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Introduction

1.1 Positive Semidefinite Matrices

Definition 1.1.1 (Trace)
For X ∈ Rn×n, we let Tr(X) denote the trace of X

Tr(X) :=
n∑

i=1

Xii.

Note that for X,S ∈ Rn×n, a commonly used inner product is

〈X,S〉 := Tr
(
XTS

)
=

n∑
i=1

n∑
j=1

xijsij

= Tr
(
SXT

)
.

Note that this shows the trace is preserved under cyclic permutation.

Recall that given X ∈ Rn×n, the roots λ1, . . . , λn of the polynomial

det(X − λI) = 0

are the eigenvalues of X.

We denote the set of n× n symmetric matrices by

Sn := {X ∈ Rn×n : XT = X}.

7



©Fel
ix

Zh
ou

For X ∈ Sn, all eigenvalues of X are real and we usually order them

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

We can consider λ : Sn → Rn given by

λ(X)i = λi(X).

For simplicty of notation we define the linear transformation Diag : Rn → Sn such that
Diag(x) is the diagonal matrix whose entries are the entries of x. Moreover, we define

diag(X) :=


x11
x22
. . .
xnn

 .

Theorem 1.1.1 (Spectral Decomposition)
For X ∈ Sn, there is some orthogonal Q ∈ Rn×n such that

X = QDiag(λ(X))QT .

Corollary 1.1.1.1
In the theorem above, the columns of Q are the eigenvectors of X.

Proof
We have

XQej = QDiag(λ(X))QTQej

= λj(X)Qej.

Definition 1.1.2 (Positive Semidefinite)
X ∈ Sn is positive semidefinite if hTXh ≥ 0 for all h ∈ Rn.

If hTXh > 0 for each 0 6= h ∈ Rn, we say that X is positive definite.

We denote the set of p.s.d. matrices by
Sn
+.
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Theorem 1.1.2 (Cholesky Decomposition)
Let X ∈ Sn, then

(a) X is p.s.d. if and only if there is some lower triangular B ∈ Rn×n such that
X = BBT .

(b) X is p.d. if and only if there is some non-singular lower triangular B ∈ Rn×n

for which X = BBT .

Proposition 1.1.3
Let X ∈ Sn. The following are equivalent:

(a) X is p.s.d.
(b) λ(X) ≥ 0.
(c) There is some µ ∈ Rn

+ and h(1), . . . , h(n) ∈ Rn such that X =
∑n

i=1 µih
(i)(h(i))T .

(d) There is some B ∈ Rn×n such that X = BBT .
(e) For every nonempty J ⊆ [n], det(Xj) ≥ 0, where Xj := [xij]i,j∈J

(f) For every S ∈ Sn
+, 〈X,S〉 ≥ 0.

1.2 Semidefinite Programming

Recall that linear programming (LP) is the problem of optimizing an affine function of finitely
many real valued variables subject to finitely many linear contraints.

A “standard form” of an LP may look like the following:

mincTx

Ax = b

x ≥ 0

Broadly speaking, semidefinite programming (SDP) is the problem of optimizing an affine
function of finitely many matrix variables with real entries, subject to finitely linear con-
straints and some symmetry and positive semidefiniteness contraints on the matrix variables.

The power of SDP lies in the positive semidefiniteness constraints, as those can be highly
nonlinear.
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A possible form of an SDP is the following:

inf〈C,X〉
〈Ai, X〉 = bi ∀i ∈ [m]

X ∈ ⊕k
j=1S

nj

+

The last constraint says that X is a block diagonal matrix where each block is positive
semidefinite.

Example 1.2.1
Suppose we have variables

v(i) ∈ Rn, i ∈ [n]

with objective functions and contraints which are affine functions of 〈v(i), v(j)〉 for i, j ∈ [n].
Then we can express such a nonlinear, nonconvex optimization problem as an SDP.

Define a new matrix variable X := V V T ∈ Sn
+ where

V T :=
[
v(1) v(2) . . . v(n)

]
∈ Rn×n.

Then Xij = 〈v(i), v(j)〉 for each i, j ∈ [n].

We can rewrite the original optimization problem using X as the variable within an SDP.

We denote the set of n× n positive definite matrices by

Sn
++.

Lemma 1.2.2 (Schur Complement)
Let X ∈ Sn and T ∈ Sm

++.
Then

M :=

[
T UT

U X

]
∈ Sm+n

+

if and only if
(X − UT−1UT ) ∈ Sn

+.

Moreover, M ∈ Sm+n
++ if and only if (X − UT−1UT ) ∈ Sn

++.

Proof
Suppose X ∈ Sn and T ∈ Sm

++. Then

M =

[
T UT

U X

]
=

[
I 0

UT−1 I

] [
T 0
0 X − UT−1UT

] [
I T−1UT

0I

]
. = L

[
T 0
0 X − UT−1UT

]
LT .
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Notice that L is non-singular. Thus checking that the Rayleigh quotient of M is al-
ways positive (non-negative) is equivalent to checking the Rayleigh quotient of the block
diagonal matrix [

T 0
0 X − UT−1UT

]
.

But since we are given that T ∈ Sm
++, this is equivalent to the condition that X−UT−1UT

is positive (semi)definite.

For A,B ∈ Sn, we use the notation A � B to denote A− B ∈ Sn
+ and A � B to mean that

A−B ∈ Sn
++.

A special case of Lemma 1.2.2 with m = 1, T = 1 is that[
1 xT

x X

]
� 0 ⇐⇒ X − xxT � 0[

1 xT

x X

]
� 0 ⇐⇒ X − xxT � 0.

1.3 Duality

Given C ∈ Sn, b ∈ Rm and a linear transformation A : Sn → Rm, we define the SDP

inf〈C,X〉 (P )

A(X) = b

X � 0

as well as its dual

sup bTy (D)

A∗(y) + S = C

S � 0

Recall from elementary linear algebra that A∗ : Rm → Sn is the adjoint of A, which is the
unique linear function satisfying

∀X ∈ Sn,∀y ∈ Rm, 〈A∗(y), X〉 = 〈y, A(X)〉.

Now, for every linear transformation A : Sn → Rm, there are A1, . . . , Am ∈ Sn such that

∀i ∈ [m], [A(X)]i = 〈Ai, X〉.

11
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Hence

A∗(y) =
m∑
i=1

yiAi.

We rewrite the primal and dual programs as

inf〈C,X〉 (P )

〈Ai, X〉 = bi ∀i ∈ [m]

X � 0

sup bTy (D)
m∑
i=1

yiAi + S = C

S � 0

Theorem 1.3.1 (Weak Duality)
Let X̄ be feasible in (P) and (ȳ, S̄) be feasible in (D). Then

〈C, X̄〉 − bT ȳ = 〈X̄, S̄〉 ≥ 0.

Proof
We have

〈C, X̄〉 − bT ȳ = 〈A∗(ȳ) + S̄, X̄〉 − bT ȳ A∗(ȳ) + S̄ = C

= 〈S̄, X̄〉+ 〈A∗(ȳ), X̄〉 − bT ȳ

= 〈X̄, S̄〉+ ȳTA(X̄)− bT ȳ

= 〈X̄, S̄〉 A(X̄) = b

≥ 0 X̄, S̄ � 0 Proposition 1.1.3.

Corollary 1.3.1.1
(a) If (P) is unbounded, then (D) is infeasible.
(b) If (D) is unbounded, then (P) is infeasible.
(c) If feasible solutions X̄, (ȳ, S̄) of (P), (D) satisfy 〈X̄, S̄〉 = 0, then X̄ is optimal in

(P) and (ȳ, S̄) is optimal in (D).

Note that the dual of (D) is “equivalent to (P), thus SDP duality is an involution. A rigorous

12
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proof and a rigorous definition of “equivalent” amounts to putting (D) in the form of (P),
applying the definition of the dual and simplying.

Alternatively, let us assume both (P), (D) have feasible solutions X̂, (ŷ, Ŝ). Define

L := Null(A).

The feasible region of (P) can be written as

(L+ X̂) ∩ Sn
+.

Consider
L⊥ = {S ∈ Sn : ∀X ∈ L, 〈X,S〉 = 0}.

Notice that Range(A∗) = L⊥. Thus y ∈ Rm, S ∈ Sn satisfy A∗(y) + S = C if and only if
(S − S̄) ∈ L⊥. In other words, S ∈ Sn is part of a feasible solution of (D) if and only if

S ∈ (L⊥ + S̄) ∩ Sn
+.

The objective function of (P) for X satisfying A(S) = b can be written as

〈C,X〉 = 〈A∗(y) + S̄, X〉 = bT ȳ + 〈Ŝ, X〉.

Since bT ȳ is a constant, (P) is really just

inf
{
〈Ŝ, X〉 : X ∈ (L+ X̂) ∩ Sn

+

}
.

Similarly, the objective function value of (D) for (y, S) satisfying A∗(y) + S = C is given by

bTy = A(X̂)Ty = 〈X̂,A∗(y)〉 = 〈X̂, C − S〉 = 〈C, X̂〉 − 〈X̂, S〉.

Again 〈C, X̂〉 is constant, hence (D) is “equivalent” to

inf
{
〈X̂, S〉, S ∈ (L⊥ + Ŝ) ∩ Sn

+

}
.

From this, it is clear that the operations which yield (D) from (P) will yield (P) from (D).

Another attractive standard form for SDPs is given by a linear transformation A : Sn →
Sk, C ∈ Sn, and B ∈ Sk.

inf〈C,X〉 (P )

A(X) � B

X � 0

sup〈B, Y 〉 (D)

A∗(Y ) � C

Y � 0

13
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Recall that a PSD matrix X = QDiag(λ(X))QT has a square root

X
1
2 := Q[Diag(λ(X))]

1
2QT .

Proposition 1.3.2
Let X,S ∈ Sn

+. Then
〈X,S〉 = 0 ⇐⇒ XS = 0.

Proof
( ⇐= ) We have

〈X,S〉 = Tr(XS) = Tr(0) = 0.

( =⇒ ) Suppose X,S ∈ Sn
+ satisfy 〈X,S〉 = 0. Then

0 = Tr(XS) = Tr
(
X

1
2SX

1
2

)
.

But since X is symmetric, the Rayleigh quotient with respect to X 1
2SX

1
2 is always non-

negative as S � 0. This shows that X 1
2SX

1
2 � 0.

But then by Proposition 1.1.3, λ(X 1
2SX

1
2 ) ≥ 0. So in fact, all eigenvalues are 0 which

shows that 0 = X
1
2SX

1
2 .

It follows that

0 = Tr
(
X

1
2SX

1
2

)
= Tr

[
(X

1
2S

1
2 )(X

1
2S

1
2 )T
]
= ‖X

1
2S

1
2‖22

and hence X 1
2S

1
2 = 0. Finally,

XS = X
1
2 (X

1
2S

1
2 )S

1
2 = 0.

14
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Proposition 1.3.3
(i) Sn

++ = int(Sn
+)

(ii) Let X ∈ Sn. Then the following are equivalent:

(a) X is positive definite.
(b) λ(X) > 0.
(c) There is some µ ∈ Rn

++ and linearly independent h(1), . . . , h(n) ∈ Rn such
that X =

∑n
i=1 µih

(i)(h(i))T .
(d) There is some nonsingular b ∈ Rn×n such that X = BBT .
(e) For k ∈ [n] and Jk := [k], det(XJk) > 0.
(f) For any S ∈ Sn

+ \ {0}, 〈X,S〉 > 0.
(g) X � 0 and rank(X) = n.

15
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Duality

2.1 Strong Duality

Using weak duality, we can generate concise certificates that our feasible solutions are optimal
or near-optimal. We can also derive optimality conditions which help design efficient, robus
algorithms.

2.1.1 Notions of Duality

Definition 2.1.1 (Dual Cone)
Given K ⊆ Rd, the dual cone is given by

K∗ := {s ∈ Rd : ∀x ∈ K, 〈x, s〉 ≥ 0}.

Under the Euclidean inner product, (Rd
+)

∗ = Rd
+. Under the trace inner product, (Sn

+)
∗ = Sn

+.

Definition 2.1.2 (Polar Set)
Given K ⊆ Rd,

Ko := {s ∈ Rd : ∀x ∈ K, 〈x, s〉 ≤ 1}

is defined to be the polar set of K.

