {

printf(, WEXITSTATUS(child_exit));

}

}

}
4.2.2 execv

execv chanves the program that a process is running. The calling process’s cirrent virtual
memory is destroyed.

The process gets a new virtual memory, initiated with the code and data of the new program
to run.

After execv, the new program starts executing.

Remark that the process ID stays the SAME. In addition, execv can pass arguments to the
new program, if required.

Example 4.2.2

int main() {
int rc = 0;

36

char *args[4];

args[0] = (char *) ;

args[1] = (char *) ;

args[2] = (char *) ;

args[3] = (char *) ;

rc = esecv(, args);
printf ()
printf (, TC, errno);
_exit (0);

4.2.3 Combining fork, execv

We can use fork to duplicate our current process and execv to change program the child (or
parent if desired) is running.

main() {
char *args[4];

rc = fork();

if (rc == 0) {
status = execv(, args);
printf();
printf(, rC, errno);
_exit(0);

}

else {

child_pid = rc;
parent_code();
p = waitpid(child_pid, &child_exit, 0);

4.3 System Calls

Definition 4.3.1 (System Call)
Process management calls by user programs.

37

These are the interface between processes and the kernel.

Servie 0S/161
create, destroy, and manage processes fork, execv, waitpid, getpid
create, destroy, and manage files open, close, remove, read, write

manage file system and directories | mkdir, rmdir, link, Synchronization

interprocess communication pipe, read, write
manage virtual memory sbrk
query, manage system reboot, time

The user should not be able to execute provileged code. The system call library allows user
programs to safely REQUEST for certain things which the kernel will ensure does not crash
the OS.

4.4 Kernel Privilege

The CPU implements different levels (rings) of execution privilege as a security and isolation
mechanism. Kernel code runs at the highest privilege level while application code runs at
the lower privilege level as user programs should NOT be permitted to perform certain tasks
such as halting the CPU or modifying the page tables that the kernel uses to implement
process virtual memories (address spaces).

Programs cannot execute code or instructions belonging to a high-level of privilege. These
restrictions allow the kernel to keep processes isolated from one another and from the kernel.

Application programs cannot directory call ernel functions or access kernel data structures.

The Meltdown vulnerability found on Intel chips let user applications bypass execution priv-
ilege and access any address in physical memory.

4.5 How System Calls Work

There are only two things which make kernel code run

Interrupts generated by devices when they require attention

Exceptions caused by instruction execution when a running program needs attention

38

4.5.1 Interrupts
Recall that an interrupt causes the hardware to transfer control to a fixed location in meme-
ory where an interrupt handler is located. These handlers are part of the kernel.

When an interrupt occurs while an application program is running, control jumps from the
application to the kernel’s interrupt handler.

The processsor switches to privileged execution mode when it transfers control to the inter-
rupt handler. This is how the kernel gets its execution provilege.

4.5.2 Exceptions

Definition 4.5.1 (Exception)
Conditions which occur during the execution of a program instruction.
ie arithmetic overflows, illegal instructions, page faults, etc.

Exceptions are detected by the CPU during instruction executions. The CPU handles excep-
tions like it handles interrupts. Control is trasferred to a fixed location where the exeception
handler is located. Also, the processor is switched to privileged execution mode.

Note that the exeption handler is part of the kernel.

4.5.3 MIPS Exception Types

EX_IRQ O
EX_MOD 1
EX_TLBL 2
EX_TLBS 3
EX_ADEL 4
EX_ADES 5
EX_IBE 6
EX_DBE 7
EX_SYS 8
EX_BP 9
EX_RI 10
EX_CPU 11
EX_OVF 12

In MIPS, the SAME mechanism handles exceptions and interrupts, using the codes above
to determine what trggered it to run.

39

To perform a system call, the application program needs to cause an exception to make the
kernel execute. On MIPS, EX_SYS is the system call exception.

To cause the desired exception to run, the applicaiton executes a special instruction syscall.
Other processors also include similar instructions.

The kernel’s exception handler checks the exception code (set by the CPU when the exception
is generated) to distinguish system call exceptions from other types of exceptions.

4.6 How are System Calls Implemented
4.6.1 System Call Codes
fork, getpid are two different system calls but there is only one syscall exeception. How

does the kernel know which call the application procress is requesting?

The kernel defines a code for each system call it understands. Application processes are
expected to place the application code at a specified location before executing the syscall
instruction. For MIPS, the code does in register v0.

Such codes and code locations are defined as part of the kernel ABI (Application Binary
Interface).

