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Chapter 1

Convex Sets

1.1 Introduction

Let f: R® — R be differentiable. Consider the problem

min f(z) (P)
re(CCR"?

In the case when C' = R", the minimizers of f will occur at the critical points of f. Namely,
at x € R” when V f(z) = 0. This is known as “Fermat’s Rule”.

In this course, we seek to approach (P) when f is not differentiable but f is convex and
when @ # C' C R" is a convex set.

1.2 Affine Sets & Subspaces

Definition 1.2.1 (Affine Set)
S C R" is affine if for all z,y € S and A € R,

A+ (1—=MNyesS.

Definition 1.2.2 (Affine Subspace)
An affine set @ # S C R"™.




Definition 1.2.3 (Affine Hull)
Let S C R™. The affine hull of S

aff(S) = m T

SCTCR™:T is affine

is the smallest affine set containing S.

Example 1.2.1
Let L be a linear subspace of R” and a € R".

Then L,a + L, @, R™ are all examples of affine sets.

1.3 Convex Sets

Definition 1.3.1
C C R" is convex if for all x,y € C' and A € (0, 1),

Ar=(1-MNyeC.

Example 1.3.1
@, R™, balls, affine, and half-sets are all examples of convex sets.

Theorem 1.3.2
The intersection of an arbitrary collection of convex sets is convex.

Proof
Let I be an index set. Let (C;);er be a collection of convex subsets of R™.

iel
Pick x,y € C. By the definition of set intersection, x,y € C; for all i € I. Since each C;
is convex, for all A € (0, 1),

Put

Ax+ (1 — Ny € C;.



| It follows that C' is convex by the arbitrary choice of 7.

Corollary 1.3.2.1
Let b; € R" and f3; € R for ¢ € I for some arbitrary index set I.
The set

C:={zreR": (x,b) < p;,Viel}

1S convex.

1.4 Convex Combinations of Vectors

Definition 1.4.1 (Convex Combinations)

A vector sum
m
E B
i=1

is a convex conbination if A > 0 and 17\ = 1.

Theorem 1.4.1
C C R™ is convex if and only if it contains all convex combinations of its elements.

Proof
( <) Apply the definition of convex combination with m = 2.

(=) We argue by induction on m. Observe that by deleting z;’s if necessary, we may
assume without loss of generality that A\ > 0.

When m = 2, this is simply the definition of convexity.

For m > 2, we can write

m m—1
=1

i=1

m—1 A\,
= (1 - Am) - T; + )\mxm
=1 1- )\m
= (1 = An)2’ + A 2’ € C by induction

Hence C indeed contains all convex combinations of its elements.



Definition 1.4.2 (Convex Hull)
The convex hull of S C R”

conv S := ﬂ T

SCTCR™:.T is convex

is the smallest convex set containing S.

Theorem 1.4.2
Let € R™. conv S consists of all convex conbinations of elements of S.

Proof
Let D be the set of convex combinations of elements of S.

(conv.S C D) D is convex since convex combinations of convex combinations again yields
convex combinations. Moreover, S C D by considering the trivial convex combination. It
follows that conv.S C D by definition.

(D C conv S) By the previous theorem, the convexity of conv S means that if contains
all convex combinations of elements. In particular, it contains all convex conbinations of
S Cconv S.

1.5 The Projection Theorem

Definition 1.5.1 (Distance Function)
Fix S C R". The distance to S is the function dg : R" — [0, oo] given by

x — inf||lz — s||.
seS

Definition 1.5.2 (Projection onto a Set)
Let o A#C CR", x € R" and p € C. p is a projection of z onto C, if

do(z) = ||z = pl|-

If a projection p of z onto C' is unique, we denote it by Po(z) := p.

10



Recall that a cauchy sequence (x,),en in R™ is a sequence such that
|Tm — 2n|| = 0
as min(m,n) — 0.

Since R™ is a complete metric space under the Euclidean metric, every cauchy sequence
converges in R".

Moreover, recall that a function f : R™ — R is continuous at x € R™ if and only if for every
sequence x,, — T, we have

fan) = f(2).

Fix y € R™. The function f : R® — R given by

z = [l =y

is continuous.

Lemma 1.5.1
Let z,y, 2z € R". Then

Tty 2

\M—MF=HV—¢W+ﬂV—mP—4F—

Proof
This is by computation.

2z — 2||? = 2(z — 2,2 — )
=2||z[1* - 4z, 2) + 2||=|”
21z = yl* =2/ — Kz, ) + 2yl
rT+y
2

2
1
=2 = et Jhes = e

=42 + = +yl* — 4(z,2) — 4(z, p).

11



Putting everything together yields

2

r+y
= 2[|z[]* + 2[jy|I* — lz + y|I®

2]z — 2|* +2/|z —y|* — 4

z —

= llzl* + llyll* — 2(z, )
= llz —yl*.

Lemma 1.5.2
Let z,y € R™. Then

(x,y) <0 <= VYA€ [0,1],]z] < ||z — Ay]l-

Proof
(=) Suppose (z,y) < 0. Then

lz = Ayll* = [l=[l* = A (Myl* = 2(2, )
> 0.

( ) Conversely, we have A||y||> — 2(z,y) > 0. This implies

A
(z,y) < =lylI?

— 0. A—0

Theorem 1.5.3 (Projection)
Let @ # C C R" be closed and convex. Then the following hold:

i) For all z € R", Po(x) exists and is unique.

ii) Foreveryz € R"and p € R, p = Po(z) < p € CAVy € C, {y—p,z—p) < 0.

Proof (i)
Recall that
do(z) == ég(fij — .

Hence there is a sequence (¢, )nen in C' such that

do(x) = lim [le, — ]|

12



Let m,n € N. By the convexity of C, %cm + %Cn € C. But then

1
i i(cm +¢n)

= i —cll <
de(w) = nfllz —cf <

Apply our first lemma with ¢,,, ¢,, z to see that

2
Cn + Cm,

2

lew — nll? = 2llen — 2|2 + 2liem — 22 — 4Hx _

< 2|len — x||* + 2||ep — ||* — 4de(x)?

As m,n — oo,
0 <llen — eml|* = 4de(z)? — 4de(x)* =0

and (c,) is a Cauchy sequence. But then there is some ¢ € p such that ¢, — p by the
closedness (completeness) of C.

By the continuity of ||z — ||, ¢, — p implies

|z = eall = do(x) = ||z = pl|.

This demonstrates the existence of p.

Suppose there is some ¢ € C such that deo(z) = |l — z||. By convexity, 3(p + q) € C.
Using the first lemma again, we have

0<|p—q|?

=2lp—z|?+2llg—=z|* -4

< 2dc($)2 + 2dc(l‘)2 - 4dc(l‘)2
< 0.

Sollp—q|l=0 = p=gq

This shows uniqueness.

Proof (ii)
Observe that p = Po(z) if and only if p € C and

lz = p||* = de(2)*.

13



Since C' is convex,
Va € [0,1],yq == ay + (a — a)p € C.

Thus

lz —p|* = do(x)?
— YyeCac|01],]lz—pl* <z —va
— ‘v’yE 0,0é S [0,1],”1‘—]?”2 S ||x—p—a(y—p)
— YyelC{(z—py—p <0 auxiliary lemma 2.

I

I

In the absence of closedness, Po(x) does not in general exist unless x € C. In the absence
of convexity, uniqueness does not in general hold.

Example 1.5.4
Fix € > 0 and C' = B(0;€) be the closed ball around 0 or radius e.

For all x € R", either Po(z) = x when = € C or Po(x) is %, the vector obtained from
x by scaling its norm to e.

In other words,

Po(z) = ——

— .
max(|[z], )

1.6 Convex Set Operations

Definition 1.6.1 (Minkowski Sum)
Let C, D C R™. The Minkowski Sum of C, D is

C+D:={c+d:ceC,de D}.

Theorem 1.6.1 (Minkowski)
Let Cp,Cy C R™ be convex. Then C; + C5 is convex.

Proof
If either C4, Cy is empty, then C; + Cy = @ by definition.

Otherwise, C} + Cy # @. Fix x1 + 2,91 + y2 € C1 + Cy and A € (0,1). By the convexity

14



of 01702a

My +x) + (1 =X +y2) = Az + (L= Ny + Aze + (1= N
e C) + Cqy

as required.

Proposition 1.6.2
Let @ # C, D C R" be closed and convex. Moreover, suppose that D is bounded.
Then C'+ D # @ is closed and convex.

Proof
We have already shown non-emptiness and convexity in the previous theorem.

Let (x, + Yn)nen be a convergent sequence in C' + D. Say that =, + v, — 2.

Since D is bounded, there is a subsequence (yx, )nen such that y,, — y € D. It follows
that
T, =2 — Y, = 2—YyC

by the closedness of C'.

It follows that z € C'+y C C + D as desired.

If we drop the assumption that D is bounded, the result no longer holds in general. Indeed,
consider C' = {2,3,4,...} and D :={-n+ L :n=2,3,4,...}. (%)n>2 is the sum but 0 is
not! N

Theorem 1.6.3
Let C' C R"™ be convex and A, Ay > 0. Then

()\1 + )\2)0 = )\10 + )\QC

Proof
(S) This is always true, even if C' is not convex.

(D) Without loss of generality, we may assume that A; + Ay > 0. By convexity, we have

A1 Ao
C+ ccc.
A1+ Ao A+ T

In other WOI’dS, /\10 + )\20 Q ()\1 + /\2)0

15



1.7 Topological Properties

We will write
B(x;e) :={y e R": [ly — zf| < ¢}
to denote the closed ball of radius € about x. In particular, we write
B := B(0;1)

to denote the closed unit ball.

Definition 1.7.1 (Interior)
The interior of C' C R" is

intC :={x:3e> 0,2+ €¢B C C}.

Definition 1.7.2 (Closure)
The closure of C' C R" is

C_’::ﬂC—i-eB.

e>0

Definition 1.7.3 (Relative Interior)
The relative interior of a convex C' C R™ is

riC:={zxecaff C:3e>0,(z+eB)Naff C C C}.

Proposition 1.7.1
Let C C R™. Suppose that int C' # &. Then int C =riC.

Proof
Let z € int C. There is some € > 0 such that B(xz;¢) C C. Hence

R™ = aff (B(z;¢€))
Caff C
CR"™

But then aff C' = R™ and the result follows from definition.

Let A C R" be affine. Every affine set has a corresponding linear subspace
L:=A-A

16



This is a linear subspace as it is affine and contains 0.

Definition 1.7.4 (Dimension)
Let @ # A C R"™ be affine. The dimension of A is the dimension of the corresponding

linear subspace
dim A := dim(A — A).

It may be useful to consider

A-A=|]JA-a)

acA

as the union of translations.

Definition 1.7.5 (Dimension)
Let @ # C' C R" be convex. The dimension of C, denoted dim C, is the dimension of
aff C.

Proposition 1.7.2 B
Let C C R"™ be convex. For all z € int C' and y € C,

[z,y) C int C.

Proof
Let A € [0,1). We argue that (1 — X\)x + Ay € int C. It suffices to show that

(I-Nz+Xly+eBCC
for some € > 0.

As y € C, we have that Ve > 0,y € C + eB. Thus for all € > 0,

(I=XNz+Xy+eBC(1—Nz+ ANC+eB)+eB
=(1=XNz+ 1+ XNeB+AC previous theorem
— (1)) [x+ 1“63} +AC
1—A
C(1-MNC+XC sufficiently small ¢,z € int C
=C. previous theorem again

17



Theorem 1.7.3 B
Let C' C R"™ be convex. Then for all x € riC' and y € C,

[z,y) CriC.

Proof
Case I: int C' # @ This follows by the observation that ri C' = int C.

Case II: int C' = @ We must have dimC = m < n. Let L := aff C' — aff C' be the corre-
sponding linear subspace of dimension m.

Through translation by —c € C' if necessary, we may assume without loss of generality
that C C L = R™.

But then the interior of C' with respect to R™ is ri C' in R™. An application of Case I with
C C R™ yields the result.

Theorem 1.7.4
Let C' C R” be convex. The following hold:

(i) C is convex.
(ii) int C' is convex.
(iii) If int C # @, then int C = int C' and C = int C.

Proof (i)
Let z,y € C'and A € (0,1). There are sequences x,,y, € C such that

Ty — T, Yn — Y.

It follows by convexity that

CoXt,+(1=Ny—= e+ (1—Xy) eC.

By definition, C' is convex.

Proof (ii)
If int C' = &, the conclusion is clear.

18



Otherwise, use the previous proposition with y € C' C C to see that

[z,y] = [z,y) U{y}
CintC Uint C
=int C.

Proof (iii) )
Since C' C ', it must hold that int C' C int C'.
Conversely, let y € int C. If y € int C, then we are done. Thus suppose otherwise.

There is some € > 0 such that B(y;e) € C. We may thus choose some int C' # y # = €
int C' # @ and A > 0 sufficiently small such that

y+ Ay —x) € Bly;e) C C.

By a previous proposition applied with y + A(y — x), we have that

[z,y 4+ ANy —z)) Cint C.

We now claim that y € [,y + A(y — x)). Indeed, set a := 115 € (0,1). We have
l—a)z+aly+AXy—2)=01—a(l+N)x+a(l+ Ny

It follows by the arbitrary choice of y that int C' C int C. We now turn to the second
identity.

Since int C' C C, we must have int C C C. Conversely, let y € C and = € int C. For
A €10,1), define
o= (1= Nz + Ay

The previous proposition agains tells us that

yx € [z,y) Cint C.

But then y = limy_,qyy € int C and C C int C.

This concludes the argument.

19



Theorem 1.7.5 B
Let C' C R" be convex. Then ri C, C' are convex.
Moreover,

C#0 «— 1riC # 2.

1.8 Separation Theorems

Definition 1.8.1 (Separated)
Let Cp,Cy C R™. We say C, Cy are separated if there is some b € R™ \ {0} such that

sup <cl,b> inf (c9,0).

c1€C c2€C?y

If
sup <Cla b> ll’lg <627 b>7

c1eCq c2€ln

then we say C, Cy are strongly separated.

Theorem 1.8.1
Let @ # C C R"™ be closed and convex and suppose z ¢ C. Then z is strongly

separated from C'.

Proof
The goal is to find some b # 0 such that

sup(c, b) < (x,b)
sup(c — z,b) < 0.

Set p:= Po(X) and b:=2 — p # &. Let y € C. By the projection theorem,

(y—p,x—p)y <0 Vy € C
(y—(r=0),x—(x—10) <0 p=x—b
(y —z,b) < —(b,b)
= —|lo]?
Sup<y7b> - <£I§',b> S _Hsz
yelC
<0

as desired.