Observe that if K is a cone, then Ko = −K∗.

17
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Definition 2.1.3 (Legendre-Fenchel Conjugate)
For a function f : Rd → R ∪ {∞}, its convex conjugate is given by

f∗(s) := sup
x∈Rd

−〈s, x〉 − f(x).

Example 2.1.1
Consider f : Sn → R ∪ {∞} given by

f(X) :=

{
− ln det(X), X ∈ Sn

++

∞, else

Its conjugate is precisely

f∗(S) =

{
− ln det(S)− n, S ∈ Sn

++

∞, else

2.1.2 Preliminaries

Theorem 2.1.2 (Hyperplane Separation for Closed Convex Sets)
Let ∅ 6= G ⊆ Rd \ {0} be closed and convex. There is some a ∈ Rd \ {0} and α ∈ R+

sch that
G ⊆ {x ∈ Rd : aTx ≥ α}.

Corollary 2.1.2.1
Let ∅ 6= G1, G2 ⊆ Rd be disjoint closed convex sets. If either G1, G2 is bounded, there
exists some a ∈ Rd \ {0} such that

inf{aTx : x ∈ G1} > sup{aTx : x ∈ G2}.

If both sets are unbounded, we cannot guarantee the strictness of the inequality above.

Theorem 2.1.3
Let ∅ 6= G ⊆ Rd be convex with 0 /∈ G. Then there is some A ∈ Rd \ {0} such that

G ⊆ {x ∈ Rd : aTx ≥ 0}.

18
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Corollary 2.1.3.1
Let ∅ 6= G1, G2 ⊆ Rd be disjoint convex sets. There is some a ∈ Rd \ {0} such that

inf{aTx : x ∈ G1} ≥ sup{aTx : x ∈ G2}.

Recall our primal and dual SDPs.

inf〈C,X〉 (P )

A(X) = b

X � 0

sup bTy (D)

A∗(y) + S = C

S � 0

Definition 2.1.4 (Slater Point)
We say that (P) satisfies the Slater Condition, or (P) has a Slater point, if there is
some X̄ ∈ Sn

++ such that
A(X̄) = b.

Similarly, (D) satisfies the Slater Condition or has a Slater point if there are ȳ ∈ Rm

and S̄ ∈ Sn
++ for which

A∗(ȳ) + S̄ = C.

2.1.3 Strong Duality

Theorem 2.1.4 (Strong Duality)
Suppose (D) has a Slater point and the objective value of (D) is bounded from above.
Then (P) attains its optimal value and the optimum values of (P), (D) are the same.

Proof
Suppose there is some ȳ ∈ Rm, S̄ ∈ Sn

++ such that A∗(ȳ) + S̄ = C. Further assume that
there exists γ ∈ R such that bTy ≤ γ for all feasible solutions (y, S) of (D).

Let
z∗ := sup{bTy : A∗(y) + S = C, S � 0}.

We may as well assume that b 6= 0, or else by taking X̄ := 0 results in X̄, (ȳ, S̄) being

19
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optimal solutions to (P), (D) both with objective value 0.

Put

G1 := Sn
++

G2 := {S ∈ Sn : ∃y ∈ Rm, S = C −A∗(y), bTy ≥ z∗}.

It is easy to see that G1, G2 are convex with G1 6= ∅. Now, by the definition of z∗, there
must be some (ŷ, Ŝ) such that Sn ⊇ Ŝ ∈ G2 as linear functions attain their supremum
over affine subspaces. Note that Ŝ is not necessarily positive semidefinite.

We claim that G1 ∩ G2 = ∅. Otherwise, there is some ỹ ∈ Rm such that A∗(ỹ) ≺ C
and bT ỹ ≥ z∗. But then by setting ŷ := ỹ + εb for sufficiently small ε > 0, we see that
A∗(ŷ) ≺ C as well as

bT ŷ = bT ỹ + ε‖b‖22 > z∗,

which is a contradiction.

By a previous corollary, there exists some X̃ ∈ Sn \ {0} such that

inf{〈X̃, S〉 : S ∈ Sn
++} ≥ sup{〈X̃, S〉 : S ∈ G2}.

But Sn
++ is a cone, hence we must have that 〈X̃, S〉 ≥ 0 for each S ∈ Sn

++, or else the
infimum over G1 is −∞. This inequality holds over the closure, hence

∀S ∈ cl(Sn
++) = Sn

+, 〈X̃, S〉 ≥ 0.

By a previous proposition, it follows that X̃ ∈ Sn
+. By taking a sequence S(k) := 1

k
I → 0,

we see that the LHS infimum must be 0. In other words,

0 ≥ 〈X̃, C〉 − 〈X̃,A∗(y)〉

for every y ∈ Rm such that bTy ≥ z∗. This happens if and only if A(X̃)Ty ≥ 〈C, X̃〉 for
every y ∈ Rm such that bTy ≥ z∗.

Thus, A(X̃)Ty is bounded below on the set {y ∈ Rm : bTy ≥ z∗}. But since the latter is
a closed half-space, it must be that A(X̃) = αb for some α ≥ 0. Note that α 6= 0, or else
A(X̃) = 0 and

0 ≥ 〈C, X̃〉 = 〈A∗(ȳ) + S̄, X̃〉 = A(X̃)T ȳ + 〈S̄, X̃〉 > 0,

where the last inequality comes from our characterization of PD matrices. This is a
contradiction. It follows that α > 0.

Define
X̂ :=

1

α
X̃ ∈ Sn

+.

20
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We have A(X̂) = b and A(X̂)Ty ≥ 〈C, X̂〉 for all y ∈ Rm such that bTy ≥ z∗. Therefore,
〈C, X̂〉 ≤ z∗. By the Weak Duality theorem, X̂ is optimal in (P) and the optimal objective
values of (P), (D) are the same.

Corollary 2.1.4.1
If (D) has a feasible solution and (P) has a Slater point, then (D) attains its optimal
objective value, and the optimal objective values of (P), (D), coincide.

Corollary 2.1.4.2
If (P), (D) both have Slater points, then both (P), (D), attain their optimal objective
values and these objective values are the same.

Remark that the above theorem and its proof generalize to the conic convex optimization
setting where we may simply pick our standard form as

inf〈c, x〉 (P )

A(x) = b

B(x) ≥ d

x ∈ K

sup〈b, y〉+ 〈d, u〉 (D)

A∗(y) + B∗(u) + s = c

u ≥ 0

s ∈ K∗

Here we let c ∈ Rn, b ∈ Rm1 , d ∈ Rm2 , with A : Rn → Rm1 ,B : Rn → Rm2 being linear
transformations, and K ⊆ Rn a closed convex cone.

In this more general setting, x̄ ∈ Rn is a restricted Slater point if it is feasible and satisfies
x̄ ∈ int(K). Moreover, (ȳ, ū, s̄) is a restricted Slater point for (D) if it is dual feasible with
s̄ ∈ int(K∗).

2.1.4 Pitfalls

The existence of Slater points is crucial. Attainment of the optimal solution cannot be
guaranteed without them. The primal dual optimality gap can also be made arbitrarily
large when there are no Slater points.

In the special case of LP problems, if (P) and (D) both have feasible solutions, then they
both have optimal solutions. Moreover, for every pair of optimal solutions x̄, (ȳ, s̄), comple-
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mentarity holds: x̄j · s̄j = 0 for each j. Furthermore, there is an optimal pair x̂, (ŷ, ŝ) for
which strict complementarity holds:

x̂+ ŝ > 0.

In the SDP generalization, we showed that with the existence of Slater points, both (P), (D)
have optimal solutions (strong duality). In addition, every pair of optimal solutions X̄, (ȳ, S̄)
satifies complementarity (weak duality):

X̄S̄ = S̄X̄ = 0.

However, as shown in A1Q4(c), strict complementarity may fail even in the presence of Slater
points.

Fixed dimensions n > m ≥ 1 and consider the set of data (A, b, c) ∈ L(Sn,Rm) ⊕ Rm ⊕
Rn with feasible primal solutions. The set of instances without Slater points has measure
zero. Morever, if we focus on the data for with feasible primal and dual solutions, the set
of instances which do not have Slater points or do not satisfy strict complementarity has
measure zero.

2.2 Certifying Infeasibility & Unboundedness

We seek a generalization of Farkas’ lemma. Unfortunately, there is no direct generalization.

Definition 2.2.1 (Almost Feasible)
Let A : Sn → Rm be a linear transformation and C ∈ Sn. Then we say that A∗(y) � C
is almost feasible if for every ε > 0, there is some C ′ ∈ Sn such that

‖C − C ′‖ < ε

and A∗(y) � C ′ is feasible.

Notice that feasibility implies almost feasibility.

Theorem 2.2.1
Let A : Sn → Rm be linear and C ∈ Sn. Then

(i) If ∃D ∈ Sn
+ such that A(D) = 0 with Tr(CD) < 0, then the system A∗(y) � C

is not feasible.
(ii) If @D ∈ Sn

+ such that A(D) = 0 with Tr(CD) < 0, then A∗(y) � 0 is almost
feasible.
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Proof
(i): The proof is similar to weak duality. If there is a feasible ȳ,

0 ≤ 〈C,D〉 − 〈A∗(ȳ), D〉
= 〈C,D〉 − ȳTA(D)

= 〈C,D〉
< 0.

This is a contradiction.

(ii): We set up an SDP and apply strong duality. Consider

sup η (D1)

A∗(y) + ηI � C

η ≤ 0

inf〈C,X〉 (P1)

A(X) = 0

Tr(X) ≤ 1

X � 0.

The point (ȳ, η) : +(0,−‖C‖2 − 1) is a Slater point by assumption and X̄ = 0 is primal
feasible. Thus the strong duality theorem applies.

If there is no such D � 0 such that A(D) = 0 and Tr(CD) < 0, then the optimal objective
value of (P1) is 0. This is also the optimal objective value of (D1) and there is a sequence
of dual feasible solutions approaching 0.

A∗(y(k)) + ηkI � C, ηk → 0−.

By definition, A∗(y) � C is almost feasible.

Theorem 2.2.2
There exists D ∈ Sn

+ such that A(D) = 0 with Tr(CD) < 0, if and only if A∗(y) � 0
is NOT almost feasible.

Proof
( ⇐= ) Previous theorem.
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( =⇒ ) Suppose there exists suchD. We may assume Tr(CD) = −1 by scaling if necessary.
Then for every C ′ ∈ Sn such that

‖C − C ′‖F <
1

‖D‖F
,

A∗(y) � C ′ is infeasible. Indeed, if 0 � C ′ − A∗(y), then 〈D,A∗(y)〉 ≤ Tr(C ′D) by our
characterization of positive semidefinite matrices.

0 = 〈y, 0〉
= 〈y,A(D)〉
= 〈A∗(y), D〉
≤ Tr(CD)− Tr[(C − C ′)D]

≤ −1 + ‖C − C ′‖F · ‖D‖F Cauchy-Schwartz
< 0.

2.3 Slater Condition, Facial Reduction, & Extended
Langrange-Slater Dual

Another way to deal with duality gaps, dual attainment issues, as well as infeasibility and
unboundedness theorems is to change the definition of the dual.

Facial Reduction

Definition 2.3.1 (Face)
Let k ⊆ Rd be a closed convex cone. A convex cone G ⊆ K is a face of K if for every
u, v ∈ K such that u+ v ∈ G, we have u ∈ G, v ∈ G.

A face G of K is exposed, if there is some a ∈ Rd \ {0} such that

G = {x ∈ K : 〈a, x〉 = 0}

and
K ⊆ {x ∈ Rd : 〈a, x〉 ≤ 0}.

So G is the intersection of K with one of its supporting hyperplanes.

Note that a ∈ −K∗.

A face G of K is proper if {0} ( G ( K.
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Theorem 2.3.1
(a) Every face ∅ 6= G ⊆ Sn

+ is characterized by a unique subspace L ⊆ Rn such
that G = {X ∈ Sn

+ : Null(X) ⊇ L} and relint(G) = {X ∈ Sn
+ : Null(X) = L}.

(b) Every proper face of Sn
+ is exposed.

(c) Sn
+ is projectionally exposed. That is, every nonempty face G can be expressed

as G = (I − Q)Sn
+(I − Q), where Q ∈ Sn is the projection onto the unique

subspace L defining G.

