CO463: Convex Optimization and Analysis

Felix Zhou ${ }^{1}$

January 5, 2024
${ }^{1}$ From Professor Walaa Moursi's Lectures at the University of Waterloo in Winter 2021

Contents

1 Convex Sets 7
1.1 Introduction 7
1.2 Affine Sets \& Subspaces 7
1.3 Convex Sets 8
1.4 Convex Combinations of Vectors 9
1.5 The Projection Theorem 10
1.6 Convex Set Operations 14
1.7 Topological Properties 16
1.8 Separation Theorems 20
1.9 More Convex Sets 22
2 Convex Functions 29
2.1 Definitions \& Basic Results 29
2.2 Lower Semicontinuity 31
2.3 The Support Function 32
2.4 Further Notions of Convexity 33
2.5 Operations Preserving Convexity 34
2.6 Minimizers 34
2.7 Conjugates 36
2.8 The Subdifferential Operator 38
2.9 Calculus of Subdifferentials 39
2.10 Differentiability 45
2.11 Conjugacy 49
2.12 Coercive Functions 52
2.13 Strong Convexity 53
2.14 The Proximal Operator 60
2.15 Nonexpansive \& Averaged Operators 68
2.16 Féjer Monotonocity 71
2.17 Composition of Averaged Operators 76
3 Constrained Convex Optimization 79
3.1 Optimality Conditions 79
3.1.1 The Karush-Kuhn-Tucker Conditions 81
3.2 Gradient Descent 86
3.3 Projected Subgradient Method 88
3.3.1 The Convex Feasibility Problem 93
3.4 Proximal Gradient Method. 94
3.4.1 Proximal-Gradient Inequality 96
3.4.2 The Algorithm 98
3.5 Fast Iterative Shrinkage Thresholding 103
3.5.1 The Algorithm 103
3.5.2 Correctness 104
3.6 Iterative Shrinkage Thresholding Algorithm 106
3.6.1 Norm Comparison 106
3.7 Douglas-Rachford Algorithm 107
3.8 Stochastic Projected Subgradient Method 109
3.8.1 Minimizing a Sum of Functions 111
3.9 Duality 113
3.9.1 Fenchel Duality 113
3.9.2 Fenchel-Rockafellar Duality 113
3.9.3 Self-Duality of Douglas-Rachford 114

Chapter 1

Convex Sets

1.1 Introduction

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. Consider the problem

$$
\begin{gather*}
\min f(x) \tag{P}\\
x \in C \subseteq \mathbb{R}^{n}
\end{gather*}
$$

$$
(P)
$$

In the case when $C=\mathbb{R}^{n}$, the minimizers of f will occur at the critical points of f. Namely, at $x \in \mathbb{R}^{n}$ when $\nabla f(x)=0$. This is known as "Fermat's Rule".

In this course, we seek to approach (P) when f is not differentiable but f is convex and when $\varnothing \neq C \subsetneq \mathbb{R}^{n}$ is a convex set.

1.2 Affine Sets \& Subspaces

Definition 1.2.1 (Affine Set)

$S \subseteq \mathbb{R}^{n}$ is affine if for all $x, y \in S$ and $\lambda \in \mathbb{R}$,

$$
\lambda x+(1-\lambda) y \in S
$$

Definition 1.2.2 (Affine Subspace)

An affine set $\varnothing \neq S \subseteq \mathbb{R}^{n}$.

Definition 1.2.3 (Affine Hull)

Let $S \subseteq \mathbb{R}^{n}$. The affine hull of S

$$
\operatorname{aff}(S):=\bigcap_{S \subseteq T \subseteq \mathbb{R}^{n}: T \text { is affine }} T
$$

is the smallest affine set containing S.

Example 1.2.1

Let L be a linear subspace of \mathbb{R}^{n} and $a \in \mathbb{R}^{n}$.
Then $L, a+L, \varnothing, \mathbb{R}^{n}$ are all examples of affine sets.

1.3 Convex Sets

Definition 1.3.1

$C \subseteq \mathbb{R}^{n}$ is convex if for all $x, y \in C$ and $\lambda \in(0,1)$,

$$
\lambda x=(1-\lambda) y \in C
$$

Example 1.3.1

$\varnothing, \mathbb{R}^{n}$, balls, affine, and half-sets are all examples of convex sets.

Theorem 1.3.2

The intersection of an arbitrary collection of convex sets is convex.