20



Corollary 1.8.1.1

Let C; N C5 = @ be nonempty subsets of R™ such that C} — C5 is closed and convex.
Then C, (5 are strongly separated.

Proof
By definition, C, Cy are strongly separated if and only if there is b # 0 such that

sup (c1,b) < inf (co,b)

€0 coeCy
sup <Cla b> < — sup <C27 b>
c1eCq coeCly

sup (c1,b) + sup (cg,b) <0

01601 CQECQ

sup (1 — 9, b) < 0.
c1€C,c2€C2

Since C1 N Cy = &, we know that 0 ¢ C} — Cy. Hence Cy — Cy is strongly separated from
0 and the conclusion follows.

Corollary 1.8.1.2

Let @ # C,Cy C R"™ be closed and convex such that C; N Cy = @ and C5 is bounded.
Then C1, Cy are strongly separted.

Proof

CiNCy =90 — 0¢ C; —Cy. In addition, —Cs is also closed and convex. It follows by
a previous theorem that C; 4+ (—C5) is nonempty, closed, and convex.

Theorem 1.8.2

Let @ # C7,C5 C R™ be closed and convex such that Cy N Cy = @. Then C4,Cy are
separated.

Proof
For each n € N, set
D,, := Cy N B(0;n).

Observe that C; N D,, = @ for all n. Moreover, D,, is bounded by construction.
It follows that there is a hyperplane u, that separates C4, D, for all n. Specifically,

|un]| = 1 and
sup(Ch, u,) < inf(D,,, uy,).

21



But the sequence u,, is bounded, hence there is a convergent subsequence uy, . where
ug, — u with ||ul| = 1.

Let x € C1,y € Cy. For sufficiently large n, y € B(0; k,,) and

(x,ug,) < (y,ug,).

Taking the limit as k — oo yields

(z,u) < (y,u).
This completes the proof.
1.9 More Convex Sets
Definition 1.9.1 (Cone)
C C R" is a cone if
C = R++C.

Definition 1.9.2 (Conical Hull)
cone C' is the intersection of all cones containing C'.

Definition 1.9.3 (Closed Conical Hull)
cone(C) is the smallest closed cone containing C'.

Proposition 1.9.1
Let C C R™. The following hold:
(i) coneC =R, C

(ii) cone C = cone(C)

)
(iii) cone(conv C') = conv(cone C')
)

(iv) cone(conv C') = conv(cone C')

The proofs of all these are trivial if C = @. Thus in our proofs, we assume that C is
nonempty.

22



Proof (i)
Set D :=R,,C. It is clear that C' C D with D being a cone. Hence coneC' C D.

Conversely, for y € D, there is some A > 0, ¢ € C for which y = Ac. Then y € cone C' and
D C cone(.

Proof (ii)
cone(C) is a closed cone with C' C cone(C'). Hence

cone C' C cone(C') = cone(C).

Conversely, since cone C' is a cone,
cone(C') C cone C.
Proof (iii)
(C) Let x € cone(conv (). By i, there is A > 0,y € convC such that x = A\y. Since

y € conv C, we can express is as a convex combination

r=\y
i=1
i=1

€ conv(cone ().

(D) Let o € conv(cone C'). We can write x as convex combinations of scalar multiples of

C.

This is a scalar multiple of a convex combination of C' and thus x € cone(conv (') as
desired.

23



Proof (iv)
This is a direct consequence of iii.

Lemma 1.9.2
Let 0 € C' C R™ be convex with int C' # @. The following are equivalent:
(i) 0 eintC
(ii) coneC =R"
(iii) comeC = R"

It is a fact that for 0 € C' C R™ convex with int C' # @,

int(cone C') = cone(int C).

Proof
(i) = (4i) Suppose 0 € int C. Then B(0;¢) C C for some € > 0. But then

R"™ = cone(B(0;¢))
C cone C'
cR"

and we have equality.
(i1) = (i1i) Recall that cone C' = coneC. But then

R"™ = cone C' C coneC.

(11) = (1) Recall that cone(conv C') = conv(cone C'). Thus
conv(cone C') = cone C'
and cone C' is convex.

By assumption,
@ # int C' C int(cone C)

and cone C' has nonempty interior.

Recall that
int(cone C') = int(coneC)

as cone C' is convex.
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Hence
R" = int R"
= int(coneC)
= int(cone C')

= cone(int C').

Thus 0 € Aint C' for some A > 0. It must be then that 0 € C as desired.

Definition 1.9.4 (Tangent Cone)
Let @ # C C R™ with x € R™. The tangent cone to C at x is

To(z) — {T(C —z) = U)\GR++ ANC —x), 2 Z g

Definition 1.9.5 (Normal Cone)
Let @ # C C R" with € R". The normal cone to C' at z is

u € R":supco(c—z,u) <0}, zel
NC@):{; cofe =) }MC

Theorem 1.9.3
Let @ # C C R" be closed and convex. Let X € R".
Both Neo(x), Te(x) are closed convex cones.

Lemma 1.9.4
Let @ # C' C R” be closed and convex with z € C.

n € Ne(x) <= Vt € Te(z), (n,t) <O0.

Proof
(=) Let n € No(z) and t € Te(z). Recall that T (z) = cone(C — x). Thus there is
some A\, > 0 and ¢, € R” such that

x+>\ktk eC
and t;, — t.

Since n € N¢(z) and x 4+ A\t € C, it follows that for all k, (n, Agtx) < 0. But then as

25



k — oo we see that
(n,t)y <O0.

( <) Suppose that Vt € T (), we have (n,t) < 0. Pick y € C' and observe that

y—reC—ux
C cone(C — )
C cone(C — )
=:To(z).

It follows that (n,y —x) <0 and n € N¢(x).

Theorem 1.9.5

Let C' € R™ be convex such that int C' # &. Let z € C. The following are equivalent.
(1) z €intC
(2) To(z) =R"

(3) Ne(x) = {0}

Proof
(1) <= (2) Observe that z € int C' if and only if 0 € int(C' — z) if and only if there is

some € > 0 with
B(0;¢) C C — .

Now,

(2) <= (3) Our previous lemma combined with (1) yields

n € No(z) <= Vt € Te(z) =R", (n,t) <0
< n=0.

Hence N¢(z) = {0}.
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Conversely, suppose N¢(x) = {0}. It is clear that 0 € T¢(z). Pick y € R™. We claim
that y € Tc(x). To see this recall that T (x) is a closed convex cone, hence p = Pr,(2)(y)
exists and is unique. Moreover, it suffices to show that y = p € To(z).

Indeed, by the projection theorem
(y—pt—p) <0
for all t € To(x). In particular, it holds for t = p,2p € To(z) (Te(z) is a cone). So
(y —p.,4p) <0 = (y—p,p) =0.
But then (y — p,t) <0 for all ¢t € Tz(x), which implies that y —p € Ne(z) = {0} and
y=pé€Tc(z)

as desired.

27






Chapter 2

Convex Functions

2.1 Definitions & Basic Results

Definition 2.1.1 (Epigraph)
Let f: R" — [—00,o0]. The epigraph of f is

epif:={(z,a): f(z) <a} CR"xR.

Definition 2.1.2 (Domain)
For f: R" — [—00, ],

dom f:={x e R": f(z) < o0}.

Definition 2.1.3 (Proper Function)
We say that f is proper if dom f # @ and f(R") > —ooc.

Definition 2.1.4 (Indicator Function)
Let C C R"™. The indicator function of C' is given by

0, zeC
dole) = {oo x ¢ C




Definition 2.1.5 (Lower Semicontinuous)
f is lower semicontinuous (l.s.c.) if epi(f) is closed.

Definition 2.1.6 (Convex Function)
f is convex if epi f is convex.

Proposition 2.1.1
Let f: R" — [—00, 0] be convex. Then dom f is convex.

Recall that linear transformations A : R" — R™ preserve set convexity (C' C R™ convex
implies that A(C) is convex).

Proof
Consider the linear transformation L : R™™! — R"™ given by

(x, ) — .

Then dom f = L(epi f) is convex.

Theorem 2.1.2
Let f : R™ — [—00,00]. Then f is convex if and only if for all z,y € dom f and
A€ (0,1),

fOz + (1= Ny) < Af(x) + (1 =N f(y)

Proof
If f=00 < epif =9 <= dom f = &, then result is trivial. Hence let us suppose
that f # o0 <= dom f # @.

(=) Pick 2,y € dom f and A € (0,1). Observe that (x, f(x)), (v, f(y)) € epif. By
convexity,
Az, f(2)) + (1L =Ny, f(y) = Az + (1 =Ny, A\f(2) = (1 =N f(y)) € epi(f)
fOa+ (1= Ny) < Af(@)+ (1= f(y).

( <) Conversely, suppose the function inequality holds. Pick (x,a), (y,3) € epi f as
well as A € (0,1). Now,

FOz+ 1 =XNy) <Af()+ (1= N)f(y)
<A+ (1-=XN)p
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and
Ax 4+ (1 =Ny, A, (1 — X\)B) € epi f

as desired.

It follows that epi f is convex and so is f.

2.2 Lower Semicontinuity

Definition 2.2.1 (Lower Semicontinuity; Alternative)
Let f: R" — [—00, 0] and x € R". f is lower semicontinuous (l.s.c) at x if for every
sequence (z,),>1 € R" such that z, — z,

f(z) < liminf f(z,).

We say f is L.s.c. if f is l.s.c. at every point in R".

Remark that continuity implies lower semicontinuity. One can show that the two definitions
of 1.s.c. are equivalent, but we omit the proof.

Theorem 2.2.1
Let C C R™. Then the following hold:
(i) C # @ if and only if d¢ is proper

(ii) C is convex if and only if d¢ is convex

(iii) C is closed if and only if d¢ is Ls.c.

We prove (i) and (ii) in A2.

Proof ((iii))
Observe that C' = @ <= epidc = 9, which is certainly closed. Thus we proceed
assuming C' # &.

( ) Suppose C'is closed. We want to show that epidq is closed.

Pick a converging sequence sequence (z,,q,) — (z,a) with every element in epidc.
Observe that z,, is a sequence in C, hence z € C'. Moreover, «,, € [0,00) and «a > 0.

It follows that (x,«) € epidc as required.

( ) Conversely, suppose that d¢ is 1.s.c. Let (z,,),>1 be a sequence in C' with z,, — x.
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By the definition of d¢, it suffices to show that dc(x) = 0.
By lower semicontinuity;,

< liminf d¢(z,,)
=0

and we have equality throughout.

Proposition 2.2.2
Let I be an indexing set and let (f;);c; be a family of l.s.c. convex functions on R".
Then
F :=supf;
iel

is convex and l.s.c.

Proof
We claim that epi " = (,; epi f. Indeed,

(x,a) € epi ' <= sup fi(z) < «
iel
— Viel, fi(z) <a
< Viel, (r,a) €epif;
< Vie l(x,a) € epi f;.

The result follows by the definition of convex functions and lower semicontinuity as inter-
sections preserve both set convexity and closedness.

2.3 The Support Function

Definition 2.3.1 (Support Function)
Let C' C R™. The support function o¢ : R™ — [—00, 00] of C' is

u — sup(c, u).
ceC
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Proposition 2.3.1
Let @ # C C R™. Then o¢ is convex, l.s.c., and proper.

Proof
For each ¢ € C, define
fo(x) == (z,c).
Then f, is linear and hence proper, l.s.c., and convex. Moreover,
oc = sup fe.
ceC

Combined with our previous proposition, we learn that o is convex and l.s.c.
Observe that since C' # @,

oc(0) = sup(0,c) = 0 < 0.
ceC

Hence dom o¢ # @. In addition, fix ¢ € C. Then for all u € R™,

oc(u) = igg(u, c)
> (u,¢)

> —0Q.

Hence o¢ is proper as well.

2.4 Further Notions of Convexity

Let f: R™ — [—o0, 0] be proper. Then f is strictly convez if for every x # y € dom f and
A e (0,1),

Oz + (1= Ny) <Af(x)+ (1= A)f(y)

Moreover, f is strongly conver with constant § > 0 if for every z,y € dom f, A € (0,1),

FO (1= A)g) < AF(@) + (1= N)fy) — DAL= Az~

Clearly, strong convexity implies strict convexity, which in turn implies convexity.
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2.5 Operations Preserving Convexity

Proposition 2.5.1
Let I be a finite indexing set and (f;);e; a family of convex functions R”™ — [—o0, o0].

Then
> i

i€l

1S convex.

Proposition 2.5.2
Let f be convex and l.s.c. and pick A > 0. Then

Af

is convex and l.s.c.

2.6 Minimizers

Definition 2.6.1 (Global Minimizer)
Let f: R™ — (—o00, 00] be proper and x € R™. Then z is a (global) minimizer of f if

f(z) = min f(R™).

We will use argmin f to denote the set of minimizers of f.

Definition 2.6.2 (Local Minimum)
Let f: R™ —] — 00, 0] be be proper and Z € R™. Then Z is a local minimum of f if
there is 0 > 0 such that

lz -2z <6 = f(z) < (=)

We way that Z is a global minimum of f if for all x € dom f,

f(@) < f(=).

Analogously, we define the local mazimum and global maximum.

Why are convex functions so special?
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Proposition 2.6.1
Let f : R™ — (—o0, 0] be proper and convex. Then every local minimizer of f is a
global minimizer.

Proof
Let = be a local minimizer of f. There is some p > 0 such that

f(x) = min f(B(z;p)).

Pick some y € dom f \ B(z; p). Notice that

A=l P

€ (0,1).
Iz =yl

Set
z: =X+ (1 — ANy € dom f.

We know this is in the domain as dom f is convex by our prior work.

We have
z—rz=(1=-Ny—(1=XNz
=1 =Xy —x)
Iz = ll = I(1 = A)(y — =)l
= Ly — 2l
ly — |l
p.
This shows that z € B(z;p).
By the convexity of f,
flz) < f(2)
< Af(z) + (1= f(y)
(1=Xf(z) <1 =A)f(y)
fl@) < f(y).

Proposition 2.6.2
Let f : R™ — (—o00,00|] be proper and convex. Let C' C R™. Suppose that z is a
minimizer of f over C' such that x € int C. Then z is a minimizer of f.
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Proof
There is some € > 0 such that x minimizes f over B(z;¢) C intC. Since x is a local
minimizer, it is a global minimizer as well.

2.7 Conjugates

Definition 2.7.1 (Fenchel-Legendre/Convex Conjugate)
Let f : R™ — [—00,00]. Then Fenchel-Legendre/Convex Conjugate of f, denoted
f*:R™ — [—o0, 0] is given by

u— sup (z,u) — f(z).
TzER™

Recall that a closed convex set is the intersection of all supporting hyperplanes. The idea is
that the epigraph of a convex, l.s.c. function f can be recovered by the supremum of affine
functions majorized by f.