The above theorem implies that every proper face of Sn
+ is linearly isomorphic to Sk

+ for some
k ∈ [n− 1]. In other words G is a proper face of Sn

+ if and only if there is some k ∈ [n− 1]
and Q ∈ Rn×n orthogonal such that

G =

{
Q

[
X 0
0 0

]
QT : X ∈ Sk

+

}
.

Given (A, b, c), suppose we find the inclusion-wise minimal face Ḡ ⊆ Sn
+ which contains the

feasible region of (P). Our problem is equivalent to

inf Tr(CX) (P̃ )

A(X) = b

X ∈ Ḡ

Let Q ∈ Rn×n be orthogonal such that

Ḡ =

{
Q

[
X̄ 0
0 0

]
QT : X̄ ∈ Sk

+

}
.

By composing C,A with the linear function Q(·)QT to obtain C̄, Ā, we see that (P̃ ) is
equivalent to

inf Tr
(
C̄X̄

)
(P̄ )

Ā(X̄) = b

X̄ ∈ Sk
+

Now since Ḡ was inclusion-wise minimal, the maximal rank of a feasible solution must be
precisely k, or else we can find a smaller face which contains the feasible region. But then
(P̄ ) necessarily satisfies the Slater condition!

Unfortunately, finding the minimal face of Sn
+ containing the feasible region of (P) is no easier

than finding a solution to (P) in the worst case. However, the following result is useful.
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Lemma 2.3.2
Let A : Sn → Rm be linear and b ∈ Rm. Then exactly one of the following two
systems has a solution.

(I) A(X) = b,X ∈ Sn
++

(II) A∗(y) ∈ Sn
+ \ {0}, bTy = 0

Thus either (P) has a Slater point, or we can find some ȳ for system (II) such that

∀X,A(X) = b =⇒ 〈X,A∗(ȳ)〉 = 〈A(X), ȳ〉 = bT ȳ = 0.

This is a supporting hyperplane of Sn
+ containing the feasible region of (P). Note that X ∈

Sn
+, 〈X,A∗(ȳ)〉 = 0 defines a proper face of Sn

+. Thus we can repeatedly apply this lemma,
and create SDPs over Sk

+, k < n at most n times to arrive at some SDP with a Slater point.

This process is sometimes called facial reduction.

Extended Lagrange-Slater Dual

Suppose we wish to solve the SDP

sup bTy (D)

A∗(y) � C

Define its Extended Lagrange-Slater Dual as

inf Tr(C(U +W )) (ELSD)
A(U +W ) = b

W ∈ Wn

U � 0

Here Wn ⊆ Sn is a linear subspace defined using A, C through n(m + 1) linear equations
and n PSD matrix inequalities on 2n× 2n matrices.

Theorem 2.3.3
If (D) has a finite optimal value, then the optimal values of (D) and (ELSD) are the
same and (ELSD) attains its optimal value.
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Theorem 2.3.4
Let A : Sn → Rm be linear and C ∈ Sn. Then exactly one of the following systems
has a solution.

(I) A∗(y) � C

(II) A(U +W ) = 0,W ∈ Wn, U � 0,Tr(C(U +W )) = −1

Theorem 2.3.5
In the real number computation model, the problem of deciding SDP feasibility is in
NP and co-NP.

The following are open problems:

1. Does there exist a more efficient representation of Wn?
2. Is SDP feasibility in NP in the Turing machine model?

2.4 Slater Condition in SDP Relaxations

We usually employ SDPs as a relaxation of a much harder problem of optimizing cTx over
a difficult nonconvex set F .

Definition 2.4.1 (Homogeneous Equality Form)
Suppose there is some A : Sn+1 → Rm linear such that

F =

{
x ∈ Rn : A

[
1 xT

x xxT

]
= 0

}
.

Then F can be represented in Homogeneous Equality Form.

Which sets F can be represented in Homogeneous Equality Form?

Proposition 2.4.1
Every system of finitely many multivariate polynomial equations and inequalities can
be put into Homogeneous Equality Form.

We omit the proof but the ideas are elementary. For instance, a quadratic inequality given
by Q ∈ Sn, q ∈ Rn, γ ∈ R is

xTQx+ 2qTx+ γ ≤ 0.
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We can introduce the slack variable s̃2. So that the above happens if and only if

Tr

γ qT 0
q Q 0
0 0T 1

1 xT s̃
x xxT s̃x
s̃ s̃xT s̃2

 = 0.

Note that the lower diagonal block of the RHS matrix is hhT where h = (1, x, s̃)T .

We can also reduce higher degree polynomials, say x4 = b as

x2 − x′ = 0, (x′)2 = b.

An SDP relaxation is very natural.

inf Tr

[
0 1

2
cT

1
2
c 0

] [
1 xT

x X

]
(P̂ )

A
[
1 xT

x X

]
= 0[

1 xT

x X

]
� 0

Theorem 2.4.2
If convF is full dimensional, then the Slater condition holds for the SDP relaxation
above.

Proof
Suppose convF is full-dimensional. By definition, there are v(i) ∈ F, i ∈ [n + 1] affinely
independent vectors. In other words,

h(i) :=

[
1
v(i)

]
, i ∈ [n+ 1]

are linearly independent.

Consider

X̄ :=
1

n+ 1

n+1∑
i=1

h(i)(h(i))T .

By the characterization of positive definite matrices, X̄ ∈ Sn
++. Moreover,

X̄ ∈ conv

{[
1 xT

x xxT

]
∈ Sn+1 : x ∈ F

}
⊆ P̂ .

Thus X̄ is a Slater point for the SDP relaxation.

28



©Fel
ix

Zh
ou

In the case where dim conv(F ) = d ≤ n− 1, we can determine the affine hull of F . Thus we
find L ∈ Rd×n and ` ∈ Rn with rankL = d and

x ∈ F =⇒ ∃y ∈ Rd, x = `+ LTy.

Define the linear transformation L : Sn+1 → Sd+1 given by

L(Z) :=
[
1 `T

0 L

]
Z

[
1 0T

` LT

]
.

Its adjoint is L∗ : Sd+1 → Sn+1 given by

L∗(W ) =

[
1 0T

` LT

]
W

[
1 `T

0 L

]
.

Note that for x ∈ F , there is some y such that x = LTy + ` and

L∗
[
1 yT

y yyT

]
=

[
1 xT

x xxT

]
.

Furthermore, define Ā : Sd+1 → Rm by

Ā(W ) := A(L∗(W )).

We can then express

F =

{
`+ LTy : Ā

[
1 yT

y yyT

]
= 0, y ∈ Rd

}
which leads to the SDP relaxation

P̂L :=

{[
1 yT

y Y

]
∈ Sd+1 : Ā

[
1 yT

y Y

]
= 0,

[
1 yT

y Y

]
� 0

}
.

Theorem 2.4.3
P̂L ∩ Sd+1

++ 6= ∅.

Thus we can always guarantee the Slater condition holds in a wide clas of SDP relaxations,
provided we can identity the affine hull of F . Moreover, in many cases we decrease the size
of the SDP.
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Solving SDPs

3.1 Ellipsoids & the Ellipsoid Method

Definition 3.1.1 (Ellipsoid)
E ⊆ Rd is an ellipsoid if there is some c ∈ Rd (center) and A ∈ Sd

++ (shape & size)
such that

E = {x ∈ Rd : (x− c)TA−1(x− c) ≤ 1} =: E(A, c).

Note that

E(A, c) =

{
x ∈ Rd :

∥∥∥A− 1
2 (x− c)

∥∥∥2
2
≤ 1

}
=
{
A

1
2 z + c : ‖z‖22 ≤ 1, z ∈ Rd

}
= c+ A

1
2Bd(0, 1).

Since ellipsoids are simply affine images of the unit ball, many of their attributes are easy
to handle. For instance,

vol(E(A, c)) =
√
detA · vol(Bd(0, 1)).

The longest and shortest axis of E(A, c) each correpond to an eigenvector of A determining
λ1(A), λd(A), respectively.
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Theorem 3.1.1 (Löwner-John)
For every compact convex set in Rd with nonempty interior, there exists a unique min-
imal volume ellipsoid containing that set. Moreover, shrinking that ellipsoid around
its center by a factor of at most d gives an ellipsoid contained in the convex set.

The Ellipsoid method does not require an explicit description of the feasible region. It suffices
to have a weak separation oracle.

Definition 3.1.2 (δ-Relaxation)
Let G ⊆ Rd be convex. Given δ > 0, the δ-relaxation of G is

relax(G, δ) :=
{
u ∈ Rd : ∃x ∈ G, ‖u− x‖2 ≤ δ

}
.

Note that relax(G, δ) is convex by definition.

Definition 3.1.3 (Weak Separation Oracle)
This oracle takes as input x̄ ∈ Qd and δ ∈ Q++ and outputs either x̄ ∈ relax(G, δ) or
a ∈ Qd such that ‖a‖∞ = 1 and

∀x ∈ relax(G, δ), 〈a, x̄〉 ≥ 〈a, x〉 − δ.

3.1.1 Feasibility Algorithm

Our input is A ∈ Sd
++, c ∈ Rd such that E(A, c) ⊇ G and ε ∈ Q++.

1) Using the separation oracle, check if c ∈ G. If c ∈, STOP. Otherwise, retrieve a ∈
Qd, ‖a‖∞ = 1 separating c from G.

2) If vol(E(A, c)) < ε, STOP. Else consider Ẽ := {x ∈ E(A, c) : 〈a, x〉 ≤ 〈a, c〉}.
3) Compute the minimum volume ellipsoid E(A, c) (update A, c) containing Ẽ and goto

the first step.
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Lemma 3.1.2
Let A+ ∈ Sd

++, c+ ∈ Rd such that E(A+, c+) is the minimum volume ellipsoid con-
taining

Ẽ := {x ∈ E(A, c) : 〈a, x〉 ≤ 〈a, c〉}.

Then

c+ = c− 1

(d+ 1)
√
aTAa

Aa

A+ =
d2

d2 − 1

[
A− 2

(d+ 1)aTAa
AaaTA

]
.

Moreover,

ln

(
vol(E(A+, c+))

vol(E(A, c))

)
≤ − 1

2d
.

Proof
Let G ⊆ Rd be convex such that we have access to a weak separation oracle for G, and
G ⊆ Bd(0, R) for a given R ∈ Q++.

Then for any ε ∈ Q++,

O

(
d2 ln

(
R

ε

))
iterations of the feasibility ellipsoid method suffices to compute either x̄ ∈ relax(G, ε) or
prove that vol(G) ≤ ε.

3.1.2 Optimization Algorithm

We can extend the feasibility algorithm to handle convex optimization problem of the form

inf f(x)

x ∈ G

where f : Rd → R is convex.

A subgradient oracle for f takes as input x̄ ∈ Rd and returns f(x̄) as well as

h ∈ ∂f(x) := {h ∈ Rd : ∀x ∈ Rd, f(x) ≥ f(x̄) + hT (x− x̄)}.
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Theorem 3.1.3
Let G ⊆ Rn be convex and f : Rd → R a convex function such that

(i) There is a weak separation oracle for G.
(ii) There is a subgradient oracle for f .
(iii) r, R ∈ Q++ are given such that Bd(x̃, r) ⊆ G ⊆ Bd(0, R) for some x̃ ∈ Rd.

Then after
O

(
d2
[
ln

(
R

r

)
+ ln

(µ0

ε

)])
iterations of an ellipsoid method, we obtain x̄ ∈ G such that

f(x̄) ≤ inf
x∈G

f(x) + ε.

Here
µ0 := ε+ sup

x∈Bd(0,R)

f(x)− inf
x∈bd(0,R)

f(x).

This algorithm applies to all convex optimization problems, including SDPs! Suppose (P),
(D) have Slater points X̄, (ȳ, S̄) respectively. Then we can replace (P) by (P̃ ).

inf〈C,X〉 (P̃ )

A(X) = b

〈S̄, X〉 ≤ 2〈X̄, S̄〉
X � 0

Theorem 3.1.4
(a) (P ), (P̃ ) have optimal solutions.