Proof

Let I be an index set. Let $\left(C_{i}\right)_{i \in I}$ be a collection of convex subsets of \mathbb{R}^{n}.
Put

$$
C:=\bigcap_{i \in I} C_{i} .
$$

Pick $x, y \in C$. By the definition of set intersection, $x, y \in C_{i}$ for all $i \in I$. Since each C_{i} is convex, for all $\lambda \in(0,1)$,

$$
\lambda x+(1-\lambda) y \in C_{i}
$$

$\|$ It follows that C is convex by the arbitrary choice of i.

Corollary 1.3.2.1

Let $b_{i} \in \mathbb{R}^{n}$ and $\beta_{i} \in \mathbb{R}$ for $i \in I$ for some arbitrary index set I. The set

$$
C:=\left\{x \in \mathbb{R}^{n}:\left\langle x, b_{i}\right\rangle \leq \beta_{i}, \forall i \in I\right\}
$$

is convex.

1.4 Convex Combinations of Vectors

Definition 1.4.1 (Convex Combinations)

A vector sum

$$
\sum_{i=1}^{m} \lambda_{i} x_{i}
$$

is a convex conbination if $\lambda \geq 0$ and $1^{T} \lambda=1$.

Theorem 1.4.1

$C \subseteq \mathbb{R}^{n}$ is convex if and only if it contains all convex combinations of its elements.

Proof

(\Longleftarrow) Apply the definition of convex combination with $m=2$.
(\Longrightarrow) We argue by induction on m. Observe that by deleting x_{i} 's if necessary, we may assume without loss of generality that $\lambda>0$.

When $m=2$, this is simply the definition of convexity.
For $m>2$, we can write

$$
\begin{aligned}
\sum_{i=1}^{m} \lambda_{i} x_{i} & =\sum_{i=1}^{m-1} \lambda_{i} x_{i}+\lambda_{m} x_{m} \\
& =\left(1-\lambda_{m}\right) \sum_{i=1}^{m-1} \frac{\lambda_{i}}{1-\lambda_{m}} x_{i}+\lambda_{m} x_{m} \\
& =\left(1-\lambda_{m}\right) x^{\prime}+\lambda_{m} x_{m} .
\end{aligned} x^{\prime} \in C \text { by induction } . ~ l
$$

Hence C indeed contains all convex combinations of its elements.

Definition 1.4.2 (Convex Hull)
The convex hull of $S \subseteq \mathbb{R}^{n}$

$$
\operatorname{conv} S:=\bigcap_{S \subseteq T \subseteq \mathbb{R}^{n}: T \text { is convex }} T
$$

is the smallest convex set containing S.

Theorem 1.4.2

Let $\subseteq \mathbb{R}^{n}$. conv S consists of all convex conbinations of elements of S.

Proof

Let D be the set of convex combinations of elements of S.
(conv $S \subseteq D) D$ is convex since convex combinations of convex combinations again yields convex combinations. Moreover, $S \subseteq D$ by considering the trivial convex combination. It follows that conv $S \subseteq D$ by definition.
$(D \subseteq$ conv $S)$ By the previous theorem, the convexity of conv S means that if contains all convex combinations of elements. In particular, it contains all convex conbinations of $S \subseteq \operatorname{conv} S$.

1.5 The Projection Theorem

Definition 1.5.1 (Distance Function)

Fix $S \subseteq \mathbb{R}^{n}$. The distance to S is the function $d_{S}: \mathbb{R}^{n} \rightarrow[0, \infty]$ given by

$$
x \mapsto \inf _{s \in S}\|x-s\|
$$

Definition 1.5.2 (Projection onto a Set)

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}, x \in \mathbb{R}^{n}$ and $p \in C . p$ is a projection of x onto C, if

$$
d_{C}(x)=\|x-p\|
$$

If a projection p of x onto C is unique, we denote it by $P_{C}(x):=p$.

Recall that a cauchy sequence $\left(x_{n}\right)_{n \in N}$ in \mathbb{R}^{n} is a sequence such that

$$
\left\|x_{m}-x_{n}\right\| \rightarrow 0
$$

as $\min (m, n) \rightarrow \infty$.
Since \mathbb{R}^{n} is a complete metric space under the Euclidean metric, every cauchy sequence converges in \mathbb{R}^{n}.

Moreover, recall that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous at $\bar{x} \in \mathbb{R}^{n}$ if and only if for every sequence $x_{n} \rightarrow \bar{x}$, we have

$$
f\left(x_{n}\right) \rightarrow f(\bar{x}) .
$$

Fix $y \in \mathbb{R}^{n}$. The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
x \mapsto\|x-y\|
$$

is continuous.