Given a slope z € R™, we want the best translation o which supports f.

flz) > (u,z) — « Ve € R"
2 (u,x) — f(x) Vx € R".

Thus f*(u) := sup,ecpn (u, z)— f(x) is the best translation such that (u, z) — f*(u) is majorized
by f.

Proposition 2.7.1
Let f:R™ — [—00,00]. Then f* is convex and l.s.c.

Proof
Observe that f = co <= dom f = @. Hence if f = oo, for all u € R™

() = sup (o) = f(a)

= sup (z,u) — f(x)
r€dom f

= —OQ.

This is trivially convex and l.s.c.

Now suppose that f # co. We claim that f*(u) = sup(, o)ecepi {7, u) — @. Observe that
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fw,a) == (x,-) — a is an affine function. By definition,

sup <SL’,’U> —f(SC) > sup <.CC,U> —a
z€dom f (z,0)€epi f

as f(z) < a by the definition of the epigraph. On the other hand,

wp (o) - f@)< s {zu)—a
(z,f(x)):xz€dom f (z,a)€epi f

as each (x, f(x)) € epi f.

But then
frw) = sup  faw(u)

(z,a)€epi f

is a supremum of convex and l.s.c. (affine) functions which is convex and l.s.c. by our
earlier work.

Example 2.7.2
Let 1 < p, g such that

1
-4+ —-=1
P 4q
Then for f(z) := %,
uld

This can be shown by differentiating to find maximums.

Example 2.7.3
Let f(x):= e*. Then

ulnu —u, u>0

fr(w) =40, u=0
00, u <0
Example 2.7.4
Let C' C R™, then
(52« = 0¢C
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By definition,

oc(y) == sup (z,y) —dc(y)

yedom §o

= sup(z, y).
yeC

2.8 The Subdifferential Operator

Definition 2.8.1 (Subdifferential)

Let f: R™ — (—o00, 0] be proper. The subdifferential of f is the set-valued operator
af : R™ = R™ given by

r—{ueR":Vy eR", f(y) > f(z)+ (u,y — x)}.

We say f is subdifferentiable at = if Of(z) # @.
The elements of Of(x) are called the subgradient of f at x.

The idea is that for a differentiable convex function, the derivative at x € R™ is the slope
for a line tangent to x which lies strictly below f. If f is not differentiable at x, we can still
ask for slopes of line segments tangent to x which lie below z.

Theorem 2.8.1 (Fermat)
Let f: R™ — (—o0, 0] be proper. Then

argmin f = {x e R™ : 0 € df(x)} =: zer df.

Proof
Let x € R™.

x € argmin f <= Vy € R", f(z) < f(y)
= Yy eR" 0,y —z)+ f(z) < fy)
< 0€0f(x).
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Example 2.8.2
Consider f(z) = |z|. Then

{-1}, =x<0
of(x) =< [-1,1], =0
{1}, x>0

Lemma 2.8.3
Let f: R™ — (—o0, 0] be proper. Then

dom df C dom f.

Proof
We argue by the contrapositive, suppose x ¢ dom f. Then f(x) = oo and df(z) =

Proposition 2.8.4
Let @ # C' C R™ be closed and convex. Then

86c(z) = Ne().

Proof
Let u € R™ and z € C = dom dc. Then
u € déc(x) <= Yy € R™, 0c(y) > dc(x) + (u,y — x)
— Vy e C,dc(y) > do(z) + (u,y — x)

— Yye(C,0> (uy—ux
<= u € N¢(z).

Consider the constrained optimization problem min f(z),x € C, where f is proper, convex,
l.s.c. and C' # @ is closed and convex. We can rephrase this as min f(z) + d¢(z).

In some cases, O(f + dc) = 0f + )¢ = Of + Neo(z). Thus by Fermat’s theorem, we look for

some x where

0e€ @f(!t) + Nc(l‘)

2.9 Calculus of Subdifferentials

The main question we are concerned with is whether the subdifferential operator is additive.
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Proposition 2.9.1
Let f:R™ — (—o0, 00| be convex, l.s.c., and proper. Then

& # ridom f C domdf.
In particular,

ridom f = ridom 0 f
dom f = domdf.

Definition 2.9.1 (Properly Separated)
Let @ # C7,Cy C R™. Then C7, Cs are properly separated if there is some b # 0 such
that
< inf
sup, (b,c1) < inf (b, c2)

(separated) AND such that

inf (b, c;) < sup (b, c2).

C1 €C2 co ECQ

A problem with the definition of separated is that a set can be separated from itself. Indeed,
the z-axis is separated from itself with itself as a separating hyperplane. To be properly
separated, there must be some ¢; € C, ¢y € (5 such that

<b, Cl> < <b, Cg>.

In otherwords, C'; U (5 is not fully contained in the hyperplane.

Proposition 2.9.2
Let @ # C1,Cy C R™ be convex. Then C4, Cy are properly separated if and only if

I'iClﬂl"iCQ = J.

Proposition 2.9.3
Let C1,Cy C R™ be convex. Then

I’i(Cl == Cg) = ml Cl + ri CQ.

Moreover,

ri(AC) = A(ri C)

for all A € R.
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Proposition 2.9.4
Let C; C R™ and Cy C RP be convex. Then

I'i(Cl D Cg) =i Cl D ri Cg.

Theorem 2.9.5
Let C1,Cy C R™ be convex such that riC; NriCy # @. For each x € Cy N Cy,

Neyney (z) = Ney () + Noy ().

Proof

The reverse inclusion is not hard. Hence we check the inclusion only.

Let x € C1 N Cy and n € Neyne,(2). Then for each u € Cy N Cy,

(n,y —z) <0.

Set Ey :=epide, = C1 x [0,00) € R™ x R. Moreover, put
Ey :={(y,a) 1y € Cy,a < (n,y —x)} CR™ x R.

By a previous fact,
ri By =r1iCy x (0, 00).

Similarly,
ri By = {(y,a),a < (n,y —x)}.

We claim that ri £; Nri By = @. Indeed, suppose towards a contradiction that there is
some (z,a) € ri By Nri Ey. Then

O<a<(nz—z)<0
which is impossible.

It follows by a previous fact that E;, Ey are properly separated. Namely, there is (b, ) €
R™ x R\ {0} such that

(z,b) +ay < (y,b) + By V(z,a) € Ey, (y,0) € B>
(Z,b) +ay < (7,b) + By 3(z,a) € Ey, (7, B) € E,

We claim that v < 0. Indeed, (z,1) € E and (z,0) € E,. So

(x,b) +v < (z,b) = ~<0.
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Next we claim that v # 0. Suppose to the contrary that v = 0. But then

(z,b) < (y,b) V(z,a) € By, (y,B) € B
(Z,0) <(¥,b) A(z,a) € By, (4, 8) € B

and C, Cy are properly separated.

From our earlier fact, this contradicts the assumption that ri C; NriCy # @&. Altogether,
v < 0.

Our goal is to show that
b

n= —— +n+

2|

¥
~—
eNC1 (JZ) ENCQ(JC)

{

First, we claim that b € Ng, (x). This happens if and only if for all y € CY,
(y—2,b) <0 <= (by) < (b,).
Indeed, we know that (y,0) € E;. Moreover, (x,0) € Ey by construction. Hence

(y,b) + 0y < {x,b) +0- 7.

Thus b € N¢, (z) = —%b € N, ().
Now, for all y € Cy, (y, (n,y — z)) € Ey by construction, Hence for all y € Cs,

(b,2) +0-v < (b,y) +v(n,y — ).

b
<—~|—n,y—:v> <0.
g

b
; +n e NCQ(x).

Equivalently,

This shows that

Thus n € N¢, () + N¢,(z) and we are done.

Proposition 2.9.6
Let f: R™ — (—o0,00) be convex, l.s.c. and proper. Let z,u € R™. Then

u e df(x) <= (u,—1) € Nepif(z, f(2)).
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Proof
Observe that epi f # @ and is convex since f is proper and convex. Now let u € R™.
Then

(u, —1) € Nepip(z, f(2))
= zedom fAY(y,B) €epif, ((y,0) — (z, f(z)), (u,—1))
— zedom fAY(y,B) cepif,((y—=x),8— f(z),(u,—1))
< V(y,B) €epif,(y —x,u)+ f(z) < B
< Yy €dom f,(y —z,u) + f(z) < f(y)
= uecdf(a)

Theorem 2.9.7
Let f,g : R™ — (—o00,00] be convex, l.s.c., and proper. Suppose that ridom f N
ridom g # &. Then for all x € R™,

0f (x) + 0g(x) = O(f + 9)(x).

Proof
Let z € R™. If # ¢ dom(f 4+ g) = dom f N domg, then df(x) + dg(x) = @. Also,

f +9)(z) = 2.
Suppose now that x € dom f Ndom g = dom(f + g). It is easy to check that
Of () + 9g(x) € O(f + g)().
We verify the reverse inclusion.
Pick any u € 9(f + g)(x). By definition, for all y € R™,
(f +9) ) = (f +9)(x) + (u,y — z).
Consider the closed convex sets

Ei={(z,0,B8) e R" xR xR: f(z)<a}=epif xR
Ey={(z,0,8) e R" xR xR:g(x) <} Zepig x R.

We claim that
(u> _1> _1) S NE1ﬂE2($7 f(m),g(x))

Indeed, let (y,a, B) € E1, E5. We have by construction f(y) — «, g(y) — 5 < 0.
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Now,

((u,=1,-1),(y, a, B) = (=, f(z), g(x)))

= (u,y —2) — (a— f(2)) — (B —g(z))

= (u,y —x) + (f + 9)(x) — (a4 B)

<(f+9y) —a-p u € d(f +g)(v)
<0.

Next, we claim that ri £; Nri Ey # &. Indeed, by a previous fact,

ri By = ri(epi f x R)
=riepi f X R.

Similarly,
11 By = {(z,0,8) e R"" x Rx R:g(x) < }.

Pick z € ridom f Nridomg. Then (z, f(z) + 1,9(2) + 1) € ri Ey,1i Ey. Hence, (z, f(2) +
1L,g(z)+1) €eriEy NriEy # @.

All in all, Ey, E5 # @ are closed, convex, with ri £; Nri By # &. Hence by the previous
theorem,

NE10E2(x>f<m)7g($)) = NEl(l',f<l'),g(l‘)) + NE2(*ra f(m),g(m))

Now, it can be shown that Nepi fxr = Nepi ¢ X Nr and similarly for F,. Therefore, there
is some u1,us € R™, o, 8 € R for which

(u,—1,-1) = (uy1, —, 0) + (uz,0, —f).
Thus u = u; +uy and o = § = 1. It follows that

(w1, —=1) € Nepif(z, f(2))
(ug, —1) € Nepig<$vg(x))-

From a previous proposition, we conclude that u; € f(x) and uy € dg(x). Hence

u =1y +uy € df(x) + dg(x),

completing the proof.

Let f: R™ — (—o00, 00| be convex, ls.c., and proper. Suppose ¢ # C C R™ is closed and
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convex. Furthermore, suppose ri C' Nridom f # @. Consider the problem

min f(x) (P)
re(C

Then z € R™ solves (P) if and only if
(0f(z)) N (=No(2)) # 2.

Indeed, we convert this to the unconstrained minimization problem min f+dc. This function
is convex, l.s.c., and proper. By Fermat’s theorem, ¥ solves P if and only if

0€d(f +6¢c)(2).

Now, ridom f Nridom dc # &. Hence by the previous theorem, z solves (P) if and only if

0€d(f+0c)(x) =0f(Z)+ Ne(z) < Jue df(z),—u € No(T)
= 0f(7)N (~Ne(2)) # 2.

Example 2.9.8
Let d € R™ and @ # C' C R™ be convex and closed. Consider

min(d, ) (P)
zelC

Let z € R™. Then Z solves (P) if and only if

—d € Nc(f)

2.10 Differentiability

Definition 2.10.1 (Directional Derivative)
Let f: R™ — (—o0, 0] be proper and = € dom f. The directional derivative of f at
x in the direction of d is

ooy F@ i) — f(z)
f(a:,d)._ltlgl ; :
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Definition 2.10.2 (Differentiable)
Let f : R™ — (—o00,00] be proper and x € dom f. f is differentiable at x if there is
a linear operator V f(z) : R™ — R™, called the derivative (gradient) of f at x, that

satisfies
i WG+ = @) = VIl

0.
0#]|y[|—0 Iyl

If f is differentiable at x, then the directional derivative of f at x in the direction of d is

[ d) = (V f(x),d).

Theorem 2.10.1
Let f: R™ — (—o00, 00| be convex. Suppose f(z) < oco. For each y, the quotient in
the definition of f’(x;y) is a non-decreasing function of A > 0. So f'(x;y) exists and

Theorem 2.10.2
Let f: R™ — (—o00, 0] be convex and proper. Let x € dom f and u € R™. Then u
is a subgradient of f at x if and only if

Yy € R™, f'(z;y) > (u,y).

Proof
By definition,

— Yy eR™ \>0, f(x+>\y§\)—f(x) (u, )

u€df(x) <= Yy eR" X>0, f(z+ \y) > f(z)+ (u, \y)
>

f(x+Ay) — f(z)
)
= Yy € R™, f'(x;9) > (u,y).

— Wy eR" inf > (u, y)

Theorem 2.10.3
Let f: R™ — (—o0, 0] be convex and proper. Suppose x € dom f. If f is differen-
tiable at x, then V f(x) is the unique subgradient of f at x.
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Proof
Recall that for each y € R™,

f@y) = (V f(x),y).
Let u € R™. By the previous theorem,
uedf(x) <= Yy eR", f'(x;y) > (u,y)
= Yy e R" (V[f(2),y) = (u,y).
It is clear that V f(z) € df(x). Conversely, by setting y := u — V f(x). We see that

(V@) u=Vf(x)) > (uu=V[(z)) < (u-V[(z)u-Vf(z)) <0
<~ u=Vf(z).

Lemma 2.10.4
Let ¢ : R — (—o00,00] be a proper function that is differentiable on an interval
@ # 1 Cdomp. If ¢ is increasing on I, then ¢ is convex on I.

Proof
Fix ,y € [ and X € (0,1). Let ¢ : R — (—o00, 00| be given by

2 dp(x) + (1= XNe(z2) — Az + (1 — N)2).

Then
() = (1= (2) = (1 = N)¢'(Az + (1= A)z)
and ¢'(z) = 0 = ¢(x).