(b) The optimal solution sets of (P ), (P̃ ) are the same.
(c) Let G ⊆ Sn

+ denote the feasible solution set for (P̃ ). Then G is compact and
convex. Moreover, if BG denotes the Euclidean ball in aff(G),

bG(X̄, λn(X̄)) ⊆ G ⊆ BG

(
0,

2〈X̄, S̄〉
λn(S̄)

)
.

(d) maxX∈G〈C,X〉 −minX∈G〈C,X〉 ≤ 4n‖C‖2〈X̄,S̄〉
λn(S̄)

.

This theorem allows us to use the ellipsoid method to solve SDPs.
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3.2 Primal-Dual Interior-Point Methods

Consider algorithms which start with X(o) � 0, y(0) ∈ R,S(0) � 0 and generate{
(X(k), y(k), S(k)) : k ≥ 1

}
such that X(k) � 0, S(k) � 0 for each k.

Assuming (P), (D) have optimal solutions with the same optimal values, we wish to maintain
positive definitess and

‖A(X(k))− b‖ → 0 primal feasibility
‖A∗(y(k)) + S(k) − C‖ → 0 dual feasibility

〈X(k), X(k)〉 → 0 complementary slackness

For simplicity of presentation, we will assume A(X(0)) = b,A∗(y(0)) + S(0) = C and that A
is surjective. Define f : Sn → R ∪ {∞} by

f(X) :=

{
− ln det(X) X ∈ Sn

++

∞, else

Note that for any sequence of positive definite matrices converging to the boundary of the
SDP cone, f(X(k)) → ∞.

Proposition 3.2.1
f above is strictly convex on Sn

++. Moreover, for any X ∈ Sn
++, H ∈ Sn,

1. 〈f ′(X), H〉 = −Tr(X−1H)

2. 〈f ′′(X)H,H〉 = Tr(X−1HX−1H) = Tr
(
X− 1

2HX− 1
2

)2
3. f ′′′(X)[H,H,H] = −2Tr

(
X− 1

2HX− 1
2

)3

3.2.1 Central Path

For each µ > 0, define

inf
1

µ
〈C,X〉+ f(x) (Pµ)

A(X) = b

Necessary and sufficient optimality conditions for (Pµ) under the Slater point assumption
for (P) and (D) are
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(i) A(X) = b

(ii) X � 0

(iii) −A∗(y)−X−1 + 1
µ
C = 0

If we let µy → y and S := µX−1. Then these conditions translate to

(i) A(X) = b

(ii) X � 0

(iii) A∗(y) + S = C

(iv) S = µX−1(� 0)

For each µ > 0, the unique solution (X(µ), y(µ), S(µ)) defines the primal-dual central path:
{X(µ), y(µ), X(µ) ∈ Sn ⊕ Rm ⊕ Sn : µ > 0}.

Theorem 3.2.2
Suppose (P), (D) have Slater points and A is surjective. Then for every µ > 0, (Pµ)
has a unique optimal solution X(µ). Moreover, the following system

A(X) = b

X � 0

A∗(y) + S = C

S = µX−1

has a unique solution (X(µ), y(µ), S(µ)).

The system above also characterizes the unique optimal solution of

sup
1

µ
bTy + f(S) (Dµ)

A∗(y) + S = C

Consider the solutions (X(µ), y(µ), S(µ)) for µ > 0 and focus on the condition
S(µ) = µ[X(µ)]−1.

This implies that
〈X(µ), S(µ)〉 = 〈X(µ), µ[X(µ)]−1〉

= µTr(I)

= nµ.

So as µ→ 0, the duality gap approaches 0.
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3.2.2 Path-Following Algorithms

While the central path is theoretically elegant, it is not efficient to follow it exactly. This
class of algorithms follow the central path approximately as µ→ 0.

To derive these algorithms, one can use Newton’s Method and its variants locally on the
system of nonlinear equations.

A(X) = b

A∗(y) + S = C

S = µX−1

or

A(X) = b

A∗(y) + S = C

X = µS−1

or some equivalent systems. We enforce X(k), S(k) � 0 by starting a PSD point and careful
step size selection rules.

Given a pair of Slater points X,S for (P) and (D) respectively, we can easily measure how
close (X,S) is to the central path. One example would be to take µ(X,S) := Tr(XS)

n
and

consider
‖S − µ(X,S)X−1‖.

Another more direct way relating to f is

ψ(X,S) := n ln

(
Tr(XS)

n

)
+ f(X) + f(S).

Theorem 3.2.3
For every (X,S) ∈ Sn

++⊕Sn
++, ψ(X,S) ≥ 0. Moreover, the equality holds if and only

if
S = µX−1, µ =

〈X,S〉
n

.

Let λ := λ(S
1
2XS

1
2 ). Then

ψ(X,S) = n ln

Tr
(
S

1
2XS

1
2

)
n

− ln det
(
S

1
2XS

1
2

)
.

This is precisely the ratio between the arithmetic mean and geometric mean of entries of λ.
Hence it is always nonnegative.
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3.2.3 Primal-Dual Potential Function

We use two attributes for judging how good a pair of Slater points (X,S) is:

(i) We want a small duality gap 〈X,S〉.
(ii) We want to be close to the central path (small ψ(X,S))

For ρ > 0, define
φρ(X,S) := ρ ln〈X,S〉+ ψ(X,S)

where ρ > 0.

Theorem 3.2.4
Suppose X(0), S(0) ∈ Sn

++ are Slater points for (P), (D) respectively and they satisfy

ψ(X(0), S(0)) ≤
√
n ln

(
1

ε

)
for some ε ∈ (0, 1).
Generate a sequence {(X(k), S(k))} of feasible solutions for (P), (D) respectively such
that

φ√
n(X

(k), S(k)) ≤ φ√
n(X

(k−1), S(k−1))− δ

for every k ≥ 1, where δ > 0 is an absolute constant. Then for some k̄ =
O
(√

n ln
(
1
ε

))
, we have

〈X(k), S(k)〉 ≤ ε〈X(0), X(0)〉

for all k ≥ k̄.

We will design an algorithm with the property required in the previous theorem as well as
primam-dual symmetry and scale-invariance.

Given the current iteration (X(k), S(k)), we will find a pair of search directions DX , DS such
that for all α ≥ 0 (step size), (X(k) + αDX) and (S(k) + αDS) satisfy

∃y ∈ Rm,A(X) = b,A∗(y) + S = C ⇐⇒ ∃dy ∈ Rm,A(DX) = 0,A∗(dy) +DS = 0.

To achieve primal-dual symmetry and scale-invarience, for every pair X,S ∈ Sn
++, we find

some T : Sn → Sn such that

(i) T ∈ Aut(Sn
+)

(ii) T (S) = T−1(X) =: V

(iii) T (X−1) = T−1(S−1) = V −1
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Then, we transform the X-space via T−1 and the S-space via T . (X,S) is mapped to (V, V ).

Ā(·) := A(T (·))
C̄ := T (C)

D̄X := T−1(DX)

D̄S := T (DS)

Thus (P), (D) become

inf〈C̄,X〉 (P̄ )

Ā(X) = b

X ∈ T−1(Sn
+) = Sn

+

sup bTy (D̄)

Ā∗(y) + S = C̄

S ∈ T (Sn
+) = Sn

+

Theorem 3.2.5
For every pair of X,S ∈ Sn

++, there is some T ∈ Aut(Sn
+) such that

(i) T (S) = T−1(X) =: V

(ii) T (X−1) = T−1(S−1) = V −1

Proof
We find W ∈ Sn

++ such that
T (Z) := WZW

satisfies the desired condition. Note that given such a W , for every Z ∈ Sn, T (Z) ∈ Sn

and Z ∈ Sn
+ ⇐⇒ T (Z) ∈ Sn

+. Hence T ∈ Aut(Sn
+.

For our choice of T , the equation T (S) = T−1(X) is

WSW = W−1XW−1 ⇐⇒ W 2SW 2 = X

⇐⇒ S
1
2W 2SW 2S

1
2 = S

1
2XS

1
2

⇐⇒ (S
1
2W 2S

1
2 )2 = S

1
2XS

1
2

⇐⇒ S
1
2W 2S

1
2 = (S

1
2XS

1
2 )

1
2

⇐⇒ W 2 = S− 1
2 (S

1
2XS

1
2 )

1
2S− 1

2 .
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Moreover, we have W ∈ Sn
++ such that

WSW = W−1XW−1 =: V

⇐⇒ W−1S−1W−1 = WX−1W = V −1

⇐⇒ T−1(S−1) = T (X−1).

Observe that in the proof about T ∈ Aut(Sn
+) is self adjoint, ie T = T ∗.

3.2.4 Search Direction

Recall that we want a small duality gap as well as being close to the central path, ie small
ψ(X,S) = n ln(Tr(XS)/n) + f(x) + f(S).

Let DS, DX ∈ Sn denote the search directions. We define the family of “next” solutions

X(α) := X + αDX

S(α) := S + αDS.

Recall that we require

∃dy ∈ Rm,A(DX) = 0,A∗(dy) +DS = 0.

Thus

〈X(α), S(α)〉 = 〈X,S〉+ α [〈X,DS〉+ 〈DX , S〉] + α2〈DX , DS〉
= 〈X,S〉+ α

[
〈T−1(X), T (DS)〉+ 〈T−1(DX), T (S)〉

]
DX ∈ kerA, DS ∈ ImA∗

= 〈X,S〉+ α〈V, D̄X ,+D̄S〉.

It is clear the biggest decrease is by taking D̄X + D̄S = −V . Thus D̄X is the orthogonal
projection of −V onto ker(Ā) and D̄S is the orthogonal projection of −V onto Im(Ā).

It remains to control the distance to the central path.

Lemma 3.2.6
Let X ∈ Sn

++ and D ∈ Sn such that

‖D‖X := 〈D,X−1DX−1〉
1
2 ≤ 1.

Then

f(X) + 〈f ′(X), D〉 ≤ f(X +D) ≤ f(X) + 〈f ′(X), D〉+ ‖D‖2X
2(1− ‖D‖X)2

.
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Proof
Convexity as well as Taylor’s theorem.

We can understand the condition of the lemma as

1 ≥ 〈D,X−1DX−1〉
1
2

=

[
Tr
(
X− 1

2DX− 1
2

)2] 1
2

=
∥∥∥X− 1

2DX− 1
2

∥∥∥
F

≥ λ1

(
X− 1

2DX− 1
2

)
.

By using the fact X 1
2 ·X 1

2 ∈ Aut(Sn
+), this is equivalent to

−I � X− 1
2DX− 1

2 � I ⇐⇒ X ±D � 0.

Focusing on the first-order estimate from the previous lemma,

〈f ′(X), DX〉+ 〈f ′(S), DS〉 = 〈−X−1, DX〉+ 〈−S−1, DS〉 previous proposition
= −〈T (X−1), T−1(DX)〉 − 〈T−1(S−1), T (DS)〉
= −〈V −1, D̄X + D̄S〉.

This suggests setting
D̄X + D̄S = κ1V

−1 − κ2V

for some κ1, κ2 > 0.

Setting κ1 := 1 and κ2 := n+
√
n

〈X,S〉 with a suitable choice for step size such that α := λn(V )
8

yields that
φ√

n(X(α), X(α))− φ√
n(X,S) < − 1

12
which is an absolute constant. Take

Ũ := V −1 − n+
√
n

〈X,S〉
V 6= 0

U :=
Ũ

‖Ũ‖F
.

3.2.5 The Algorithm

We assume we are given inputs X(0), S(0) ∈ Sn
++ and ε ∈ (0, 1) such that X(0), S(0) are feasible

in (P), (D) respectively. Moreover, we assume that ψ(X(0), S(0)) ≤
√
n ln

(
1
ε

)
.
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Set k := 0. While 〈X(k), S(k)〉 > ε〈X(0), S(0)〉:

1) W 2 := (S(k))−
1
2

[
(S(k))

1
2X(k)(S(k))

1
2

] 1
2
(S(k))

1
2

2) Ā := A(W ·W )

3) V := WS(k)W

4) Ũ := V −1 − n+
√
n

〈X(k),S(k)〉V

5) U := Ũ
‖Ũ‖F

6) Solve the linear system of equations

Ā(D̄X) = 0

Ā∗(dy) + D̄S = 0

D̄X + D̄S = U

7) Compute

ᾱ := argmin
{
φ√

n(X(α), S(α)) : α > 0
}

X(k+1) := X(k) + ᾱWD̄XW

S(k+1) := S(k) + ᾱW−1D̄SW
−1

k := k + 1

Theorem 3.2.7
The above algorithm terminates in at most

24
√
n ln

(
1

ε

)
iterations with X(k), S(k) feasible in (P), (D) respectively satisfying

〈X(k), S(k)〉 ≤ ε〈X(0), S(0)〉.
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3.2.6 Initial Solution

How can we obtain initial Slater points? Introduce an artificial variable ξ ≥ 0 and construct
the auxiliary SDP

inf ξ (Paux)

A(X) + ξ(b−A(I)) = b

〈I,X〉 ≤M large constant
ξ ≥ 0

X ≥ 0

Then (X(0), ξ0) := (I, 1) is Slater point for (Paux).

