
©
Fe
lix
Zh
ouCPSC 516: Algorithms via Convex

Optimization

Felix Zhou 1

June 1, 2023

1From Professor Nisheeth Vishnoi’s Lectures at Yale University in Spring 2023

©
Fe
lix
Zh
ou

2

©
Fe
lix
Zh
ou

Contents

I Background 7

1 Multivariate Calculus 9

1.1 Derivatives . 9

1.1.1 Integrals . 9

1.1.2 Taylor Approximation . 10

1.2 Linear Algebra . 10

1.2.1 Norms . 10

2 Graphs & Matrices 13

2.1 Graphs . 13

2.2 Matrices . 13

2.2.1 Lx = b . 14

3 Convexity 15

3.1 Convex Sets . 15

3.2 Convex Functions . 16

3.2.1 Stronger Notions of Convexity . 19

3.2.2 Optimality Conditions . 20

II Convex Optimization 23

4 Convex Optimization 25

3

©
Fe
lix
Zh
ou

4.1 Membership & Separation . 25

4.1.1 Membership . 25

4.1.2 Separation . 26

4.2 Solving Convex Programs . 26

4.3 Encoding a Convex Function . 26

5 Gradient Descent 27

5.1 The Algorithm . 27

5.1.1 Input . 27

5.1.2 Output . 27

5.1.3 Strategy . 27

5.2 Analysis . 28

5.3 Handling Constraints . 30

5.4 Maximum Flow . 30

5.4.1 The Problem . 30

5.4.2 Gradient Descent . 31

Convexity . 31

Lipschit Gradient . 31

Projection . 31

Initial Point . 32

Summary . 32

6 Multiplicative Weights Update Method 33

6.1 Motivation . 33

6.2 Weighted Majority Method . 33

6.2.1 Analysis . 34

6.3 Multiplicative Weights Update Method . 35

6.3.1 The Algorithm . 35

4

©
Fe
lix
Zh
ou

6.3.2 Analysis . 36

6.4 Perfect Bipartite Matching . 37

6.4.1 The Algorithm . 37

6.4.2 Analysis . 38

7 Newton’s Method 41

7.1 Newton’s Method . 41

7.2 Newton’s Method for Optimization . 42

7.2.1 Interpretation . 42

7.2.2 Analysis . 43

8 Interior Point Methods 45

8.1 Linear Programming . 45

8.2 Full-Dimensional IPM . 45

8.2.1 Intuition . 45

8.2.2 Analysis . 46

8.2.3 Initialization . 50

8.3 Subspace IPM . 50

8.4 Minimum Cost Flow . 51

8.4.1 Starting Point . 52

9 Ellipsoid Method 55

9.1 Separation . 55

9.2 Optimization & Feasibility . 55

9.3 Ellipsoid Method . 56

9.3.1 Minimum Volume Ellipsoid . 57

5

©
Fe
lix
Zh
ou

6

©
Fe
lix
Zh
ouPart I

Background

7

©
Fe
lix
Zh
ou

©
Fe
lix
Zh
ou

Chapter 1

Multivariate Calculus

We will work ignoring pathological examples and assume that derivates always exist and are
continuous when it makes sense. This avoids bizarre behavior such as the Hessian not being
symmetric.

1.1 Derivatives

We write d
dt
g(t), ġ(t), g′(t) to denote the derivative in one dimension. Recall the directional

derivative of f : Rn → R is given by

∇f(x)[h] := lim
η→0

f(x+ ηh)− f(x)

η
.

More generally, the k-th directional derivative is written as Dkf(x)[h1, . . . , hk].

The gradient of f is a vector ∇f(x) ∈ Rn such that the i-th entry is

∇if(x) = Df(x)[ei]

where {ei} is the canonical basis of Rn.

Taking this one step further, the Hessian of f : Rn → R is matrix ∇2f(x) ∈ Rn×n given by

∇2
ijf(x) = D2f(x)[ei, ej]

1.1.1 Integrals

Recall the FTC II, which states that if f : [a, b]→ R is continuously differentiable, then∫ b

a

ḟ(t)dt = f(b)− f(a).

9

©
Fe
lix
Zh
ou

Proposition 1.1.1 (Integral Representation)
Let f : Rn → R be continuously differentiable. For x, y ∈ R, suppose g is given by

g(t) := f [x+ t(y − x)].

The following hold:

(i) ġ(t) = ⟨∇f [x+ t(y − x)], y − x⟩

(ii) f(y) = f(x) +
∫ 1

0
ġ(t)dt

Furthermore, if f has a continuous Hessian,

(i) g̈(t) = (y − x)T∇2f [x+ t(y − x)](y − x)

(ii) ⟨∇f(y)−∇f(x), y − x⟩ =
∫ 1

0
g̈(t)dt

1.1.2 Taylor Approximation

The first order approximation of f : Rn → R at some a ∈ Rn is given by

f(x) ≈ f(a) + ⟨x− a,∇f(a)⟩.

Similarly, the second order approximation is given by

f(x) ≈ f(a) + ⟨x− a,∇f(x)⟩+ 1

2
(x− a)T∇2f(x)(x− a).

1.2 Linear Algebra

Recall that we can define a pseudo-inverse even for non-invertible linear maps which act on
the orthogonal complement of the kernel.

A symmetric matrix M ∈ §n is positive semidefinite if xTMx ≥ 0 for all x ∈ Rn. Similarly,
M is positive definite if xTMx > 0 for all non-zero x. Recall that a PSD matrix can be
decomposed as

M = BBT .

1.2.1 Norms

We define the operator norm

∥A∥op := max
x ̸=0

∥Ax∥2
∥x∥2

= max
i
|λi|.

This can be generalized to other norms.

10

©
Fe
lix
Zh
ou

For A ⪰ 0, we write
∥x∥A :=

√
xTAx.

Recall the dual norm of a normed vector space on the vector space of bounded linear func-
tionals is the operator norm. In the case of ℓp norms, linear functionals are uniquely defined
by another vector so that the dual norm can be shown to be ℓq norm where q is the Lebesgue
conjugate of p.

11

©
Fe
lix
Zh
ou

12

©
Fe
lix
Zh
ou

Chapter 2

Graphs & Matrices

2.1 Graphs

Definition 2.1.1 (Cut)
A cut is some F ⊆ E such that (V,E \ F) is disconnected.

An (s, t)-cut is some F ⊆ E such that (V,E \ F) has no (s, t)-paths.

Recall that a spanning tree is a connected, acyclic subgraph (V, F) where F ⊆ E. A special
case is a Hamiltonian path.

Definition 2.1.2 ((s, t)-Flow)
An (s, t)-flow for an undirected graph G is a function f : E → R such that for every
v ̸= s, t, ∑

e∼v

f(t) = 0.

Note that we can think of f as a function V ×V → R that should be skew-symmetric. That
is,

f(u, v) = −f(v, u).

2.2 Matrices

Recall that the adjacency matrix A ∈ RV×V of a graph is a 0-1 matrix such that

Auv = 1 ⇐⇒ uv ∈ E.

13

©
Fe
lix
Zh
ou

The Laplacian is defined as
L = D − A

where D is the diagonal degree matrix.

Proposition 2.2.1
L1 = 0.

Recall that the vertex-edge incidence matrix B ∈ RV×E is the matrix whose columns consists
of signed edge vectors

buv[i] =

−1, i = u

1, i = v

0, else

Note that the convention of which vertex being negative is not standard and does not matter
much as long as we are consistent.

Proposition 2.2.2
L = BBT .

