
©Fel
ix

Zh
ou

CS341: Algorithms

Felix Zhou

Fall 2019, University of Waterloo
from Professor Eric Blais’ Lectures

1

©Fel
ix

Zh
ou

Contents

1 A Whirlwind Tour: The Convex Hull Problem 9

1.1 Naive Solution . 9

1.2 Jarvis Walk . 9

1.3 Divide & Conquer . 9

1.4 Chan’s Algorithm . 9

2 Introduction 10

2.1 Basic Definitions . 10

2.2 Models of Algorithm Analysis . 10

2.2.1 Case Study . 10

2.2.2 CS341 Model . 11

2.3 Time Complexity . 11

3 Reduction 13

3.1 2 SUM . 13

3.1.1 Naive Algorithm . 13

3.1.2 Binary Sort . 13

3.2 3SUM . 14

3.2.1 Naive Algorithm . 14

3.2.2 2SUM Reduction . 14

3.2.3 Follow-up . 15

4 Recurrences 16

4.1 Merge Sort . 16

4.1.1 Time Complexity . 16

4.1.2 Recurrence Tree . 16

4.1.3 Magic Merge . 17

2

©Fel
ix

Zh
ou

4.2 Tri-Merge Sort . 17

4.2.1 Time Complexity . 17

4.3 Master Theorem . 17

4.4 Proving Recurrences by Induction . 19

4.4.1 Warnings . 20

4.5 Changing Variables . 20

5 Divide & Conquer 22

5.1 Counting Inversions . 22

5.1.1 Problem . 22

5.1.2 Divide & Conquer . 22

5.2 Binary Multiplication . 23

5.2.1 Problem . 23

5.2.2 Grade School Algorithm . 23

5.2.3 Karatsuba’s Algorithm . 23

5.3 Fast Matrix Multiplication . 24

5.3.1 Problem . 24

5.3.2 Brute Force . 24

5.3.3 Strassen’s Algorithm . 24

5.4 Closest Pair of Points on the Line . 25

5.4.1 Problem . 25

5.4.2 Naive Algorithm . 25

5.4.3 Divide & Conquer . 26

5.4.4 An Optimization . 27

6 Greedy Algorithms 28

6.1 Motivation: Finding Change . 28

6.2 Proving Correctness . 28

3

©Fel
ix

Zh
ou

6.2.1 Always Ahead . 28

6.2.2 Exchange Method . 28

6.3 Interval Scheduling . 28

6.3.1 Problem . 28

6.3.2 Greedy Algorithm . 29

6.4 Minimizing Lateness . 30

6.4.1 Greedy Algorithm . 30

6.5 Interval Coloring . 31

6.5.1 Problem . 31

6.5.2 Interval Scheduling Repeatedly . 31

6.5.3 Greedy . 32

6.6 Fractional Knapsack . 32

6.6.1 Problem . 32

6.6.2 Greedy Algorithm: Highest Value-Weight Ratio First 33

6.7 Offline Cache . 34

6.7.1 Problem . 34

6.7.2 LRU Cache . 34

6.7.3 FIFO . 34

6.7.4 LFU . 34

6.7.5 LIFO . 34

6.7.6 LFD: Least Forward Distance . 34

7 Dynamic Programming 35

7.1 Fibonacci Numbers . 35

7.1.1 DP . 35

7.2 Text Segmentation . 35

7.2.1 Greedy Algorithm . 35

7.2.2 DP . 35

4

©Fel
ix

Zh
ou

7.3 Longest Increasing Subsequence . 36

7.4 Longest Common Subsequence . 36

7.4.1 Remark . 36

7.4.2 DP . 36

7.4.3 Producing the Longest Subsequence 37

7.5 Edit Distance . 37

7.5.1 DP . 37

7.6 Weighted Interval Scheduling . 37

7.6.1 DP . 38

7.7 Optimal Binary Search Trees . 38

7.7.1 Problem . 38

7.7.2 DP . 38

7.8 Knapsack . 39

7.8.1 Problem . 39

7.8.2 DP . 40

8 Graph Algorithms 41

8.1 Definition . 41

8.2 Graph Representations . 42

8.2.1 Tradeoffs . 42

8.3 Graph Exploration Problem . 42

8.3.1 Problem . 42

8.3.2 Breadth-First Search . 43

8.3.3 Running Time Analysis . 43

8.4 Single-Source Shortest Path . 44

8.4.1 Problem . 44

8.4.2 DFS . 44

8.4.3 Correctness . 44

5

©Fel
ix

Zh
ou

8.5 Testing Bipartiteness . 45

8.5.1 Problem . 45

8.5.2 BFS . 45

8.6 Spanning Tree . 46

8.6.1 Problem . 46

8.6.2 BFS . 46

8.7 Depth-First Search . 46

8.7.1 The Algorithm . 47

8.7.2 Iterative Version . 47

8.7.3 Remarks . 48

8.8 Cut Vertex . 48

8.8.1 DFS . 48

8.9 Dicycle Detection . 49

8.9.1 DFS . 50

8.10 Topological Sorting . 51

8.10.1 DFS . 51

8.11 Strong Connectivity . 52

8.12 Minimum Spanning Tree . 52

8.12.1 Kruskal’s Algorithm . 52

8.12.2 Cut Property Lemma . 53

8.12.3 Prim’s Algorithm . 53

8.12.4 Proof of Correcness . 54

8.13 Shortest Paths in Nonnegative Edge Weighted Graphs 54

8.13.1 Dijkstra’s Algorithm, 1959 . 54

8.13.2 Implementational Details for Djikstra’s Algorithm 55

8.14 Shortest Paths in General Edge Weighted Graphs 55

8.14.1 Bellman-Ford . 56

8.14.2 The Algorithm . 56

6

©Fel
ix

Zh
ou

8.15 All-Pairs Shortest Path (APSP) . 57

8.15.1 The Problem . 57

8.15.2 Bellman-Ford Reduction . 57

8.15.3 Bellman-Ford APSP . 57

8.15.4 Floyd-Warshall Algorithm . 58

9 Exhaustive Search 59

9.1 Subset Sum . 59

9.1.1 The Problem . 59

9.1.2 Backtracking . 59

9.1.3 Generalized Backtracking Template 59

9.2 Traveling Salesman Problem . 60

9.2.1 Brute Force . 60

9.2.2 Branch-and-Bound . 60

10 Computation Complexity 62

10.1 Introduction to P . 62

10.1.1 What is Efficiency? . 62

10.1.2 Motivations for the Definition . 62

10.2 The Class P . 62

10.3 Reductions . 63

10.3.1 Reducible Problems . 64

10.3.2 Facts . 66

10.4 Polynomial-Time Verifier & NP . 66

10.4.1 P vs. NP . 67

10.5 NP-Completeness . 67

10.5.1 Definitions & Basic Results . 67

10.5.2 Examples . 68

7

©Fel
ix

Zh
ou

10.5.3 Corollaries . 69

10.5.4 The Hamiltonian Path Problem is NP-Complete 69

10.5.5 NP-Completeness of the Hamiltonian Cycle Problem 71

10.5.6 NP-Completeness of the Subset Sum Problem 71

10.5.7 Closing Remarks on NP-Completeness 72

11 Approximation Algorithms 74

11.1 Metric TSP . 74

11.1.1 The Algorithm . 74

11.2 Vertex Cover . 75

11.2.1 The Algorithm . 75

11.3 TSP . 75

12 (Very) Difficult Computational Problems 77

12.1 Impossible Problems . 77

12.1.1 Very Difficult Problems . 77

12.2 Rather Difficult Problems . 78

8

©Fel
ix

Zh
ou

1 A Whirlwind Tour: The Convex Hull Problem

1.1 Naive Solution

O(n3) time

1.2 Jarvis Walk

O(n2) time

1.3 Divide & Conquer

O(n log n) time

1.4 Chan’s Algorithm

O(n log h) time where h is the size of the returned convex hull.

9

©Fel
ix

Zh
ou

2 Introduction

2.1 Basic Definitions

Definition 2.1.1 (Algorithm)
An algorithm is a description of a process that is

• unambiguous (always know what step to do next)

• effective (each step is a basic operation)

• finite

Definition 2.1.2 (Solution)
An algorithm solves a problem if for every instance of the problem, when that instance
is the input to the algorithm, it produces a valid solution as output.

2.2 Models of Algorithm Analysis

Definition 2.2.1 (Line-Cost Model)
Each line run takes 1 time step.

Definition 2.2.2 (Bit-Cost Model)
Each operation on a single bit takes 1 time step.

2.2.1 Case Study

Example 2.2.1 (Tower)

tower(n):
k = 1k
for i=1,..., n:

k = 2^k
return

Analysis with the line-cost model shows us that the algorithm runs in linear time which
is simply ridiculous.

10

©Fel
ix

Zh
ou

Example 2.2.2

ALG(n):
...
...
c = a*b

Observe that the naive multiplication algorithm runs in O(log a · log b) time.

To make matters worse, there is a fast multiplication algorithm which runs in O(log a(log b)c)
where c is a small constant less than 1.

2.2.2 CS341 Model

Definition 2.2.3 (Word RAM Model)
For an algorithm running on inputs of size n,

1. the memory will consist of words of length w(n)(= log n).
2. all operations on individual words take 1 time step.

Note that this is NOT the only model that is possible. Existing variations including those
whose basic instructions have a weight.

However, this is almost always the basic model which is used to analyze algorithms. We
come to some result and then “deal” with the necessary complications.