Lemma 1.5.1

Let $x, y, z \in \mathbb{R}^{n}$. Then

$$
\|x-y\|^{2}=2\|z-x\|^{2}+2\|z-y\|^{2}-4\left\|z-\frac{x+y}{2}\right\|^{2} .
$$

Proof

This is by computation.

$$
\begin{aligned}
2\|x-z\|^{2} & =2\langle z-x, z-x\rangle \\
& =2\|z\|^{2}-4\langle z, x\rangle+2\|x\|^{2} \\
2\|z-y\|^{2} & =2\|z\|^{2}-4\langle z, y\rangle+2\|y\|^{2} \\
4\left\|z-\frac{x+y}{2}\right\|^{2} & =4\left[\|z\|^{2}+\frac{1}{4}\|x+y\|^{2}-\langle z, x+y\rangle\right] \\
& =4\left\|z^{2}\right\|+\|x+y\|^{2}-4\langle z, x\rangle-4\langle z, y\rangle .
\end{aligned}
$$

Putting everything together yields

$$
\begin{aligned}
2\|z-x\|^{2}+2\|z-y\|^{2}-4\left\|z-\frac{x+y}{2}\right\|^{2} & =2\|x\|^{2}+2\|y\|^{2}-\|x+y\|^{2} \\
& =\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle \\
& =\|x-y\|^{2} .
\end{aligned}
$$

Lemma 1.5.2

Let $x, y \in \mathbb{R}^{n}$. Then

$$
\langle x, y\rangle \leq 0 \Longleftrightarrow \forall \lambda \in[0,1],\|x\| \leq\|x-\lambda y\|
$$

Proof

(\Longrightarrow) Suppose $\langle x, y\rangle \leq 0$. Then

$$
\begin{aligned}
\|x-\lambda y\|^{2}-\|x\|^{2} & =\lambda\left(\lambda\|y\|^{2}-2\langle x, y\rangle\right) \\
& \geq 0
\end{aligned}
$$

(\Longleftarrow) Conversely, we have $\lambda\|y\|^{2}-2\langle x, y\rangle \geq 0$. This implies

$$
\begin{aligned}
\langle x, y\rangle & \leq \frac{\lambda}{2}\|y\|^{2} \\
& \rightarrow 0 . \quad \lambda \rightarrow 0
\end{aligned}
$$

Theorem 1.5.3 (Projection)

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$ be closed and convex. Then the following hold:
i) For all $x \in \mathbb{R}^{n}, P_{C}(x)$ exists and is unique.
ii) For every $x \in \mathbb{R}^{n}$ and $p \in \mathbb{R}^{n}, p=P_{C}(x) \Longleftrightarrow p \in C \wedge \forall y \in C,\langle y-p, x-p\rangle \leq 0$.

Proof (i)

Recall that

$$
d_{C}(x):=\inf _{c \in C}\|x-c\| .
$$

Hence there is a sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ in C such that

$$
d_{C}(x)=\lim _{n \rightarrow \infty}\left\|c_{n}-x\right\| .
$$

Let $m, n \in \mathbb{N}$. By the convexity of $C, \frac{1}{2} c_{m}+\frac{1}{2} c_{n} \in C$. But then

$$
d_{C}(x)=\inf _{c \in C}\|x-c\| \leq\left\|x-\frac{1}{2}\left(c_{m}+c_{n}\right)\right\|
$$

Apply our first lemma with c_{m}, c_{n}, x to see that

$$
\begin{aligned}
\left\|c_{n}-c_{m}\right\|^{2} & =2\left\|c_{n}-x\right\|^{2}+2\left\|c_{m}-x\right\|^{2}-4\left\|x-\frac{c_{n}+c_{m}}{2}\right\|^{2} \\
& \leq 2\left\|c_{n}-x\right\|^{2}+2\left\|c_{m}-x\right\|^{2}-4 d_{C}(x)^{2} .
\end{aligned}
$$

As $m, n \rightarrow \infty$,

$$
0 \leq\left\|c_{n}-c_{m}\right\|^{2} \rightarrow 4 d_{C}(x)^{2}-4 d_{C}(x)^{2}=0
$$

and $\left(c_{n}\right)$ is a Cauchy sequence. But then there is some $c \in p$ such that $c_{n} \rightarrow p$ by the closedness (completeness) of C.

By the continuity of $\|x-\cdot\|, c_{n} \rightarrow p$ implies

$$
\left\|x-c_{n}\right\| \rightarrow d_{C}(x)=\|x-p\|
$$

This demonstrates the existence of p.
Suppose there is some $q \in C$ such that $d_{C}(x)=\|q-x\|$. By convexity, $\frac{1}{2}(p+q) \in C$. Using the first lemma again, we have

$$
\begin{aligned}
0 & \leq\|p-q\|^{2} \\
& =2\|p-x\|^{2}+2\|q-x\|^{2}-4\left\|x-\frac{p+q}{2}\right\|^{2} \\
& \leq 2 d_{C}(x)^{2}+2 d_{C}(x)^{2}-4 d_{C}(x)^{2} \\
& \leq 0 .
\end{aligned}
$$

So $\|p-q\|=0 \Longrightarrow p=q$.
This shows uniqueness.