Since ¢’ is increasing, ¥'(z) < 0 when z < x and ¢/(z) > 0 whenever z > x. It follows
that 1) achieves its infimum on I at x.

That is, for all y € I, ¥(y) > ¥(z) = 0. But then

Ap(z) + (1 = N)o(y) > d(Ar + (1 = N)y)

as desired.
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Proposition 2.10.5
Let f: R™ — (—o00, 00| be proper. Suppose that dom f is open and convex, and that f
is differentiable on dom f. The following are equivalent.

(i) f is convex

(ii) Yo,y € dom f,(z —y, Vf(y)) + f(y) < f(2)
(ili) Vo,y € dom f, (z —y, Vf(z) = Vf(y)) >0

Proof
(i) = (ii) V f(y) is the unique subgradient of f at y. Hence for all z € R™ and y € dom f,

flx) >z -y, VIy)+ fly).

(ii) = (iii) We prove this in assignment 2.

iii) = (i) Fix z,y € dom f and z € R™. By assumption, dom f is open. Thus there is
Y y
some € > 0 such that

y+(1+e)(rx—y)=z+¢ex—y) €domf
y—elr—y)=y+ely—x) € domf.
By the convexity of dom f, for every o € (—¢,1+4¢€), y + a(z — y) € dom f.

Set C'=(—¢,14+¢€) CR and ¢ : R — (—o00, 00| be given by
¢(a) == f(y + alr —y)) + do(a).

By construction, ¢ is differentiable on C' and for each a € C,

¢'(a) =(V[fly+alx—y),r—y).

Now, take o < f € C. Set

Yo :=y +alz —y)
ys =y + plr —y)
Ys — Yo = (B —a)(z —y).

Then by assumption,

©'(B) —¢'() =(Vfly+Bx—y)z—y) —(Vfly+alx—y))z—y)

=(Vf(ys) = VI(¥a),® —y)

1

_ m(Vf(yﬁ) — V[ (Ya) Y5 — Ya)

> 0.
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That is, ¢’ is increasing on C and ¢ is convex on C. But then

flaz + (1 - a)y) = p(a)
1

Example 2.10.6
Let A be a m x m matrix, and set f : R™ — R be given by

f(z) = (z, Az).

Then V f(z) = A+ AT and f is convex if and only if A + AT is posiitve semidefinite.
2.11 Conjugacy

Proposition 2.11.1
Let f, g be functions from R™ — [—o0, 00]. Then

(1) fo=()<f
(2) f<g = ff>2gf"<g™

Proposition 2.11.2 (Fenchel-Young Inequality)
Let f: R™ — (—o0, 00| be proper. Then for all z,u € R™,

f(@) + 7 (u) = (z,u).

Proof
By definition, f*(z) = —oc0 <= f = 0co. Hence by assumption f*(R™) > 0.

Now, let z,u € R™. If f(z) = oo, the inequality trivially holds. Otherwise,

fH(u) = sup (y,u) = fu) = (y,x) = f(2)

yeR™
as desired.

Proposition 2.11.3
Let f: R™ — (—o0, 0] be convex and proper. For z,u € R™,

uedf(z) < f(x)+ [ (x) = (z,u).
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Proof
We have

u € df(x)
— V%/E donlf,@/—-x,u>%—f(x)fgj(y)
— VyEdomf,(y,u)—f(y)S(x,u>—f(x)

= [f(u) = yselggn(y, u) — f(y) < (z,u) — f(z)

= [(u) = (z,u) = f(z). (,u) — f(z) < f(u)

Proposition 2.11.4
Let f: R™ — (—o00, o0] be convex and proper. Pick € R™ such that 0f(x) # @. Then

(@) = f(=).

Proof
Let u € df(x). By the previous proposition,

(u, 2) = f(x) + [*(u).

Consequently,
f(z) = sup (z,y) - f*(y)
yeR™
> (@, u) — f*(u)
= f(z).
Conversely,

[ (x) = sup (y,z) — f*(y)

yeR™

= sup (y,x) — sup ((z,y) — f(2))
yeRm 2€R™

= selllR[T)n@, x) + zlerﬁlj" (f(2) = (y,2))

= sup i (/) + {y.0 )
yERm z€

< s%gnf(:v) + (y,z — x)

= sup f(z)
yeR™

= f(=).
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Proposition 2.11.5
Let f: R™ — (—o00, 0] be proper. Then f is convex and l.s.c. if and only if

f — f**.
In this case, f* is also proper.
Corollary 2.11.5.1

Let f: R™ — (—o00, 00| be convex, l.s.c. and proper. Then
(i) f* is convex, l.s.c., and proper

(i) f* =1

Proof
To see (i), combine the previous proposition and the fact that f* is always convex and
Ls.c.

(ii) follows from the previous proposition.

Proposition 2.11.6
Let f: R™ — (—o0, 0] be convex, l.s.c., and proper. Then

u € Of(zr) <= x € df(u).

Proof
Recall that
u€df(z) <= fla)+ f*(u) = (z,u).

By a previous proposition, g := f* satifies g* = f. Moreover, ¢ is convex, l.s.c., and
proper.

Hence,

wedf(x) <= f(z)+ f*(w) = (r,u)
= g (x) +9(u) = (z,u)
< x € dg(u) =0f"(u)

as desired.
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2.12 Coercive Functions

Theorem 2.12.1
Let f: R™ — R be proper, l.s.c. and compact C' C R™ such that

C'Ndom f # @.

Then the following hold:
(i) f is bounded below over C

(ii) f attains its minimal value over C'

Proof
(i): Suppose towards a contradiction that f is not bounded below over C. There is a

sequence x,, in C' such that
lim f(x,) = —oo.

Since C'is (sequentially) compact, there there is a convergent subsequence z, — = € C.
But f is Ls.c., hence
f(z) < liminf f(zy,) = —o0

which contradicts the properness of f.

(ii): Since f is bounded below,
N fmin = Helgf(l'>

exists. There is a sequence z,, in C' such that f(x,) = fiin-

Again, there is a convergent subsequence x,, — & € C'. Then

F(@) < iminf f(2,) = foun

Thus 7 is a minimizer of f over C.

Definition 2.12.1 (Coercive Function)
Let f: R™ — (—o0,00]. Then f is coercive if

Hxlﬁgloo fl@) = co.
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Definition 2.12.2 (Super Coercive)
Let f:R™ — (—o00,00]. Then f is super coercive if

flz) _

lzll—o0 |||

Theorem 2.12.2
Let f : R™ — (—o00, 00| be proper, L.s.c., and coercive. Let C' C R™ be a closed subset
of R™ satisfying

C Ndom f # @.

Then f attains its minimal value over C.

Proof
Let x € C'ndom f. Since f is coercive, there is some M such that

Yy lyll > M = f(y) > f(x).

But then the set of minimizers of f over C' is the same as the set of minimizers of f over
C'N B(0; M). This set is compact. Hence by the previous theorem, f attains its minimal
value over C.

2.13 Strong Convexity

Definition 2.13.1 (Lipschitz Function)
Let T: R™ — R™ and L > 0. Then T is L-Lipschitz if for all z,y € R™,

[Tz — Tyl < Lilz —yl|

Example 2.13.1
Let f: R™ — R be given by

T %(x,Aw) + (b,z) +x

where A > 0 is positive semi-definite, b € R" and ¢ € R.

Then
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(i) Vf(x) = Az for all z € R™
(ii) Vf is Lipschitz with constant ||A]|, the operator norm of A

Example 2.13.2

Let @ # C C R™ be closed and convex. Then Pg is Lipschitz continuous with constant
1.

Lemma 2.13.3 (Descent)

Let f : R™ — (—o0,00] be differentiable on @ # D C intdom f such that V f is
L-Lipschitz. Moreover, suppose that D is convex.
Then for all x,y € D,

F(w) < F@) + (VF(@)y— )+ 5lle ]

Proof
Recall that the fundamental theorem of calculus implies that

F) = @) = [ (V1o + 1y =)oy — o)
=(Vf(r),y —x) + /0 (Vfilx+tly—=x)) — Vf(z),y— x)dt.
Hence

|fy) = f(z) = (Vf(2),y — )|
/0 (Vi(x+ty—=) = Vfx),y— x)dt’

< / (Vf(x+ty —2)) — V(). y — 2)|dt

< / IV + 1y — ) — VI@)] - lly — xlldt

< / Lz +tly —z) — x| - ||y — x||dt f is L-Lipschitz
0
1
— [ Lo =y
0
L
Loy
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It follows that I
fly) = fl2) + (Vf(@)y —2) + Sllz = ylI>.

Theorem 2.13.4
Let f : R™ — R be convex and differentiable and L > 0. The following are equivalent:
(i) Vf is L-Lipschitz

(i) for all z,y € R™, f(y) < f(z) + (V f(x),y — z) + ]|z — y|I?
(iii) for all x,y € R™, f(y) > f(x) + (V f(x),y —x) + ﬁ”vf(fﬁ) - Vil
(iv) for all z,y € R™, (V f(z) = Vf(y),z —y) > 1[IV f(z) = Vf(y)|?

o~

Proof
(i) = (ii): This is the descent lemma.

(il) = (iii): If Vf(x) = V f(y), the this follows immediately from the subgradient in-
equality and the fact that 0f(z) = {V f(x)}.

Fix z € R™ and define

ha(y) == f(y) — f(x) = (Vf(z),y — ).

Observe that h, is convex, differentiable, with

Vh.(y) =V fy) =V f(z)

We claim that for all y, z € R™,

he(2) < halt) + (Vhaly), = — ) + 52 — ol

= [(y) = f(2) = (Vf(2),y =) = (Vf(2), 2 =y) +(V[(y),z —y) + §||z —yl?
= fy) = flx) = (Vf(x),y —2) + (V[(y) = V[(z),z —y) + gHz —yl?

— hal9) + (Vo). = =)+ S~
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By construction, Vh,(z) = 0. But the convexity of h, then asserts that = is a global
minimizer of h,. That is, for all z € R",

Pick y,v € R™ be such that ||v|| = 1 and (Vh,(y),v) = ||Vh.(y)|. Set

h
IV,

From the fact that x is a global minimizer, we have

0= hy(x)
h
< (y- 1700,
On the other hand, the earlier inequality yields
0= h(x)
IV A (y)l 1
< hely) ST ha ), 0) + ST haw) Pl
_ [Vhe(y)|I* |, 1 2

= huly) — 5 IVR )P

=[fy) = f(z) = (V[(2),y =) - %va(x) = Va)lI*
(ili) = (iv): Using (iii),

F) 2 7(x) + V() y — ) + 5|V @)~ V)P

F@) > F0) + (VS )2 ) + 57 VI ) ~ VI @)

(iv) = (1): If Vf(2) = V f(y), the implication is trivial. We proceed assuming otherwise.
We have

V()= Vi* < L{Vf()—Vily),z—y)
< LIV ()= Vi)l - llz =yl
IV f(z) =V iyl <Lz —yl.
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Example 2.13.5 (Firm Nonexpansiveness)
Let @ # C' C R™ be closed and convex. Then for each x,y € R™,

1Pe(@) = Pey)|I* < (Po(z) — Pely), = —y).

Example 2.13.6
Let @ # C' C R™ be closed and convex. Let f : R™ — R be given by

1
f(r) = o).
Then the following holds

(i) f is differentiable over R™ with V f(z) = x — Po(x) for all x € R™
(ii) V f is 1-Lipschitz

Indeed, for x € R™, define

It can be shown that

Iyl
as y — 0 by bounding |h,(y)| < %H@JHQ

To see the 1-Lipschitz continuity of V f, we would apply the non-expansiveness of projec-
tions onto closed convex sets.

Theorem 2.13.7 (Second Order Characterization)
Let f : R™ — R be twice continuously differentiable over R™ and let L > 0. The
following are equivalent.

(i) Vf is L-Lipschitz
(ii) for all x € R™, ||[V2f(z)|| < L (operator norm)

Proof
(i) = (ii) Suppose that V f is L-Lipschitz continuous. For any y € R™ and « > 0,

IV f(z+ay) = V()] < Lz +ay -zl = aLly].
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That is,

192 (@) ()] = tim IV L@+ a9) = V@)

o
<l L +jy — x|
— lim Ll
= Lllyll
Equivalently, Ve < L

as desired. Note that we used the fact that V2 f(x)(y) = (V.f) (z;9).

(ii) = (i) Suppose that ||V?f(z)|| < L and fix z,y € R™. By the fundamental theorem
of calculus,

Vi(x) = Vi / V2f(y + alz — )@ — y)da
— Vi) + /v? (v + a(z - y))da <x—y>
Hence

IV f(z) = V)l <

/0 V3£ (s + alz - y))dal - |z — y]

1
< / IV2f (e + a(e — y)lldale -y
0

< Ljjz —yl|

Proposition 2.13.8
For a symmetric A € R™*™,

sup ||Az|| = max |)\ |
llzll=1

where ); are the eigenvalues of A.

Proof

Write z as a linear combination of some orthonormal eigenvector basis of A.
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Proposition 2.13.9
A twice continuously differentiable function f : R™ — R is convex if and only if V*f(x)
is positive semi-definite.

Proof
See A3.

Corollary 2.13.9.1
Let f : R™ — R be convex and twice continuously differentiable. Suppose L > 0. Then
V f is L-Lipschitz if and only if for all x € R™,

Amax(V2f (7)) < L.

Proof
Since f is convex and twice continuously differentiable, V*f(x) is positive semidefinite
everwhere. Combined with the earlier result,

L> ||V f(z)|
= [Anax(V2 f ()]
- /\max(vzf(‘r))'

Example 2.13.10
Let f: R™ — R be given by

x> /1 |22

Then

(i) f is convex
(ii) V f is 1-Lipschitz

Proposition 2.13.11
Let 8> 0. f:R™ — (—o00,00] is f-strongly convex if and only if

g
=L

1S convex.
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Proof
See A3.

Proposition 2.13.12
Let f,g: R™ — (—o00,00] and § > 0. Suppose that f is -strongly convex and that g is

convex. Then f + g is S-strongly convex.

Proof
Define

b= (1= 51F)

Then h is convex as it is the sum of two convex functions. Thus applying the previous

proposition yields the result.

Proposition 2.13.13
Let f : R™ — (—o00,00] be strongly convex, l.s.c., and proper. Then f has a unique

minimizer.

2.14 The Proximal Operator

Definition 2.14.1 (Proximal Point Mapping)
Let f : R™ — (—o00,00]. The proximal point mapping of f is the operator Prox; :

R™ = R™ given by

. 1
Prox;(z) := argmin, cgm{ f(u) + §||u —z|*.