2.3 Time Complexity

Let us write
TA(I) = number of time steps A takes on input I

Definition 2.3.1 (Worse-Case Time Complexity)
TA(n) = max{TA(I) : I is an input of size n}

Definition 2.3.2
Two functions f, g : N → R≥1 satisfy f = O(f) if

∃c ∈ R+, n0 ∈ N,∀n ≥ n0 =⇒ f(n) ≤ cġ(n)

11

©Fel
ix

Zh
ou

Proposition 2.3.1
f(n) = 4n7 + 100n3 + 1

3
n2 + π = O(n7)

Proof
c = 300, n0 = 1000

Definition 2.3.3
f = Ω(g) if there is some c ∈ R+, n0 ∈ N such that for all n ≥ n0

f(n) ≥ cg(n)

Proposition 2.3.2
n7 + o(n7) = Ω(n7)

Definition 2.3.4
f = Θ(g) if f = O(g) ∧ f = Ω(g)

Note that to be 100 percent correct, we should write f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g).

Definition 2.3.5
f = o(g) if for every c ∈ R+ there is some n0 ∈ N such that for all n ≥ n0

f(n) < c · g(n)

Definition 2.3.6
f = ω(g) if for every c ∈ R+ there is some n0 ∈ N such that for all n ≥ n0

f(n) > c · g(n)

12

©Fel
ix

Zh
ou

3 Reduction

3.1 2 SUM

Definition 3.1.1 (2 SUM Problem)
Given an array A of n integers and m ∈ Z, return

• (i, j) ∈ [n]2 such that
A[i] + A[j] = m

if such a pair exists

• ⊥ if no such pair exists

3.1.1 Naive Algorithm

SIMPLE2SUM(A, m):
for i in [n]:

for j in i, ..., n:
if A[i] + A[j] = m:

return (i, j)

return None

Θ(n2)

3.1.2 Binary Sort

2SUM(A, m):
B = sorted(A)
for i in [n]:

j = BSearch(B, m-B[i])
if j is not None:

return (Scan(A, B[i]), Scan(A, B[j]))

O(n log n) +O(n log n) + 2O(n)

13

©Fel
ix

Zh
ou

3.2 3SUM

Definition 3.2.1 (3 SUM Problem)
Given an array A of n integers and m ∈ Z, return

• (i, j, k) ∈ [n]3 such that

A[i] + A[j] + A[k] = m

if such a tuple exists

• ⊥ if no such tuple exists

3.2.1 Naive Algorithm

SIMPLE2SUM(A, m):
for i in [n]:

for j in i, ..., n:
for k in j, ..., n:

if A[i] + A[j] + A[k] = m:
return (i, j, k)

return None

Θ(n3)

3.2.2 2SUM Reduction

Definition 3.2.2 (Reduction)
Use known algorithms to solve new problems.

3SUM(A, m):
for i in [n]:

(j, k) = 2SUM(A, m-A[i])
if (j, k) is not None:

return (i, j, k)
return None

n2 log n

14

©Fel
ix

Zh
ou

3.2.3 Follow-up

Can we solve 3SUM in time O(n2)?

Can we solve 3SUM in time o(n2)?

O

(
n2

log2 n

)
. . . O(n1.99999)

15

©Fel
ix

Zh
ou

4 Recurrences

4.1 Merge Sort

MERGESORT(A):
if n == 1:

return A

A_1 = MERGESORT(A[1, ..., n/2])
A_2 = MERGESORT(A[n/2+1, ..., n])

return MERGE(A_1, A_2)

4.1.1 Time Complexity

T (n) = 2T
(
n
2

)
+O(n)

4.1.2 Recurrence Tree

T (n)

T
(
n
2

)

T
(
n
4

)
T
(
n
4

)
T
(
n
2

)

T
(
n
4

)
T
(
n
4

)

There are log n levels and each level requires a linear time operation.

This shows that the overall run time is

O(n log n)

16

©Fel
ix

Zh
ou

4.1.3 Magic Merge

Suppose we can merge in constant time, then the time complexity is a geometric sequence

1 + 2 + · · ·+ 2logn

which gives us O(n) time.

4.2 Tri-Merge Sort

MERGESORT(A):
if n == 1:

return A

A_1 = MERGESORT(A[1, ..., n/3])
A_2 = MERGESORT(A[n/3+1, ..., 2n/3])
A_3 = MERGESORT(A[2n/3+1, ..., n])

return MERGE(A_1, A_2, A_3)

4.2.1 Time Complexity

T (n) = 3T
(
n
3

)
+O(n)

The recurrence stays the same.

4.3 Master Theorem

Theorem 4.3.1 (Master Theorem)
Let a, b ≥ 1 be constant and a function f : N → R+.
Suppose we have the recurrence

T (n) = aT
(n
b

)
+ f(n)

(1) f(n) ∈ O(nlogb a−ε) =⇒ T (n) ∈ O(nlogb a)

(2) f(n) ∈ Θ(nlogb a) =⇒ T (n) ∈ Θ(nlogb a logb n)

(3) f(n) ∈ Ω(nlogb a+ε) and in addition if af
(
n
b

)
≤ αf(n) for some 0 ≤ α < 1, then

T (n) ∈ Θ(f(n))

17

©Fel
ix

Zh
ou

Lemma 4.3.2
alogb n = nlogb a

Proof

lnn

ln b
(ln a) =

ln a

ln b
(lnn)

(logb n)(ln a) = (logb a)(lnn)

ln alogb n = lnnlogb a

alogb n = nlogb a

Proof (Master Theorem)

T (n) = f(n) + af
(n
b

)
+ a2f

(n

b2

)
+ . . .

=

logb n−1∑
i=0

aif
(n

bi

)
+ alogb nf(1)

=

logb n−1∑
i=0

aif
(n

bi

)
+O(nlogb a) by the lemma

If f(n) ∈ O(nlogb a−ε) for some ε > 0 then the summation is a geometric series bounded
above by its infinite sum so T (n) ∈ nlogb a.

Let c < logb a

T (n) = nc

logb n−1∑
i=0

(
ai

bic

)
+O(nlogb a)

= O(nc) +O(nlogb a)

= O(nlogb a)

If f(n) ∈ Θ(nlogb a) then each entry in the sum is constant and there are logb n of them so
T (n) ∈ nlogb a logb n.

18

©Fel
ix

Zh
ou

Let c = logb a

T (n) = nc

logb n−1∑
i=0

(
ai

bic

)
+O(nlogb a)

= nc(logb n− 1) +O(nc)

= Θ(nlogb a logb n)

If f(n) ∈ Ω(nlogb a+ε) for some ε > 0, the lower bound is trivial.

Suppose now that there is some constant 1 > α ∈ R+ such that

af
(n
b

)
≤ αf(n)

note that then
aif

(n

bi

)
≤ αif(n)

so

T (n) =

logb n−1∑
i=0

aif
(n

bi

)
+O(nlogb a)

≤
∞∑
i=0

αif(n) +O(nlogb a)

∈ O(f(n))

Proposition 4.3.3
For the same setup as the Master Theorem:

(1) f(n) ∈ Θ(nlogb a−ε) =⇒ T (n) ∈ Θ(nlogb a)

(2) f(n) ∈ Θ(nlogb a) =⇒ T (n) ∈ Θ(nlogb a logb n)

(3) f(n) ∈ Θ(nlogb a+ε) =⇒ T (n) ∈ Θ(nlogb a+ε)

Proof
(1), (2) is the exact same proof.

The proof of (3) simply requires the leverage of finite geometric series.

4.4 Proving Recurrences by Induction

Let T (n) be the running time of some algorithm.

We can prove an (ideally tight) upper bound of T (n) by guessing an upper bound and proving

19

©Fel
ix

Zh
ou

its correct through induction.

Example 4.4.1
T (n) = 2T

(⌊
n
2

⌋)
+ n.

With T (1) = 1 and the base cases

T (2) = 2T (1) + 2 ≤ c2 log 2 ⇐= c ≥ 2

T (3) = 2T (1) + 3 ≤ c3 log 3 ⇐= c ≥ 2

Now for the induction step

T (n) = 2T
(⌊n

2

⌋)
+ n

≤ 2c
⌊n
2

⌋
log

⌊n
2

⌋
+ n

≤ cn log
n

2
+ n

= cn log n− cn+ n

≤ cn log n

4.4.1 Warnings

We can guess the wrong upper bound so that the induction step almost works, but it must
be strictly correct.

It is also possible that we guess an upper bound which is simply not tight.

4.5 Changing Variables

Consider
T (n) = 2T (

√
n) + log n

and note that
T (2m) = 2T

(
2

m
2

)
+m

We can take
S(m) := T (2m)

so that
S(m) = 2S

(m
2

)
+m

But we know that
S(m) ∈ O(m logm)

20

©Fel
ix

Zh
ou

So
T (2m) ∈ O(logm log logm) =⇒ T (n) ∈ O(log n log log n)

21

©F
el

ix
Zh

ou
5 Divide & Conquer

The essence of the divide and conquer approach lies in 3 steps:

1) divide the problem into smaller subproblems
2) conquer each smaller subproblem seperately
3) combine the results to solve the original problem

5.1 Counting Inversions

Definition 5.1.1 (Inversion)
A pair i < j is an inversion in the seqeunce

a1, . . . , an

if ai > aj.

5.1.1 Problem

Given a sequence a1, . . . , an, compute the number of inversions in the sequence.

Note that the brute force algorithm solves this in O(n2) time.

5.1.2 Divide & Conquer

Divide the array into two halves.

The total number of inversions is
rL + rR + rA

the number of inversions in the left, right subarray, and the number of inversions across the
division line.