Proof
BBT consists of all the inner products of rows vectors av. But aTv av = deg(v) and for
u ̸= v, aTuav is just −1 if the edge uv exists and is 0 otherwise.

Corollary 2.2.2.1
If G is connected, the eigenvalue 0 has multiplicity 1.

Corollary 2.2.2.2
The system of linear equations Lx = b has a solution for a connected graph G if and
only if 1T b = 0.

2.2.1 Lx = b

We wish to determine if we can solve the system of linear questions Lx = b in near linear time
Õ(m). Note that we do not wish to explicitly (pseudo-)invert L since that is an expensive
operation.

The idea is first to approximate L as a quadratic function with the Laplacian of a tree. Then,
we can perform Gaussian elimination “bottom-up” from the leaves of the tree.

14

©
Fe
lix
Zh
ou

Chapter 3

Convexity

3.1 Convex Sets

Recall that K ⊆ Rn is said to be convex if for every x, y ∈ K and λ ∈ [0, 1],

λx+ (1− λ)y ∈ K.

As a quick refresher of commonly see convex sets, a hyperplane is a set of the form

K = {x ∈ Rn : ⟨a, x⟩ = c}.

A half-space is of the form
K = {x ∈ Rn : ⟨a, x⟩ = c}.

A polyhedron is a finite intersection of half-spaces while a polytope is a bounded polyhedron.
The closed ball of a norm ∥·∥ is given by

K = {x : ∥x− a∥ ≤ c}.

An ellipsoid is a particular example of a closed ball of the form

K =
{
x : ∥x− a∥A =

√
(x− a)TA(x− a) ≤ c

}
for some A ≻ 0.

Proposition 3.1.1
Let K ⊆ Rn be closed, bounded, and convex. For every y ∈ Rn \ K, there is some
0 ̸= h ∈ Rn for which

⟨h, x⟩ < ⟨h, y⟩

for every x ∈ K.

15

©
Fe
lix
Zh
ou

Proof
The idea is to project y onto K as

x∗ := argminx∈K ∥x− y∥2

and consider h := y − x∗. It suffices to show that

⟨y − x∗, y − x⟩ > 0

for every x ∈ K.

Indeed, for any x ∈ K, we write

xt := tx+ (1− t)x∗.

We have

0 < ∥x∗ − y∥22
≤ ∥xt − y∥22
= ∥x∗ − y + t(x− x∗)∥22
= ∥x∗ − y∥22 + 2t⟨x∗ − y, x− x∗⟩+ t2∥x− x∗∥22.

This shows that ⟨x∗ − y, x− x∗⟩ = −⟨h, x− x∗⟩ ≥ 0, lest the RHS becomes smaller than
the LHS for sufficiently small t. Consequently,

⟨h, y⟩ − ⟨h, x⟩ ≥ ⟨h, y⟩ − ⟨h, x∗⟩
= ∥h∥22
> 0

for all x ∈ K.

3.2 Convex Functions

Recall that a function f : K ⊆ Rn → R where K is convex is said to be convex if for every
x, y ∈ K and λ ∈ [0, 1],

f [λx+ (1− λ)y] ≤ λf(x) + (1− λ)f(y).

It is a fact that f is convex if and only if its epigraph

epi(f) := {(x, y) : f(x) ≤ y}

is convex.

16

©
Fe
lix
Zh
ou

Proposition 3.2.1
Suppose f : K → R is differentiable. Then f is convex if and only if

f(x) + ⟨∇f(x), y − x⟩ ≤ f(y)

for all x, y ∈ K.

Intuitively, the proposition above says that the first-order approximation always underesti-
mates f(y).

Definition 3.2.1 (Bregman Divergence)
The Bregman Divergence of f at y with respect to x is given by

f(y)− [f(x) + ⟨∇f(x), y − x⟩].

Proof
Suppose f is convex. For any x, y ∈ K and λ ∈ [0, 1],

(1− λ)f(x) + λf(y) ≥ f [x+ λ(y − x)]

f(y) ≥ f(x) +
f [x+ λ(y − x)]− f(x)

λ
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ λ→ 0.

The last step follows since the directional gradient towards y − x is precisely given by
⟨∇f(x), y − x⟩.

Conversely, take x, y ∈ K and pick some

z := λx+ (1− λ)y.

We have

f(x) ≥ f(z) + ⟨∇f(z), x− z⟩
f(y) ≥ f(z) + ⟨∇f(z), y − z⟩

(1− λ)f(x) + λf(y) ≥ f(z) + ⟨∇f(z), z − z⟩
= f(z).

Proposition 3.2.2
Suppose f : K → R is continously differentiable over K convex. Then f is convex if
and only if for all x, y ∈ K,

⟨∇f(y)−∇f(x), y − x⟩ ≥ 0.

17

©
Fe
lix
Zh
ou

Proof
(=⇒) Simply apply the previous characterization twice, sum the inequalities, and rear-
range.

(⇐=) Conversely, suppose the gradient is monotone. For λ ∈ [0, 1], we define xλ :=
x+ λ(y − x). The integral representation of g(λ) = f(xλ) yields

f(y) = f(x) +

∫ 1

0

⟨∇f [x+ λ(y − x)], y − x⟩dλ

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(xλ)−∇f(x), y − x⟩dλ

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

1

λ
⟨∇f(xλ)−∇f(x), xλ − x⟩dλ

≥ f(x)⟨∇f(x), y − x⟩.

Recall that v ∈ Rn is a subgradient of f : K → R at the point x, written v ∈ ∂f(x), if for
every y ∈ K,

f(y) ≥ f(x) + ⟨v, y − x⟩.
It can be shown that f : K → R is convex if and only if ∂f(x) ̸= ∅ for all x ∈ K.

Proposition 3.2.3
Suppose f : K → R is twice continuously differentiable over some K open and convex.

Then f is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ K.

For instance, the quadratic form defined by a graph Laplacian is convex.

Proof
Suppose f is twice continuously differentiable and convex. Pick any x ∈ K and note that
there is some ϵ > 0 such that x + ϵs ∈ K for all unit vectors s ∈ Rn. From the Taylor
expansion,

f(x+ λs) = f(x) + λ∇f(x)T s+
λ2

2
sT∇2f(x)s+ o(λ2)

λ2

2
sT∇2f(x)s+ o(λ2) ≥ 0 first-order characterization

sT∇2f(x)s+ o(1) ≥ 0.

Taking the limit as λ→ 0+ yields the desired result.

Conversely, suppose that ∇2f ⪰ 0. From the Taylor expansion of f , there is some
z ∈ [x, y] such that

f(y) + f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x)

18

©
Fe
lix
Zh
ou

for all x, y ∈ K. If ∇2f ≻ 0, this implies the first-order characterization of convexity as
required.

3.2.1 Stronger Notions of Convexity

Recall that f is strictly convex if Jensen’s inequality is satisfied with strictly inequality. It can
be shown that f is strictly convex if and only if the first and second order characterizations
are satisfied with strict inequality.

Definition 3.2.2 (Strong Convexity)
We say that f : K → R is σ-strongly convex with respect to some norm ∥·∥ if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σ

2
∥y − x∥2.

We remark that strong convexity implies strict convexity. Moreover, the notion of strong
convexity can be defined for non-differentiable functions through the use of the subgradient.
We note that if ∥·∥ = ∥·∥2, then σ-strong is implied by the condition

∇2f ⪰ σI.

This can be verified using Taylor approximations.

Proposition 3.2.4
The following are equivalent conditions to characterize that a differentiable function f
is σ-strongly convex with respect to ∥·∥2.