The dual is

sup bTy +Mη (Daux)

A∗(y) + ηI + S = 0

bTy − Tr(A∗(y)) ≤ 1

η ≤ 0

S � 0

Notice that (y(0), S(0), η0) := (0, I,−1) is a Slater point for the dual auxiliary program.

For this starting pair,

ψ(. . . , . . . ) = (n+ 1) ln

(
M + 1

n+ 2

)
− ln(M − n).

In order to actually find a Slater point, we need to further introduce a small constant γ and
the additional constraint that

X � 0 7→ X � γI.

If the optimal value fo ξ is positive, we can only say that the system

{X ∈ Sn : X � γI ∧ Tr(X) ≤M}

does not contain any feasible solutions of (P). But since we can control γ,M , we simply
increase M , decrease γ, and try again.

3.2.7 Remarks

In the case of LP problems with rational data, we can pick γ ≈ 2−L and M ≈ 2L where
L is the number of bits required to express the data (A, b, c). However, we can construct
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instances of SDP with data containing only 0, 1, 2 where

γ ≈ 22
−L ∨M ≈ 22

L

.

Another computational difficulty is that given a feasible solution of an LP whose objective
value is within 2−2L of the optimum, then EVERY extreme point whose objective is at least
as good as the feasible solution is optimal. Thus we can compute an exact optimal sollution
very efficiently.

However, given a SDP solution, we can compute “in practice” an extreme point solution
whose objective value is at least as good, BUT there may be infinitely many extreme point
solutions of (P) that are strictly better.

Furthermore, SDPs may have a unique optimal solution that is irrational.

Problem 1 (SDP Feasibility)
Given A1, . . . , Am ∈ Sn ∩ Zn×n and b ∈ Zm, does there exist X̄ ∈ Sn

+ such that

〈Ai, X̄〉 = bi

for each i ∈ [m].

It is an open problem whether SDP feasibility lies in P.

In theoretical applications, the ellipsoid method is very powerful. Interior-point algorithms
have better complexity bounds and in applications requiring high accuracy, if we can perform
one iteration in a reasonable time, they are hard to beat.

However, when we cannot even perform a single interation of an interior-point algorithm
(the instance is huge and there is no easily exploitable structure), we resort to first-order
algorithms (not ellipsoid method).
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Approximation Algorithms Based on
SDP

4.1 Maximum Cut

Problem 2
Given an undirected graph G = (V,E) and w ∈ RE

+, find U ⊆ V maximizing∑
ij∈δ(U)

wij.

4.1.1 Nonconvex Optimization Formulation

Let n := |V |. We represent each cut by a vector u ∈ {−1, 1}n. such that ui = 1 if and only
if i ∈ U . Also, extend w to be 0 on all non edge pairs i, j ∈ V . Then the problem is

max
1

4

∑
i∈V

∑
j∈V

wij(1− uiuj) (P )

u ∈ {−1, 1}n

Let W ∈ Sn be such that Wij = wij. Put ē as the all-ones vector.
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An equivalent nonconvex formulation is the following:

max
1

4
〈W, ēēT 〉 − 1

4
〈W,X〉 (P )

diag(X) = ē

X � 0

rankX = 1

Here we identity X ⇐⇒ uuT .

4.1.2 SDP Relaxation

We simply drop the rank 1 constraint.

max−1

4
Tr(WX) +

1

4
ēTWē (SDP)

diag(X) = ē

X � 0

min ēTy +
1

4
ēTWē (SDD)

Diag(y)− S = −1

4
W

S � 0

Now,

X̄ := I

ȳ :=

(
1

4
ēTWē+ 1

)
ē

yield Slater points for (SDP) and (SDD).

4.1.3 Goemans-Williamson Algorithm

If we find an exact optimal solution X̄ usch that rank X̄ = 1, then we are done. Otherwise,
let

X̄ = BBT

BT =:
[
v(1) . . . v(n)

]
v(i) ∈ Rd

d ≤ n
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Thus X̂ij = 〈v(i), v(j)〉 for all i, j ∈ [n]. Since each diagonal entry is 1,

1 = X̂ii = 〈v(i), v(i)〉 = ‖v(i)‖2

for each i ∈ [n].

Random Hyperplane Technique

We generate r ∈ Rd on the unit hypersphere randomly. Then, set

U := {i ∈ V : rTv(i) ≥ 0}

to be a cut in G.

Lemma 4.1.1
Let v(i) and r be as above. Then

P
(
sign(rTv(i)) 6= sign(rTv(j))

)
=
θ

π
,

where
θ := arccos〈v(i), v(j)〉.

For v ∈ Rd, we write sign(v) ∈ {−1, 1}d to denote the vector where

[sign(v)]j :=

{
1, vj ≥ 0

−1, vj < 0

Lemma 4.1.2
For every u ∈ [−1, 1], we have

1

π
arccos(u) ≥ ρ

2
(1− u)

1− 1

π
arccos(u) ≥ ρ

2
(1 + u)

where ρ := 0.87856.
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Theorem 4.1.3
The expected weight of the cut generated by the Random Hyperplane Technique
based on X̂ is at least

ρ

4

∑
i,j∈V

wij(1− 〈v(i), v(j)〉) = ρOPT(P ).

Proof
Let X̂ ∈ Sn

+ be an optimal solution of (SDP). Then

E[RHT-Cut] =
∑
i,j

wij

arccos
(
〈v(i), v(j)〉

)
2π

previous lemma

≥ ρ

4

∑
i,j

wij(1− 〈v(i), v(j)〉) previous lemma

= ρ ·OPT(SDP).

Theorem 4.1.4
Let G = (V,E) with w ∈ QE

+ be given. Then a cut of value at least ρ · OPT can be
generated in polynomial time.

Note that we do not need a exact optimal solution of (SDP) as an approximate optimal
solution X̃ suffices. Moreover, the algorithm can be “derandomized”. This approximation
ratio is the best possible unless the “Unique Games Conjecture” is false.

4.2 Maximum Satisfiability

Problem 3 (Satisfiability)
Given a boolean formual in CNF, decide whether there is an assignment of values to
the variables so that the formula evaluates to “True”

If the given formula is C1 ∧ · · · ∧ Cm, and consider the following integer programming for-
mulation. ∑

j:xj∈Ci

xj +
∑

j:x̄i∈Ci

(1− xj) ≥ 1 ∀i ∈ [m]

x ∈ {0, 1}n
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Problem 4 (MaxSat)
Given a boolean formula C1 ∧ · · · ∧ Cm and weights on the clauses wi ∈ R+, find an
assignment of values to the variables which maximizes the total weight of the satisfied
clauses.

We can consider either k-SAT or Max k-SAT, where every clause has at most k literals.

Theorem 4.2.1
For every k ≥ 3, k-SAT is NP-complete.
For every k ≥ 2, Max k-SAT is NP-hard.

Max 2-SAT is closely related to MaxCut. Let G be an instance of MaxCut where every edge
has weight one. Make a variable xv for all v ∈ V . Create a clause (xu ∨ xv) for each uv ∈ E
with weight wuv = 2. Finally, make a clause (x̄v) for every v ∈ V with weight wv := |δ(v)|.
Then

OPT(Max 2-SAT) = OPT(MaxCut) + 2|E|.

Approximation results for MaxCut extend to Max 2-SAT. Can we extend them to more
general nonconvex optimization problem?

4.3 Quadratic Optimization over Sign Vectors

Let W ∈ Sn. Consider the following quadratic programs.

f̄(W ) := max
x∈{−1,1}n

xTWx =maxTr(WX)

diag(X) = ē

X � 0

rankX = 1

f(W ) := min
x∈{−1,1}n

xTWx =minTr(WX)

diag(X) = ē

X � 0

rank(X) = 1
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Their SDP relaxations are

F̄ (W ) :=maxTr(WX)

diag(X) = ē

X � 0

F (W ) :=minTr(WX)

diag(X) = ē

X � 0

Moreover, the SDP duals are

min ēTy

Diag(y) � W

max ēTy

Diag(y) � w

Note that both the primal and dual programs have Slater points as constructed in the
MaxCut relaxation.

Proposition 4.3.1
For every W ∈ Sn, we have

(i) f(W ) = −f̄(−W )

(ii) F (W ) = −F̄ (−W )

(iii) F (W ) ≤ f(W ) ≤ f̄(W ) ≤ F̄ (W )

We can apply the random hyperplane technique here!
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Lemma 4.3.2
Let W ∈ Sn. Then f̄(W ) is equal to the two optimization problems

max ξTWξ (P̂ )

ξ = sign(Br)

‖BT ei‖2 = 1 ∀i
‖r‖2 = 1

B ∈ Rn×n

r ∈ Rn

and

maxEr[ξ
TWξ] (P̃ )

ξ = sign(Br)

‖BT ei‖2 = 1 ∀i
‖r‖2 = 1

B ∈ Rn×n

r ∈ Rn

Proof
It is clear that OPT(P̂ ) ≥ OPT(P̃ ). Moreover, the constraints from (P̂ ) ensure that ξ is
always a sign vector. Hence it must be that f̄(W ) ≥ OPT(P̂ ).

f̄(W ) ≤ OPT(P̄ ): Now suppose that f̄(W ) = w̄TWx̄. Pick any r ∈ Rn with ‖r‖2 = 1.
Define B ∈ Rn×m by

BT ei =

{
r, x̄i = 1

−r, x̄i = −1

Then ξ = x̄.

f̄(W ) ≤ OPT(P̃ ): Again, suppose that f̄(W ) = w̄TWx̄. Define B ∈ Rn×n by

BT ei :=

{
1√
n
x̄, x̄i = 1

− 1√
n
x̄, x̄i = −1

Then

Er

[
sign(rTBT ei) sign(r

TBT ej)
]
=

{
1, x̄i = x̄j

−1, x̄i 6= x̄j

= x̄ix̄j ∀i, j
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Notice that we used the fact that r ∈ B(0, 1) restricted to being orthogonal to both
BT ei, B

TEj has zero (n− 1)-th dimensional measure.

But then

Er[ξ
TWξ] =

∑
i,j

WijEr[ξiξj]

=
∑
i,j

Wijx̄ix̄j

= x̄TWx̄

= f̄(W ).

Lemma 4.3.3
For every W ∈ Sn, f̄(W ) is equal to

max
2

π
〈W, arcsin(X)〉 (P ′)

diag(X) = ē

X � 0

Assuming this lemma, we can make the difficult rank(X) = 1 constraint and convert it
difficulty into the objective function. So that two following problems are equivalent

maxTr(WX)

diag(X) = ē

X � 0

rankX = 1

max
2

π
Tr(W arcsin(X))

diag(X) = ē

X � 0

Proof
Since X � 0, diag(X) = ē implies |Xij| ≤ 1. So the problem is well-defined. The feasible
region is nonempty and compact, with the objective function being continuous over the
feasible region. Hence the maximum is finite and attained.
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f̄(W ) ≤ OPT(P ′): Given W , apply the previous lemma to see that

f̄(W ) = max
{
Er[ξ

TWξ] : ξ = sign(Br) ∧ ∀i, ‖BT ei‖2 = 1 ∧ ‖r‖2 = 1 ∧B ∈ Rn×n ∧ r ∈ Rn
}
.

Let B̂ ∈ Rn×n be an optimal solution of this last problem and write

B̂T =:
[
v(1) . . . v(n)

]
.