Proof (ii)

Observe that $p=P_{C}(x)$ if and only if $p \in C$ and

$$
\|x-p\|^{2}=d_{C}(x)^{2}
$$

Since C is convex,

$$
\forall \alpha \in[0,1], y_{\alpha}:=\alpha y+(a-\alpha) p \in C .
$$

Thus

$$
\begin{aligned}
\|x-p\|^{2} & =d_{C}(x)^{2} \\
& \Longleftrightarrow \forall y \in C, \alpha \in[0,1],\|x-p\|^{2} \leq\left\|x-y_{\alpha}\right\|^{2} \\
& \Longleftrightarrow \forall y \in C, \alpha \in[0,1],\|x-p\|^{2} \leq\|x-p-\alpha(y-p)\|^{2} \\
& \Longleftrightarrow \forall y \in C,\langle x-p, y-p\rangle \leq 0
\end{aligned}
$$

auxiliary lemma 2 .
In the absence of closedness, $P_{C}(x)$ does not in general exist unless $x \in C$. In the absence of convexity, uniqueness does not in general hold.

Example 1.5.4

Fix $\epsilon>0$ and $C=B(0 ; \epsilon)$ be the closed ball around 0 or radius ϵ.
For all $x \in \mathbb{R}^{n}$, either $P_{C}(x)=x$ when $x \in C$ or $P_{C}(x)$ is $\frac{\epsilon}{\|x\|} x$, the vector obtained from x by scaling its norm to ϵ.

In other words,

$$
P_{C}(x)=\frac{\epsilon}{\max (\|x\|, \epsilon)} x
$$

1.6 Convex Set Operations

Definition 1.6.1 (Minkowski Sum)

Let $C, D \subseteq \mathbb{R}^{n}$. The Minkowski Sum of C, D is

$$
C+D:=\{c+d: c \in C, d \in D\} .
$$

Theorem 1.6.1 (Minkowski)

Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be convex. Then $C_{1}+C_{2}$ is convex.

Proof

If either C_{1}, C_{2} is empty, then $C_{1}+C_{2}=\varnothing$ by definition.
Otherwise, $C_{1}+C_{2} \neq \varnothing$. Fix $x_{1}+x_{2}, y_{1}+y_{2} \in C_{1}+C_{2}$ and $\lambda \in(0,1)$. By the convexity
of C_{1}, C_{2},

$$
\begin{aligned}
\lambda\left(x_{1}+x_{2}\right)+(1-\lambda)\left(y_{1}+y_{2}\right) & =\lambda x_{1}+(1-\lambda) y_{1}+\lambda x_{2}+(1-\lambda) y_{2} \\
& \in C_{1}+C_{2}
\end{aligned}
$$

as required.

Proposition 1.6.2

Let $\varnothing \neq C, D \subseteq \mathbb{R}^{n}$ be closed and convex. Moreover, suppose that D is bounded.
Then $C+D \neq \varnothing$ is closed and convex.

Proof

We have already shown non-emptiness and convexity in the previous theorem.
Let $\left(x_{n}+y_{n}\right)_{n \in N}$ be a convergent sequence in $C+D$. Say that $x_{n}+y_{n} \rightarrow z$.
Since D is bounded, there is a subsequence $\left(y_{k_{n}}\right)_{n \in N}$ such that $y_{k_{n}} \rightarrow y \in D$. It follows that

$$
x_{k_{n}}=z-y_{k_{n}} \rightarrow z-y \in C
$$

by the closedness of C.
It follows that $z \in C+y \subseteq C+D$ as desired.
If we drop the assumption that D is bounded, the result no longer holds in general. Indeed, consider $C=\{2,3,4, \ldots\}$ and $D:=\left\{-n+\frac{1}{n}: n=2,3,4, \ldots\right\} .\left(\frac{1}{n}\right)_{n \geq 2}$ is the sum but 0 is not!