(i) f(y) ≥ f(x) +∇f(x)T (y − x) + σ
2
∥y − x∥2 for all x, y ∈ K

(ii) g(x) = f(x)− σ
2
∥x∥2 is convex

(iii) [∇f(x)−∇f(y)]T (y − x) ≥ σ∥x− y∥2 for all x, y ∈ K

(iv) f [λx+(1−λ)y] ≤ λf(x)+(1−λ)f(y)− λ(1−λ)
2

µ∥x− y∥2 for all x, y ∈ K,λ ∈ [0, 1]

Proof
(i)⇐⇒ (ii) This follows from the first-order condition for convexity.

g(y) ≥ g(x) +∇g(x)T (y − x)

f(y)− σ

2
∥y∥2 ≥ f(x)− σ

2
∥x∥2 + [∇f(x)− σx]T (y − x)

f(y) ≥ f(x) +∇f(x)T (y − x) +
σ

2
∥y∥2 + σ

2
∥x∥2 − σxTy

= f(x) +∇f(x)T (y − x)
σ

2
∥y − x∥2.

19

©
Fe
lix
Zh
ou

(ii)⇐⇒ (iii) This follows from the monotone gradient condition for the conveixty of g.

(iii)⇐⇒ (iv) This follows by expanding Jensen’s inequality.

Again, we note that these equivalences hold for non-differentiable functions by replacing the
gradient with the subgradient.

Proposition 3.2.5
For a continuously differentiable f : K → R that is σ-strongly convex, the following
inquality holds for all x ∈ K.

1

2
∥∇f(x)∥2 ≥ σ[f(x)− f(x∗))]

We remark the inequality above is known as the Polyak-Lojasiewicz (PL) condition.

Proof
Consider the inequality

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σ

2
∥y − x∥2

and minimize with respect to y. The LHS becomes f(y∗) and the RHS is minimized if
and only if

∇f(x) + σ(y − x) = 0.

Substituting in the value of y to the RHS yields the inequality.

3.2.2 Optimality Conditions

Suppose our goal is to solve the following optimization problem

min f(x)

x ∈ K

where f,K are both convex.

Proposition 3.2.6
If f is convex and differentiable, then ∇f(x) = 0 implies that x is a global minimizer.

The proof of the above uses the first-order characterization.

Proposition 3.2.7
If f is differentiable and x is a global minimizer, then ∇f(x) = 0.

20

©
Fe
lix
Zh
ou

Proof
We have

f(x+ tr) ≥ f(x) ∀r ∈ Rn, t ∈ R

≤ lim
t→0

f(x+ tr)− f(x)

t
= ⟨∇f(x), r⟩

= −∥∇f(x)∥2. r := −∇f(x)

Thus it can only be that ∇f(x) = 0.

21

©
Fe
lix
Zh
ou

22

©
Fe
lix
Zh
ouPart II

Convex Optimization

23

©
Fe
lix
Zh
ou

©
Fe
lix
Zh
ou

Chapter 4

Convex Optimization

We wish to solve problems of the form

min f(x)

x ∈ K

where f,K are both convex.

An important example of convex programming is linear programming.

min cTx

Ax = b

x ≥ 0

4.1 Membership & Separation

We begin by remarking that we cannot encode arbitrary real numbers in the Turing machine
model. Thus we assume out inputs are rational. Define L(x) to be the number of bits needed
to encode a number x.

4.1.1 Membership

We can test for membership of convex sets efficiently, even though we may not be able to
write down a succient description. For instead, we can test for membership for ellipsoids,
ℓ1-ball, ℓ∞-ball, the spanning tree polytope, and PSD done all in polynomial time.

25

©
Fe
lix
Zh
ou

4.1.2 Separation

Separation is a harder problem than membership. We would like to determine if x ∈ K, and
if not, provide a “proof” in the form of a hyperplane h ∈ Rn, c ∈ R that separates x from
K.

4.2 Solving Convex Programs

From our discussion of representing real numbers, it is not hard to see that we cannot solve
convex programs exactly in general. Thus our goal is to find some x ∈ K such that

f(x∗) ≤ f(x) ≤ f(x∗) + ε

for some ε > 0. Here x∗ is some true optimal solution.

The goal is to obtain this in runtime that is polylog(1/ε), but it turns out that this is very
difficult. Instead, we first attempt to do so in poly(1/ε) time.

4.3 Encoding a Convex Function

For certain problems, we can explicitly give the function. For example, the least squares
problem

min
x
∥Ax− b∥22

is described by A, b.

Alternative options include

x 7→ f(x) value oracle

x 7→∇f(x) 1st-order oracle

(x, v) 7→∇2f(x)v. 2nd-order oracle

We remark that in the oracle model, we are charged for writing the input and reading the
output of the oracle but not for the evaluation of the oracle.

26

©
Fe
lix
Zh
ou

Chapter 5

Gradient Descent

5.1 The Algorithm

5.1.1 Input

We have as input

1) 0, 1-st order access to f

2) ε > 0

3) A constant L > 0 such that our problem satisfies some Lipchitz condition (ie Lipschitz
gradient)

4) D > 0, x0 ∈ Rn such that ∥x0 − x∗∥ ≤ D

5.1.2 Output

Again, we wish to produce some x ∈ K such that f(x) ≤ f(x∗) + ε.

5.1.3 Strategy

The idea is to iteratively take steps towards a direction which maximizes the “rate of reduc-
tion”

xt+1 ← xt + δu.

Here u is a unit vector and δ > 0 is some step-size.

27

©
Fe
lix
Zh
ou

Now,

max
u∈Sn−1

lim
δ→0

f(x)− f(x+ δu)

δ
= max

u∈Sn−1
−Df(x)[u]

= max
u∈Sn−1

⟨∇f(x), u⟩

u =
−∇f(x)

∥∇f(x)∥
.

Thus we should take a step in the direction of the negative gradient!

Furthermore, we combine the step-size and normalization constant. Our algorithm is thus
given by

xt+1 ← xt − ηt∇f(xt).

5.2 Analysis

The first question we ask is whether we need additional assumptions. We want the scale of
our function to be relatively well-behaved. The following are some options.

1) f is L-Lipschitz.

2) ∇f is L-Lipschitz.

3) ∥∇f∥ ≤ G for all x.

Remark that 1), 3) are actually equivalent.

Lemma 5.2.1
We have

f(y)− [f(x) + ⟨∇f(x), y − x⟩] ≤ L

2
∥x− y∥2.

Proof
Let λ ∈ [0, 1] and define

g(λ) := f [(1− λ)x+ λy].

FTC tells us that ∫ 2

0

g(λ)dλ = f(y)− f(x).

Moreover, the derivative of g is the directional gradient of f

ġ(x) = ⟨∇f [(1− λ)x+ λy], y − x⟩.