Then

Er

[
sign(rT B̂T ei) sign(r

T B̂T ej)
]

= P
(
sign(rT B̂T ei) = sign(rT B̂T ej)

)
− P

(
sign(rT B̂T ei)i 6= sign(rT B̂T ej)

)
= 1− 2P (sign(rT B̂T ei) 6= sign(rT B̂T ej))

= 1− 2

π
arccos〈v(i), v(j)〉

(Random Hyperplane Method Lemma)

=
2

π
arcsin〈v(i), v(j)〉 ∀i, j

Thus the objective value is precisely

Er

[
sign(B̂r)TW sign(B̂r)

]
=

2

π

〈
W, arcsin

(
B̂B̂T

)〉
.

f̄(W ) ≥ OPT(P ′): Let X ′ ∈ Sn
+ be an optimal solution of

max{Tr(W arcsin(X)) : diag(X) = ē, X � 0}.

Let B′ ∈ Rn×n be such that X ′ = B′B′T . We have

2

π
Tr(W arcsin(X ′)) = Er

[
sign(B′r)TW sign(B′r)

]
.

An application of a previous lemma yields the desired inequality.

Lemma 4.3.4
For every X ∈ Sn

+ such that |Xij| ≤ 1 for each i, j. We have

arcsin(X) � X.

53



©Fel
ix

Zh
ou

Theorem 4.3.5
For every W ∈ Sn

+, f̄(W ) is at least

max
2

π
〈W,X〉

diag(X) = ē

X � 0

Thus for every W ∈ Sn
+,

2

π
F̄ (W ) ≤ f̄(W ) ≤ F̄ (W ).

The last theorem assumes W ∈ Sn
+, which includes MaxCut instances as a special case: TAke

W ∈ SV to be the Laplacian of G with respect to weights w. W is diagonall dominant, hence
by the Gershgorin Disk Theorem, W � 0.

4.3.1 Arbitrary Weights

In SDP relaxations defining F (W ) and F̄ (W ), we have the dual constraints W−Diag(y) � 0
and Diag(y) −W � 0. Moreover, we can make any W ∈ Sn PSD by adding a multiple of
the identity. This motivates changes to f, f̄ , F , F̄ under diagonal perturbations.

Fix y ∈ Rn,

f(W +Diag(y)) = min
x∈{−1,1}n

xTWx+ xT Diag(y)x

= f(W ) + ēTy

f̄(W +Diag(y)) = f̄(W ) + ēTy.

In similar fashion,

F (W +Diag(y)) = min
X�0,diag(X)=ē

Tr(WX) + 〈Diag(y), X〉

= F (W ) + ēTy

F̄ (W +Diag(y)) = F̄ (W ) + ēTy
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Theorem 4.3.6
For every W ∈ Sn, we have

F (W ) ≤ f(W )

≤ 2

π
F (W ) +

(
1− 2

π

)
F̄ (W )

≤
(
1− 2

π

)
F (W ) +

2

π
F̄ (W )

≤ f̄(W )

≤ F̄ (W ).

Proof
Let ȳ ∈ Rn be an optimal solution to the dual of the SDP relaxation determining F̄ (W ):

F̄ (W ) = max{Tr(WX) : diag(X) = ē, X ∈ Sn
+}

= min{ēTy : Diag(y) � W}
= ēT ȳ

such that Diag(ȳ)−W � 0.

We have

F̄ (W )− f(W ) = ēT ȳ + f̄(−W ) previous proposition
= f̄(Diag(ȳ)−W ) observation above
≥ F̄ (Diag(ȳ)−W ) Diag(ȳ)−W � 0

=
2

π

[
ēT ȳ + F̄ (−W )

]
observation above

=
2

π

[
ēT ȳ − F (W )

]
previous proposition

=
2

π

[
F̄ (W )− F (W )

]
strong duality

f(W ) ≤ 2

π
F (W ) +

(
1− 2

π

)
F̄ (W ).

The case for f̄ is identical.

f̄(W ) ≥
(
1− 2

π

)
F (W ) +

2

π
F̄ (W ).
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Corollary 4.3.6.1
For every W ∈ Sn, the value

v :=

(
1− 2

π

)
F (W ) +

2

π
F̄ (W )

satisfies
f̄(W )− v

f̄(W )− f(W )
<

4

7
.

This also allows us to handle linear terms in the objective function. Suppose W ∈ Sn, w ∈ Rn

are given.

max
x∈{−1,1}n

2wTx+ xTWx = max
x∈{−1,1}n,x0∈{−1,1}

2x0w
Tx+ xTWx

= max
(x,x0)∈{−1,1}n+1

[
x0 xT

] [0 wT

w W

] [
x0
x

]
.

4.4 Burer-Monteiro Approach

This is a first-order algorithm which has good practical performance in some large-scale
instances. It involves a simple nonconvex reformulation.

maxTr(WX)

diag(X) = ē

X � 0

is equivalent to the system

maxTr
(
WLLT

)
(P∆)

diag(LLT ) = ē

L ∈ Tn

where Tn is the space of n× n lower triangular matrices.

Note that any L ∈ Tn with no zero rows can be made feasible through scaling. This is because
(LLT )ii = 〈Li, Li〉. Moreover, we can restrict L to Tn,r, the lower triangular matrices that
are n× r for some r < n. This way we can enforce that

rank(LLT ) = rank(L) ≤ r.
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Once we choose r, we can easily construct L(0) ∈ Tn,r such that diag(L(0)(L(0))T ) = ē. Then
in each iteration k, we compute the gradient of the objective function at L(k−1) and project
this gradient so that a linearization of the constraints is satisfied:

diag
[
(L(k−1) + dL)(L

(k−1) + dL)
T
]
= ē

ignoring the quadratic term in dL yields

diag[L(k−1)dTL + dL(L
(k−1))T ] = 0.

This projected gradient determines the search direction dL. Then, choosing a step size α > 0
(ie satisfying Armijo-Goldstein-Wolfe conditions, etc) for the objective function. Then take

L(k) := L(k−1) + αdL.

Again, scale the rows of L(k) so that every row has unit 2-norm.

There are many first-order algorihtms for solving the SDP relaxation of MaxCut problems
as well as general SDPs. These include the bundle methods, multiplicative weights updated
methods, proximal point algorithms, as well as software SDPNAL+.
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Geometric Representation of Graphs
Based on SDP

5.1 Geometric Representation

Let G = (V,E) be an undirected graph.

Definition 5.1.1 (Geometric Representation)
A map u : V → Rd for some d ≥ 0.

A geometric representation u of G is an unit-distance representation of G, if for all ij ∈ E,

‖u(i)− u(j)‖2 = 1.

Theorem 5.1.1
Every graph G = (V,E) admits a unit distance representation in Rn−1 where n := |V |.

Proof
Embed Kn as the vertices of a simplex in Rn−1 where every edge of the simplex is of unit
length.

The geometric representations of graphs have an amazing range of applications.

We can define the dimension of a graph dim(G) := d ∈ Z+ for which G admits a unit distance
representation in Rd.
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Theorem 5.1.2
Deciding whether dimG ≤ 2 is NP-hard.

Consider instead computing a unit distance representation of G which is contained in an
Euclidean ball with smallest possible radius. Let Tb(G) denote the square of this minimum
radius.

Theorem 5.1.3
For every graph G = (V,E), tb(G) is the optimal solution to

min t

Xii ≤ t ∀i ∈ V

Xii +Xjj − 2Xij = 1 ∀ij ∈ E

X ∈ SV
+

First we construct Slater points for both the primal and dual SDP to ensure the optimums
are attained. Given an optimal solution

X̂ = BBT

where B ∈ Rn×k for some k ≤ n− 1, we have

BT =
[
u(1) u(2) . . . u(n)

]
so u(i) ∈ Rk. Then 〈u(i), u(j)〉 = X̂ii. Hence the t is the maximum squared Euclidean norm
of the representation and ‖u(i)− (j)‖2 = X̂ii + X̂jj − 2̂Xij for all ij ∈ E.

The reverse direction is by putting the unit distance representation in BT and considering
X̃ = BBT .

Next, consider applying a unit distance representation of G contained in a hypersphere of
minimum radius. Let th(G) denote the square of this minimum radius.

Theorem 5.1.4
For every graph G = (V,E), th(G) is equal to the optimal value of

min t

diag(X) = tē

Xii +Xjj − 2Xij = 1 ∀ij ∈ E

X ∈ SV
+

Moreover, th(G) = tb(G).
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These SDPs provide EXACT mathematical models for their respective problems. Moreover,
we can use these ideas for other applications.

Corollary 5.1.4.1
For every graph G = (V,E),

tb(G) ≤ th(G) ≤
1

2
− 1

2|V |
<

1

2
.

Proof
For every graph G, every unit distance representation contained in a hypersphere of radius
r is also contained in an Euclidean ball of radius r.

Note that
th(G) ≤ th(Kn).

For every ε > 0 consider

X(ε) :=
1

2
I − εēēT

t(ε) :=
1

2
− ε

[X(ε)]ii = t(ε) ∀i ∈ V

[X(ε)]ii + [X(ε)]jj − 2[X(ε)]ij

=
1

2
− ε+

1

2
− ε+ 2ε

= 1 ∀i 6= j

Moreover, for every h ∈ Rn such that ‖h‖ = 1,

hTX(ε)h =
1

2
‖h‖22 − ε(ēTh)2

≥ 1

2
− nε

≥ 0 ∀ε ≤ 1

2n

Therefore
[
X
(

1
2n

)
, t
(

1
2n

)]
is a feasible solution to the SDP in Theorem 63.
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5.2 Orthonormal Representation of Graphs

Definition 5.2.1 (Orthonormal Graph Representation)
Given a graph G = (V,E), v : V → Rd is an orthonormal representation of G if

(i) ‖v(i)‖2 = 1 for all i ∈ V

(ii) 〈v(i), v(j)〉 = 0 for all ij ∈ Ē

Consider a unit-distance hypersphere representation of G, say u : V → Rd on a hypersphere
of radius

√
t with t < 1

2
. Let v : V → Rd+1 be obtained from u as follows

v(i) :=
√
2

[√
1
2
− t

u(i)

]

for every i ∈ V .

Indeed, for every i ∈ V ,

‖v(i)‖22 = 2

(
1

2
− t+ 〈u(i), u(i)〉

)
= 2

(
1

2
− t+ t

)
= 1

and for all ij ∈ E,

〈v(i), u(j)〉 = 2

(
1

2
− t+ 〈u(i), u(j)〉

)
= 2

(
1

2
− t+

1

2
(Xii +Xjj − 1)

)
= 2

(
1

2
− t+

1

2
(2t− 1)

)
= 0

Thus v : V → Rd+1 is an orthonormal representation of Ḡ.

Theorem 5.2.1
Every graph G = (V,E) admits an orthonormal representation in Rn, where n := |V |.
Moreover, all orthonormal representations of G can be realized in Rn.
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Suppose now that we are given an orthonormal representation of G, say v : V → Rd. We
claim that u(i) := 1√

2
v(i) is a unit distance representation of Ḡ on a hypersphere.

Indeed, for each ij ∈ Ē,

‖u(i)− u(j)‖22 =
1

2
+

1

2
− 0

= 1.

For each i ∈ V ,

‖u(i)‖22 =
1

2
‖v(i)‖22

=
1

2
.

5.2.1 Lovász Theta Body

An important application of orthonormal representations of graphs is towards the stable/in-
dependent set problem. The stability number of G is

α(G) := max{|S| : S is a stable set in G}.

The stable set polytope is defined by

STAB(G) := conv
{
χS ∈ {0, 1}V : S is a stable set of G

}
.

We can also consider the fractional stable set polytope

FRAC(G) :=
{
x ∈ [0, 1]V : ∀ij ∈ E, xi + xj ≤ 1

}
.

Notice that
STAB(G) = conv

(
FRAC(G) ∩ {0, 1}V

)
.

For every clique C in G the clique inequality x(C) ≤ 1 is a valid inequality for STAB(G).
Let Aclq(G) denote the clique-node incidence matrix of G. Then the clique polytope of G is
given by

CLQ(G) :=
{
x ∈ RV

+ : Aclq(G)x ≤ ē
}
.

We define the theta body of a graph G as

TH(G) := {x ∈ RV
+ :∀c ∈ Rn, ‖c‖22 = 1,

∀u : V → Rn, orthonormal representation of G,
n∑

j=1

[cTu(j)]2xj ≤ 1}.
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Theorem 5.2.2
For every graph G, TH(G) is nonempty, compact, convex, and satisfies

STAB(G) ⊆ TH(G) ⊆ CLQ(G) ⊆ FRAC(G).