Theorem 1.6.3

Let $C \subseteq \mathbb{R}^{n}$ be convex and $\lambda_{1}, \lambda_{2} \geq 0$. Then

$$
\left(\lambda_{1}+\lambda_{2}\right) C=\lambda_{1} C+\lambda_{2} C .
$$

Proof

(\subseteq) This is always true, even if C is not convex.
(\supseteq) Without loss of generality, we may assume that $\lambda_{1}+\lambda_{2}>0$. By convexity, we have

$$
\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} C+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} C \subseteq C
$$

In other words, $\lambda_{1} C+\lambda_{2} C \subseteq\left(\lambda_{1}+\lambda_{2}\right) C$.

1.7 Topological Properties

We will write

$$
B(x ; \epsilon):=\left\{y \in \mathbb{R}^{n}:\|y-x\| \leq \epsilon\right\}
$$

to denote the closed ball of radius ϵ about x. In particular, we write

$$
B:=B(0 ; 1)
$$

to denote the closed unit ball.

Definition 1.7.1 (Interior)
The interior of $C \subseteq \mathbb{R}^{n}$ is

$$
\operatorname{int} C:=\{x: \exists \epsilon>0, x+\epsilon B \subseteq C\} .
$$

Definition 1.7.2 (Closure)
The closure of $C \subseteq \mathbb{R}^{n}$ is

$$
\bar{C}:=\bigcap_{\epsilon>0} C+\epsilon B .
$$

Definition 1.7.3 (Relative Interior)
The relative interior of a convex $C \subseteq \mathbb{R}^{n}$ is

$$
\text { ri } C:=\{x \in \operatorname{aff} C: \exists \epsilon>0,(x+\epsilon B) \cap \text { aff } C \subseteq C\} .
$$

Proposition 1.7.1
Let $C \subseteq \mathbb{R}^{n}$. Suppose that $\operatorname{int} C \neq \varnothing$. Then $\operatorname{int} C=\operatorname{ri} C$.

Proof

Let $x \in \operatorname{int} C$. There is some $\epsilon>0$ such that $B(x ; \epsilon) \subseteq C$. Hence

$$
\begin{aligned}
\mathbb{R}^{n} & =\operatorname{aff}(B(x ; \epsilon)) \\
& \subseteq \operatorname{aff} C \\
& \subseteq \mathbb{R}^{n}
\end{aligned}
$$

But then aff $C=\mathbb{R}^{n}$ and the result follows from definition.
Let $A \subseteq \mathbb{R}^{n}$ be affine. Every affine set has a corresponding linear subspace

$$
L:=A-A \text {. }
$$

This is a linear subspace as it is affine and contains 0 .

Definition 1.7.4 (Dimension)

Let $\varnothing \neq A \subseteq \mathbb{R}^{n}$ be affine. The dimension of A is the dimension of the corresponding linear subspace

$$
\operatorname{dim} A:=\operatorname{dim}(A-A)
$$

It may be useful to consider

$$
A-A=\bigcup_{a \in A}(A-a)
$$

as the union of translations.

Definition 1.7.5 (Dimension)

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$ be convex. The dimension of C, denoted $\operatorname{dim} C$, is the dimension of aff C.

Proposition 1.7.2

Let $C \subseteq \mathbb{R}^{n}$ be convex. For all $x \in \operatorname{int} C$ and $y \in \bar{C}$,

$$
[x, y) \subseteq \operatorname{int} C
$$

Proof

Let $\lambda \in[0,1)$. We argue that $(1-\lambda) x+\lambda y \in \operatorname{int} C$. It suffices to show that

$$
(1-\lambda) x+\lambda y+\epsilon B \subseteq C
$$

for some $\epsilon>0$.
As $y \in \bar{C}$, we have that $\forall \epsilon>0, y \in C+\epsilon B$. Thus for all $\epsilon>0$,

$$
\begin{aligned}
(1-\lambda) x+\lambda y+\epsilon B & \subseteq(1-\lambda) x+\lambda(C+\epsilon B)+\epsilon B & & \\
& =(1-\lambda) x+(1+\lambda) \epsilon B+\lambda C & & \text { previous theorem } \\
& =(1-\lambda)\left[x+\frac{1+\lambda}{1-\lambda} \epsilon B\right]+\lambda C & & \\
& \subseteq(1-\lambda) C+\lambda C & & \text { sufficiently small } \epsilon, x \in \operatorname{int} C \\
& =C . & & \text { previous theorem again }
\end{aligned}
$$

Theorem 1.7.3

Let $C \subseteq \mathbb{R}^{n}$ be convex. Then for all $x \in \operatorname{ri} C$ and $y \in \bar{C}$,

$$
[x, y) \subseteq \operatorname{ri} C .
$$

Proof

$\underline{\text { Case I: } \operatorname{int} C \neq \varnothing}$ This follows by the observation that ri $C=\operatorname{int} C$.
Case II: $\operatorname{int} C=\varnothing$ We must have $\operatorname{dim} C=m<n$. Let $L:=\operatorname{aff} C-\operatorname{aff} C$ be the corresponding linear subspace of dimension m.