Theorem 2.14.1
Let f : R™ — (—o00,00] be convex, l.s.c., and proper. Then for every z € R™,

Proxy(z) is a singleton.

Proof
For a fixed z € R™,

1
ho 1= 5l = ol

is B-strongly convex for all § < 1. Therefore,
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is strongly convex for every x € R™.

We know that g, is l.s.c. as f, h, are l.s.c. Moreover, g, is proper as f, g is proper with
dom f N'dom g, = dom f. Thus from the previous proposition,

argmin,cgm g, =: Prox;(z)

exists and is unique.

Example 2.14.2
For @ # C' C R™ closed and convex,

Proxs, = Pc.

Proposition 2.14.3
Let f: R™ — (—o00, 00] be convex, Ls.c., and proper. Let z,p € R™. Then p = Prox;(z)
if and only if for all y € R™,

(y —p,x—p)+ f(p) < f(y).

Proof
(=) Suppose that p = Proxs(x). For each A € (0,1), set

pa = Ay + (1= A)p.

Thus
1 2 1 2
f(p) < f(py) + §||l‘ —mall* = §||x — 7|
1 1
< f)+5le=ry— (- Nl - 5l —p|)?

= o)+ 3le =P =My =p) = (&= p).z—p =My =) + (=~ 7))

= )+ (=M~ ), 2w —p) ~ Ay )

= 7pa) + Sy~ ol = A~ py —p)

= FOw+ (L= M)+ >y = 8l Ao~ py 1)
F(B) < M) + (L= N ) + 5y~ I~ Aw —p.y — )

2
M= .y =) + AF(B) < AT() + 5y —
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Division by A and taking the limit as A — 0 yields the result.

( <) Suppose that
(y—p,z—p)+ f(0) < fly).

Then
fip) < fly) =y —p,x—p)=fly) +(x—p,p—y).

It follows that

F®)+ 5l = bl < f) + (@ = o —9) + 5o P

1 1
<FW) + & =pp=y) +le—pl*+ Sl - vl
< fy) +llz—p+p—yl’
= f(y) + llz — yII*
Example 2.14.4
Let f: R™ — R be given by
x|z

Then
r—1, =>1

Proxs(z) := < 0, z € [-1,1]
z+1, z<-—-1

We need only apply the previous proposition and consider 3 cases.

Proposition 2.14.5
Let f: R™ — R be convex, l.s.c., and proper. Then x minimizes f over R™ if and only
if

x = Proxs(x).

Proof
By the previous proposition,

r =Proxs(z) <= Yy e R" (y—z,2 —z) + f(z) < f(y)
> WYy eR™, fz) < f(y).

Convexity is crucial for the proximal operator to be well-defined.
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Example 2.14.6
Let g,h : R — R be given by

0, x#0
g(z) == {A, I
W) = {: zio
for some A\ > 0.
Then
{z}, ol >Vv2x
Prox,(z) = { {0,z}, |z| =2\
{0}, |zl <Vv2x
Proxy,(z) = {{@x}, z i 8

Example 2.14.7 (Soft Threshold)
Let f: R — R be given by
x = Az

for some A > 0.

For all x € R,
rT—A x>\
Proxs(z) =< 0, x € [=A, A
T+ < —=A
Note that the above formula can be written as

Proxy(x) = sign(x)(|z] — \)+

where sign(y) is 1, —1 depending on the sign of y and [—1, 1] if y = 0. Moreover, (y); =y
if y > 0 and is 0 otherwise.
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Theorem 2.14.8
Suppose f : R™ — (—o00, 00| is given by

f(x) = Z fi(z:)

for fiR — (—o0, 0] convex, l.s.c,, and proper.
Then for all x € R™,
Prox;(x) = (Proxy, (z;))iZ;.

Proof
From A2, f is convex, l.s.c., and proper. We know that

p = Proxs(z) <= Yy e R™ f(y) > f(p)+ (y —p,x —p)

= Yy eR™ )Y fily) > Y filpi) + (i — pi) (@i — pi)-
i=1 i=1 i=1
In particular, for some j € [m/], let y; € R and y; = 0 for all ¢ # j. Then
filyi) = fi(pi) + (i — pi) (i — i)
which happens if and only if p; = Proxy, (z;).
Conversely, if fi(y;) > fi(pi)+ (yi —pi)(x; —p;) for each i € [m], then clearly p = Prox;(z).

Example 2.14.9
Let g : R™ — (—00, 00| be given by

—ad "1 i >0
. < Yo logz;, =«
0, else

where o > 1.

Then m
. 24
Prox,(z) = (ml i ;’ i a)
i=1
since
. 244
Proxg, (z;) = it ;Z i e

This can be proven by differentiating to find the minimizer of h;(y;) := ¢;(yi) + 5 (yi — 2;)*.
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Theorem 2.14.10
Let g : R™ — (—o00, 0] be proper and ¢ > 0. Let a € R™, v € R. For each z € R™,
define .

f(@) = g(@) + S ll=” + (@, @) + .

Then for all x € R™,

Proxs(x) = PrOXc}rlg <acj_{__ ;L) :

Proof
Indeed, recall that

1
Proxy(z) := argmin,gm f(u) + §||u — x|

) & 1
= argmin, cgm g(u) + §||u||2 + {a,u) + v+ §Hu — x|

Now,

1 1 1
Sl + (aw) + Sl =2l = Sl + {au) + S ull? = {2 + S

e+l 1, 5
L = wo = a) + Sl
c+1 9 T—a 1 9
= -2
ol -2 222 ) + ol
c+1 z—al® |z —al? 1 )
= - - + ]l
2 c+1 c+1 c+1

2 2
le—al® 1, .

c+1 T —a
= u —
2 c+1

Finally, since minimizers are preserved under positive scalar multiplication and transla-
tion,
2

_ c+1 r+a r—al* 1
Prox;(z) = argmin, cpm g(u) + 5 Hu oI — HT + 5”3;\’2
) c+1 z+al|?
= argmin,cpm g(u) + oul |
) 1 1 z—all
= argmin, pm H—lg(u) + o1 |

T+ a
= Proxcilg (04—1)'
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Example 2.14.11
Let p € R and a > 0. Consider f: R — (—o0, 0] given by

() = {,ux, x € [0,q]

oo, else

For each =z € R,
f(x) = pa + 0p,q ().

Moreover,
Proxs(z) = min(max(x — u,0), «).

Indeed, apply the previous theorem with g = djp4] and ¢ =y = 0. Then
Proxs(z) = Prox,(x — p) = Po(z — p).

Theorem 2.14.12
Let g : R — (—o00, 00| be convex, l.s.c. and proper such that dom g C [0, 00) and let
f:R™ — R be given by

f(@) = g(=1l).
Then
Prox; (z) = {Proxgmxm”%, 20
{u€ R™: |u]) = Prox,(2)}, x=0
Proof

Case I: x = 0 By definition,

_ 1
Proxs(z) = argmin,cpm f(u) + §||u|]2
By the change of variable w = [|u||, then above set of minimizers is the same as

1
argmin, cpm g(w) + §w2 =: Prox,(0).
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Case II: x # 0 By definition, Prox;(z) is the set of solutions to the minimization problem

: 1 2
min g(|[ul)) + 5llu — 2|

. 1 2 1 2
= min g(fluf]) + Sllul” = (u,z) + 5 l|

1 1
B rorllzigueRIw?:\i|2||:ag(a) + §O‘2 — (u, ) + 5”37”2

Now, (u,z) < ||u]| - ||z|| by the Cauchy-Schwartz inequality with equality when u = Az
for some A > 0. Thus

2

T i 1 1 9
A » = min )+ —a” —(u,x) + =||x||”.
{ H93||} werily_, 90) 50" — o) 5l

The values of a which minimize ozH;’Lf—” are then given by

. 1, 1o
min g(a) + 5o — afll| + S|

. 1 5
= min g(a) + 5 (a = [|lz[))".

This is precisely Prox,(||z]]).

Hence
T

Pros(z) = Pro, (/) 7

]

as desired.

Example 2.14.13
Let a > 0,A >0, and f: R7(—o00, o0] be given by

f() = {)\|:p|, lz] < «

00, |z| >«
Then f is convex, l.s.c. and proper (see A3).

Define
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so that f(x) = g(]z|). By the previous theorem,

Prox,(|z|) sgn(z), x #0

Prox((x) =
(@) {07 0

= min(max(|z| — \,0), @) sgn(z).

Example 2.14.14
Let w,a0 € RT and f: R™ — (—o0, 00| given by

Fa) = {ZZ’H wilz|, —a<z<a

0, else
Then Prox;(z) = (min(max(|z;| — w;, 0), o;) sgn(x;));, (see A3).

Moreover, consider the problem
m
minZwi|a:i| (P)
i=1
|| <y, Vi € [m)]

Let the sequence (x,),>0 be recursively defined by zy € R™ and z,,+1 = Proxy(z,). Then
&, — Z where 7 is a minimizer of (P).

2.15 Nonexpansive & Averaged Operators

We use Id : R™ — R™ to denote the m x m identity matrix.

Definition 2.15.1 (Nonexpansive)
Let T : R™ — R™. Then T is nonexpansive if for all x,y € R™,

Tz — Ty|| < ||z — y|

Definition 2.15.2 (Firmly Nonexpansive)
Let T : R™ — R™. Then T is firmly nonexpansive (f.n.e.) if for all z,y € R™,

1Tz — Ty|* + [|(Id =T)z — (Id =T)y||* < [l= — y|I*
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Definition 2.15.3 (Averaged)
Let T: R™ — R™and o € (0,1). Then T is a-averaged if there is some N : R™ — R™
such that N is nonexpansive and

T=(1l-a)ld4+aN.

Proposition 2.15.1
T : R™ — R™. The following are equivalent.
(i) T is fn.e.

(ii) Id =T is f.n.e.

(iii) 27" — Id is nonexpansive

(iv) for all z,y € R™, ||[Tz — Ty||*> < (x —y,Tx — Ty).

(v) for all z,y € R™, (Tx — Ty, (Id —T)z — (Id —=T)y) > 0

Proof
(i) <= (ii): This is clear from the definition.

(i) <= (iii) <= (iv) <= (v): See A3.

We can refine the previous result when 7' is linear.

Proposition 2.15.2
Let T : R™ — R™ be linear. Then the following are equivalent.
(i) T is fn.e.

(i) |27 —Id]| <1
(iii) for all z € R™, ||Tz||*> < (z,Tx)
(iv) for all x € R™ (Tx,x — Tz) >0

Proof
(i) <= (ii) We know that 7" is f.n.e. if and only if 27" — Id is nonexpansive. This happens
if and only if for all x # y,

12T = 1d)(x —y)|| = 2T = Id)z — (2T — 1d)y||

<z -yl
g
127 — 1d|| < 1.
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(i) <= (iii) This is easily seen by the previous proposition and the fact that Tz — Ty =
T(x—y).
(

iv) This is seen by applying the previous proposition and observing that Tz —
Ty =T(x —vy) as well as

(Id-T)r—(Id-Ty=z—y—T(x—y).

Observe that T is f.n.e. if and only if N := 27'—1d is nonexpansive if and only if 27" = Id + N
for N nonexpansive if and only if T" = %Id —|—%N for N nonexpansive if and only if T is %—
averaged.

Example 2.15.3
Let @ # C C R™ be convex and closed. Then Py (z) is f.n.e. Indeed, for all z,y € R™,

1P () = Po(y)|| < (Po(x) = Pely),» — ).

Example 2.15.4
Suppose that T = —% Id. Then T is averaged but NOT f.n.e.

We have ) 3
T=-Id+-(-1
3 d+4( d)

and so T' is %—averaged.

But 7" is not f.n.e. as for all 0 £ x € R™,

1 9
IT2|* + Il = Tll* = Zlll” + 7 lll”

)
= Sl
> [l

Example 2.15.5
T := —Id is nonexpansive but NOT averaged. Indeed suppose there is some nonexpansive
N :R™ — R™ and « € (0, 1) such that

T'=(1-a)ld+aN <= —Id=(1—-«o)ld+aN
— (-1+a)ld=aN
o—2

— N = Id.

(%
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But then

<1

oa—2
V] = \

«Q
2—«

= <1

o
— 2—a<a

<— a>1
which is impossible by the definition of averaged.

Proposition 2.15.6

Let T': R™ — R™ be nonexpansive. Then T is continuous.

Proof
Suppose x, — Z. Then

Tz, — T7| < |Jan — ]| — 0.

Definition 2.15.4 (Fixed Point)
Let T': R™ — R™ then

FixT :={zx e R" : z =Tx}.

2.16 Féjer Monotonocity

Definition 2.16.1 (Féjer Monotone)

respect to C' if for all c € C,n € N,

21 = el < lzn = cfl.

Let @ # C C R™ and (z,)nen a sequence in R™. Then (z,,) is a Féjer monotone with

Example 2.16.1

defined recursively by
T = T(xp—1)

is Féjer monotone with respect to FixT'.
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Proposition 2.16.2
Let @ # C C R™ and (z,,),>0 & Féjer monotone sequence in R™ with respect to C. The
following hold:

(i) (x,) is bounded

(ii) for every c € C, (||xn — ¢||)n>0 converges

(iii) (de(xn))n>o0 is decreasing and converges

Proof
Fix ¢ € C. We have

lnll < llefl + flzn =l
< llefl + llzo = €.

Hence (x,,) is a bounded sequence.

Now, ||z, — ¢ is bounded below by 0 and monotonic, hence necessarily converges to the
infimum.

Observe that for each n € N,c € C,
[ 2041 — ¢l <z — -
Taking infimums on both sides preserve this inequality.

Recall the following analysis fact.

Proposition 2.16.3
A bounded sequence (x,,)nen in R™ converges if and only if it has a unique cluster point.

Proof
The forward direction is clear. Suppose now that (x,),ey has a unique cluster point Zz.

Suppose that z, 4 Z. Then there is some ¢y > 0 and subsequence xj, such that for all n,
2k, — 7] = €o.

But then (zy, )nen is bounded and hence contains a convergent subsequence. This is still

a subsequence of (z,),eny but cannot converge to .

It follows that (2,)nen has more than one cluster point. By contradiction, z,, — .
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Lemma 2.16.4

Let (x,)nen be a sequence in R™ and @ # C C R™ be such that for all ¢ € C,
(llxn, — ¢||)nen converges and every cluster point of (z,),ey lies in C.

Then (x,)nen converges to a point in C'.

Proof
(x,,) is necessarily bounded since ||z,| < ||¢|| + ||z, — ¢|| is bounded. It suffices by the
previous proposition to show that (x,),en has a unique cluster point.