Proof
By definition, every pair ij ∈ E is a clique. Thus, CLQ(G) ⊆ FRAC(G) for every graph
G.

TH(G) ⊆ CLQ(G): Let C ⊆ V be a clique in G. Pick any c ∈ Rn with ‖c‖2 = 1. Define
u(i) := c for each i ∈ C. For all other nodes, i ∈ V \ C, choose an orthonormal system
of vectors orthogonal to c. Then u : V → Rn is an orthonormal representation of G and
hence the inequality

1 ≥
n∑

j=1

[cTu(j)]2xj

=
∑
j∈C

(cT c)2xj

= x(C)

is valid for TH(G). Since TH(G) ⊆ RV
+, all constraints defining CLQ(G) are valid for

TH(G). Thus TH(G) ⊆ CLQ(G).

Since CLQ(G) ⊆ [0, 1]V , we conclude that TH(G) is bounded. Since TH(G) is defined as
the intersection of closed convex sets, it is closed and convex.

STAB(G) ⊆ TH(G): Let S ⊆ V be a stable set in G and χX ∈ {0, 1}V denote its incidence
vector. Let u : V → Rn be any orthonormal representation of G and let c ∈ Rn satisfy
‖c‖22 = 1. Then

n∑
j=1

[cTu(j)]2(χS)j =
∑
j∈S

[cTu(j)]2

≤ ‖QT c‖22
= ‖c‖22
= 1

where Q ∈ Rn×n is an orthonormal matrix whose columns are formed by u(i), i ∈ S and
extending to an orthonormal basis.

Since TH(G) is convex and contains χS for stable sets S, STAB(G) ⊆ TH(G) by the
definition of the convex hull.
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Note that since 0 ∈ STAB(G), TH(G) is nonempty.

Given w ∈ RV
+, the Lovász Theta Function is given by

θ(G,w) := max
x∈TH(G)

wTx.

Define W ∈ SV by
Wij :=

√
wi · wj

for all i, j ∈ V .

Theorem 5.2.3
Let G = (V,E) and w ∈ RV

+. The following are equal:
(i) θ(G,w)

(ii) minu:V→Rn,orthonormal representation∧c∈Rn,‖c‖2=1maxi∈V
wi

[cTu(i)]2

(iii) min
{
η : diag(S) = 0 ∧ ∀ij ∈ Ē, Sij = 0 ∧ ηI − S � W

}
(iv) max

{
Tr(WX) : ∀ij ∈ E,Xij = 0 ∧ Tr(X) = 1 ∧X ∈ SV

+

}
The theorem above shows that we can effciently compute θ(G,w) to any precision via ap-
proximately solving an SDP.

Recall that ω(·), χ(·) denotes the clique and chromatic numbers respectively.

Definition 5.2.2 (Perfect Graph)
A graph G = (V,E) is perfect if for every node induced subgraph H of G,

ω(H) = χ(H).

Definition 5.2.3 (Odd-Hole)
An odd-hole is a chordless cycle of length at least 5.

An odd-antihole is the complement of an odd-hole.

Define
( ˆTH(G))

Y00 = 1

Yij = 0 ∀ij ∈ E

diag(Y ) = Ye0

Y ∈ S{0}∪V
+
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Theorem 5.2.4
Let G be a graph. Then the following are equivalent:

(i) G is perfect
(ii) Ḡ is perfect
(iii) G does not contain an odd-hole or odd-antihole
(iv) STAB(G) = CLQ(G)

(v) STAB(G) = TH(G)

(vi) TH(G) = CLQ(G)

(vii) TH(G) is a polytope
(viii) {x : Aclq(G)x ≤ ē, x ≥ 0} is Totally Dual Integral (TDI)

(ix) ˆTH(G) is SDP-TDI

Recall that the polar set

[TH(G)]o = {s ∈ RV : ∀x ∈ TH(G), xT s ≤ 1}.

Theorem 5.2.5
For every graph G = (V,E), the theta body of Ḡ is equal to the antiblocker of the
theta body of G:

[TH(G)]o ∩ RV
+ = TH(Ḡ).

Theorem 5.2.6
For every graph G = (V,E), we have

TH(G) =

{
x ∈ RV : ∃Y ∈ ˆTH(G),

[
1
x

]
= Y e0

}
.

5.3 Product of Graphs & Kronecker Products

Let graphs G = (V,E) and G = (W,F ). We define the strong product of G,H as

G⊗H := (V (G⊗H), E(G⊗H))
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where V (G⊗H) := V ×W and

(i, u)(j, v) ∈ E(G⊗H) ⇐⇒ ij ∈ E, uv ∈ F

∨ ij ∈ E, u = v

∨ i = j, uv ∈ F

5.4 Stable Sets & Shannon Capacity

Suppose we are trying to communicate through a noisy channel. We are using an alphabet
and some letters may be confused with each other. Let G = (V,E) model this situation: V
is the set of letters in this alphabet and ij ∈ E if and only if letters i, j may be confused
with each other.

The maximum number of letters which will not be confused with each other is precisely
α(G), the size of the largest independent/stable set.

We say words w1, w2 may not be confused with each other if there is some position at which
w1, w2 have different letters AND these different letters do not share an edge.

Suppose we wish to know the maximum number of k-letter words so that no pair of words
may be confused with each other. This is precisely then given by α(G⊗k)!

Definition 5.4.1 (Shannon Capacity)
The Shannon capacity of a graph G is

Θ(G) := lim
k→∞

sup[α(Gk)]
1
k .

We can show that α(Gk) ≥ [α(G)]k for every k ∈ Z++ for every graph G. Thus Θ(G) ≥ α(G).

Suing the fact that Kronecker products of orthonormal representation of G,H give rise to
orthonormal representations of G⊗H, we can prove the following theorem.

Theorem 5.4.1
For every pair of graphs G,H,

θ(G⊗H) = θ(G) · θ(H).
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Corollary 5.4.1.1
For every graph G and every k ∈ Z++,

θ(Gk) = [θ(G)]k.

As a shorthand, we write
θ(G) := θ(G, ē).

Theorem 5.4.2
For every graph G = (V,E), θ(G) is equivalent to

max ēTXē

Xij = 0 ∀ij ∈ E

Tr(X) = 1

X ∈ SV
+

as well as

min t

diag(Z) = (t− 1)ē

Zij = −1 ∀ij ∈ Ē

Z ∈ SV
+

Moreover,
α(G) ≤ Θ(G) ≤ θ(G) ≤ χ(Ḡ).

Finally, we have equality all the way through if G is a perfect graph.

The SDPs in the statement are duals to each other and they are special cases of the SDP
from the characterization of the theta function. Hence they both have Slater points.

Let S ⊆ V be a stable set in G. Define

X̄ij :=

{
1
|S| , i, j ∈ S

0, else

Then X̄ yields a feasible solution of the first SDP and ēT X̄ēT = |S|. Thus α(G) ≤ θ(G).

Suppose we have a colouring c of Ḡ with k colours. Then for the dual SDP, define t̄ := k
and Z̄ ∈ SV such that

Z̄ij :=

{
−1, c(i) 6= c(j)

(k − 1), c(i) = c(j)
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Then (Z̄, t̄) is a feasible solution of the dual SDP with objective value k. Thus θ(G) ≤ χ(Ḡ).

Note that to check Zij is PSD, we can choose a nice permutation of the rows and columns
so that it is diagonally dominant.

The rest of the theorem follows from the characterization of perfect graphs. Note that
α(G) = ω(Ḡ) since a set is stable if and only if it is a clique in the complement.
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Lift-and-Project Methods

The previous section established a representation of the theta body of G (compact convex set
described by infinitely many linear inequalities) as a projection of a spectrahedron in Sn+1.
This spectrahedron only requires O(n2) linear equations and a single PSD constraint.

6.1 Lift-and-Project Methods

Given a polytope P ⊆ [0, 1]d and suppose we are interested in

PI := conv(P ∩ {0, 1}d).

For instance: P = FRAC(G) and PI = STAB(G).

Suppose P = {x ∈ Rd : Ax ≤ b, 0 ≤ x ≤ ē}. Introduce a new variable x0 and define

K :=

{[
x0
x

]
∈ R1+d : Ax ≤ x0b, 0 ≤ x ≤ xoē

}
.

Consider the set M+(K) defined as the feasible region of

Y e0 = diag(Y )

Y ei ∈ K ∀i ∈ [d]

Y (e0 − ei) ∈ K ∀i ∈ [d]

Y ∈ S1+d
+

Suppose x̄ ∈ P ∩ {0, 1}d. Define

Ȳ :=

[
1
x̄

] [
1 x̄T

]
.
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Then

Ȳ e0 = diag(Ȳ ) x ∈ {0, 1}d

Ȳ ei = x̄i

[
1
x̄

]
∈ K ∀i ∈ [d]

Ȳ (e0 − ei) = (1− x̄i)

[
1
x̄

]
∈ K ∀i ∈ [d]

Ȳ ∈ S1+d
+

It follows that

P ∩ {0, 1}d ⊆ LS+(P )

:=

{
x ∈ Rd : ∃Y ∈M+(K),

[
1
x

]
= Y e0

}
.

Since M+(K) is a spectrahedron, it is convex. Since LS+(P ) is a projection of a convex set,
it itself is convex. Hence

conv(P ∩ {0, 1}d) ⊆ LS+(P ).

Define

H0
j := {x ∈ Rd : xj = 0}

H1
j := {x ∈ Rd : xj = 1}.

Lemma 6.1.1
Let P ⊆ [0, 1]d be a convex set. Then

conv(P ∩ {0, 1}d) ⊆ LS+(P )

⊆
d⋂

j=1

conv
[
(P ∩H0

j ) ∪ (P ∩H1
j )
]
.

Proof
It suffices to prove the second inclusion.

Let x̄ ∈ LS+(P ). Then there is some Ȳ ∈M+(K) such that Ȳ e0 =
[
1
x̄

]
. By the definition
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of M+(K), [
1
x̄

]
= Ȳ e0

= Ȳ ei︸︷︷︸
∈K∩{y∈Rd+1:yi=y0}

+ Ȳ (e0 − ei)︸ ︷︷ ︸
∈K∩{y∈Rd+1:yi=0}

But notice that the 0-th entry is 1, which forces y0 = 1. Moreover, the summation
corresponds to a union in the lower space.

Thus
x̄ ∈ conv

[
(P ∩H0

j ) ∪ (P ∩H1
j )
]

for each j ∈ [n]. Therefore,

x̄ ∈
d⋂

j=1

conv
[
(P ∩H0

j ) ∪ (P ∩H1
j )
]
.

For k ≥ 2, recursively define

LSk
+(P ) := LS+(LS

k−1
+ (P )).

Theorem 6.1.2
Let P ⊆ [0, 1]d be a convex set. Then

P ⊇ LS+(P ) ⊇ LS2
+(P ) ⊇ · · · ⊇ LSd

+(P ) = conv(P ∩ {0, 1}d).

Moreover, if for some k ∈ {0, 1, . . . , d− 1}, LSk
+(P ) 6= conv(P ∩ {0, 1}d), then

LSk
+(P ) ⊂ LSk+1

+ (P ).

The last theorem indicates that every 0-1 IP can be solved by solving a convex optimization
problem based on SDPs. Unfortunately, the number of variables and constraints can increase
significantly. We can also derive methods achieving the same goal via LP problems without
SDPs. What is interesting about this approach is that these strictloy improving convex
relaxations are generated automatically.

6.2 Lift-and-Project Operator Applied to FRAC(G)

Recall that the stable set polytope STAB(G) is the convex hull of characteristic vectors of
stable sets of G. and FRAC(G) is the fractional stable set polytope.
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Let H be the vertex set of an odd-cycle in G. Then the inequality∑
i∈H

xi ≤
|H| − 1

2

is valid for STAB(G). Define

OC(G) := {x ∈ FRAC(G) : x satisfies all odd-cycle constraints}.

An odd-hole is a chord-less cycle of length at least 5. Recall that an odd-antihole is the
complement of an odd-hole. Let H be the vertex set of an odd-antihole in G. The inequality∑

i∈H

xi ≤ 2

is valid for STAB(G). Put

ANTI-HOLE(G) := {x ∈ FRAC(G) : x satisfies all odd-antihole constriants}.