Through translation by $-c \in C$ if necessary, we may assume without loss of generality that $C \subseteq L \cong \mathbb{R}^{m}$.

But then the interior of C with respect to \mathbb{R}^{m} is ri C in \mathbb{R}^{n}. An application of Case I with $C \subseteq \mathbb{R}^{m}$ yields the result.

Theorem 1.7.4

Let $C \subseteq \mathbb{R}^{n}$ be convex. The following hold:
(i) \bar{C} is convex.
(ii) $\operatorname{int} C$ is convex.
(iii) If $\operatorname{int} C \neq \varnothing$, then $\operatorname{int} C=\operatorname{int} \bar{C}$ and $\bar{C}=\overline{\operatorname{int} C}$.

Proof (i)

Let $x, y \in \bar{C}$ and $\lambda \in(0,1)$. There are sequences $x_{n}, y_{n} \in C$ such that

$$
x_{n} \rightarrow x, y_{n} \rightarrow y .
$$

It follows by convexity that

$$
C \ni \lambda x_{n}+(1-\lambda) y \rightarrow \lambda x+(1-\lambda y) \in \bar{C} .
$$

By definition, \bar{C} is convex.

Proof (ii)

If $\operatorname{int} C=\varnothing$, the conclusion is clear.

Otherwise, use the previous proposition with $y \in C \subseteq \bar{C}$ to see that

$$
\begin{aligned}
{[x, y] } & =[x, y) \cup\{y\} \\
& \subseteq \operatorname{int} C \cup \operatorname{int} C \\
& =\operatorname{int} C
\end{aligned}
$$

Proof (iii)

Since $C \subseteq \bar{C}$, it must hold that $\operatorname{int} C \subseteq \operatorname{int} \bar{C}$.
Conversely, let $y \in \operatorname{int} \bar{C}$. If $y \in \operatorname{int} C$, then we are done. Thus suppose otherwise.
There is some $\epsilon>0$ such that $B(y ; \epsilon) \subseteq \bar{C}$. We may thus choose some $\operatorname{int} C \not \supset y \neq x \in$ $\operatorname{int} C \neq \varnothing$ and $\lambda>0$ sufficiently small such that

$$
y+\lambda(y-x) \in B(y ; \epsilon) \subseteq \bar{C}
$$

By a previous proposition applied with $y+\lambda(y-x)$, we have that

$$
[x, y+\lambda(y-x)) \subseteq \operatorname{int} C
$$

We now claim that $y \in[x, y+\lambda(y-x))$. Indeed, set $\alpha:=\frac{1}{1+\lambda} \in(0,1)$. We have

$$
\begin{aligned}
(1-\alpha) x+\alpha(y+\lambda(y-x)) & =(1-\alpha(1+\lambda)) x+\alpha(1+\lambda) y \\
& =y
\end{aligned}
$$

It follows by the arbitrary choice of y that $\operatorname{int} \bar{C} \subseteq \operatorname{int} C$. We now turn to the second identity.

Since int $C \subseteq C$, we must have $\overline{\operatorname{int} C} \subseteq \bar{C}$. Conversely, let $y \in \bar{C}$ and $x \in \operatorname{int} C$. For $\lambda \in[0,1)$, define

$$
y_{\lambda}=(1-\lambda) x+\lambda y .
$$

The previous proposition agains tells us that

$$
y_{\lambda} \in[x, y) \subseteq \operatorname{int} C .
$$

But then $y=\lim _{\lambda \rightarrow 0} y_{\lambda} \in \overline{\operatorname{int} C}$ and $\bar{C} \subseteq \overline{\operatorname{int} C}$.
This concludes the argument.

Theorem 1.7.5

Let $C \subseteq \mathbb{R}^{n}$ be convex. Then ri C, \bar{C} are convex.
Moreover,

$$
C \neq \varnothing \Longleftrightarrow \text { ri } C \neq \varnothing .
$$

1.8 Separation Theorems

Definition 1.8.1 (Separated)

Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$. We say C_{1}, C_{2} are separated if there is some $b \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle \leq \inf _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle .
$$

If

$$
\sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle\left\langle\inf _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle,\right.
$$

then we say C_{1}, C_{2} are strongly separated.

Theorem 1.8.1

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$ be closed and convex and suppose $x \notin C$. Then x is strongly separated from C.