Modify MergeSort so that in the merge step, the number of elements left in the left subarray
is the exact number of inversions with one element in the pair being fixed in the right
subarray.

def sortAndCountInv(A[1,...,n]):
if n == 1:

return

22

©Fel
ix

Zh
ou

(L, r_L) = sortAndCountIng(A[1,...,n/2])
(R, r_R) = sortAndCountIn(A[n/2+1,...,n])

r, S = 0, []
while L or R:

if R[0] < L[0]:
S.append(R[0])
R = R[1:]
r += len(L)

else:
S.append(L[0])
L = L[1:]

return S, r_L + r_R + r

T (n) = 2T
(
n
2

)
+O(n) = O(n log n)

5.2 Binary Multiplication

5.2.1 Problem

Given two n-bit integers x, y, compute their product xy.

5.2.2 Grade School Algorithm

The grade school algorithm Θ(n2).

5.2.3 Karatsuba’s Algorithm

xy =
(
2

n
2 xL + xR

) (
2

n
2 yL + yR

)
= 2n(xL + yL) + 2

n
2 ((xL − xR)(yL + yR)− xLyL + xRyR) + xRyR

T (n) = 3T
(
n
2

)
+O(n) ∈ O(nlog2 3)

23

©Fel
ix

Zh
ou

5.3 Fast Matrix Multiplication

5.3.1 Problem

Let A,B ∈ Rm×n, we wish to compute C such that

Ci,j :=
n∑

k=1

Ai,kBk,j

5.3.2 Brute Force

O(n3) time.

5.3.3 Strassen’s Algorithm

Write

A =

[
A11 A12

A21 A22

]
A =

[
B11 B12

B21 B22

]
C =

[
C11 C12

C21 C22

]

By block matrix multiplication

Cij = Ai1B1j + Ai2B2j

This does 8 calls to matrices of size n
2

and O(n2) work with addition.

Solving
T (n) := 8

(n
2

)
+ n2 ∈ O(n3)

which is not better.

24

©Fel
ix

Zh
ou

M1 = (A11 + A22)(B11 +B22)

M2 = (A21 + A22)B11

M3 = A11(B12 −B22)

M4 = A22(B21 −B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 +B12)

M7 = (A12 − A22)(B21 +B22)

then

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6

We have
T (n) := 7T

(n
2

)
+ n2 ∈ O(nlog2 7) ≈ O(n2.81)

The best algorithms run in
O(n2.37)

time and it is conjectured that the theoretical lower bound of

Ω(n2)

can be obtained.

5.4 Closest Pair of Points on the Line

5.4.1 Problem

Let {(xk, yk)} ⊆ R2 be a finite set of points, we wish to find

δ := min ‖~xi − ~xj‖

for all i 6= j.

5.4.2 Naive Algorithm

Enumerate all points and keep a running minimum

T (n2) ∈ Θ(n2)

25

©Fel
ix

Zh
ou

5.4.3 Divide & Conquer

1. Initially sort the list with respect to the x-coordinates
2. Recursively call the algorithm on two halves, split by x-coordinate, call them Q,R

3. return smallest distance between points in Q,R, and between points in left and right.

Note for the combine step, we only need to consider points crossing some line L seperating
points of Q,R which are less than

δ := min δQ, δR

Let S be the set of points which are at most δ from L.

Proposition 5.4.1
Any point outside of S are distance greater than δ from each other.

Proposition 5.4.2
For (x∗, y∗) ∈ S, there must be at most 8 points (x′, y′) ∈ S such that

y∗ ≤ y′ ≤ y∗ + δ

Proof
We can subdivide the points with 8 squares of side length δ

2
and note that each square

can only contain one point, else it has distance closer than δ and also resides in either
Q,R.

delta_Q := closestPair(Q)
delta_R := closestPair(R)
delta := min(delta_Q, delta_R)

S = []
for i=1, ..., n:
if x_n/2 - delta <= x_i x_n/2 + delta:
S.append(x_i, y_i)

S.sort(key = lambda x, y: y)
for 1 <= i < j <= len(S), j-i <= 7:

delta = min(delta, norm((x_i, y_i), (x_j, y_j)))

return delta

This solves to
T (n) = 2T

(n
2

)
+ n log n

26

©Fel
ix

Zh
ou

The recurrence will be an assignment question

5.4.4 An Optimization

We can presort to get the runtime

T (n) = 2T
(n
2

)
+ n ∈ O(n log n)

27

©Fel
ix

Zh
ou

6 Greedy Algorithms

6.1 Motivation: Finding Change

1. breaks down problem into individual steps (sequential)
2. each choice for individual steps is made according to a local “decision”

Example 6.1.1 (Finding Change)
Does a greedy algorithm always return change with minimum number of coins?

In general no! Consider the following:

Coin Value: 1, 100, 101

Change 200

Example 6.1.2 (Huffman Encoding)

6.2 Proving Correctness

6.2.1 Always Ahead

At each point of the algorithm, the “decision” made by the greedy algorithm is “as good as”
any the decision made by any other algorithm.

6.2.2 Exchange Method

Given any optimal solution, show that the greedy algorithm achieves it.

6.3 Interval Scheduling

6.3.1 Problem

We are given n intervals
(s1, f1), . . . , (sn, fn)

Find the maximum (= largest) set
I ⊆ [n]

of non-overlapping intervals.

28

©Fel
ix

Zh
ou

6.3.2 Greedy Algorithm

1. Pick the shortest interval first
2. earliest finish time
3. earliest start time
4. fewest overlaps with other intervals

Proposition 6.3.1
For every valid solution

I∗ = {i1, . . . , ik}

the set
I ′ = {j1, i2, . . . , ik}

is also a maximum set of non-overlapping intervals sorted by finish time with distinct
finish times.
Where j1 is the first interval returned by the earliest finish time algorithm.

Proof
I ′ is a set of non-overlapping intervals because I∗ is and for any m ≥ 2 and

fj1 ≤ fi1 < sim

by the greedy algorithm.

Remark that |I ′| = |I∗| since
j1 /∈ {i2, . . . , ik}

so I ′ is a valid solution.

Proposition 6.3.2
If

I∗ = {j1, . . . , jm−1, im, . . . , ik}

is a valid solution then so is

I ′ = {j1, . . . , jm, im+1, . . . , ik}

Proof
We argue by induction.

The base case has been handled in the proposition above.

29

©Fel
ix

Zh
ou

Now, by the definition of the greedy algorithm, we have

fjm ≤ fim < sik , k ≥ m

which shows the proof.

Proposition 6.3.3
The greedy algorithm determined by earliest finish time solves the interval scheduling
problem.

Proof
The previous proposition shows that any valid solution I∗ can be transformed to the
greedy solution I ′ with possible smaller size. so it suffices to show that

|I ′| = |I∗|

But the greedy algorithm only returns if all intervals after the last returned index intersect
with at least one of its returned intervals.

By the above, we conclude the proof.

6.4 Minimizing Lateness

Given n tasks with processing times
p1, . . . , pn

and deadline
d1, . . . , dn

find an ordering σ that minimizing

max
i

Lσ
i = max

i

 ∑

j:σ(j)≤σ(i)

pj

− di

6.4.1 Greedy Algorithm

1. earliest deadline
2. longest task first
3. shortest task first
4. shortest slack
5. tasks past deadline last

30

©Fel
ix

Zh
ou

Consider the earliest deadline algorithm.

Proposition 6.4.1
The greedy algorithm characterized by earliest deadline solves the minimizing lateness
problem.

Proof
Consider any arbitrary input and sort the deadlines so d1 ≤ d2 ≤ · · · ≤ dn.

Let σ be the return values of some optimal solution on an arbitrary input.

Furthermore, suppose that σ is not the same permutation as the returned permutation of
the greedy algorithm, which means there is some σ(j) < σ(i) but di ≤ dj.

Let σ′ be the permutation equal to σ but with i, j flipped.

We claim flipping the ordering does not change overall lateness.

Clearly, Lσ′
i ≤ Lσ

i since the deadlines stay constant and we complete task i earlier in σ′.

Now, to see that Lσ′
j ≤ Lσ

i , we notice that di ≤ dj and∑
k:σ(k)≤σ(i)

pk =
∑

l:σ′(l)≤σ′(j)

pl

as task i, j finish at the exact same time in σ, σ′ respectively.

So the overall lateness did not increase.

We can repeat this procedure at most O(n2) times (think BubbleSort) to get the permu-
tation returned by the greedy algorithm, demonstrating its correctness.

6.5 Interval Coloring

6.5.1 Problem

Given n intervals (s1, f1), . . . , (sn, fn), find a coloring of each interval such that no two
overlapping intervals get the same color and we use as few colors as possible.

6.5.2 Interval Scheduling Repeatedly

Take the maximum non-overlapping?

31

©Fel
ix

Zh
ou

6.5.3 Greedy

Sort by start time.

For every interval i, if there is a color that was used previously and does not overlap i, use
it. Otherwise, use a new color.

O(n · d).

where d is the maximum number of colors necessary.

Theorem 6.5.1
Let d be the maximal number of intervals that cover any point.
Then at least d colors are required and the greedy algorithm uses at most d colors.

Proof
All d intervals that cover a point overlap each other and need distinct colors.

Suppose that at most d intervals intersect at any point. Given some index of interval i,
then there can be at most d− 1 intervals indexed by

1, . . . , i− 1

that cover the point si.

Hence there is at least one color available for i.

6.6 Fractional Knapsack

6.6.1 Problem

Given a knapsack capacity W and n items with weights

w1, . . . , wn

and values
v1, . . . , vn

find x1, . . . , xn satisfying
0 ≤ xi ≤ wi

such that ∑
xi ≤ W

which maximizes ∑ vi
wi

xi

32

©Fel
ix

Zh
ou

6.6.2 Greedy Algorithm: Highest Value-Weight Ratio First

Theorem 6.6.1
The proposed greedy algorithm is correct.