28

©
Fe
lix
Zh
ou

It follows that

f(y)− f(x)

=

∫ 1

0

⟨∇f [(1− λ)x+ λy], y − x⟩dλ

=

∫ 1

0

⟨∇f(x), y − x⟩dλ+

∫ 1

0

⟨∇f [(1− λ)x+ λy]−∇f(x), y − x⟩dλ

≤ ⟨∇f(x), y − x⟩+
∫ 1

0

∥∇f [(1− λ)x+ λy]−∇f(x)∥ · ∥y − x∥dλ

≤ ⟨∇f(x), y − x⟩+
∫ 1

0

L · ∥(1− λ)x+ λy − x∥ · ∥y − x∥dλ

≤ ⟨∇f(x), y − x⟩+ L∥y − x∥2
∫ 1

0

λdλ

≤ ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

Theorem 5.2.2
Given

1) 1st-order access to f : Rn → R convex

2) L such that ∇f is L-Lipschitz

3) Initial point x0 ∈ Rn

4) D > 0 such that max{∥x− x∗∥ : f(x) ≤ f(x0)} ≤ D

5) ε > 0 (parameter)

Then following holds for gradient descent.

a) Finds some x such that f(x) ≤ f(x∗) + ε

b) Makes T = O(DL2/ε) queries to the oracle

c) Makes O(nT) arithmetic operations

Proof
Let us apply our lemma with y = xt+1, x = xt. We have

ft+1 ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= f(xt) +

(
−η + η2L

2

)
∥∇f(x)∥2

≤ f(xt)−
1

2L
∥∇f(xt)∥22. η =

1

L

29

©
Fe
lix
Zh
ou

We now employ convexity. Suppose f(xt)− f(x∗) ≥ ε. Then

ε ≤ f(xt)− f(x∗)

≤ ⟨∇f(xt), xt − x∗⟩
≤ ∥∇f(xt)∥ · ∥xt − x∗∥
≤ D · ∥∇f(xt)∥.

Hence we have a lower bound ε/D on the gradient norm.

To shrink the objective gap from 2ε → ϵ, this requires 2D2L/ε steps. Thus to go from
the initial point to ε, the number of steps is a geometric sum and is thus dominated by
the last step 2ε→ ε.

Since each iteration requires O(n) arithmetic operations, this concludes the proof.

5.3 Handling Constraints

Suppose now we wish to optimize f : K → R for some convex K. The only change in
algorithm for gradient descent is an additiona projection step

xt+1 = ProjK [xt − η∇f(xt)].

The exact same analysis holds for projected GD since projections onto closed convex sets
are contractions.

5.4 Maximum Flow

5.4.1 The Problem

We are given as input G = (V,E) undirected and we wish to find an s − t flow, ie x ∈
RE, F > 0 such that

Bx = F · [1, . . . 0, . . . ,−1]T

Here the target vector has 1 in the s-th coordinate and −1 kin the t-th coordinate and we
say x has value F .

We also constrain each to have some capacity |xe| ≤ 1. Note that it is possible to handle
general capacities but the canonical case of all 1’s illustrates the most ideas.

Now, we will assume that G is connected so there is some s− t path, thus the optimal value
F ∗ ≥ 1. Trivially, F ∗ ≤ m as well.

30

©
Fe
lix
Zh
ou

5.4.2 Gradient Descent

By guessing O(logm) values, we may assume without loss of generality that F ∗ is know to
us. This then becomes a feasibility problem Bx = Fb and ∥x∥∞ ≤ 1. Let P denote the
projection onto the ℓ∞ ball. Consider the following minimization problem.

min ∥x− P (x)∥2

Bx = Fb

We wish to gradient descent. This requires us to check several conditions.

1. Convexity

2. ∇f is L-Lipschitz

3. Complexity of projection

4. x0 with small D

Convexity

We first observe that the objective f =
∑n

i=1 fi(xi) is separable. Hence it suffices to check
each fi is convex. Indeed,

fi(xi) =

0, xi ∈ [−1, 1]
(xi − 1)2 xi > 1

(xi + 1)2 xi < −1

Since the Hessian is PSD, fi and hence f is certainly convex.

Lipschit Gradient

Since the Hessian is bounded above by 2, we see that the gradient is L-Lipschitz for L = 2.

Projection

Now, suppose xt ∈ {y : Bx = Fb}. Then

{y : By = Fb} = xt + kerB.

Hence

Proj(xt + η∇f(xt)) = xt + ProjkerB(∇f(xt)).

31

©
Fe
lix
Zh
ou

From elementary linear algebra, the kernel is the orthogonal complement of the row space.
Hence if we write

P := BT (BBT)†B

as the projection onto the row space of B, then I − P is the projection onto kerB.

While naive computation of (I −P)∇f can be expensive, projection onto the row space can
be written as

min
y

∥∥BTy −∇f
∥∥,

from which the normal equations tell us to solve

BBTy = B∇f.

Since BBT is just the Laplacian, we can do this in Õ(m) time.

Initial Point

Consider taking x0 := Proj{x:Bx=Fb}(0), again using the Laplacian solver. We know that the
Euclidean radius of the ℓ∞ ball is

√
m. Hence if ∥x0∥ >

√
m, then we should halve our guess

of F since no such flow exists. On the other hand, all feasible flows has radius at most
√
m.

Thus all in all, we have
D ≤ 2

√
m.

Summary

Theorem 5.4.1
We can find an s− t flow x such that

∥x− P (x)∥22 ≤ ε

in time Õ(m2/ε).

Note that in order to derive a truly feasible flow, we need to complete some rounding step.
This can also be done.

32

©
Fe
lix
Zh
ou

Chapter 6

Multiplicative Weights Update
Method

6.1 Motivation

Consider the following stock bidding game. Every day, we are asked to bid whether a certain
stock goes up or down, given access to predictions of some experts.

We assume that there is at least one expert whose predictions are “good”. Define mt
i as the

number of mistakes the i-th expert makes up to and including day t and M t as the number
of mistakes we make up to time t. Recall the regret is defined as

Rt := M t −min
i

mt
i.

The goal is to obtain an algorithm which minimizes regret.

6.2 Weighted Majority Method

The idea is to keep a collection of confidence scores wt
i ≥ 0 for each expert starting from

w0
i = 1 for all i. Then, we proceed with the weighted majority of experts. Say we observe

an outcome

f t
i :=

{
1, expert i is wrong at time t

0, else

We would make the update

wt+1
i = wt

i(1− εf t
i).

33

©
Fe
lix
Zh
ou

6.2.1 Analysis

The key to the analysis is the potential function

ϕt :=
n∑

i=1

wt
i .

If we made a mistake at time t, say 1 was the wrong choice, then the weight of the majority
exceeds half of the potential function ∑

i→+1

wt
i ≥

1

2
ϕt.

It follows that

ϕt+1 =
n∑

i=1

wt
i(1− εf t

i)

=
n∑

i=1

wt
i − ε

n∑
i=1

wt
if

t
i

= ϕt

(
1− ε

ϕt

n∑
i=1

wt
if

t
i

)
.

Thus in the case we made a mistake,

ϕt+1 ≤ ϕt
(
1− ε

2

)
.

Now, ϕ0 = n and we make M t mistakes up to time t, so

ϕt+1 ≤ n
(
1− ε

2

)Mt

.

On the other hand
ϕt+1 ≥ wt

i = (1− ε)m
t
i

for all i. It follows that for every i ∈ [n],

(1− ε)m
t
i ≤ n

(
1− ε

2

)Mt

≤ n exp

(
−εM t

2

)
1− x ≤ e−x

mt
i(−ε− ε2) ≤ mt

i log(1− ε) ∀x ∈ [0, 1/2],−x− x2 ≤ log(1− x)

≤ log n− εM t

2

M t − 2mt
i(1 + ε) ≤ 2 log n

ε
MT

T
− 2mT

i

T
(1 + ε) ≤ 2 log n

εT
.

34

©
Fe
lix
Zh
ou

Theorem 6.2.1
For

T ≥ 2 log n

ε2
,

we have
1

T
MT − 2(1 + ε)

1

T
mT

i ≤ ε

for all i ∈ [n].

6.3 Multiplicative Weights Update Method

Suppose now that our outcome vectors f t = (f t
1, . . . , f

t
n) satisfy∥∥f t

∥∥
∞ ≤ 1.