Proof

The goal is to find some $b \neq 0$ such that

$$
\begin{aligned}
\sup \langle c, b\rangle & <\langle x, b\rangle \\
\sup \langle c-x, b\rangle & <0
\end{aligned}
$$

Set $p:=P_{C}(X)$ and $b:=x-p \neq \varnothing$. Let $y \in C$. By the projection theorem,

$$
\begin{array}{rlrl}
\langle y-p, x-p\rangle & \leq 0 & \forall y \in C \\
\langle y-(x-b), x-(x-b)\rangle & \leq 0 & & p=x-b \\
\langle y-x, b\rangle & \leq-\langle b, b\rangle & & \\
& =-\|b\|^{2} & & \\
\sup _{y \in C}\langle y, b\rangle-\langle x, b\rangle & \leq-\|b\|^{2} & & \\
& <0 & &
\end{array}
$$

as desired.

Corollary 1.8.1.1

Let $C_{1} \cap C_{2}=\varnothing$ be nonempty subsets of \mathbb{R}^{n} such that $C_{1}-C_{2}$ is closed and convex. Then C_{1}, C_{2} are strongly separated.

Proof

By definition, C_{1}, C_{2} are strongly separated if and only if there is $b \neq 0$ such that

$$
\begin{aligned}
& \sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle<\inf _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle \\
& \sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle<-\sup _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle \\
& \sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle+\sup _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle<0 \\
& \sup _{c_{1} \in C_{1}, c_{2} \in C_{2}}\left\langle c_{1}-c_{2}, b\right\rangle<0 .
\end{aligned}
$$

Since $C_{1} \cap C_{2}=\varnothing$, we know that $0 \notin C_{1}-C_{2}$. Hence $C_{1}-C_{2}$ is strongly separated from 0 and the conclusion follows.

Corollary 1.8.1.2

Let $\varnothing \neq C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be closed and convex such that $C_{1} \cap C_{2}=\varnothing$ and C_{2} is bounded. Then C_{1}, C_{2} are strongly separted.

Proof

$C_{1} \cap C_{2}=\varnothing \Longrightarrow 0 \notin C_{1}-C_{2}$. In addition, $-C_{2}$ is also closed and convex. It follows by a previous theorem that $C_{1}+\left(-C_{2}\right)$ is nonempty, closed, and convex.

Theorem 1.8.2

Let $\varnothing \neq C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be closed and convex such that $C_{1} \cap C_{2}=\varnothing$. Then C_{1}, C_{2} are separated.

Proof

For each $n \in \mathbb{N}$, set

$$
D_{n}:=C_{2} \cap B(0 ; n) .
$$

Observe that $C_{1} \cap D_{n}=\varnothing$ for all n. Moreover, D_{n} is bounded by construction.
It follows that there is a hyperplane u_{n} that separates C_{1}, D_{n} for all n. Specifically, $\left\|u_{n}\right\|=1$ and

$$
\sup \left\langle C_{1}, u_{n}\right\rangle<\inf \left\langle D_{n}, u_{n}\right\rangle
$$

But the sequence u_{n} is bounded, hence there is a convergent subsequence $u_{k_{n}}$. where $u_{k_{n}} \rightarrow u$ with $\|u\|=1$.

Let $x \in C_{1}, y \in C_{2}$. For sufficiently large $n, y \in B\left(0 ; k_{n}\right)$ and

$$
\left\langle x, u_{k_{n}}\right\rangle<\left\langle y, u_{k_{n}}\right\rangle .
$$

Taking the limit as $k \rightarrow \infty$ yields

$$
\langle x, u\rangle \leq\langle y, u\rangle .
$$

This completes the proof.

1.9 More Convex Sets

Definition 1.9.1 (Cone)
$C \subseteq \mathbb{R}^{n}$ is a cone if

$$
C=\mathbb{R}_{++} C
$$

Definition 1.9.2 (Conical Hull)
cone C is the intersection of all cones containing C.

Definition 1.9.3 (Closed Conical Hull)
$\overline{\text { cone }}(C)$ is the smallest closed cone containing C.

Proposition 1.9.1

Let $C \subseteq \mathbb{R}^{n}$. The following hold:
(i) cone $C=\mathbb{R}_{++} C$
(ii) $\overline{\text { cone } C}=\overline{\operatorname{cone}}(C)$
(iii) $\operatorname{cone}(\operatorname{conv} C)=\operatorname{conv}(\operatorname{cone} C)$
(iv) $\overline{\text { cone }}(\operatorname{conv} C)=\overline{\operatorname{conv}}(\operatorname{cone} C)$

The proofs of all these are trivial if $C=\varnothing$. Thus in our proofs, we assume that C is nonempty.