Proof
Sort the items so that

v1
w1

≥ · · · ≥ vn
wn

Let x1, . . . , xn be the output of the greedy algorithm.

Let y1, . . . , yn be an optimal solution.

We want to construct a new solution

y′1, . . . , y
′
n

that is optimal and closer to x1, . . . , xn.

where closer is defined by the

m = |i ≤ n : xi 6= yi|

If m = 0, x = y so the greedy algorithm is optimal.

Else, we want y′ to have less than m values different than x.

Let k be the first index where xk 6= yk.

Then xk > yk by the greedy algorithm.

Since
∑

xi =
∑

yi, there must be l > k such that xl < yl.

Increase yk and decrease yl by

min{xk − yk, yl − xl}

Then m decreases as we force either xk = y′k or xl = y′l and since the ratio of k is at least
the ratio of l, The net change in overall value is nonnegative.

We can repeat this procedure at most m
2

times so that x = y(α) for some 1 ≤ α ≤ m
2

.

33

©Fel
ix

Zh
ou

6.7 Offline Cache

6.7.1 Problem

For any n page requests, minimize the number of page faults.

6.7.2 LRU Cache

6.7.3 FIFO

6.7.4 LFU

6.7.5 LIFO

6.7.6 LFD: Least Forward Distance

Which element do we NOT need for as long as possible

34

©Fel
ix

Zh
ou

7 Dynamic Programming

(1) breakdown problem into subproblem
(2) solve the subproblems
(3) reuse solutions already computed

7.1 Fibonacci Numbers

F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2

The time complexity for naive recursion is O(2n).

7.1.1 DP

F[0] = 1
F[1] = 1
for k=2, ..., n:

F[k] = F[k-1] + F[k-2]
return F[n]

7.2 Text Segmentation

Given a string s, can we “split” s into substrings such that each substring is is a “valid”
word given by a dictionary.

7.2.1 Greedy Algorithm

Does not work.

7.2.2 DP

def(T[1,...,n]):
S[k] = [False]*n
for k=1, ..., n:

S[k] = any(S[j] and isWord(T[j+1, ..., k]) for j=k-1,...,1)

35

©Fel
ix

Zh
ou

return S[n]

O(n2) time assuming isWord is runs in constant time.

7.3 Longest Increasing Subsequence

def LIS(A[1,...,n]):
for k=1, ..., n:

S[k] = max(S[j] + 1 for j=k-1,...,1 if A[j] < A[k])

return S[n]

O(n2) time but can be optimized with binary search for O(n log n) time.

7.4 Longest Common Subsequence

Given strings x, y find the length of the longest string that is a subsequence of both x, y.

7.4.1 Remark

Let x[i] denote the i-th character of x with x[0] = ∅ being the empty string by convention.

7.4.2 DP

Let M [i, j] be the length of the longest common subsequence in x[1, . . . , i], y[1, . . . , j].

M[1, 1] = 1 if x[1] == y[1] else 0
M[0, j] = M[i, 0] = 0 for every i, j

for i= 1, ..., m:
for j=1, ..., n:

M[i, j] = max(M[i-1, j], M[i, j-1])

if x[i] == y[j]:
M[i, j] = max(M[i, j], M[i-1, j-1] + 1)

return M[m, n]

36

©Fel
ix

Zh
ou

7.4.3 Producing the Longest Subsequence

Backtrack

(i) if x[i] 6= y[j] then we must have taken the max of the left and above.
(ii) if x[i] = y[j] then we must have added a letter
(iii) otherwise choose above or left arbitrarily

7.5 Edit Distance

Definition 7.5.1 (Edit Distance)
Edit distance between string x, y is the minimal number of operations needed to
transform x → y.

(1) add a letter to x

(2) delete any letter from x

(3) substitute one letter for a different one

7.5.1 DP

M[1, 1] = 1 if x[1] == y[1] else 0
M[0, j] = j for every j
M[i, 0] = i for every i

for i= 1, ..., m:
for j=1, ..., n:

M[i, j] = min(M[i-1, j], M[i, j-1]) + 1

if x[i] == y[j]:
M[i, j] = min(M[i, j], M[i-1, j-1] + 1)

else:
M[i, j] = min(M[i, j], M[i-1, j-1])

return M[m, n]

7.6 Weighted Interval Scheduling

Solution to the previous problem.

37

©Fel
ix

Zh
ou

7.6.1 DP

Let us solve the WIS Problem by solving it up to the first k-th interval.

W.sort(key=lambda (c, d): d)

M[1] = W[1]

for i= 2, ..., n:
M[i] = M[i-1]

(a, b) = W[i]
j = bisect_right(W, a, key=lambda (c, d): d)

M[i] = min(M[i], M[j] + W[i])

return M[n]

7.7 Optimal Binary Search Trees

7.7.1 Problem

Given items 1, . . . , n and probabilities p1, . . . , pn, construct a binary search tree T which
minimizes the search cost

n∑
i=1

pi · depthT (i)

Note that this is different than the Huffman Encoding as we must still ensure that the items
are produced in-order if we apply an in-order traversal.

7.7.2 DP

We wish to build trees from the bottom up.

For 1 ≤ i ≤ j ≤ n, let
M [i, j]

is the minimum search cost of binary search items i, i+ 1, . . . , j.

We solve the subproblems by increasing values of j − i.

(1) identity root node k ∈ {i, . . . , j}

38

©Fel
ix

Zh
ou

(2) find search cost of subtrees for items i, . . . , k − 1 and k + 1, . . . , j

(3) compute search cost of optimal subtrees for the new tree rooted at k.

Note that the third item is simply

C = CL +
k−1∑
l=i

pl · 1 + CR +

j∑
l=k+1

pl · 1 + pk · 1

This is due to the fact that we “shifted” the left and subtrees down one level, increasing the
depth of all nodes by 1, and we further account for the root node k.

for i=1, ..., n:
for j=i, ..., n:

if i==j:
M[i, i] = p_i
M[i, i-1] = 0

else:
M[i, j] = float('inf')

for d = 1, ..., n-1:
for i = 1, ..., n-d:

j = i+d

p = sum(p_i, ..., p_j)

for k=i+1, ..., j:
M[i, j] = min(M[i, j], M[i, k-1] + M[k+1] + p)

return M[1, n]

O(n3) time but can be optimized to O(n2) time.

7.8 Knapsack

7.8.1 Problem

An instance of the 0-1 knapsack problem is a set of n items that have positive integer weights

w1, . . . , wn

and values
v1, . . . , vn

39

©Fel
ix

Zh
ou

as well as a maximum weight capacity W of the knapsack.

A valid solution is a subset
S ⊆ 1, . . . , n

such that ∑
i∈S

wi ≤ W

maximizing ∑
i∈S

vi

Note that the greedy solution to the previous knapsack variant allowing for fractional items
does not work anymore.

7.8.2 DP

Let
M(k, w)

denote the total value of a valid solution to the problem up to the first k items and capacity
w.

We either take or choose not to take the k-th item, giving the recursion

M(k, w) =

{
M(k − 1, w), wk > w

max{M(k − 1, w), vk + (k − 1, w − wk)}, wk ≤ w

The proof of correctness is by induction on k, w and follows intuition.

O(nW) run-time.

To find the optimal set of items, we can backtrack to find the items put in the knapsack
based on M [k, w].

40

©Fel
ix

Zh
ou

8 Graph Algorithms

8.1 Definition

Definition 8.1.1 (Graph)
A graph G = (V,E) is a pair consisting of a vertex set V and a set

E ⊆ V × V

of edges connecting pairs of vertices.

By convention, we will let
n = |V |,m = |E|

Definition 8.1.2 (Unordered Graph)
A graph with undirected edges.

Definition 8.1.3
• adjacent

• incidence

• in/out degree

• cycle

• connectedness

• tree

• tree

• connected component

Definition 8.1.4 (Path)
A graph theoretic walk.

Definition 8.1.5 (Simple Path)
A graph theoretic path.

41

©Fel
ix

Zh
ou

8.2 Graph Representations

We either represent graphs with an

Definition 8.2.1 (Adjacency Matrix)
M ∈ Rn×n such that

Mi,j =

{
1, ij ∈ E

0, ij /∈ E

or

Definition 8.2.2 (Adjacency List)
n linked lists, one for each node in v ∈ V (G), which stores all the neighbours of v.

8.2.1 Tradeoffs

Notice that the adjacency matrix representation takes Θ(n2) space but allows us to check
adjacency in constant time. The tradeoff is that identifying all neighbours of a vertex v takes
O(n) time.

On the other hand, the adjacency list approach takes Θ(n+m) space but requires O(n) time
to check for adjacency of two vertices. However, identifying all th eneighbours of v takes
Θ(deg(v)) time.

8.3 Graph Exploration Problem

8.3.1 Problem

Given a graph G = (V,E) and a vertex s ∈ V , a valid solution to this instance is a list of all
the vertices in the connected component of G containing s.

42

©Fel
ix

Zh
ou

8.3.2 Breadth-First Search

for v in V-s:
status[v] = undiscovered

status[s] = discovered

Q = set([s])
L = set()

while Q:
v = Q.pop()

for w in adj(G, v):
if status[w] == undiscovered:

status [w] = discovered
Q.push(w)

L.append(v)
status[v] = explored

return L

8.3.3 Running Time Analysis

Theorem 8.3.1
The time complexity of BFS is O(n+m).

Proof
By only adding vertices in the queue when they are undiscovered and by changing their
status to discovered when we do so, we guarantee that each vertex is added to the queue
at most once.