/kern/include/kern/syscall.h

#define SYS_fork O
#define SYS_vfork 1
#define SYS_execv 2
#define SYS__exit 3
#define SYS_waitpid 4
#define SYS_getpid 5

4.6.2 System Call Parameters
System calls take parameters and return values just like functions. But how is this imple-
mented in the context of exceptions?

The application is expected to place parameter values in a kernel-specified location before
the syscall. The kernel will also place return values in the predetermined locations after the
exception handler returns.

Again, this is part of the kernel ABI.

In MIPS, parameters go in registers a0, al, a2, a3.

40

4.6.3 Kernel Exception Handler

1
2
3

) create trap frame to save application program context
)

)
4) does the actual work
)

)

determine that this is a system call

determine which system call is being requested

5
6

restore the application program state from the trap frame

return from exception

4.7 User and Kernel Stack

Every OS/161 process thread has two stacks. However, it only uses one at a time.

4.7.1 User (Application) Stack

In use while application code is executing.

This stack is located in the application virtual memory. It holds activation records for
application functions. The kernel creates this stack when it sets up the virtual address
memory for the process.

4.7.2 Kernel Stack

In use while the thread is executing kernel code after an exception or interrupt.

This stack is a kernel structure. In OS/161, the t_stack field of the thread structure points
to this stack. This stack holds activation records for kernel functions. It also holds trap
frames and switch frames as the kernel creates trap frames and switch frames.

4.8 Exception Handling in OS/161

kern/arch/mips/locore/exception-mipsi.S

1) assembly code
(a) saves the application stack pointer

(b) switches the stack pointer to the kernel stack

41

(c) saves appliction state and the address of the instruction that was interrupted in
a trap frae on kernel stack

(d) calls mips_trap, passing a pointer to the trap frame as a parameter

2) the handler then restores the application state (application stack pointer) using the
trap frame from the kernel stack

3) jump back to the application instruction that was interrupted

4.9 Multiprocessing

Definition 4.9.1 (Multiprocessing)
Having multiple processes existing at the same time.

All processes share the available hardware resources, with the sharing being coordinated by
the operating system.

Each process’ virtual memory is implemented using some of the available physical memory.
The OS decides how much memory each process gets.

Each process’ threads are scheduled onto the available CPUs (or CPU cores) by the OS.

In addition, processes share access to other resources (ie disks, network devices, I/O devices)
by making system calls. The OS controls this sharing.

It is the responsibility of the OS ensure that processes are isolated from one another. Inter-
process communication should be possible, but only at the explicit request of the processes
involved.

Note that Processes can have many threads, but MUST have at least one to execute. OS/161
only supports a single thread per process.

4.10 Inter-Process Communication (IPC)

Processes are isolated from each other. But, what if they want to communicate (share data)
with each other?

IPC is a family of methods used to send data between processes.

File data to be shared is written to a file and accessed by both processes
Socket data is sent via network interface between processes

Shared Memory data is sent via blocks of shared memory visible to both processes

42

Message Passing/Queue a queue/data stream provided by the OS to send data between
processes

43

5 Virtual Memory

5.1 Motivation
If physical addresses are P bits, then the maximum amount of addressable memory is 2°
bytes.

Sys/161 MIPS uses P = 32. In the following notes, we will use P = 18 for the sake of
simplicity.

Modern kernels provide a separate private virtual memory for each process which holds code,
data, and stack of the process as before. If virtual addresses are V' bits, then the maximum
amount of addressable virtual memory is 2V bytes.

Again, V = 32 for MIPS but we will use V' = 16 for these notes.

The following all are virtual addresses

e program counter
» stack counter
« variable pointers

o destinations of jump and branch instructions

The important thing to note is that each process is isolated in its virtual memory space and
CANNOT access the virtual memory of other processes.

VM not only provides separation between memory spaces but also gives rise to the possibility
of VM larger than physical memory. Also, the total size of all VMs can be larger than physical
memory.

Each access to VM requires a translation to physical memory. The load or store is then
applied to the physical memory. This address translation is done in hardward, in the Memory
Management Unit (MMU).

Definition 5.1.1 (Memory Management Unit)

5.2 Segmentation

Realistically, instead of mapping each individual VM address to a physical addres, we map
each segment of virtual memory to a chunk of physical memory.

44

We can think of the V' bits of VM addresses as having K bits to indicate a segment ID and
V' — k bits to indicate offset from a segment.

5.2.1 Translation Using Registers
One way of translating virtual segments is for the MMU to have a relocation and limit
register for each segment.o

As for dynamic relocation, the kernel maintains a separate set of relocation offsets and limits
for each process, and changes the values in the MMU’s registers when there is a context switch
between processes.