Let x,y be two cluster points of (z,)nen. That is, there are subsequences

T, —> T, Ty, — Y.

By assumption, z,y € C. Hence ||z, — z||, ||z, — y|| converges.

Observe that

2<In,$ - y>

= llznll® + 191> = 2(z0, y) = 2all® = ll2l* + 2(zn, 2) + l2]I* = [ly]I*
= lzn =yl = llon — =l + [l2)1* = lyll?

— L e R™.

But then taking the limit along k,, ¢,

<x,x—y> - <yax_y>
|z —y[I* =0

T =1y.

Theorem 2.16.5

Let @ # C C R™ and (z,)nen @ sequence in R™. Suppose that (x,).en is Féjer
monotone with respect to C, and that every cluster point of (z,)nen lies in C. Then
(n)nen converges to a point in C.

Proof
We know that for all ¢ € C,
[ — €]l

converges. Hence the result follows from the previous lemma.
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Let z,y € R™ and a € R. By computation,
laz + (1 = a)yl* + a(l — a)|lz — ylI* = aflz]* + (1 — a) [y]*.

Theorem 2.16.6
Let o € (0,1] and T : R™ — R™ be a-averaged such that FixT # &. Let zq € R™.

Define
Tna1 = Tx,.

The following hold:
(i) (2n)nen is Fejér monotone with respect to Fix T

(ii) Tx, — z, — 0.

(iii) (zn)nen converges to a point in Fix 7.

Proof
Now, T being averaged implies that it is nonexpansive. The example earlier shows that

(Zn)nen is Féjer monotone.
By the definition of averaged, there is some nonexpansive N : R™ — R™ such that
T=(1-a)ld4+aN.

Hence for each n € N,
Tpi1 = (1 — @)z, + aN(x,).

Let f € FixT.
[2ni1 = FI? = (1 = @) (@n — f) + a(N(z,) = f)]?
= (1= a)llzn — fIP +al[N(z,) = N(H)IIP = a(l = a)[[N(z,) — x|
< (1= a)llzy = fIP + allzy = fI? = a(l = ) [N (z,) — 2,
= [lzn = fII? = a(l = @) [N (z,) — 2|
a(l = a)|[N(z,) = znl* < llon = FIP = [l — fI.

By a telescoping sum argument,

k
> a(l=a)[|N(zo) = zul® = llwo = fI* = lzsn — fI°
n=0

< flzo — 1%

By our work with non-negative monotone series, it must be that || N(x,) — x,| — 0.
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In particular,

HTxn - an = H(l - O‘)xn + O‘N(xn) - an = O‘HN(xn) - an
— 0.

Now, (z,,)nen is Féjer monotone with respect to FixT' = Fix N. Let Z be a cluster point of
(Zn)nen, say xy, — T. Observe that N being nonexpansive implies that N is continuous.

Since Nx,, — x,, — 0, we must also have Nxy, — zy, — 0. Thus
Nzy, = (Nxy, — ) + o, — 0+ T.
By continuity,

Nz =1lim Nz, = 7.

That is, every cluster point of (z,),en lies in Fix N = Fix T. Combined with a previous
theorem, this yield the proof.

Corollary 2.16.6.1
Let T : R™ — R™ be fn.e. and suppose that FixT # @. Put zy € R™. Recursively
define

Tpt1 = T'x,.

There is some Z € FixT such that
Ty — T.

Proof
Since T' is f.n.e., T is also averaged. The result follows then by the previous theorem.

Proposition 2.16.7
Let f:R™ — (—o00, 00| be convex, Ls.c., and proper. Then Prox; is f.n.e.

Proof
Let z,y € R™. Set p := Proxs(z) and ¢q := Proxs(y).

By our work with the proximal operator, p, q are characterized as Vz € R™,

(z—=p,o—p)+ f(p) < f(2)
(z—qy—q) + flq) < f(2).
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By choosing z = p, q,

(¢—px—p)+ fp) < fla)

p—ay—a) +flg) < fp)
(g—p(z—p)—(y—q) <0
p—q,(x—p)—(y—q) =0.

But then by our characterization of f.n.e. operators, Prox; is f.n.e.

Corollary 2.16.7.1
Let f : R™ — (—o00,00| be convex, ls.c., and proper such that argmin f # &. Let

xg € R™ and updated via
Tny1 = Proxs(x,).

There is some T € argmin f such that x,, — 7.

Proof
Recall that
r € argmin f <= x = Proxs(r) <= = € FixProx;.

Thus argmin f = Fix Prox; # @.

By the previous proposition, Prox; is fn.e. Thus the result follows from a previous
theorem.

2.17 Composition of Averaged Operators

Consider the following identity for all z,y € R™, a € R\ {0}:
1 1| 1—a
cﬁOuW—HOf;Qx+ay:):aQMP— o= ol = 1ul?)

Proposition 2.17.1
Let T : R™ — R™ be nonexpansive and « € (0,1). The following are equivalent:

1. T is a-averaged

2. (1 - i) Id —i—éT is nonexpansive
3. For each 2,y € R, | Tw — Ty|]* < [}z — yl|* - 52(1d~T)e - (1d~T)y?
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Proof
(i) <= (ii): We have T is a-averaged if and only if there is some N : R™ — R™ nonex-

pansive such that

T=(1-a)ld+aN

1
< N=—(T—-(1-a)ld)
8]
1 1
<~ N = <1——>Id+—T
8] «

if and only if (1 — é) Id —|—§T is nonexpansive.

(i) <= (iii) By definition (1 — 1) Id +17 is nonexpansive if and only if for all z,y € R™,
= ylI?
1 1 1 1
> H(l——)$~l——Tx— (1——)y——Ty
a « « a

-2yt

2

1 1 -« . .
o=l = = (Il =l = 22w = 7o) = = T = [T = T) identicy
1 , 11—« 9 9
0> X (e =yl - 122w 7o) - - T~ T2 - T
1 -«
0< e — gl + 122 — Tw) — (y — T — Tz~ T 0 >0

Theorem 2.17.2
Let ag, a0 € (0,1) and T; : R™ — R™ be «;-averaged. Define

T := T1T2
o o]+ g — 20(1042
N 1— 109

Then T is a-averaged.

Proof
First observe that by computation,

ae(0,1) <= a(l—a) <1l—a

which is a tautology.
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By the previous proposition, for each z,y € R™,

Tz — Ty|?
= ||T1T2[E — T1T2y||2

1—041

< | Tox — Toyl* — I(Id =Th)Tox — (1d =T1) Ty ®

651

1(0d =Ty)x — (Id —Tr)y||* —

(6%) a1

= |z —y[|* = V1 — Va.

11—« 1l -«
<l — g2 - =22 L|(1d =T3) Ty — (1d 1) Doy

Set
_]_—041 ]_—042

b= + > 0.

aq (8%

By computation,

(1—a1)(1 —ay)
Paiag

Vit Vo> I(Id =Tz — (Id =T)y|]*.

Consequently,
(]_ — Oél><]_ — 062)
Baray

L 1 -T)e — (1 -T2

1Tz = Ty||* < |lv — ylI* — 1(Id =T)z — (1d =T )y

= llz—yl* -
o}

By the previous proposition, we are done.
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Chapter 3

Constrained Convex Optimization

We now consider the problem

min f(z) (P)
relC

where f : R™ — (—o0, 00] is convex, Ls.c., and proper with C' # & being convex and closed.

3.1 Optimality Conditions

Recall that if riC' Nridom f # &, then £ € R™ solves (P) if and only if

(0f(7)) N (=Ne(z)) # 2.

We now explore weaker results in the absence of convexity.

79



Theorem 3.1.1
Let f: R™ — (—o0, 00] be proper and g : R™ — (—o0, 00| convex, l.s.c., proper with
dom g C int(dom f). Consider the problem

min f(z) + g(z). (P)
reR™

(i) If f is differentiable at z* € domg and z* is a local minima of (P), then

—Vf(z*) € 9g(z7)

(ii) If f is convex and differentiable at z* € dom g then z* is a global minimizer of

(P) if and only if —V f(z*) € dg(z*)

Proof (i)
Let y € dom g. Since g is convex, we know that dom g is convex. Hence for any A € (0, 1),

r+ ANy —2")=(1-=Nz"+ Ay

=T
€ domg.
Hence for sufficiently small A,
f(@a) +9(za) = f(z7) + g(2")
f(@a) + @ = A)g(a®) + Agly) = f(z*) + g(z")
Ag(x™) = Ag(y) < flan) — f(a")
= fl(a"y —a7) A— 0"

In other words, for all ¥y € dom g,

9(y) = g(@*) +(V f(2"),y — z7)
_—
=V f(z*) € dg(x")

Proof (ii)
Suppose that f is convex and observe that (i) proves the forward direction.
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Now suppose —V f(2*) € dg(x*). By definition, for each y € dom g,

9(y) > g(z") + (=V f(z"),y — 2).

Moreover, since f is differentiable at x* one of our characterizations of the convexity of f
is that for any y € dom g C intdom f,

fly) = f@) +(Vf(z7),y — 27).

Adding the inequalities yield that for all y € dom g,

fy) +gly) > f(2") + g(27)

and x* solves (P).

3.1.1 The Karush-Kuhn-Tucker Conditions

In the following, we assume that
f?gl7"'7gn:Rm—>R

are of full domain.

Consider the problem

min f(z) (P)
gi(x) < Vi € [n]

We assume that (P) has at least one solution and that
po=min{f(z):Vie I, f(x) <0} eR
is the optimal value. Put

F(z) := max{f(x) = p, 91 (), ..., gn(x)}.

=:go(z)

Lemma 3.1.2
For all z € R™, F(z) > 0. Moreover, the solution of (P) are precisely the minimizers
of

F:={z: F(z) =0}.
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Proof
Let z € R™.

Case la: x is infeasible Then there is some j € [n] such that g;j(x) > 0. Hence F(z) >
gi(z) > 0.

Case Ib: z is not optimal Then g¢;(z) <0 but f(x) > . Thus F(x) > go(z) > 0.

Case II:  solves (P) Then z is feasible and f(x) = p. Hence F'(z) = 0.

Proposition 3.1.3 (Max Rule for Subdifferential Calculus)
Let g1,...,9n : R™ — (—00, 00| be convex, l.s.c., and proper. Define

9(x) = max{gi(z), ..., gn(x)}
=y

A(z) ={i € [n] : gi(z) = g(x)}.
Now, let

7 & ﬂ int dom g;.

n=1

We have

Theorem 3.1.4 (Fritz-John Optimality Conditions)
Suppose that f,gi,..., g, are convex and x* solves (P). There exists

g, ..., >0

not all 0 for which

0 € apdf(z*) + Z ;0g;(x*)
=1

;gi(z*) =0 Vi € [n]

(complementary slackness)

Proof
Recall that F(x) := max{f(x) — u, gi(z),...,gn(x)}. By the previous lemma,

F(z*) = 0 = min F'(R").
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Hence

0 € OF (2%) = convica(a+) 9g:(x").
where A(z*) :={0<i<n:g/(z*) =0}
Note that 0 € 0f(x*) since fo(x*) = f(2*) —pn=0. So

0e (9g0 :af

By our work with convex hulls, there is some ay, ..., a, such that } . A X = 1 (so
a; =01if j ¢ A(z*)) and that

0e Z ozlc()gz(x*)

1€A(x*)

= ap0go(z™) + Z a;0g;(x")
1€ A(z*)\{0}

= ap0go(z") + Z a;0g;(x").
i=1

Now to see complementary slackness: If i € A(z*) N [n], then g;(z*) = 0. Else if ¢ €
[n] \ A*(x), then a; = 0. In all cases,

a;gi(z") =0
for all i € [n].

Theorem 3.1.5 (Karush-Kuhn-Tucker; Necessary Conditions)

Suppose f, g1, .., g, are convex, and z* solves (P). Suppose that Slater’s condition
holds, ie there is some s € R™ such that for all i € [n],

gi(s) < 0.

Then there exists A, ..., A, > 0 such that the KKT conditions hold: (stationarity
condition)

0€0f(z")+ ) Ndgi(z")
el

and (complementary slackness condition) for each i € [n],

)\igi(x*) = 0.
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Proof
By the Fritz-John necessary conditions, there are «ag, aq, ..., @, > 0 not all 0 such that

0 € apdf(z*) + Y cidgi(x”).
=1

and for all i € [n],
a;g;(z") = 0.

We claim that ag # 0. Then it is necessary that

* < Q *
0€df(z")+ ) a—oagi(x ).
=1

Suppose towards a contradiction that ay = 0. There exist y; € dg;(x*) such that

Z a;y; = 0.
i=1
By the definition of the subgradient, for all y € R™,

gi(z™) 4+ (i y — ) < gi(y).

Thus for each i € [n],
9i(") + (yi, s — =) < gi(s).

Multiplying each inequality by a; and adding them yields
0= Zaigi(w’*) + <Z QYi, S — x*>
i=1 i=1

< Z a;gi(s)
i—1
<0

which is absurd.

By contradiction, oy > 0 and we are done.
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Theorem 3.1.6 (Karush-Kuhn-Tucker; Sufficient Conditions)

Suppose f,g1,...,g, are convex and x* € R™ satisfies
Vi € [n],g:(z*) <0 primal feasibility
Vi € [n],A; >0 dual feasibility
of (x*) + 2”: Xi0gi(z*) 3 0 stationarity
i=1
Vi € [n], Aigi(z*) =0 complementary slackness

Then z* solves (P).

Proof
Define

hz) = f(2)+ Y Aigilw)
i=1
Then h is convex since non-negative multiplication preserves convexity.

Apply the sum rule to obtain that
dg(x) = 0f (z) + ) XNidgi(x).
i=1
By assumption,
0 € Oh(a®) = Of(x*) + Y _ \idgi(x").
i=1

Thus by Fermat’s theorem, z* is a global minimizer of H.

Let x be feasible for (P). Then

flx®) = f(z") + Z Aigi(x™)

x™)

(x)
= f(z) + Z Aigi(z)
f(x).

IA I
> =
—

IN
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3.2 Gradient Descent

Consider the problem

min f(z) (P)
reR™

Definition 3.2.1 (Descent Direction)
Let f: R™ — (—o00,00] be proper and let z € intdom f. d € R™ \ {0} is a descent
direction of f at x if the directional derivative satisfies

f'(z;d) < 0.

Remark that if 0 # V f(z) exists, then V f(z) is a descent direction. Indeed,

(2 =V f(z)) = =[IVf(@)|]* <0.

Also remark that for convex f and z € dom f,

Pl = iy 2O =)

Thus f(z,d) < 0 implies that there is some € such that A € (0, ¢) implies that

[+ Ad) — f(x)

) <0 <= f(z+ M) < f(2).