This means the total number of queue operations is O(n) and since those operations take
constant time, the time complexity of those operations is O(n).

Furthermore, since the adjacency list of each vertex is visited at most once ad a constant
amount of time is spent for each elemet of those lists, the total amount of time spent in
the inner for loop is O(m).

The initialization has linear time complexity.

43

©Fel
ix

Zh
ou

The total time complexity of the BFS is

O(n) +O(n) +O(m) = O(n+m)

8.4 Single-Source Shortest Path

8.4.1 Problem

We wish to find the shortest path between a special source vertex s and all the other vertices
in the graph.

8.4.2 DFS

for v in V-s:
status[v] = undiscovered
dist[v] = 'inf'

status[s] = discovered
dist[s] = 0

Q = set([s])

while Q:
v = Q.pop()

for w in adj(G, v):
if status[w] == undiscovered:

status [w] = discovered
dist[w] = dist[v] + 1
Q.push(w)

status[v] = explored

return dist

8.4.3 Correctness

Theorem 8.4.1
Correctness of BFS.

44

©Fel
ix

Zh
ou

Proof
We argue by induction on the following invariants

(i) All nodes at distance at most d from s have their distance correctly set.
(ii) all other nodes have distance ∞
(iii) the set of nodes that are in the queue (set of nodes at state discovered) is the vertices

at distance exactly d from s.

Corollary 8.4.1.1
BFS solves the Graph Exploration Problem.

8.5 Testing Bipartiteness

8.5.1 Problem

Given a connected graph G, determine if it is bipartite or not.

8.5.2 BFS

for v in V-s:
status[v] = undiscovered

status[s] = discovered
partition[s] = 0

Q = set([s])

while Q:
v = Q.pop()

for w in adj(G, v):
if status[w] == undiscovered:

status [w] = discovered
partition[w] = 1 - partition[v]
Q.push(w)

elif partition[v] == partition[w]:
return False

status[v] = explored

return True

45

©Fel
ix

Zh
ou

8.6 Spanning Tree

Definition 8.6.1 (Spanning Tree)
A subgraph of G which has n− 1 edges and contains all vertices of G.

8.6.1 Problem

Given a graph G, output a spanning tree.

8.6.2 BFS

We can represent a rooted tree with an arry of n nodes, the entry for node v is its parent in
the tree with the entry for the root being ∅.

for v in V-s:
status[v] = undiscovered

status[s] = discovered
parent[s] = None

Q = [s]

while Q:
v = Q.pop()

for w in adj(G, v):
if status[w] == undiscovered:

status [w] = discovered
parent[w] = v
Q.push(w)

status[v] = explored

return parent

8.7 Depth-First Search

Essentially a BFS with a stack instead of a queue.

46

©Fel
ix

Zh
ou

8.7.1 The Algorithm

def DFS(G, s):
def explore(G, v, parent):

visited[v] = True

previsit(G, v, parent) # some function to call to solve another problem

for w in adj(G, v):
if not visited[w]:

explore(G, w)

postvisit(G, v, parent) # same here

for v in V(G):
visited[v] = False

explore(G, s, None)

8.7.2 Iterative Version

def DFS(G, s):
visited = [False for v in V(G)]

previsit(G, s, None)
visited[s] = True

stack = [s]
while stack:

v = stack.pop()

for w in adj(G, v):
if not visited[w]:

previsit(G, w, v) # same as before

visited[w] = True
stack.push(w, v)

postvisit(G, w, v) # same as before

postvisit(G, s, None)

47

©F
el

ix
Zh

ou
8.7.3 Remarks

Lemma 8.7.1
A non-DFS tree edge for a connected graph always connects a vertex to one of its
ancestors in the DFS tree.

Proof
Let uv be a non-tree edge.

Let u be discovered before v in the DFS.

If v occurs in the subtree below u, then it is a descendant of u.

Elsewise, the DFS would have discovered v by the uv edge before starting a new subtree,
which contradicts the definition of the algorithm.

8.8 Cut Vertex

Definition 8.8.1 (Cut Vertex)
A cut vertex is a separator of a graph.

Definition 8.8.2 (Block)
A connected graph with no cut vertex.

Lemma 8.8.1
The root of the DFS tree has at least 2 children if and only if it is a cut vertex.

Lemma 8.8.2
The non-root vertex v in a DFS tree is a cut-vertex if and only if it contains a sub-tree
that itself has no edges to an ancestor.

8.8.1 DFS

def DFS(G, s):
t = 1

def explore(G, v, parent):
visited[v] = True

48

©Fel
ix

Zh
ou

pre[v] = t
low[v] = pre[v]
t += 1

for w in adj(G, v):
if not visited[w]:

explore(G, w, v)
low[v] = min(low[v], low[w])

if parent is not None and low[w] >= pre[v]:
return "found cut vertex"

else if w != parent:
low[v] = min(low[v], pre[w])

if p is None and |adj[v]| >= 2:
return "found cut vertex"

post[v] = t
t += 1

for v in V(G):
visited[v] = False

explore(G, s, None)

8.9 Dicycle Detection

Definition 8.9.1 (Dicycle)

Consider the DFS tree of a directed graph D = (N,A). There are 3 types of non-tree edges

(i) backward edge to ancestor
(ii) forward edge from ancestor to to descendant
(iii) cross edge from later subtree to a previous subtree rooted at some vertex.

Lemma 8.9.1
A directed graph has a cycle if and only if it has a backwards arc.

49

©Fel
ix

Zh
ou

Proof
The backward direction is trivial so we show the forwards direction.

Enumerate our cycle
v0, . . . , vk, v0

where v0 is the first to be “discovered” by our DFS algorithm. Then clearly vkv0 is a
backward arc.

Definition 8.9.2 (Directed-Acyclic Graph)
A directed graph with no cycles.

8.9.1 DFS

def DFS(G, s):
t = 1

def explore(G, v, parent):
visited[v] = True

pre[v] = t
t += 1

for w in adj(G, v):
if not visited[w]:

explore(G, w)
elif post[w] is None:

return "Cycle!"

post[v] = t
t += 1

for v in V(G):
visited[v] = False

explore(G, s, None)

50

©Fel
ix

Zh
ou

8.10 Topological Sorting

Definition 8.10.1 (Topological Sort / Linearization)
of a DAG is an ordering

v1, . . . , vn

of the vertices such that every edge vivj is such that i ≤ j.

Theorem 8.10.1
For a DAG D = (N,A), after DFS: post[u] > post[v] for every uv ∈ A.

Proof
Postvisit will only be called when we have finished exploring all vertices that are reachable
from u (including v).

8.10.1 DFS

def DFS(G, s):
result = []
t = 1

def explore(G, v, parent):
visited[v] = True

pre[v] = t
t += 1

for w in adj(G, v):
if not visited[w]:

explore(G, w)

post[v] = t
t += 1
result.append(v)

visited = [False for v in V(G)]
explore(G, s, None)

result.reverse()
return result

51

©Fel
ix

Zh
ou

8.11 Strong Connectivity

Definition 8.11.1
D = (N,A) is strongly connected if for all s, v ∈ N there is both a sv-dipath and a
vs-dipath.

Remark that if s, v is strongly connected, v, w are strongly connected, then s, w are strongly
connected. So strong connectivity partitions a directed graph into equivalence classes we
call strongly-connected components.

Definition 8.11.2 (Reversal)
The reversal DR of a directed graph D is DR = (N,AR) defined as

AR := {vu : uv ∈ A}

We can test for strong connectivity by running an exploration algorithm on D,DR, the
reversal of D.

8.12 Minimum Spanning Tree

Definition 8.12.1 (Minimum Spanning Tree)
A (MST) of G is a spanning tree with minimum total weight (sum of total edges).

8.12.1 Kruskal’s Algorithm

def kruskal:
E.sort(lambda e: e.weight)

for uv in E:
if component(u) != component(v):

T.add(u, v)

return T

Sorting takes n log n time.

We can perform the component equality check in O(m logm) using Union-Find data struc-
tures.

52

©Fel
ix

Zh
ou

8.12.2 Cut Property Lemma

Definition 8.12.2 (Cut)
A cut is a partition (S, S̄) of V into two sets.
An edge crosses the cut (S, S̄) if it connects a vertex in S to a vertex in S̄.

Lemma 8.12.1 (Cut Property Lemma)
Let X be a subset of the edges of a MST of G where no edge of X crosses the cut
(S, S̄).
Then the edge e with minimum weight among all the edges that cross the cut (S, S̄)
satisfies the following statement:
X ∪ {e} is a subset of a MST of G.

Proof
Let T be a MST of G that includes X. T must have an edge e′ that crosses the cut (S, S̄).

If e′ = e, then we are done.

Else, T ′ := (T − e′) ∪ {e} is a spanning tree of G.

w(T ′) = w(T) + w(e)− w(e′) ≤ w(T)

so T is still a MST.

8.12.3 Prim’s Algorithm

def prim:
S = {s}

while S != V:
uv = min(uv : u in S, v not in S)
S.add(v)
T.add(u, v)

return T

O(m logm)

53

©Fel
ix

Zh
ou

8.12.4 Proof of Correcness

We argue by induction on |X| that it is a subset of a MST of G.

If X = ∅ is a subset of all MST of G.

Now, suppose inductively that X is a subset of a MST of G. We claim that X ∪{uv} is also
a subset of a MST of G. This follows directly from the cut property lemma.

8.13 Shortest Paths in Nonnegative Edge Weighted Graphs

Notice that a MST does NOT always contain the shortest paths.

8.13.1 Dijkstra’s Algorithm, 1959

Let G = (V,E) be a graph and s ∈ V a source vertex. We will to find the shortest s, v-path
in G for every v ∈ V .