We now play a probability vector pt ∈ ∆n and observe a payoff

⟨pt, f t⟩.

Our goal remains to minimize regret

1

T

T−1∑
t=0

⟨pt, f t⟩ − 1

T
min
p∈∆n

T−1∑
t=0

⟨p, f t⟩.

Note that we can view f t = ∇F for some function F whose gradient is bounded. This
technique generalizes to the online convex optimization setting where if we play pt, we
observe

∇F t(pt) = f t.

6.3.1 The Algorithm

1) Initialize w0
i = 1 for all i ∈ [n].

2) Set pti ←
wt

i

1Twt =
wt

i

ϕt .

3) Play pt.

4) Incur loss ⟨pt, f t⟩.
5) Update wt1

i ← wt
i(1− εf t

i).

35

©
Fe
lix
Zh
ou

6.3.2 Analysis

Once again, we have the trivial power bound

ϕt+1 ≥ wt
i(1− εf t

i)

≥ wt
i exp

[
−εf t

i − (εf t
i)

2
]
. ε ∈ [0, 1/2]

≥ 1 · exp

[
−ε

t∑
τ=0

f τ
i − ε2

t∑
τ=0

(f τ
i)

2

]
.

We also have a similar but more general upper bound

ϕt+1 =
n∑

i=1

wt
i(1− εf t

i)

= ϕt − ε
n∑

i=1

f t
iw

t
i

= ϕt − ε
n∑

i=1

f t
iϕ

tpti

= ϕt
(
1− ε⟨f t, pt⟩

)
≤ ϕt exp

[
−ε⟨f t, pt⟩

]
≤ n · exp

[
−ε

t∑
τ=0

⟨f t, pt⟩

]
.

Combining these two inequalities, taking logarithms, and rearranging yields

−ε
T−1∑
t=0

f t
i − ε2

T−1∑
t=0

(f t
i)

2 ≤ log n− ε

T−1∑
t=0

⟨f t, pt⟩

1

T

T−1∑
t=0

⟨f t, pt⟩ − 1

T

T−1∑
t=0

f t
i ≤

log n

εT
+ ε

1

T

t∑
t=0

(f t
i)

2.

36

©
Fe
lix
Zh
ou

Theorem 6.3.1
For every i ∈ [n],

1

T

T−1∑
t=0

⟨pt, f t⟩ − 1

T

T−1∑
t=0

f t
i ≤

lnn

εT
+ ε

1

T

T−1∑
t=0

⟨pt, f t⟩ − min
p∈∆n

1

T

〈
T−1∑
t=0

f t, p

〉
≤ lnn

εT
+ ε.

In particular, if T = lnn
ε2

implies the average regret is at most 2ε.

6.4 Perfect Bipartite Matching

We wish to find some x ∈ Rm such that∑
e

xe = n∑
e∈N(v)

xv ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

Note that this is justified since the polytope is integral. There is also a way to found any
fractional solutions to integral solutions in Õ(m) time, hence we focus on finding a fractional
perfect matching as above.

In fact, we relax the “difficult” constraints ever so slightly∑
e

xe = n∑
e∈N(v)

xv ≤ 1 + ε ∀v ∈ V

xe ≥ 0 ∀e ∈ E

6.4.1 The Algorithm

The idea is to combine the 2n inequalities into a single weighted inequality, say wt
v denotes

the “importance” of the v-th inequality.

Initialize w0 ≡ 1. Then for t = 0, . . . , T − 1:

1) Find xt satisfying

37

©
Fe
lix
Zh
ou

(a)
∑

v w
t
v

∑
e∈N(v) x

t
e ≤

∑
v∈V wt

v

(b)
∑

e∈E xt
e = n

(c) xt ≥ 0

2) Set f t
v :=

1−
∑

e∈N(v) x
t
e

n
for all v ∈ V .

3) Update wt+1
v := wt

v(1− ηf t
v) for all v ∈ V .

Finally, output

x =
1

T

T−1∑
t=0

xt.

6.4.2 Analysis

We would like to call upon the guarantees for the MWU method but this requires us to check
some properties.

Lemma 6.4.1
If G has a perfect matching, then

1) xt always exists and can be found in Õ(m) time.

2) ∥f t∥∞ ≤ 1.

Proof
Define

αe :=
∑
v∼e

wt
v∑

v

wt
v := β.

We would like to find xt such that ∑
e

αex
t
e ≤ β.

If G has a perfect matching, say e1, . . . , en, then

n∑
i=1

αei = β.

Take
e∗ := argmine αe

38

©
Fe
lix
Zh
ou

so that

nαe∗ ≤ nmin
i

αei

≤
∑
i

αei

= β.

Set xt
e∗ := n and xt

e = 0 for all e ̸= e∗. By construction,∑
v∈V

wt
v

∑
e∈N(v)

xt
e ≤

∑
v∈V

wt
v.

In addition,
1− n

n
≤ f t

v =
1−

∑
e∈N(v) x

t
e

n
≤ 1.

We can now proceed to apply the MWU guarantee to show that x := 1
T

∑T−1
t=0 xt is an ε-

approximate fractional perfect matching inG. First, since each xt satisfies non-negativity and∑
v x

t
v = n, so does the average among xt’s. It remains to check the “difficult” constraints.

Indeed, we have by construction ∑
v∈V

wt
v

∑
e∈N(v)

xt
e ≤

∑
v∈V

wt
v

∑
v∈V

wt
v

1−
∑

e∈N(v)

xt
e

 ≥ 0

Thus our intermediaries satisfy
⟨pt, f t⟩ ≥ 0.

It follows that for T ≥ lnn
η2

and any v ∈ V ,

2η ≥ 1

T

∑
t

⟨pt, f t⟩ − 1

T

∑
t

f t
v

≥ − 1

T

∑
t

f t
v

= − 1

T

∑
t

1−
∑

e∈N(v) x
t
e

n
.

∑
e∈N(v)

1

T

∑
t

xt
e ≤ 1 + 2nη

≤ 1 + ε. η :=
ε

2n

39

©
Fe
lix
Zh
ou

Theorem 6.4.2
There is an algorithm which takes as input a bipartite graph with a perfect matching
on 2n vertices, m edges, a parameter ε > 0, and outputs an ε-approximate fractional
solution in time

O

(
n2m

ε2

)
.

Intuitively, the algorithm greedily selects a single edge to add to the perfect matching at
every iteration by looking at the “least violated” constraints related to that edge.

40

©
Fe
lix
Zh
ou

Chapter 7

Newton’s Method

7.1 Newton’s Method

Consider the following simple problem in 1 dimension. Given g : R→R, find r such that
g(r) = 0.

An intuitive approach is to take a first-order approximation at some x0, and solve for a root
x1 of the first-order approximation.

0 = g(x0) + (x1 − x0)g
′(x0).

Theorem 7.1.1
If g is twice continuously differentiable and r is a root of g, then

|x1 − r| ≤M |x0 − r|2

where

M := sup
ξ∈(r,x0)

∣∣∣∣ g′′(ξ)2g′(x0)

∣∣∣∣.
Proof
By the mean value theorem, there is some ξ ∈ (r, x0) such that

g(r) = g(x0) + (r − x0)g
′(x0) +

1

2
(r − x0)

2g′′(ξ).