The gradient /steepest descent method consists of the following:

1. Initialize xog € R™.

2. For each n € N:
(a) Pick t,, € argmin,sg f(zn, —tV f(zn)).
(b) Update z,,41 :== z,, — t,V f(x,,)

Theorem 3.2.1 (Peressini, Sullivan, Uhl)
If f is strictly convex and coercive, then x, converges to the unique minimizer of f.

In the lack of smoothness,; a lot of pathologies happen.
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Example 3.2.2 (L. Vandenberghe)
Negative subgradients are NOT necessarily descent directions. Comnsider f : R? — R
given by

(l’l,{L‘Q) — |l’1| + 2|l‘2|

Then f is convex as it is a direct sum of convex functions.
Since f has full domain and is continuous,
0f(1,0) = {1} x [-2,2].
Take d := (—1,—-2) € —9f(1,0).
d is NOT a descent direction. Moreover,
f(1,0) =1 < f[(1,0) +t(—1,—-2)]

for all ¢t > 0.

Example 3.2.3 (Wolfe)
Let v > 1. Consider the function f : R*> — R given by

Vi + s, Jre < o
(21,22) = | 14alral else
Vity

Observe that argmin,gm f = &. One can show that f = ocwhere

x2 1
C:{xER2:$2+—2§1,x22 }
2y Vit

Thus f is convex. Moreover, f is differentiable on
D :=R*\ ((—00,0] x {0})).
Let 2 := (,1) € D.
The steepest descent method will generate a equence
v—1\" v—1\"
Ty 1= — ) — (0,0
(C5) (55) )~ oo

which is not a minimizer of f!
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3.3 Projected Subgradient Method

Consider

min f(z) (P)
reC

where f : R™ — (—o00, 00| is convex, ls.c., and proper, @ # C' C intdom f is convex and
closed.

Suppose

S = argmin . f(z) # @
W= 1;%151 f(z).

Moreover, there is some L > 0 such that
sup||0f(C)]| < L < oo.
In other words, for all ¢ € C'and u € 9f(c), ||u|| < L.
1) Get To € C.

2) Given x,, pick a stepsize t,, > 0 and f'(x,) € 0f(x,)
3) Update x,11 := Po(z, — tof'(z,)).

Recall that C' C int dom f, hence each z,, € intdom f and df(x,) # &. Thus the algorithm
is well-defined.

Lemma 3.3.1
Let s € S := argmin . f(x). Then

lzn+1 = sl < llzw = slI* = 2ta(f(@n) — 1) + Gl F () 1.

Observe that S C C.

Proof
We have

| Zns1 — 5”2 = || Po(n — tnf/(xn» - PC(S)H2
S ||xn - tnf,('rn) - S||2
= llan — s> + ol ' (@) I = 2t (wn — 5, f'(20)).
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It suffices to show that

2t < _sf(xn»é
(X0 = s, f'(@n)) = flan) — p
(T — s, ['(za)) = f(

which holds by the subgradient inequality.

What is a good step size? We wish to minimize the upper bound derived in the previous
lemma.

0= d‘j< 2t f(2n) — 1) + 2| f () P)

= —2(f(wn) — 1) + 26|l /() | %

If x,, is not a global minimizer, then 0 ¢ df(x,) and f'(x,) # 0. Hence we can take

fxn) — p

L TIPS

Definition 3.3.1 (Polyak’s Rule)
The projected subgradient method with step size

f(xn) %

L Y TrRTES

Theorem 3.3.2
We have
(i) Forall s € S;n € N, ||zp41 — s|| < ||zn — s]|, ie (n)nen is Fejér monotone with
respect to S
(i) f(zn) = p

(ili) prn, — p < L\i@ €O ( > where p, := ming<g<n f (%)

(iv) For each € > 0, if n >

%;zo)—l,thenpmg,u-l—e
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Proof (i)
Let s € S,n € N By computation

21 = sl* < llwn = sII* = 2ta(f(20) — 1) + 11 f () 1*

f($n) —H f($n) B
(f(xn) _ ILL)2
= o — sf? - ) 2
1! ()2
(f(xn) B :U’)2
<l — 5] — -
< @y — 3”2
Proof (ii)
From our work in (i): for all k£ € N,
flaxr) —p)?
) 2B i — sl s — .
Summing the above inequalities over £k =0, ..., n yields
1« 2 2 2
72 2 (flaw) = 17) < lwo = s[” = llzas — s
k=0

< Jlzo — sf|*.
Letting n — oo,
0< Y (flax) —p)* < LPflag — s|* < o0

and it must be that f(xy) — pu.

Proof (iii)
Recall that

M = Or<nk1£n f(zk)
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Let n > 0. For each 0 < k < n,

2
-+ ¥ < ey
Proof (iv)
Suppose that
de%(.f()) 1
> 2
<
d (o) L? 2
n+1 '
Apply (iii) yields
(M . )2 d%(fbo)LQ
" n+1
<€
Hn — | Se

Recall that if (z,)nen is Fejér monotone with respect to some @ # C' C R™, and every
cluster point lies in C', then z, — ¢ € C.

Theorem 3.3.3 (Convergence of Projected Subgradient)
Suppose z,, is generated as in the projected subgradient method with Polyak’s rule.
Then z,, - s € S.

Proof
We have already shown that (z,,) is Fejér monotone with respect to S. Thus the sequence
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is also bounded. Also, by the previous theorem,

f(xn) = p = min f(z).

zeC

By Bolzano-Weirestrass, there is some subsequence x;, — = € C'. Now,

p = min f(z)

< f(z)

< liminf f(zy,)
= f(zn) = p
Hence z € S. That is, all cluster points of (x,),en lie in S.

It follows that x, — = € S by the Fejér monotonicity theorem.

Example 3.3.4
Let C C R™ be convex, closed, and non-empty. Fix x € R™.

z—Pc ()
dde(z) = { 4@ i
Ne(z)NB(0;1), zeC

Moreover, sup||0de(z)|| < 1.

Lemma 3.3.5
Let f be convex, l.s.c., and proper. Fix A > 0. Then

ONf) = \Of.
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3.3.1 The Convex Feasibility Problem

Problem 1
Given k closed convex subsets S; C R™ such that

k
S =S # 2,
=1

find z € S.

We take
f(x) := max{dg,(z) : i € [k]}.
The domain is C' := R™. Observe that f > 0 with

f(z) =0 <= Vi,dg,(z) =0
<— Vi,x € 5;
< xS

Recall that the max rule for subdifferentials implies that for all = ¢ S,

Of(x) = conv{ddg,(x) : ds,(x) = f(z) > 0}
Thus ||0f(z)|| <1 as a convex combination preserves the norm bound.
Given x,, pick an index ¢ such that dg (x,) = f(x,) > 0. Set

Tn — PS; (xn)
dS;(xn)

Since this is a unit vector, Polyak’s step size simplifies to

f/(wn) =

tn = dS; (:L‘n)

The sequence converging to a member of S is thus

Tntl = PC<:Cn - tnf/(xn))

= Tpn — tnf/(mn)

n - P, “\4n
=y o)
=2, — (2, — Ps.(2n))

= PS; (.’En)
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By the convergence of the projected subgradient method, z, — 5.

Note that in practice, it is possible that p := mingcc f(2z) is NOT known to us. In this case,
replace Polyak’s stepsize by a sequence (t,)nen such that

2ok

== 5 5 0,n — oo.

ZZ:o 22
For example, t), := 1=5. One can show that

n

pon 2= 1L f () = p1

as n — 0.

3.4 Proximal Gradient Method

Consider the problem

min F(z) := f(z) + g() (P)
reR™

We shall assume that S := argmin,gm F'(z) # @ and define

p = min F(x).

z€R™

f is “nice” in that it is convex, l.s.c., proper, and differentiable on int dom f # @. Moreover,
V f is L-Lipschitz on int dom f.

g is convex, l.s.c., and proper with dom ¢ C int dom f. In particular,

 # ridomg
C domg
Cridom f
= int dom f
=
ridom g Nridom f =ridomg

£ 2.
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Example 3.4.1
We can model contrained optimization functions as

min f(z) + dc(z)
reR™

where @ # C' C R™ is convex and closed.

Let z € intdom f O dom g. Update via

1
zvf(x))

Ty o= PFOX%g(I‘ —

2

. 1 1 1
= argmin,cgm Zg(y) + éHy — <ZVf(x))

€ domg
C intdom f
= dom V f.

Theorem 3.4.2
Let x € R™. Then

x €S
= argmin,cpm F'
= argmin,cgm (f + 9)
—
r="Tx
—
x € FixT.
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Proof
By Fermat’s theorem,

reS < 0€d(f+g)(x)=Vf(r)+dg(x)
—Vf(z) € 9g(z)

v - TV () €t 1Og(x) = (Id +0 (%g)) (2)

e (Id 10 <%g))l <z - %Vf(x))

1
x = Proxi, (Id—sz) (x) =Twx.

[

Proposition 3.4.3
Let f: R™ — (—o00, 00| be convex, l.s.c., and proper. Fix > 0. Then f is S-strongly
convex if and only if for all z € domdf,u € df(x),

F@) 2 F(@)+ (wy — ) + 5y~

3.4.1 Proximal-Gradient Inequality

Proposition 3.4.4
Let z € R™, y, € intdom f, and

y+ = Proxi,(y = Vf(y)) = Ty.

Then
L
>

L
F(@) = F(y:) > 5o =y P = 5 Iz = ylP + Dy(a.p)

where

Dy(z,y) == f(z) — f(y) = (V) z —y).

Dy is known as the Bregman distance.

Proof
Define

h(=) 1= 1) + (V). 2~ ) +9() + 2 llz ]

Then h is L-strongly convex.
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We claim that y, is the unique minimizer of h. Indeed, for z € R™,
. L 2
z€argminh < 0€ 9| f(y) +(Vf(y).z—y) +9(2) + Sz —yll
L
00 (V7.2 =) +a2)+ 51— ul?)
0€ Vf(y) +0dg(z) + L(z —y)

0¢€ %Vf(y)—l—a(%é?) (2) + (2 —v)

)
Yy — %Vf(y) €z+0 <—9> (2)

y— %Vf(y) € (Id +0 <%g) (2)

z e <Id +0 (%g)>_l y— %Vf(y))
z = Proxy, (y — %Vf (y)>

z=Ty =y

[ A A

Applying the previous proposition yields that

L
h(z) > h(yy) + (0,2 — yy) + 5”-75 —y. |

L
= h(yy) + 5 llz - y+|)?
L

(@) = h(ys) = 5l =yl

Moreover, by the descent lemma,

F) < F) + (VF@)r ) + gl I

Hence

h(y+) :

= f(y) + (VIW), ys — ) + glys) + gllm —y|P?
> f

(y+) +9(ys)
F(yy).
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Combining with our work above,

h(x) — F(yy) > h(z) — h(yy)
L 2
> Loy
L 2 L 2
Fy) + (V) z —y) +g(2) + Sllo =yl = Fly+) = Sllz = g4l
F@) +9() = F(u) = Sl =y = Zlle =yl + Dy

Lemma 3.4.5 (Sufficient Decrease)

We have
L
Flys) < Fy) = 5lly — v+l
Proof
Recall that
L 2
Fly) = Fly+) 2 Slly - Y| — —IIy ylI* + Dy(y, y)
L .
F(y) — Fyy) > ||y Y| f is convex

Fyy) < F(y) - 5”1/ - y+||2.

3.4.2 The Algorithm

Given x( € int dom f, update via

1
Tpyr =T, = Prox%g <xn — sz(a%)) )

Theorem 3.4.6 (Rate of Convergence)
The following hold:

(i) For all s € S;n € N, ||z — $|| < ||zn — s|| (ie x, is Fejér monotone with
respect to .S).

(ii) (F(xn))nen satisfies 0 < F(z,) — p < Ld—(‘m) € O (). Hence F(z,) — p.
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Proof
(i): Recall the previous proposition that

0> F(s) = Frg) Fx) = p

L
> Jls =zl = Fls =l

Thus (z,,) is Fejér monotone with respect to S.

@ Multiplying this inequality by % and adding the resulting inequalities from k£ =
0,...,n — 1 and telescoping yields

n—1
(Zu Fla) ) > [ls = a4l = s — ol
k=0

> —|ls — zol*.

In particular, by setting s := Ps(zq) € S, we obtain

d3(zo) = ||PS( o) — zol|?

Equivalently,

and F(z,) — u.

Theorem 3.4.7 (Convergence of Proximal Gradient Method)
x, converges to some solution in

S 1= argmin, cgm F(x).
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Proof
By the previous theorem we know that (z,,) is Fejér monotone with respect to S. Thus it
suffices to show that every cluster point of (x,) lies in S.

Suppose Z is a cluster point of (x,), say xy, — Z. We argue that F'(Z) = p. Indeed,
p< F(z)
< lim i%f F(zy,)
= u
Hence F(z) = pand T € S.

Proposition 3.4.8
The following hold:

(i) 1V fisfne.

(i) Id =7V f is f.n.e.

(iii) T'= Prox%g(ld —V f) is Z-averaged.

Proof
(i), (ii): Recall for real-valued, convex, differentiable functions with L-Lipschitz gradient,

(Vi(x) = Vi) ) > TV (@)~ Vi)

<%Vf(x) - %Vf(y),x - y> > H%Vf(f@ - %Vf(y)

The result follows then from the two equivalent characterizations of f.n.e.: Id =7 is non-

expansive and
(Tw — Ty, Tz —Ty) > || Tx — Ty|*.

iii): Recall that Proxi, is fn.e. Hence, Prox.i, and Id =1V f are both i-averaged.
1% .9 L 2
Consequently, the composition

1
Prox%g (Id —sz>

is averaged with constant %
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Theorem 3.4.9
The PGM iteration satisifes

s — o] < Y2050 ¢ el

N

Proof
Using the previous remark, we have that for all z, vy,

1
SIId=T)z — (1d=T)y||* < & = yI* = | Tz - Ty|*

Let x € S and observe that s € Fixs by a previous theorem. Applying the above
inequality with x = z,y = s yields

1
I =Tz — (d=T)s|| < ||z — sl|* = [|Tze — Ts|*

1
§||$k — T |® < Nl = s|* = lzesr — sl

Now, T is % averaged and thus nonexpansive. Therefore,

|25 = T || = [[T2p-1 — T < o1 — ]
<...
< lwo — 2]
Summing over k =0...,n — 1 yields

1 n—1
2o — s[|* = [l — s[> > 5 > Nk — 2|
k=0
1 2
Z 5’/1“1'”_1 - xn” :

Specifically, for z := Ps(zg),

1
Srlln s — 2l < dB (o)

2
[2n—1 = zal < —=ds (o).