B = {s}
parent = [None]*len(V)

while B != V:
xy, d = min(xy, d(s, x) + w(x, y) for xy in E, x in B, u not in B)
d(x, y) = d
parent(y) = x
B.add(y)

Proposition 8.13.1
We claim that d(s, y) is the minimum distance from s → y.

Proof
Any sv-path π intersects δ(B). Let π1 := π[B]. Furthermore, let e = uv be the first edge
leaving B and π2 be the rest of the path.

w(π) ≥︸︷︷︸
w(π2)≥0

w(π1) + w(u, v) ≥ d(s, u) + w(u, v) ≥ d

We can argue more rigorously with inductive on |B|.

54

©Fel
ix

Zh
ou

8.13.2 Implementational Details for Djikstra’s Algorithm

We want to tchoose edge leaving B which minimizes some value. We can make a heap of
edges xy, x ∈ B, y /∈ B where v(x, y) = d(s, x) + w(x, y). This heap has size O(m).

A more efficient method is to use a heap of vertices. We keep a “tentative distance” d(v) for
all v /∈ B. d(v) is the minimum weight sv-path with all but last edge in B.

d = ['inf']*len(V)
d[s] = 0

parent = [None]*len(V)

B = set()
while len(B) < len(V):

y = heappop(heap)
B.add(y) # d[y] is true distance
for yz in E:

if d[y] + w(y, z) < d(z):
d[z] = d[y] + w(y, z)
update heap
parent[z] = y

We store at most n values in the heap. Modifying a value in our heap (decrease-key or
delete and add) takes O(logm) time. We do this at most m times

We also pop from the heap n times, each pop takes O(log n) time.

The total run-time is given by

O(n log n) +O(m log n) = O(m log n)

assuming G is connected.

There is an optimization with the Fibonacci Heap which gives

O(n log n+m)

running time.

8.14 Shortest Paths in General Edge Weighted Graphs

Djikstra’s Algorithm can be modified to some degree to support this but then we would lose
the greedy aspect of it. Let us take a step back.

For now, let us ignore the existence of negative dicyles.

55

©Fel
ix

Zh
ou

8.14.1 Bellman-Ford

Since the greedy algorithm fails, it is natural to consider dynamic programming as our next
option.

We defined
dist[v] = length of shortest path from s to v

We can obtain simpler subproblems if we do not consider all the sv-paths but only paths
that use at most

1, 2, . . .

edges.

Specifically, we want to compute
di[v]

which is the lenght of the shortest sv-path using at most i edges.

The base case is

d1[v] =

{
w(s, v), (s, v) ∈ E

∞, else

The di[v] is also easy once we have di−1[v]

di[v] = min

{
di−1[v]

di−1[u] + w(u, v), (u, v) ∈ E

8.14.2 The Algorithm

for v in V:
if sv in E:

d[1][v] = w(s, v)
else:

d[1][v] = 'inf'

for i=2,3,...,n-1:
for v in V:

d[i][v] = d[i-1][v]
for u in V:

if uv in E and d[i-1][u] + w(u, v) < d[i][v]:
d[i][v] = d[i-1][u] + w(u, v)

return d[n-1]

56

©Fel
ix

Zh
ou

Time complexity O(n3) when edge queries can be performed in constant time. there is a
slight reformulation of Bellman-Ford which runs in O(nm) if we store the graph with the
adjacency list model.

8.15 All-Pairs Shortest Path (APSP)

8.15.1 The Problem

Given a weighted graph G, find the shortest path between every pair of vertices u, v ∈ V .

8.15.2 Bellman-Ford Reduction

for u in V:
d[u, *] = bellman_ford(G, u)

return d

Time Complexity O(n2m) ⊆ O(n4)

8.15.3 Bellman-Ford APSP

for u, v in V:
d[0][u, v] = 'inf'

for u in V:
d[0][u] = 0

for i=1,2,...,n:
for u, v in V:

d[i][u, v] = d[i-1][u, v]
for u in V:

for xv in E:
d[i][u, v] = min(d[i][u, v], d[i-1][u, x] + w(x, v))

return d[n]

Time Complexity O(n3 + n2m)

57

©Fel
ix

Zh
ou

8.15.4 Floyd-Warshall Algorithm

Let dk[u, v] be the shortest uv-path which only uses vertices v1, . . . , vk.

for u, v in V:
if uv in E:

dist[0][u, v] = w(u, v)
elif u == v:

dist[0][u, v] = 0
else:

dist[0][u, v] = 'inf'

for k=1,2,...,n:
for u, v in V:

dist[k][u, v] = min(d[k-1][u, v], d[k-1][u, v[k]] + d[i-1][v[k], v])

return d[n]

Time Complexity O(n3) with best O(n2) space.

58

©F
el

ix
Zh

ou
9 Exhaustive Search

If none of our previous techniques works

• Approximation Algorithm

• Heuristic

• Exhaustive Search

• Randomized Algorithms

• Quantum Algorithms

9.1 Subset Sum

9.1.1 The Problem

Given an array A of n positive integers and a target T , is there a subset S ⊆ [n] such that∑
i∈S

A[i] = T

9.1.2 Backtracking

Let S,R denote the accumulator set and remaining set of choices to include (or not).

Consider the decision tree where at each vertex, the left child is the decision to include the
first element of the remaining set, and the right child is the decision to NOT include the first
element of the remaining set.

At the root, S = ∅, R = [n].

At each configuration, we can check

(i) If
∑

i∈S A[i] = T , we are done!
(ii) If

∑
i∈S A[i] > T , this is a dead end.

(iii) If
∑

S∪R A[i] < T , this is a dead end.

9.1.3 Generalized Backtracking Template

59

©Fel
ix

Zh
ou

init A

while A:
C = next(A)
if C is Solution:

return True
if C is not DeadEnd:

A.add(expand(C))

return False

Time Complexity O(2n)

9.2 Traveling Salesman Problem

Minimum cost Hamiltonian Circuit in a DIRECTED graph.

9.2.1 Brute Force

O(n!) = 2O(n logn)

9.2.2 Branch-and-Bound

The same configuration idea applies, except we do not return once we find a valid solution
but compare with our currect best. If at any point, our configuration cannot beat the currect
best, we stop (bound) the current search and check the next configuration.

init set A active configs
best = 'inf'

while A:
C = next(A)
if C is Solution and C.value < best:

best = C.value
elif C is not DeadEnd and valueLB(C) < best:

A.add(expand(C))

return best

Dead-End Checks

60

©Fel
ix

Zh
ou

• G(V,E \X) is NOT 2-connected

• I contains a cycle of length less than n

• more than 2 edges is incident with the same vertex

• size of I is more than n

Lower Bounds

• the weight of the current path

• (n− |I|) · minimum weight(E \X)

61

©Fel
ix

Zh
ou

10 Computation Complexity

10.1 Introduction to P

10.1.1 What is Efficiency?

• better then target

• better than brute force

• run time O(n2), O(n log n), O(n), O(n log n), O(n3)

• memory/space O(n)

• terminates / correct

• fast parallel

• sequential

• cache-friendly

Definition 10.1.1 (Polynomial-Time Algorithm)
An algorithm is polynomial time if it has time complexity O(nk) on inputs of size n
for some k ≥ 0.

Remark that we always measure input by the size and NOT value.

10.1.2 Motivations for the Definition

• Robustness

• Strength of conclusion: we can conclude that if a problem cannot be solved in polyno-
mial time, then no algorithm can even come close to being “efficient”

• Applicability: many problems encountered in real life does NOT have a polynomial
time solution

10.2 The Class P

Definition 10.2.1 (Decision Problem)
An answer is True of False

62

©Fel
ix

Zh
ou

Definition 10.2.2 (Optimization Problem)
We wish to find the best feasible solution

Definition 10.2.3 (Search Problem)
We wish to find the solution itself

Definition 10.2.4 (Enueration Problem)
We wish to find all feasible problems

We will work mostly with decision problems. Consider the following reductions from search
problems to decison problems

For Integer Multiplication Decision, we can ask whether the i-th bit is 1?

For Interval Scheduling Decision, we can ask is there a set of k non-overlapping intervals in
I?

Definition 10.2.5 (P)
P is the collection of decision problems that can be solved by polynomial-time algo-
rithms.

Example 10.2.1
3SUM ∈ P

10.3 Reductions

Definition 10.3.1 (Polynomial-Time Reducible)
The decision problem A is polynomial-time reducible to the decision problem B

A ≤P B

if there is a polynomial-time algorithm F that transforms A’s input IA into an input
IB to B that has the same answers.

For the assignment, we will use the following definition

63

©Fel
ix

Zh
ou

Definition 10.3.2 (Polynomial-Time Reducible)
The decision problem A is polynomial-time reducible to the decision problem B

A ≤P B

if a polynomial time algorithm for B leads to a polynomial time algorithm for A.

Example 10.3.1 (LIS ≤P LCS)
Given a sequence z on n numbers in [d] and k ≥ 0, does z contain an increasing subse-
quence of length k?

Given two sequences x, y on n numbers in [`] and k ≥ 0, do x, y have a common subse-
quence of length k?

We can sort the sequence and ask for the longest subsequence between the original se-
quence and sorted sequence.

Example 10.3.2 (CLIQUE ≤P INDEPSET)
Given G, k, does G contain a clique of size k?

Given G, k does G contain an independent set of size ≥ k?

We can take the “complement” of a graph (edge if and only if no edge in original) and
run clique or independent set to get the other.

Proposition 10.3.3
If A ≤P B then

• B ∈ P =⇒ A ∈ P

• A /∈ P =⇒ B /∈ P

10.3.1 Reducible Problems

Definition 10.3.3 (CLIQUE)
Given G, k, does G have a clique of size at least k?