41

©
Fe
lix
Zh
ou

Since 0 = g(x0) + g′(x0)(x1 − x0) by construction, it follows that

0 = g(r)

= g′(x0)(x0 − x1) + (r − x0)g
′(x0) +

1

2
(r − x0)

2g′′(ξ)

(r − x1)g
′(x0) = −

1

2
(r − x0)

2g′′(ξ)

|x1 − r| = |x0 − r|2 ·
∣∣∣∣ g′′(ξ)2g′(x0)

∣∣∣∣
≤M |x0 − r|2.

7.2 Newton’s Method for Optimization

Recall for convex functions, optimization is equivalent to root finding for the derivative.
Thus if we wish to optimize f : Rd → R convex, we can attempt to generalize Newton’s
method for finding x such that ∇f(x) = 0. This requires us to generalize Newton’s method
for g : Rd → Rd.

Moving forward, we assume that f is strictly convex and twice continuously differntiable.
The straightforward generalization is thus given by

x1 = x0 −H(x0)
−1 ·∇f(x0).

Note that strict convexity ensures H(x0) ≻ 0 and the inverse always exists.

7.2.1 Interpretation

One interpretation of this method is by considering the second-order approximation and
explicitly solving for a root. This is simple and natural.

We will consider a different view which is not as straightforward to derive but yields a nice
way to measure the progress when we iteratively apply Newton’s method. Specifically, we
consider the norm induced by this local inner product

⟨u, v⟩g := uTg(x)v.

When g is the Hessian of a convex function, this is known as the Einstein(-Hessian) metric.
It turns out that performing “gradient descent” with respect to H(x), we recover the update
rule

x1 = x0 + n(x0)

where n(x0) := −H(x0)
−1 ·∇f(x0) is the Newton step.

42

©
Fe
lix
Zh
ou

7.2.2 Analysis

In order to facilitate the analysis, we introduce a non-standard definition.

Definition 7.2.1 (Newton-Local Condition)
We say that f : Rd → R satisfies the Newton-Local (NL) condition for parameter
δ0 ∈ (0, 1) if for all δ ∈ (0, δ0], any x, y ∈ Rd satisfying ∥x− y∥x ≤ δ also satisfies

(1− 3δ)H(x) ⪯ H(y) ⪯ (1 + 3δ)H(x).

Lemma 7.2.1
Assume f is strictly convex and satisfies the NL condition for δ0 = 1/6. Let x, y ∈ Rn

be such that ∥x− y∥x ≤ 1/6. Then for every u ∈ Rn,

1) 1
2
∥u∥x ≤ ∥u∥y ≤ 2∥u∥x

2) 1
2
∥u∥H(x)−1 ≤ ∥u∥H(y)−1 ≤ 2∥u∥H(x)−1

Lemma 7.2.2
Suppose A ⪰ 0, B ∈ §d satisfies −αA ⪯ B ⪯ αA for some α ≥ 0. Then∥∥∥A− 1

2BA− 1
2

∥∥∥
op
≤ α.

Theorem 7.2.3
If f is strictly convex and satisfies the NL condition for δ0 = 1/6, then

∥n(x1)∥x1
≤ 3∥n(x0)∥2x0

for every x0 ∈ Rn such that ∥n(x0)∥x0
≤ 1/6. Here x1 = x0 + n(x0).

Proof
Let x0 ∈ Rn be such that ∥n(x0)∥x0

≤ 1/6. We wish to show that

∥n(x1)∥x1
≤ 2∥n(x0)∥2x0

where n(x0) = −H(x0)
−1 ·∇f(x0).

43

©
Fe
lix
Zh
ou

First observe that

∥n(x0)∥x0
=
√
∇f(x0)TH(x0)−1H(x0)H(x0)−1∇f(x0)

=
√
∇f(x0)TH(x0)−1∇f(x0)

= ∥∇f(x0)∥H(x0)−1 .

We claim that

∥∇f(x1)∥H−1(x0)
≤ 3

2
∥∇f(x0)∥2H(x0)−1 .

If this holds, we can then apply our lemma above to conclude the result.

To show the claim, we first apply the fundamental theorem of calculus to see that

∇f(x1)

= ∇f(x0) +

∫ 1

0

H[x0 + t(x1 − x0)](x1 − x0)dt

=

(
H(x0)−

∫ 1

0

H[x0 + t(x1 − x0)]dt

)
H(x0)

−1∇f(x0)

x1 − x0 = H(x0)
−1 ∇f(x0)

=: M(x0)H(x0)
−1∇f(x0).

Taking norms yields

∥∇f(x1)∥H(x0)−1 =
∥∥M(x0)H(x0)

−1∇f(x0)
∥∥
H(x0)−1

≤
∥∥∥H(x0)

− 1
2M(x0)H(x0)

− 1
2

∥∥∥
op
· ∥∇f(x0)∥H(x0)−1 . Cauchy-Schwartz

If remains only to show that the operator norm of the first term above is bounded above
by 3/2∥∇f(x0)∥H(x0)−1 . In order to do so, we would like to call upon the lemma above.
This requires demonstrating that

−3

2
δH(x0) ⪯M(x0) ⪯

3

2
δH(x0)

δ := ∥∇f(x0)∥H(x0)−1 .

Note that δ ≤ 1/6 by assumption.

It suffices to demonstrate that for every t ∈ [0, 1],

−3δtH(x0) ⪯ H(x0)−H[x0 − t(x1 − x0)] ⪯ 3tδH(x0).

We can then integrate with respect to t to conclude the proof. This follows by the NL
condition.

44

©
Fe
lix
Zh
ou

Chapter 8

Interior Point Methods

8.1 Linear Programming

Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn where m > n. Define

K := {x ∈ Rn : Ax ≤ b}.

We wish to minimize ⟨c, x⟩ over all x ∈ K. In particular, we assume that K is bounded and
full-dimensional (contains an open ball). The condition that m > n essentially encodes the
assumption that there are more constraints than variables.

Note that in terms of computation, A, b, c are actually inputs over Q. Thus if L is the number
of bits needed to encode the input, a polynomial-time algorithm means poly(L).

Recall from elementary linear programming that there is always an optimal extreme point
solution. In particular, there is an optimal solution that can be decribed with n tight
inequalities which is O(L) bits.

8.2 Full-Dimensional IPM

8.2.1 Intuition

We wish to turn this contrained optimization problem into an unconstrained one. Consider
something of the form

min η⟨c, x⟩+ F (x).

45

©
Fe
lix
Zh
ou

Definition 8.2.1 (Barrier Function)
Suppose F : int(K) → R is strictly convex and F (x) → ∞ as x → ∂K. F is known
as a barrier function

Specifically, we can take

F (x) :=
m∑
i=1

log(bi − ⟨ai, x⟩)

where ai is the i-th row of A.

Intuitively, as η → ∞, the weight of the ⟨c, x⟩ in the objective becomes more and more
important. Define

fη := η⟨x, c⟩+ F (x)

x∗
η = argminx fη(x).

Then x∗
0 is analytic center of K.

The idea is to start from some x0 ≈ x∗
0. Then since x0 ≈ x∗

η for η sufficiently small, taking
a Newton step will result in x1 being even closer to x∗

η. Hence we approximately follow the
central path described by the map η 7→ x∗

η. At sufficiently small precision, we can terminate
the algorithm. Note that in the case of linear programming, once we are sufficiently close,
we can round the solution to the nearest vertex to yield an exact optimal solution.

8.2.2 Analysis

First we remind ourselves of the following notation.

fη(x) := η⟨c, x⟩+ F (x)

∇2fη = ∇2F

x∗
η := argminx fη(x)

nη(x) := H−1(x)∇fη(x).

The algorithm is as follows.