NG
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Corollary 3.4.9.1 (Classical Proximal Point Algorithm)
Let g : R™ — (—00, 00| be convex, l.s.c., and proper. Fix ¢ > 0. Consider the problem

min g(z) (P)
reR™

Assume that S := argmin,gm g(z) < 2.
Let g € R™ and update via
Tnt1 = Proxeg Tn.

Then
(i) g(zn) 4 p == min g(R™)
(ii) 0 < glan) — p < B

2cn

V2ds(20)

)
(iii) x, converges to a point within S
) llzn — ol < =72

(iv

Proof
Set f = 0 and observe that V f =0 and V f is L-Lipchitz for any L > 0. Specifically, for
L:=1>0

C

We can thus write (P) as

min f(z) + g(z) (P)
reR™

Now, S = argmin f + g = argmin g. Moreover, Vf =0 — 1Id —%Vf = Id.
Hence
T:=P Id ! v
= I‘OX%g( 7 f)
= Prox.,

and we are done by the previous results.
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3.5 Fast Iterative Shrinkage Thresholding

Consider the following problem

min F(z) = f(z) + g(a) (P)
reR™

We assume (P) has solutions so that
S = argmin cgm F(2) # O

and write p 1= mingegm F(z).

We assume f is convex, l.s.c., and proper, as well as being differnentiable on R™. Moreover,
V f is L-Lipschitz on R™.

We also assume that g is convex, l.s.c., and proper.

3.5.1 The Algorithm

Initially, set xo € R™, ty = 1,y = x9. We update via

1+ /1 + 42
2

tn—i—l —

1
Tnt+1 = PTOX%Q <Id _va) (Yn) = Tyn

t, — 1
Yn+1 = Tp41 + = (xn—i-l - xn)
n+1
1—1¢ 1—t
= (1— 7’L> xn+1+ nxn
n+1 tn+1

€ aff{z,, x,11}

Observe that
21—ty = L2
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3.5.2 Correctness

Proposition 3.5.1
The sequence (t,,),en satisfies

Proof
Induction.

Theorem 3.5.2 (Quadratic Converge for FISTA)
The sequence (z,,) satisfies

0 < F(ap) — p
~ (n+1)2

1
€0 (ﬁ) .
Notice that this converges significantly faster than O (%) for PGM.

Proof
Set s := Pg(xg). By the convexity of F,

1 1 1 1
— N < _
F (tnS + (1 tn) n) < tnF(S) + (1 tn> F(z,)
For each n € N, set
Sp = F(x,) —p>0.

By computation,

1 1 1
<1 — t_> Sp = Snt1 = F <t_8 + <1 - t_) xn) — F(2p41)-

Now, applying the proximal gradient inequality with




yields

1 1
L ) L ,

Simplying yields that

[ty — (s + (ta — D2a)I* = [tn-120 — (s + (ta-1 — 1) za*.
Combined with the fact that t2,, — ¢,11 = t2, we get that

1 1
ti_lsn — ti8n+1 2 t?.b <F (t—S = (1 — t_)) l’n) — F(-Tn—i-l)

L L
> §||tnxn+1 —(s+ (tn — 1))3371”2 4 Ethyn - (3 + (tn - 1))$n||2

L 2 L 2
= S ltnzns = (s + (ta = D)aall” = Slltn12n = (s + (ta1 = 1))zn |

Set u, = t,_12, — (s + (t,—1 — 1)x,—1). Multiplying the inequality above by % and
rearranging yields
2 2
funiall? + 2 Bmir < Junll? + 282150
It follows that
2 2
Eti—lsn < unll* + Ztisnﬂ
2
< Jlua ] + Etﬁsl
2
=l — I + 2 (F(a2) — )
< [lzo — s|®
where the last inequality follows from the proximal gradient inequality.

In other words,

F(x,) —p=s,
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3.6 Iterative Shrinkage Thresholding Algorithm

This is a special case of PGM with g(z) = Al|z||, A > 0. Hence

1 A
T9(@) = Zlell

and

n

() = <P1"OX%|I-H1<m>)i:1
— (sign(zi) max{0, |z ~ %})

n
i=1

FISTA is the accelerated version of ISTA.

3.6.1 Norm Comparison

Consider the problems

min|||2 (P1)
Ar=0>
min||z; (P2)
Ax =10
Example 3.6.1
Consider the problem
1
min = || Az — b3 + M|z (P)
xeR™

where A > 0 and A € R™*™,

g is convex, l.s.c., and proper, with f being smooth and

Vf(x) = AT(Ax —b).

Recall that V f is L-Lipschitz if and only if the spectral norm of the Hessian is bounded
by L. Thus V f is L-Lipschitz for

L = Amax(ATA).
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To see the necessarily assumption that S := argmin,pm F'(x) holds, observe that f(z) is
continuous, convex, and coercive, with dom F' = R™.

Using the fact that if F' is convex, l.s.c., proper, and coercive and @ # C'is closed and
convex with dom F'NC' # &, then F has a minimizer over C.

Now, m can be very large and Apax (AT A) may be difficult to compute. It suffices to use
some upper bound on eigenvalues such as the Frobenius norm

AR =" af

=1 i=1

— tr(ATA)
— Em: M(ATA)

3.7 Douglas-Rachford Algorithm

Consider the problem

min F(z) = f(2) + g(x) (P)
reR™

where f, g are convex, l.s.c., and proper with

S = argmin,pm F(2) # 9.

Suppose there exists some s € S such that

0 € 0f(s) +9g(s) CO(f + g)(s).
This happens for example when ridom f Nridom g # @.
Define

Ry :=2Prox; —1Id
R, := 2Prox, —Id.

Definition 3.7.1 (Douglas-Rachford Operator)
Define
T :=Id — Prox; + Prox, ;.
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Lemma 3.7.1

The following hold:
(i) Ry, R, are nonexpansive
(ii) T = 3(Id+R,Ry)

(iii) 7" is firmly nonexpansive

Proof
Since Proxy, Prox, are f.n.e., 2 Proxy — Id, 2 Prox, — Id are nonexpansive as shown in the

assignments.

Expanding the definitions of Ry, Ry shows the equivalent expression

1

The above shows that T is %—averaged, which is equivalent to firm nonexpansiveness.

Proposition 3.7.2
FixT = Fix RyRy.

Proof
Let z € R™. Then
. 1
r€FixT < x= §(x + RyRyx)
<~ = RyRsx
<= zv e Fix R Ry.

Proposition 3.7.3
Prox;(FixT) C S.

Proof
Let z € R™ and set s = Prox(z) = (Id+0f) (). Then

z € (Id+0f)(s) =s+0f(s) <= 25— (2s—xz) € s+ If(s)
< 25— Ry(z) —s € 0f(s)
< s— Ry(x) € 0f(s).
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Moreover,

r € FixT <= x =x — Proxs(x) + Prox, Rs(x)
& s = Prox, Ry(x) = (Id +9g) ' (Rs(x))
< Ry(x) € s+ 0g(s)
<= Ry(x) —s € dg(s)

It follows that

0=s—R¢(x) + Rs(zx) —s
€ df(s) + dg(s)
Ca(f +g)(s)

and s € S as required for all z € FixT.

Recall that (firmly) nonexpansive operators are continuous and iterating a f.n.e. operator
tends to a fixed point.

Theorem 3.7.4
Let zq € R™. Update via

Tpy1 = Tn, — Prox, x, + Prox, (2 Proxs z,, — x,).

Then Prox(z,) tends to a minimizer of f + g.

Proof
Remark that z,,; = Tz, = T" 'x,. Since T is f.n.e., we know that z,, — 7 € FixT.

But since Proxy is continuous,

Prox z,, = Prox; Z € Proxy(FixT) C S.

3.8 Stochastic Projected Subgradient Method

Consider the problem
min f(z) (P)
rel

f is convex, l.s.c., and proper, @ # C C intdom f is closed and convex, and S :=
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argminxec f(ZL‘) 7é .
Set
p = min f(C).

Given xg € C', update via

Tpt1 = Po(x, — tygn).

We assume that ¢, > 0 and

Zk’:O k =0

n
k=0 tk

k — oo

for example ¢, = %5 for some a > 0.
We choose g, to be a random vector satisfying the following assumptions

(A1) For each n € N, E|g, | z,] € 0f(x,) (unbiased subgradient)
(A2) For each n € N, there is some L > 0, E[||g,|]? | zn] < L?

Let us write

p :=min{ f(z;) : 0 <i < k}.

Theorem 3.8.1
Assuming the previous assumptions hold, then E[ux] — p as k — oo.

Proof
Pick s € § and let n € N. Then

0 <||zp1 — 3”2
= [|[Po(zn — tagn) — PC’5H2
< (@ = tagn) = s
= [|(zn — 8) = tugall®
= [|zn — SH2 — 2t (Gn, Tn — 8) + tngn

I*
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Taking the conditional expectation given x,, yields

Elll#nss = sl” | 2] < [lzn = s)1* + 2t(Elgn | #n], 5 — 20) + 2 Elllgall? | 2]
<l — sl + 2tn(f () — f(2n)) + 5 L7 (A1), (A2)
= ||xn - SH2 + Qtn(u - f(xn)) + tiL2'

Now, taking the expection with respect to z,, yields

Ellzn — 517 < Elllzn — sll”] + 2ta(p — E[f (20)]) + L%

Let k € N. Summing the inequality from n = 0 to k yields

0 < El|zns — sl’]

k k
<llzo = sl> =2 ta(Blf (xa)] — ) + L2 ) 12
n=0 n=0

Rearranging yields

0 < Efuw] —
llmo = slP + L2 Yk 2
— k
2> _otn
— 0 k — oo

3.8.1 Minimizing a Sum of Functions

Consider the problem

min f(2) == 3 fi(x) (P)

i€[r]
rxel
Suppose fi,..., fr : R™ — (—00, o0] are convex, l.s.c., and proper.
Set I := [r| and assume that for each i € I,
@ # C' Cint dom f;.
for some closed convex C.
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We also assuem that for each ¢ € I, there is some L; > 0 for which

10£(ON < Li.

Proposition 3.8.2

sup||0f;(C)|| < L; if and only if f;| , is L;-Lipchistz.

o
For example, this holds if C' is bounded.

Let us assume that (P) has a solution. We verify (A1), (A2) to justify solving the problem
with SPSM.

By the triangle inequality,
sup [ 0f(C)| < Y Li.

el

Let xq € C. Given z, € C, we pick an index i,, € I uniformly randomly and set

Observe that

r

Blgo |20l = 32 i)

i=1

€ 0fi(xy) + -+ 0fp(zn)
=0(fi+ -+ fr)(zy) Sum Rule
= 0f(xn)
hence (A1) holds.
Next,
~ 1
Elllgnll® | 2a] = > ~llr £i(a) 1

=1

DI THENIE

<r Z L?.
i=1
Thus (A2) holds with L :=\/r)_;_, L%

Having verified the assumptions, we may apply SPSM.
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3.9 Duality

3.9.1 Fenchel Duality

Consider the problem

min f(z) + g(z) (P)
reR™

f,9: R™ — (—o0, 00] are convex, l.s.c., and proper.

We can rewrite the problem as

min {f(z) 4+ g(z) : x = z}.

z,zER™

Construct the Lagrangian
Liw, %) == f(z) + 9(2) + (y, 2 — 2.
The dual objective function is obtained by minimizing the Lagrangian with respect to z, z.
d(u) :== il’nfL(x, z;u)
= inf{f(z) — {u, 2) +9(2) + (v, 2)}
= —sup({u, 2) — f(x)) —sup((~v, z) — g(2))

= /") = g"(-u).

Let
p:= mf f(z)+g(z)
d:= mf f*(u)+g"(~u)

and recall that p > —d from assignments.

3.9.2 Fenchel-Rockafellar Duality

Consider the problem

min f(z) + g(Az) (P)
reR™
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where f: R™ — (—o00, 0] is convex, l.s.c., and proper, g : R", — (—o00, 00| is convex, l.s.c.,

and proper, and A € R™*™,

The Fenchel-Rockafellar dual is given by

min f*(—A"y) 4+ g*(y) (D)
yeR"

As before, let
p:= inf f(z)+g(Azx)

zER™

d:= inf f*(—ATy)+g"(y)

yER™

and recall that p > —d from assignments.

Lemma 3.9.1
Let h: R™ — (—o00, 0] be convex, l.s.c., and proper. For each x € R™,

The following hold:
(i) hY is convex, l.s.c., and proper

(i) OhY = —0h o (—1d)

Proof
The convexity, l.s.c., and properness is verified by definition.

Let w € R™ and z € dom 0h o (—1d). Then

u € —0ho (—1d)(z) = =0f(—z) <= —u € Oh(—2x)
= hy) > h(=2) + (~uy— (—z)) VyER™
= h(=y) = h(=z) +(-u,—y+z) VyeR"
<~ h'(y) > h'(z) + (u,y — x) Yy € R™
< u € 0h’(x).

3.9.3 Self-Duality of Douglas-Rachford

Recal that the DR operator to solve (P) is given by

1
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where Ry := 2 Proxy —Id and similarly for R,.

Similarly, the DR operator to solve (D) is defined as

1
Td = é(Id +R(g*)va*)

Lemma 3.9.2
Let h: R™ — (—o00, 0] be convex, l.s.c., and proper. The following hold:
(i) Proxp. = — Proxy, o(Id)

(i) Ru» = —Rn
(iii) Repeyr = R o (—1d)

Proof
(i): This is shown using the relation Prox; = (Id4+9f)~! as well as the lemma Oh"
—0ho (—1d).

(Id — Proxy,) proven in A4.

(iii): First, we can shown by definition that

Prox+y» = — Prox;- o(—1d).

The proof is completed using this fact as well as the relation Proxy,« = (Id — Prox;)

Theorem 3.9.3
T, ="1T,.

Proof
From our previous lemma,

1

_ %(Id +[Ry o (= 1d)] o (=Ry))

1

=T,
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(ii): This can be proven by expanding the definition of R« as well as the relation Prox« =



Theorem 3.9.4
Let o € R™. Update via

Tpiy1 = Ty — Proxs(x,) + Proxy(2 Proxs z,, — ) = Ty,

Then Prox(x,) converges to a minimizer of f + g and x,, — Proxs(x,) converges to
a minimizer of f* + (¢*)".

Proof
We already know that Proxy(z,) converges to a minimizer of f 4 ¢. Since T, = Ty,
Prox-(x,) converges to a minimizer of f*4(g*)". Using the fact that Prox;« = Id — Proxy,

we conclude the proof.
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