An odd-wheel the union of an odd cycle (rim) with a hub vertex which is then connected
to all vertices on the rim. Suppose we have an odd-wheel in G with hub vertex indexed by
2k + 2. Then the odd-wheel inequality

kx2k+2 +
2k+1∑
i=1

xi ≤ k

is valid for STAB(G). Define

WHEEL(G) := {x ∈ FRAC(G) : x satisfies all odd-wheel constraints}.

Theorem 6.2.1
For every graph G,

STAB(G) ⊆ LS+(FRAC(G))

⊆ OC(G) ∩ ANTI-HOLE(G) ∩WHEEL(G) ∩ CLQ(G) ∩ TH(G).

The last inclusion is sometimes strict.

Problem 5 (Open)
Given a full, elegant, combinatorial characterization for LS+(G), for all G.
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6.3 Successive Convex Relaxation Methods

We now generalize our approach to lift-and-project methods to compute the convex hull of
any set, hence in principle solve any optimization problem by solving a possibly very very
large scale SDP.

6.3.1 Fundamental Framework

Let f be continuous on a compact set F . We wish to find

inf f(x)x ∈ F

Introduce a new variable xn+1 and consider

inf xn+1

f(x) ≤ xn+1

x ∈ F

xn+1 ≥ `

xn+1 ≤ u

We may as well assume that we are optimizing a linear function over a compact set F ⊕ [u, `].

Lemma 6.3.1
Any compact set in F ⊆ Rd can be expressed as the feasible region of a system of
quadratic inequalities.

Proof
Rd \ F is open and hence can be expressed as a union of open Euclidean balls. Then

F = Rn \ (Rn \ F )

which the intersection of quadratic inequalities ‖x− x̄‖22 ≥ r2.
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Lemma 6.3.2
For every triple (Q, q, γ) ∈ Sd ⊕ Rd ⊕ R,

{x ∈ Rd : xTQx+ 2qTx+ γ ≤ 0}

⊆
{
x ∈ Rd : Tr

[
γ qT

q Q

] [
1 xT

x X

]
≤ 0,

[
1 xT

x X

]
∈ Sd+1

+

}
.

In fact if rank
[
1 xT

x X

]
= 1, then equality holds above.

Suppose we are given a set P ⊆ Sd ⊕ Rd ⊕ R such that

F = {x ∈ Rd : ∀(Q, q, γ) ∈ P , xTQx+ 2qTx+ γ ≤ 0}.

We may as well replace P by cone(P) or even just the generators of cone(P).

We know that the inequality xTQx+ 2qTx+ γ is convex if and only if Q is PSD. Define

P+ := cone(P) ∩ (Sd
+ ⊕ Rd ⊕ R).

Thus we collect all convex inequalities. This is a convex relaxation of F .

Theorem 6.3.3
Let P ⊆ (Sd ⊕ Rd ⊕ R) be a closed convex cone containing (I, 0, R) for some R > 0.
Then the convex sets{

x ∈ Rd : ∀(Q, q, γ) ∈ P+, x
TQx+ 2qTx+ γ ≤ 0

}
and {

x ∈ Rd : ∀(Q, q, γ) ∈ P ,Tr
[
γ qT

q Q

] [
1 xT

x X

]
≤ 0;

[
1 xT

x X

]
∈ Sd+1

+

}
are identical. Moreover, in the second description we may replace P by its generators.

6.3.2 Successive Convex Relaxation Method

Given P ⊆ Sd ⊕ Rd ⊕ R containing (I, 0, R) for R > 0, define

C0 := {x ∈ Rd : ∀(Q, q, γ) ∈ P+, x
TQx+ 2qTx+ γ ≤ 0}

D1 := {d ∈ Rd : ‖d‖2 = 1}
D2 := {ei,−ei : i ∈ [d]}
k := 0
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At iteration k, we set

α(a) := max
x∈Ck

aTx ∀a ∈ D1

β(b) := max
x∈Ck

bTx ∀b ∈ D2

Pk := coefficients of (α− aTx)(bTx− β) ≤ 0

Ck+1 :=
{
x ∈ Rd : ∀(Q, q, γ) ∈ (P ∪ Pk)+, x

TQx+ 2qTx+ γ ≤ 0
}

Theorem 6.3.4
With the above definitions, the sequence of convex relaxations Ck of F generated by
SCRM satisfies

(a) ∀k ∈ Z+, conv(F ) ⊆ Ck+1 ⊆ Ck, moreover, Ck+1 = Ck if and only if Ck =
conv(F )

(b)
⋂k̄

k=1Ck = ∅ for some finite k if F = ∅
(c)

⋂∞
k=1Ck = conv(F )

Theorem 6.3.5
Let F ⊆ {0, 1}d and let C0 be defined by quadratic inequalities such that

conv(F ) ⊆ C0 ⊆ [0, 1]d.

Suppose the quadratic inequalities x2i −xi ≤ 0,−x2i +xi ≤ 0 for all i ∈ [d] are included
in the quadratic inequality system. Let {Ck} denote the sequence of compact convex
sets generated by the SCRM. Then

Ck = LSk
+(C0)

for all k ∈ Z+.

An observation leading to the proof of the previous theorem is the following: Recall the
definition of LS+ via M+:

M+(Ck) := {. . . Y ei, Y (e0 − ei) ∈ cone(1⊕ Ck) =: K}.

Then for every i ∈ [d] and (s0, s) ∈ K∗, [
s0 sT

]
Y ei ≥ 0[

s0, s
T
]
Y (e0 − ei) ≥ 0.
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Also

(s0, s) ∈ K∗ ⇐⇒
[
s0 sT

] [1
x

]
≥ 0 ∀x ∈ Ck

⇐⇒ s0 ≥ −sTx ∀x ∈ Ck
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Convex Algebraic Geometry

7.1 Motivation

Given a polynomial f : R4 → R, how can we decide that f(x) ≥ 2 for every x ∈ R4? We
can do so by re-expressing the formula for f as a sum of squared terms plus a constant 2.

Given a polynomial f : Rn → R of degree 2d for d ∈ Z++, let h(x) ∈ RN be the vector of
monomials for N :=

(
n+d
d

)
. We are interested in the set

F (f) := {X ∈ SN : h(x)TXh(x) = f(x)}.

Theorem 7.1.1
Let z ∈ R and f be a multivariate polynomial over the reals. Then [f(x) − z̄] is a
sum of squares if and only if{

X ∈ F (f) : X � z̄e1e
T
1

}
6= ∅.
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7.2 Polynomial Optimization

We can extend the idea of using sum of squares relaxations of nonnegativity of polynomials
to polynomial optimization problems:

inf p0(x)

p1(x) ≥ 0

p2(x) ≥ 0

. . .

pm(x) ≥ 0

We already know how to handle such problems via reformulation the problem by quadratic
polynomials. We can also bypass this method. Let us first consider the feasibility version
for simplicity: Is

F := {x ∈ Rn : ∀i ∈ [m], pi(x) ≥ 0} = ∅?

Theorem 7.2.1
Let p1, . . . , pm be given multivariate polynomials over n real variables. Then

F := {x ∈ Rn,∀i ∈ [m], pi(x) ≥ 0} = ∅

if and only if there are s0, . . . , sj ∈ SoS(n, d) (d is some finite degree) such that

g :=
∑
J⊆[m]

sJ

(∏
i∈J

pi

)
= −1.

In some sense, this is a generalization of Farkas’ lemma and Hilbert’s Nullstellenstaz.

Theorem 7.2.2 (Hilbert’s Nullstellenstaz)
Given multivariate polynomials p1, . . . , pm : Cn → C, exactly one of the following
systems has a solution in Cn:

(i) pi(x) = 0 for all i ∈ [m]

(ii) there are polynomials hi such that
∑

i∈[m] hi(x)pi(x) = −1

Note that the previous theorem can be implemented computationally (although not neces-
sarilly efficiently). Guess an upper bound on the degree of the polynomials sj’s and treat the
coefficients of the monomials of sj’s as variables so we have an SDP to solve. Considering
larger degree certificates of sj’s lead to very large scale SDP problems.
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Extension Complexity

Given a polyhedron (or family of polyhedron), what is the smallest number of linear inequal-
ities necessary to represent this polyhedron as a projection of another polyhedron?

Similarly, given a closed convex set expressed as a spectrahedron, what is the smallest size
and number of matrix variables and PSD contraints which allow us to represent the given
convex set as a projection of a spectrahedron?

8.1 Definitions

Let A ∈ Rm×d and b ∈ Rm. Consider

P :=
{
x ∈ Rd : Ax ≤ b

}
and suppose that dimP = d, P is bounded, and P has m facets, n extreme points.

The Slack matrix of P is S ∈ Rm×n given by

Sij := bi − 〈a(i), v(j)〉

for all facets i and extreme points j. Here a(i) is the i-th row of A and v(j) is an extreme
point of P .

The nonnegative rank of S and P is the smallest integer k such that

S = FV T

where F ∈ Rm×k
+ and V ∈ Rn×k

+ . Then rank+(P ) := rank+(S) := k.
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Theorem 8.1.1 (Yannakakis ’91)
Let P ⊆ Rd be a polytope with k := rank+(P ). Then every lifted representation
(extended formulation) of P has at least k costraints. Moreover, there exists a lifted
representation of P with at most (k + d) constraints and (k + d) variables.

Note that by lifted representation / extended formulation refers to polyhedral constraints.
Hence the number of constraints refers to the number of linear equations / inequalities.

A sketch of the proof involves the fact that every valid inequality for P is a linear consequence
of facet defining inequalities for P . Suppose all facets of P are expressed as Ax ≤ b. Let S
be the slack matrix of P and

rank+(S) = k

S = FV T

F ∈ Rm×k
+

V ∈ Rn×k
+

Consider
P̂ := {(x, u) ∈ Rd ⊕ Rk : Ax+ Fu = b, u ≥ 0}.

We claim that
P =

{
x ∈ Rd : ∃u ∈ Rk

+, (x, u) ∈ P̂
}
.

Thus P̂ is a lifted representation with (k + d) variables and (m + k) linear constraints. We
can eliminate (m − d) constraints from the description of P̂ which completes one direction
of the proof.

Conversely, suppose there is a polytope P̃ with q facets so that the projection of P̃ is P .
Consider the slack matrix S̃ of P̃ , but only focus on the submatrix of S̃ whose columns
correspond to extreme points of P̃ projecting to extreme points of P . Every facet inducing
inequality for P comes from a valid inequality for P̃ which by our first observation is a
nonnegative linear combination of facet inducing inequlities for P̃ . Collecting these facets of
P̃ in a matrix F̃ and defining the submatrix of S̃ as Ṽ , we have

S = F̃ Ṽ T

which shows that rank+(S) ≤ q.

Definition 8.1.1 (Extension Complexity)
The smallest number of facets needed in a lifted polyhedral representation is called
the extension complexity of P , and is denoted by xc(P ).
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8.2 A Generalization

Given a convex set G and a convex cone K, does there exist an affine subspace V and linear
subspace W such that

G = ΠW (K ∩ V )?

ΠW denotes the projection onto subspace W . If so we say G admits a lifted representation
by K and proper if V ∩ int(K) 6= ∅.

Suppose G is a compact convex set with nonempty interior. We may assume 0 ∈ int(G).
Recall the polar

Go := {s : ∀x ∈ G, 〈x, s〉 ≤ 1}.

The slack function of G is given by

SG : ext(G)⊕ ext(Go) → R
SG(x, s) := 1− 〈x, s〉.

A K-factorization of SC is a pair of maps V : ext(G) → K and F : ext(Go) → K∗ such that
for all (x, s) ∈ ext(G)⊕ ext(Go),

SG(x, y) = 〈V (x), F (s)〉.

Theorem 8.2.1 (Gouveia, Parrilo, Thomas ’13)
If SG has a K-factorization, then G has a lifted K-representation. If G has a proper
lifted K-representation, then SG has a K-factorization.

Set K := Sn
+ or K := ⊕r

i=1S
ni
+ . Then K∗ = K. For combinatorial optimization applications,

G is a polytope in [0, 1]d, such as STAB.
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