1) Initialize η0, x0 such that ∥nη0(x0)∥x0
≤ 1/6.

2) Set T such that ηT = η0

(
1 + 1

20
√
m

)T
> m/ε.

3) For t = 1, . . . , T :

i) xt+1 ← xt + nηt(xt)

ii) ηt+1 = ηt

(
1 + 1

20
√
m

)
46

©
Fe
lix
Zh
ou

4) Output x̂ which is obtained from xT by running two more Newton steps.

Lemma 8.2.1
For all x,

∥nη′(x)∥x ≤
η′

η
∥nη(x)∥x +

∣∣∣∣η′η − 1

∣∣∣∣√m.

Proof
By definition,

−nη′(x) = H−1(x)∇fη′(x)

= H−1(x)[η′c+ g(x)] g(x) = ∇F (x)

=
η′

η
H−1(x)[ηc+ g(x)] +

(
1− η′

η

)
H−1(x)g(x)

=
η′

η
H−1(x)∇fη(x) +

(
1− η′

η

)
H−1(x)g(x).

Taking norms on both sides and applying the triangle inequality yields

∥nη′(x)∥x ≤
η′

η

∥∥H−1(x)∇fη(x)
∥∥
x
+

∣∣∣∣1− η′

η

∣∣∣∣ · ∥∥H−1(x)g(x)
∥∥
x

=
η′

η
∥nη(x)∥x +

∣∣∣∣1− η′

η

∣∣∣∣ · ∥∥H−1(x)g(x)
∥∥
x
.

If we show that ∥H−1(x)g(x)∥x ≤
√
m for all x ∈ intK, we are done.

47

©
Fe
lix
Zh
ou

Indeed, ∥∥H−1(x)g(x)
∥∥2
x
= ∥z∥2x
= g(x)TH−1(x)H(x)H−1(x)g(x)

= g(x)TH−1(x)g(x)

= ⟨z, g(x)⟩

=
m∑
i=1

⟨z, ai⟩
si(x)

= 1T (⟨z, ai⟩si(x) : i ∈ [m])

≤
√
m ·

√√√√ m∑
i=1

⟨z, ai⟩2
si(x)2

=
√
m ·

√√√√zT
m∑
i=1

aiaTi
si(x)2

z

=
√
m · ∥z∥x.

Cancelling the ∥z∥x term on both sides concludes the proof.

Lemma 8.2.2
For every t = 0, 1, . . . , T ,

∥nηt(xt)∥xt
≤ 1

6
.

Proof
For t = 0, the statement holds by assumption. We now argue by induction.

From the previous lecture, we are guaranteed that

∥nηt(xt+1)∥xt+1
≤ 3

(
1

6

)2

=
1

12

assuming that fηt satisfies the NL condition. Note that we would still need to show that∥∥nηt+1(xt+1)
∥∥
xt+1
≤ 1

6
.

However, by the choice of ηt+1, we have ηt+1/ηt = 1 + 1/20√m, so the lemma above applies

48

©
Fe
lix
Zh
ou

to yield ∥∥nηt+1(xt+1)
∥∥
xt+1
≤
(
1 +

1

20
√
m

)
∥nηt(xt+1)∥xt+1

+
1

20
√
m

√
m

≤ 21

20
· 1
12

+
1

20

≤ 1

6
.

Now, consider the NL condition for ∇2fη(x) = ∇2F . Let x, y be such that ∥x− y∥x =:
δ ≤ 1/6. We have

∇2F (x) =
m∑
i=1

1

si(x)
aia

T
i

where si(x) := bi − ⟨ai, x⟩ is the i-th slack function.

By computation,

δ2 = ∥x− y∥2x
= (x− y)TH(x)(x− y)

= (x− y)T
m∑
i=1

aia
T
i

si(x)2
(x− y)

=
m∑
i=1

(⟨ai, x⟩ − ⟨ai, y⟩)2

si(x)2

=
m∑
i=1

∣∣∣∣si(x)− si(y)

si(x)

∣∣∣∣2.
Thus for every i, ∣∣∣∣si(x)− si(y)

si(x)

∣∣∣∣2 ≤ δ2

|si(x)− si(y)| ≤ δsi(x)

(1− δ)si(x) ≤ si(y) ≤ (1 + δ)si(x)

(1− δ)2

si(x)2
≤ 1

si(y)2
≤ (1 + δ)2

si(x)2

(1− δ)2

si(x)2
aia

T
i ≤

1

si(y)2
aia

T
i ≤

(1 + δ)2

si(x)2
aia

T
i .

Summing over all i yields the inequality

(1− δ)2H(x) ⪯ H(y) ⪯ (1 + δ)2H(x).

This also holds for (1± 3δ) instead of (1± δ) assuming that δ ≤ 1/6.

49

©
Fe
lix
Zh
ou

8.2.3 Initialization

In order for our algorithm to work, we require an initial point x0 such that

∥nη0(x0)∥x0
≤ 1

6
.

Suppose we have any point x0. We can construct an objective c′ so that x0 is close to the
central path for the objective c′. Then we can “reverse” the algorithm η → 0 so that x′

t → x∗
0

and we arrive at a point close to the analytic center.

8.3 Subspace IPM

Recall that reduced a constrained optimization problem to an unconstrained optimization
problem through the barrier function.

fη(x) := ηf(x) + F (x).

Before, we considered full-dimensional linear programs. We now consider LPs of the form

min⟨c, x⟩
Ax = b

x ≥ 0

We need a sense of a derivative within a subspace (manifold)

Eb := {x : Ax = b}.

Here, the tangent space, or intuitively, the directions in which we can take an infinitessimal
step is

E := {y : Ay = 0} = kerA.

Recall the orthogonal projection ΠE onto E is given by

ΠE = I − AT (AAT)−1A ∈ Rm×m.

Note that Π2
E = ΠE and ΠE = ΠT

E.

The Newton step analogue is then given by

ñ(x) = −H̃−1(x)∇̃fη(x)

50

©
Fe
lix
Zh
ou

where

H̃(x) = ΠEH(x)ΠT
E

∇̃fη(x) = ΠEfη(x).

The barrier function for non-negativity constraints is simply

F (x) = −
m∑
i=1

log xi.

Then, using the notation X := Diag(x),

∇F (x) = −X−11

∇2F (x) = X−2.

So

fη(x) = η⟨c, x⟩+ F (x)

∇̃fη(x) = η∇̃⟨c, x⟩+ ∇̃F (x)

= ΠE(ηc−X−11).

Similarly we can compute H̃−1(x).

Theorem 8.3.1
There is an IPM taking Newton steps in E which minimizes ⟨c, x⟩ such that Ax =
b, x ≥ 0.
Given a starting point x′ such that x′ > δ, the algorithm finds some x̂ such that

cT x̂− cTx∗ ≤ ε.

Moreover, the number of iterations is

√
m poly

(
logm, log

∥c∥2
ε

, logD8

)
where D is the ℓ2-diameter of the polytope.

8.4 Minimum Cost Flow

Suppose we are given a digraph G = (V,E) and source-sink vertices s ̸= t ∈ V .

51

©
Fe
lix
Zh
ou

Definition 8.4.1 (s − t Flow)
A unit s− t flow is some x ∈ Rm

+ such that for all u ∈ V ,

∑
vu∈E

xvu −
∑
uw∈E

xuw =

0, u ̸= s, t

1, u = s

−1, u = t

In other words,
Bx = χx,t = es − et

where B is the vertex-edge incidence matrix.