Definition 10.3.4 (INDEPSET)
Given G, k, does G have an independent set of size at least k?

64

©Fel
ix

Zh
ou

Definition 10.3.5 (NONEMPTY)
Does G have any edges?

Definition 10.3.6 (VERTEXCOVER)
Does G have a vertex cover?

We know INDEPSET≤PCLIQUE and CLIQUE≤P INDEPSET.

Proposition 10.3.4
NONEMPTY≤PCLIQUE

Proof
F takes input G and transforms it to (G, 2) for CLIQUE

Proposition 10.3.5
CLIQUE≤PNONEMPTY
This is an open problem!

Proposition 10.3.6
INDEPSET≤PVERTEXCOVER

Proof
F takes input (G, k) to INDEPSET and generates (G,n− k).

Definition 10.3.7 (SETCOVER)
Given a collection of subsets of [m] and a number k, are there k sets

S1, . . . , Sk ∈ S

such that
S1 ∪ · · · ∪ Sk = [m]

Proposition 10.3.7
VERTEXCOVER≤PSETCOVER

Proof
F takes input (G, k) and transforms it to (S,m, k) where m = |E|,S = {Sv : v ∈ V }

Sv = {vw ∈ E}

65

©Fel
ix

Zh
ou

10.3.2 Facts

Proposition 10.3.8
If A ≤P B and B ≤P C then

A ≤P C

Proposition 10.3.9
There are decision problems A,B where

A ≤P B,B ≤P A

Theorem 10.3.10
If HARD is not in P and HARD≤PB, then B /∈ P .

Note that if A ≤PHARD, then we cannot conclude anything.

10.4 Polynomial-Time Verifier & NP

Definition 10.4.1 (Verifier)
A verifier for decision problem X is an algorithm A that takes some input x to X
and a certificate y such that

(i) when the answer to X on x is yes, there is a certificate y that causes A to accept
(ii) when the answer to X on x is no, then for every certificate y, A rejects

Definition 10.4.2 (Polynomial Time Verifier)
A verifier that runs in polynomial tiem in the length of x (only).
In other words, it takes certificates of length polynomial in x.

Definition 10.4.3 (NP)
The set of all decision problems that have polynomial time verifiers.

Proposition 10.4.1
CLIQUE∈NP.

Proof
Take the certificate S ⊆ V .

66

©Fel
ix

Zh
ou

First, we check |S| ≥ k

We verify by checking for each u 6= v ∈ S check uv ∈ E. Accept if and only if all checks
pass.

Consider the phony “certificate” b

b :=

{
1, G has size at least k

0, otherwise

Accept ⇐⇒ b = 1.

This is NOT a valid certificate / verifier since when the answer to X is no, then for every
certificate y, we reject.

Proposition 10.4.2
SUBSETSUM∈NP

Proof
Certificate S ⊆ [n].

We verify by checking
∑

i∈S A[i] = t.

10.4.1 P vs. NP

If we can verify a problem in polynomial time, can we also solve it in polynomial time?

10.5 NP-Completeness

10.5.1 Definitions & Basic Results

Definition 10.5.1 (NP-Complete)
The decision problem X is NP-complete if

(i) X ∈ NP

(ii) ∀A ∈ NP,A ≤P X

Theorem 10.5.1
If X is NP-Complete, then

(i) If X ∈ P then P = NP

(ii) If X /∈ P, P 6= NP

67

©Fel
ix

Zh
ou

Theorem 10.5.2
The problem X is NP-complete if

(i) X ∈ NP

(ii) there is an NP-complete A such that

A ≤P X

Proof
For every B ∈ NP then

B ≤P A ≤P X

so B ≤P X.

10.5.2 Examples

Definition 10.5.2 (3-SAT)
Given a boolean formula ϕ on n variables in CNF (AND of ORs, conjunction of
clauses of literals) with m clauses that each contain at most 3 literals, determine
whether ϕ is satisfiable.

Notice the size of ϕ is O(m log n) and the size of an assignment certificate is O(n).

Theorem 10.5.3
3SAT ∈ NP.

Theorem 10.5.4 (Cook-Levin, 1971, 1973)
3SAT ∈ NP-Complete.

Theorem 10.5.5
INDEPSET is NP-Complete.

Proof
We saw INDEPSET is in NP.

We show there is a reduction from 3SAT to INDEPSET.

Let F take formula ϕ with m clauses and output (G,m) defined below.

G = (V,E) has 1 vertex for each literal in each clause and edges uv for each

68

©Fel
ix

Zh
ou

(i) u, v are literals in the same clause
(ii) u, v are negations of each other (conflicting/contradicting literals)

Theorem 10.5.6
CLIQUE is NP-Complete.

Proof
CLIQUE is in NP.

Moreover
INDEPSET ≤P CLIQUE

and INDEPSET is NP-complete.

10.5.3 Corollaries

(1) VERTEXCOVER
(2) SETCOVER

10.5.4 The Hamiltonian Path Problem is NP-Complete

We will first show that DirHamPath is NP-Complete.

Theorem 10.5.7
DirHamPath is NP-Complete.

69

©Fel
ix

Zh
ou

Definition 10.5.3 (Gadget)
Let ϕ be the formulat that is the input to 3-Sat.
A graph which corresponds to the idea of assigning True / False values to each of the
variables

x1, . . . , xn

in the original formulat ϕ.
Let Pi be a path with doubled arcs such that traversing right means an assignment
of True to xi and left is False.
Let s, t be source and sink vertices and connect ends of the path Pi to the ends of the
path Pi+1.
Each path has 3(m + 1) nodes. We need 2 per clause but also an intermidiary node
between those taken up by clauses.
Add a vertex cj, 1 ≤ j ≤ m for each clause Cj. cj has an arc FROM the 3j-th node
on Pi to the 3j + 1-st node on Pi if xi appears in Cj. Symmetrically, cj has an arc
TO the 3j-th node on Pi from the 3j + 1-st node on Pi if ¬xi appears in Cj.

Proof (Sketch)
The problem is clearly in NP since a verifier which demands the path as a certificate
exists.

We now show that
3Sat ≤P DirHamPath

Let G be the gadget corresponding to ϕ, an arbitrary input for 3-Sat. Clearly, every
valid assignment corresponds to a Hamiltonian Path. We want to show the converse.

The argument goes as: If there is no valid assignment, any path starting at s (it must
since s has no in-arcs) will be “stuck” at a variable.

Theorem 10.5.8
HamPath is NP-Complete.

Proof
The same argument for the directed version shows that it is in NP.

Let us now show that
DirHamPath ≤P HamPath

Let D = (N,A) be a directed graph. Let G = (V,E) be an undirected graph obtained

70

©Fel
ix

Zh
ou

from D as follows

V := {vi, v, vo : v ∈ N}
E := {viv, vvo : v ∈ N} ∪ {uovi : uv ∈ A}

Clearly, any Hamiltonian Path in D is a Hamiltonian Path in G. It is an exercise that an
Hamiltonian Path in G is a Hamiltonian Path in D.

10.5.5 NP-Completeness of the Hamiltonian Cycle Problem

Remark that there are graphs with a Hamiltonian Path but NO Hamiltonian Cycles!

Lemma 10.5.9
HamCycle is NP-Complete.

Proof
Clearly, HamCycle is in NP.

We show that HamPath ≤P HamCycle.

Let G be the input to the Hamiltonian Path Problem. Let G′ be the graph obtained from
G by adding a new vertex s and edges to every existing vertex of G.

If G has Hamiltonian Path P then sPs is certainly a Hamiltonian Cycle in G′. Conversely,
if G′ has Hamiltonian Cycle C, then C − s is certainly a Hamiltonian Path in G.

10.5.6 NP-Completeness of the Subset Sum Problem

We can also use a reduction from 3Sat to show that SubsetSum is NP-hard. The key
insight fo rthis reudction is that we will want to use REALLY big numbers in the reduction.

Theorem 10.5.10
SubsetSum is NP-complete.

Proof
We already saw in the last lecture that it is in NP.

We show
3-Sat ≤P SubsetSum

Indeed, given an instance ϕ of the 3-Sat problem on n variables with m clauses, we

71

©Fel
ix

Zh
ou

want to construct a set of numbers that we will turn into an instance of the SubsetSum
problem.

Let the numbers be of form
χxi

C1C2C3 . . .

where the i-th bit is 1 if the first segment correponds to xi. Moreoever let the bit corre-
sponding to Cj be 1 if the assignment of xi satisfies Cj. We do the exact same for numbers
of the form

χ¬xi
C1C2C3 . . .

except Cj is 1 if the assignment of ¬xi satisfies Cj.

Let S be a subset of the numbers. We want the sum of the characteristic bits to sum to 1
for each bit. This corresponds to only one choice of value for each variable. Furthermore,
we want the sum of the clause bits to sum to between 1 and 3 for each bit. This means
each clause has at least one variable satified.

But is is difficult to express a range for the clause bits. Instead we add 2 numbers per
clause. They are 0 on the characteristic bits and 1 and 2 on the bit for each Cj (0 elsewise).
This allows us to shoot for the target sum of

11 . . . 1︸ ︷︷ ︸
characteristic bits

clause bits︷ ︸︸ ︷
44 . . . 4

Clearly, ϕ is satisfiable if and only if a subset S of the numbers described above sum to
the target above.