5.2.2 Segment Table

Another way to go about the translation is to use a segment table.

Given a valid segment number, use the segment table to lookup the limit and relocation
values from the segment table.

5.3 Paging

VM is divided into pages which has the same size as frames. Each page is mapped to one
frame and each frame can map to any frame. Pages a mapped with a Page Table.

Definition 5.3.1 (Page Table)

Each Page Table Entry contains the frame the page is mapped to then a valid bit.o

5.3.1 MMU

The MMU gets the page number and offset using the VM address.. Then, it determines the
physical frame number using the PT (if valid). Finally, the appropriate physical address is
computed.

5.3.2 Page Table Entries

Each entry may contains additional information.

45

The write protection bit determines if a page is read-only.
The reference bit (used by caches) tells us if the page has been recently used.

The dirty bit determines if the page has been written to and thus needs to be written back
to physical memory.

5.3.3 Multi-Level Paging

Page Tables can get very very large.

Instead of only having one table. We can use a trie of tables where leaves give actual
physical pages and each fix sized segment of the VM address up to a predetermined bit is a
PT pointing to the next trie node (PT).

The advantage of this is that if a PT contains no valid PTE;, it does NOT have to be created!

We want each table to fit within a page, if it does not, create more levels until the desired
result is attained.

5.4 Kernel & MMU

Kernel responsible for

e Managing MMU registers on address space switches
e Creating and managing PT
o Managing physical memory

« Handling exceptions raised by the MMU
MMU responsible for

o Translating VM addresses to physical addresses

e Checking for and raising exceptions when necessary

46

	Introduction
	What is an Operating System?
	Views of an Operating System
	Application View
	System View
	Implementation View

	Implementing an OS
	Utility Programs
	Command Interpreters
	Programming Libraries

	Types of Kernels
	OS Abstractions

	Threads & Concurrency
	Introduction to Threads
	What is a Thread?
	Why Threads?

	OS/161: Thread Interface
	Other Thread Libraries and Functions

	Review
	Sequential Program Execution
	MIPS Registers
	The Stack

	Concurrent Program Execution (Two Threads)
	Implementing Concurrent Threads
	Hardware Support
	Timesharing
	Hardware Suppose & Timesharing

	Timesharing & Context Switches
	High Level View

	MIPS: Context Switching
	Causes for Context Switching
	Thread States
	OS/161: Thread Stack after Voluntary Context Switch
	Timesharing & Preemption
	Timesharing
	Preemption
	Review
	Interrupts
	OS/161 Thread Stack after an Interrupt

	Preemptive Scheduling
	OS/161: Thread Stack after Preemption

	Synchronization
	Thread Synchronization
	Race Condition
	Tips for Identifying Race Conditions
	Enforcing Mutual Exclusion with Locks
	Lock Acquire & Release
	Hardware-Specific Synchronization Instructions
	Lock Acquire & Release with Xchg
	ARM Synchronization Instructions
	Lock Acquire with LDREX, STREX
	MIPS Synchronization Instructions
	Lock Acquire with ll, sc

	OS/161: Spinlocks & Locks
	Spinlocks
	spinlock_acquire
	Locks
	Additional Notes
	Spinlock & Lock API

	Thread Blocking
	OS/161: Wait Channels
	Semaphores
	Types of Semaphores
	Differences between Locks and Semaphores
	Mutual Exclusion Using a Semaphore
	Producer/Consumer Synchronization with Bounded Buffer
	Semaphore Implementation

	Condition Variables
	Bounded Buffer Producer/Consumer with Locks & CVs

	Volatile & Other Sources of Race Conditions
	Other Language & Instruction level Instructions
	Deadlocks
	Techniques for Deadlock Prevention

	Processes and the Kernel
	What is a Process?
	Process Management Calls
	fork, _exit, & waitpid
	execv
	Combining fork, execv

	System Calls
	Kernel Privilege
	How System Calls Work
	Interrupts
	Exceptions
	MIPS Exception Types

	How are System Calls Implemented
	System Call Codes
	System Call Parameters
	Kernel Exception Handler

	User and Kernel Stack
	User (Application) Stack
	Kernel Stack

	Exception Handling in OS/161
	Multiprocessing
	Inter-Process Communication (IPC)

	Virtual Memory
	Motivation
	Segmentation
	Translation Using Registers
	Segment Table

	Paging
	MMU
	Page Table Entries
	Multi-Level Paging

	Kernel & MMU