Problem 1 (Minimum Cost Flow)
Given

(a) a digraph G = (V,E) and s ̸= t ∈ V ,

(b) capacities ρ ∈ Rm
+ ,

(c) and costs c ∈ Rm,

solve

min⟨c, x⟩
Bx = χs,t

xi ≤ ρi ∀i ∈ E

xi ≥ 0 ∀i ∈ E

We would like to apply the interior point algorithm we developed to solve the minimum cost
flow problem. However, we need to efficiently determine a starting point and analyze the
complexity per iteration.

8.4.1 Starting Point

We need δ ≥ 1/poly(m) and D ≤ poly(m).

In our case, 0 ≤ x ≤ ρ and so

∥x∥2 ≤ ∥ρ∥
≤
√
m∥ρ∥∞

=:
√
mU.

For δ, there may be no feasible unit flow, hence add an extremely expensive edge ê = s→ t
with cost 2

∑m
i=1|ci| and capacity ρê = 2. Consider some f (i) which is any unit flow using

52

©
Fe
lix
Zh
ou

edge i. If no such flow exists, we may as well throw out that edge. Then

x′ :=
1

m

∑
i

f (i)

satisfies x′ ≥ 1
m

for all i ∈ E.

We can also handle the capacity constraints using a similar trick. All in all, there is a

Õ(m1.5)

time algorithm that solves the minimum cost flow problem.

53

©
Fe
lix
Zh
ou

54

©
Fe
lix
Zh
ou

Chapter 9

Ellipsoid Method

9.1 Separation

Supppose we wish to optimize over 0-1 polytopes of the form

PF := conv{1S : S ∈ F}

for some F ⊆ 2m. We can formulate matchings, flows, etc, all in this setting.

Unfortunately, there is not always a polynomial size description of PF and we cannot hope
to apply our existing techniques which work with explicit constraints.

Edmonds was the first to show that we separate over the matching polytope.

PM =

{
x ∈ [0, 1]m : ∀S ⊆ [m], 2 ∤ |S|,

∑
i∈S

xi ≤
|S| − 1

2

}
.

Specifically, he derived an algorithm which returns YES if x ∈ P and a separating hyperplane
if x /∈ P . Moreover, for the case of matchings, the separating hyperplane is one of the
(exponentially many) constraints.

9.2 Optimization & Feasibility

Problem 2 (Feasibility)
Given some polytope P , output NO if P = ∅, otherwise output YES as well as some
x ∈ P .

55

©
Fe
lix
Zh
ou

We remark that having a feasibility oracle allows us to optimize by performing binary search
on g ∈ R. In each iteration, we ask if the following polytope is feasible.

P ′ := P ∩ {x : ⟨c, x⟩ ≥ g}.

We will see how the ellipsoid method allows us to determine feasibility given

(i) a separation oracle,

(ii) a cost vector c ∈ Rm,

(iii) lower and upper bounds ℓ0 ≤ OPT ≤ u0.

Note that we can terminate the binary search when the current bounds u− ℓ ≤ ε. Thus this
requires at most log ((u0−ℓ0)/ε) iterations.

9.3 Ellipsoid Method

Suppose there is a polytope P such that

(i) P is full-dimensional,

(ii) P ⊆ BR, a ball of radius R that is given to us,

(iii) Br ⊆ P contains a ball of radius r that is not provided to us.

The idea is to produce a sequence of convex bodies BR = K0 ⊇ K1 ⊇ . . . where the volume
satisfes

Vol(Kt+1) ≤ αVol(Kt).

Then we need only repeat for

log1/α

(
R

r

)m

= m log1/α
R

r

iterations. For 0-1 polytopes, we know that R ≤
√
m and in many cases we can lower bound

r ≥ 1/poly(m). Thus this would yield an efficient algorithm for separation.

We will employ ellipsoids as our convex body. Define

Et(xt,Mt) := {x : (x− x0)
TM−1(x− x0) ≤ 1}

to be the ellipsoid at time t for xt ∈ Rm,M ≻ 0.

The algorithm proceeds as follows.

1) If xt ∈ P , return x.

2) Else xt /∈ P and there is a separating hyperplane ht:

a) Then construct Et+1 to be the minimum volume ellipsoid containing Et∩halfspace(h).

56

©
Fe
lix
Zh
ou

9.3.1 Minimum Volume Ellipsoid

How do we construct Et+1 and how much does the volume shrink?

Consider the unit ball and the hyperplane {x : x1 ≥ 0}. We claim that it suffices to consider
this special case since we can transform any ellipsoid with a hyperplane through its center
to this case with an affine map.

Define

E ′ =

{
x ∈ Rm :

(
m+ 1

m

)2(
x1 −

1

m+ 1

)2

+

(
m2 − 1

m2

) m∑
j=2

x2
j ≤ 1

}

x′ =
1

m+ 1
e1

M ′ = Diag

((
m

m+ 1

)2

,
m2

m2 − 1
,

m2

m2 − 1
, . . .

)
.

Proposition 9.3.1
The following holds.

1) E ′ ⊇ E ∩ p{x : x1 ≥ 0}
2) 1/α ≈ 1 + 1

m

Proof
1) Let x be such that ∥x∥22 ≤ 1 and x1 ≥ 0. We show the stronger statement that(

m+ 1

m

)2(
x1 −

1

m+ 1

)2

+

(
m2 − 1

m2

)
(1− x2

1) ≤ 1.

By taking the second derivative, we can check that the LHS is a convex function of x1.
Hence it suffices to check the inequality at x1 = 0, 1, where is holds by computation.

57

©
Fe
lix
Zh
ou

2) We have

Vol(E ′)

Vol(E)
=
√
detM

=

(
m

m+ 1

)
·
(

m2

m2 − 1

)m−1
2

=

(
1− 1

m+ 1

)
·
(
1 +

1

m2 − 1

)m−1
2

≤ exp

(
− 1

m+ 1

)
exp

(
m− 1

2(m2 − 1)

)
= exp

(
− 1

m+ 1

)
exp

(
1

2(m+ 1)

)
= exp

(
− 1

2(m+ 1)

)
≈ 1− 1

2m
.

Hence 1/α ≈ 1 + 1/m and

t ≈ m2 log
R

r

iterations suffices.

58

	I Background
	Multivariate Calculus
	Derivatives
	Integrals
	Taylor Approximation

	Linear Algebra
	Norms

	Graphs & Matrices
	Graphs
	Matrices
	Lx=b

	Convexity
	Convex Sets
	Convex Functions
	Stronger Notions of Convexity
	Optimality Conditions

	II Convex Optimization
	Convex Optimization
	Membership & Separation
	Membership
	Separation

	Solving Convex Programs
	Encoding a Convex Function

	Gradient Descent
	The Algorithm
	Input
	Output
	Strategy

	Analysis
	Handling Constraints
	Maximum Flow
	The Problem
	Gradient Descent
	Convexity
	Lipschit Gradient
	Projection
	Initial Point
	Summary

	Multiplicative Weights Update Method
	Motivation
	Weighted Majority Method
	Analysis

	Multiplicative Weights Update Method
	The Algorithm
	Analysis

	Perfect Bipartite Matching
	The Algorithm
	Analysis

	Newton's Method
	Newton's Method
	Newton's Method for Optimization
	Interpretation
	Analysis

	Interior Point Methods
	Linear Programming
	Full-Dimensional IPM
	Intuition
	Analysis
	Initialization

	Subspace IPM
	Minimum Cost Flow
	Starting Point

	Ellipsoid Method
	Separation
	Optimization & Feasibility
	Ellipsoid Method
	Minimum Volume Ellipsoid