10.5.7 Closing Remarks on NP-Completeness

There are many NP-Complete problems every

(I) graph edge-colourability
(II) super mario

(III) integer programming
(IV) number theory

An open question is whether NP-complete is the same as NP-hard

Definition 10.5.4 (NP-Hard)
The decision problem X is NP-hard if every problem A ∈ NP satisfies

A ≤P X

72

©Fel
ix

Zh
ou

There are other reductions than the many-one reduction we have been primarily been working
with

Definition 10.5.5 (Cook Reduction)
A cook reduction from problems A to B is a polynomial time algorithm F that, using
a polynomial-time algorithm for B as a black-box, solves A in polynomial time.

There are problems that cannot be verified efficiently

Definition 10.5.6 (CoClique)
For a graph G and k ∈ Z+, is the largest clique of G of size less than k?

It is easy to check the answer is no but very difficult to check the answer is yes.

There are even problems which are harder than the ones in NP! Undecidable problems are
the ones that cannot be solved by ANY algorithm. More details to come during the last two
lectures of this class.

73

©Fel
ix

Zh
ou

11 Approximation Algorithms

11.1 Metric TSP

Given a complete weighted graph G with non-negative edge weights that satisfy

w(u, v) ≤ w(u, x)− w(x, v)

find the length `TSP of the shortest TSP TSP tour through G.

Theorem 11.1.1
MetricTSP is NP-Complete.

Can we find a polytime algorithm that identifies a TSP tour of length ≤ 2`TSP.

If we remove the condition that we need a tour, one idea is to find a MST of G and simply
traverse the tree (use edge at most twice).

Proposition 11.1.2
tour length is 2 · w(T).

Proposition 11.1.3
w(T) ≤ `TSP.

Proof
Any TSP tour contains a spanning tree. Hence by the previous proposition

2 · w(T) ≤ 2`TSP

Proposition 11.1.4
The length of the shortcut tour is at most the length of the tour.

11.1.1 The Algorithm

def MetricTSPALG(G):
T = MST(G)
tour = traversal of T
tour_prim = shortcut version of tour

return tour_prime

74

©Fel
ix

Zh
ou

11.2 Vertex Cover

Design a poly-time algorithm that returns a vertex cover of size

≤ 2 · |COPT|

11.2.1 The Algorithm

def VertexCover(G):
S = set()
for each uv in E:

if u not in S and v not in S:
S.add(u)
S.add(v)

return S

Proposition 11.2.1
|S| ≤ 2 · |COPT|

Proof
Naive matching algorithm.

11.3 TSP

Given a complete weighted graph G with positive edge weights w̄, find a TSP tour of G of
length at most c`TSP.

Theorem 11.3.1
If P 6= NP then there is no poly-time algorithm that returns a k-approximation to
`TSP for any constant k ≥ 1.

Proof
We argue by contradiction.

Assume A is a poly-time k-approximation algorithm to TSP. Let G be the input to
HamCycle

Give the edges weight 1 and make it complete by adding edges of weight kn. If G has a
Hamiltonian cycle, then G′ has a tour of length at most n. A will return a tour of length
at most kn.

75

©Fel
ix

Zh
ou

Elsewise, if G has NO Hamiltonian Cycles, then G′ has a TSP tour of length greater than
kn.

76

©Fel
ix

Zh
ou

12 (Very) Difficult Computational Problems

There are problems even harder than NP-complete problems.

12.1 Impossible Problems

Definition 12.1.1 (Halting Problem)
Given the binary encoding of an algorithm, determine if it terminates.

Theorem 12.1.1 (Turing)
The Halting problem is undecidable.

Proof
Diagonalization argument.

Notice that if the Halting Problem is decidable, then many conjectures such as the Collatz
Conjecture and Goldbach Conjecture are trivial corollaries.

Theorem 12.1.2
If X is a decision problem for which the reduction

Halting ≤ X

holds, then there is no algorithm that solves X.

12.1.1 Very Difficult Problems

Even when we restrict to decidable problems, there are still problems harder than the NP-
complete ones.

Definition 12.1.2 (Totally Quantified Boolean Formula)
TQBF asks that given a totally quantified Boolean formula

∃x1∀x2∃x3 . . . φ(x1, . . . , xn)

determine if the problem is true or not.

“Is there a first move M1 such that Alice can make such that no matter what move M2 Bob

77

©Fel
ix

Zh
ou

makes, there is a response M3 such that no matter ...”

Notice that unlike SAT, TQBF is hard to even verify!

Definition 12.1.3 (PSPACE)
The collection of problems which can be solved with polynomial space.

Whether or not TQBF can be solved in polynomial time is equivalent to the problem of
determining whether

P = PSPACE

There are also problems which are known to be unsolvable in polynomial time.

Definition 12.1.4 (HaltInkSteps Problem)
Given an algorithm A and an input x to A, does A halt in at most k steps?

This can be solved in roughly O(k) steps but the input has size O(log k).

Finally, consider the problem of determining whether two regular expression are equivalent.
This problem cannot be solved in

O(22
...2

n

)

for any constant tower.

12.2 Rather Difficult Problems

Recall the Clique problem. The only known lowerbound is

Ω(n+m)

which is the time to read input.

The 3Sum Conjecture says that for every ε > 0, any algorithm which solves 3Sum has time
complexity

Ω(n2−ε)

Definition 12.2.1 (Colinear Problem)
Given some points in Euclidean space, do at least 3 of them lie on a line?

There are
O(n3), O(n2 log n), O(n2)

algorithms? But we can never do better than O(n2) by a reduction to the 3Sum Conjecture.

78

©Fel
ix

Zh
ou

Theorem 12.2.1
If the 3Sum Conjecture is true, there is no algorithm that solves Colinear in O(nc)
time for any constant

c < 2

Proof
Reduction as indicated above with points

(a, a3)

for each a in the input of 3Sum.

79

	A Whirlwind Tour: The Convex Hull Problem
	Naive Solution
	Jarvis Walk
	Divide & Conquer
	Chan's Algorithm

	Introduction
	Basic Definitions
	Models of Algorithm Analysis
	Case Study
	CS341 Model

	Time Complexity

	Reduction
	2 SUM
	Naive Algorithm
	Binary Sort

	3SUM
	Naive Algorithm
	2SUM Reduction
	Follow-up

	Recurrences
	Merge Sort
	Time Complexity
	Recurrence Tree
	Magic Merge

	Tri-Merge Sort
	Time Complexity

	Master Theorem
	Proving Recurrences by Induction
	Warnings

	Changing Variables

	Divide & Conquer
	Counting Inversions
	Problem
	Divide & Conquer

	Binary Multiplication
	Problem
	Grade School Algorithm
	Karatsuba's Algorithm

	Fast Matrix Multiplication
	Problem
	Brute Force
	Strassen's Algorithm

	Closest Pair of Points on the Line
	Problem
	Naive Algorithm
	Divide & Conquer
	An Optimization

	Greedy Algorithms
	Motivation: Finding Change
	Proving Correctness
	Always Ahead
	Exchange Method

	Interval Scheduling
	Problem
	Greedy Algorithm

	Minimizing Lateness
	Greedy Algorithm

	Interval Coloring
	Problem
	Interval Scheduling Repeatedly
	Greedy

	Fractional Knapsack
	Problem
	Greedy Algorithm: Highest Value-Weight Ratio First

	Offline Cache
	Problem
	LRU Cache
	FIFO
	LFU
	LIFO
	LFD: Least Forward Distance

	Dynamic Programming
	Fibonacci Numbers
	DP

	Text Segmentation
	Greedy Algorithm
	DP

	Longest Increasing Subsequence
	Longest Common Subsequence
	Remark
	DP
	Producing the Longest Subsequence

	Edit Distance
	DP

	Weighted Interval Scheduling
	DP

	Optimal Binary Search Trees
	Problem
	DP

	Knapsack
	Problem
	DP

	Graph Algorithms
	Definition
	Graph Representations
	Tradeoffs

	Graph Exploration Problem
	Problem
	Breadth-First Search
	Running Time Analysis

	Single-Source Shortest Path
	Problem
	DFS
	Correctness

	Testing Bipartiteness
	Problem
	BFS

	Spanning Tree
	Problem
	BFS

	Depth-First Search
	The Algorithm
	Iterative Version
	Remarks

	Cut Vertex
	DFS

	Dicycle Detection
	DFS

	Topological Sorting
	DFS

	Strong Connectivity
	Minimum Spanning Tree
	Kruskal's Algorithm
	Cut Property Lemma
	Prim's Algorithm
	Proof of Correcness

	Shortest Paths in Nonnegative Edge Weighted Graphs
	Dijkstra's Algorithm, 1959
	Implementational Details for Djikstra's Algorithm

	Shortest Paths in General Edge Weighted Graphs
	Bellman-Ford
	The Algorithm

	All-Pairs Shortest Path (APSP)
	The Problem
	Bellman-Ford Reduction
	Bellman-Ford APSP
	Floyd-Warshall Algorithm

	Exhaustive Search
	Subset Sum
	The Problem
	Backtracking
	Generalized Backtracking Template

	Traveling Salesman Problem
	Brute Force
	Branch-and-Bound

	Computation Complexity
	Introduction to P
	What is Efficiency?
	Motivations for the Definition

	The Class P
	Reductions
	Reducible Problems
	Facts

	Polynomial-Time Verifier & NP
	P vs. NP

	NP-Completeness
	Definitions & Basic Results
	Examples
	Corollaries
	The Hamiltonian Path Problem is NP-Complete
	NP-Completeness of the Hamiltonian Cycle Problem
	NP-Completeness of the Subset Sum Problem
	Closing Remarks on NP-Completeness

	Approximation Algorithms
	Metric TSP
	The Algorithm

	Vertex Cover
	The Algorithm

	TSP

	(Very) Difficult Computational Problems
	Impossible Problems
	Very Difficult Problems

	Rather Difficult Problems