Proof (i)
Set $D:=\mathbb{R}_{++} C$. It is clear that $C \subseteq D$ with D being a cone. Hence cone $C \subseteq D$.
Conversely, for $y \in D$, there is some $\lambda>0, c \in C$ for which $y=\lambda c$. Then $y \in$ cone C and $D \subseteq$ cone C.

Proof (ii)

$\overline{\operatorname{cone}}(C)$ is a closed cone with $C \subseteq \overline{\operatorname{cone}}(C)$. Hence

$$
\overline{\text { cone } C} \subseteq \overline{\overline{\operatorname{cone}}(C)}=\overline{\operatorname{cone}}(C)
$$

Conversely, since cone C is a cone,

$$
\overline{\operatorname{cone}}(C) \subseteq \overline{\operatorname{cone} C} .
$$

Proof (iii)

(\subseteq) Let $x \in \operatorname{cone}(\operatorname{conv} C)$. By i, there is $\lambda>0, y \in \operatorname{conv} C$ such that $x=\lambda y$. Since $\bar{y} \in \operatorname{conv} C$, we can express is as a convex combination

$$
\begin{aligned}
x & =\lambda y \\
& =\lambda \sum_{i=1}^{m} \lambda_{i} x_{i} \\
& =\sum_{i=1}^{m} \lambda_{i} \lambda x_{i} \\
& \in \operatorname{conv}(\operatorname{cone} C) .
\end{aligned}
$$

(\supseteq) Let $x \in \operatorname{conv}($ cone $C)$. We can write x as convex combinations of scalar multiples of \bar{C}.

$$
\begin{aligned}
x & =\sum_{i=1}^{m} \mu_{i} \lambda_{i} x_{i} \\
& =\left(\sum_{i=1}^{m} \lambda_{i} \mu_{i}\right)\left(\sum_{i=1}^{m} \frac{\lambda_{i} \mu_{i}}{\sum \lambda_{i} \mu_{i}} x_{i}\right) \\
& =\alpha \sum_{i=1}^{m} \beta_{i} x_{i} .
\end{aligned}
$$

This is a scalar multiple of a convex combination of C and thus $x \in \operatorname{cone}(\operatorname{conv} C)$ as desired.

Proof (iv)

This is a direct consequence of iii.

Lemma 1.9.2

Let $0 \in C \subseteq \mathbb{R}^{n}$ be convex with int $C \neq \varnothing$. The following are equivalent:
(i) $0 \in \operatorname{int} C$
(ii) cone $C=\mathbb{R}^{n}$
(iii) $\overline{\text { cone }} C=\mathbb{R}^{n}$

It is a fact that for $0 \in C \subseteq \mathbb{R}^{n}$ convex with $\operatorname{int} C \neq \varnothing$,

$$
\operatorname{int}(\operatorname{cone} C)=\operatorname{cone}(\operatorname{int} C)
$$

Proof

$\underline{(i) \Longrightarrow(i i)}$ Suppose $0 \in \operatorname{int} C$. Then $B(0 ; \epsilon) \subseteq C$ for some $\epsilon>0$. But then

$$
\begin{aligned}
\mathbb{R}^{n} & =\operatorname{cone}(B(0 ; \epsilon)) \\
& \subseteq \operatorname{cone} C \\
& \subseteq \mathbb{R}^{n}
\end{aligned}
$$

and we have equality.
$($ ii) $\Longrightarrow($ iii $)$ Recall that cone $C=\overline{\text { cone } C}$. But then

$$
\mathbb{R}^{n}=\text { cone } C \subseteq \overline{\text { cone }} C
$$

$\underline{(i i i) \Longrightarrow(i)}$ Recall that cone $(\operatorname{conv} C)=\operatorname{conv}(\operatorname{cone} C)$. Thus

$$
\operatorname{conv}(\operatorname{cone} C)=\operatorname{cone} C
$$

and cone C is convex.
By assumption,

$$
\varnothing \neq \operatorname{int} C \subseteq \operatorname{int}(\operatorname{cone} C)
$$

and cone C has nonempty interior.
Recall that

$$
\operatorname{int}(\operatorname{cone} C)=\operatorname{int}(\overline{\operatorname{cone}} C)
$$

as cone C is convex.

Hence

$$
\begin{aligned}
\mathbb{R}^{n} & =\operatorname{int} \mathbb{R}^{n} \\
& =\operatorname{int}(\overline{\operatorname{cone}} C) \\
& =\operatorname{int}(\operatorname{cone} C) \\
& =\operatorname{cone}(\operatorname{int} C) .
\end{aligned}
$$

Thus $0 \in \lambda \operatorname{int} C$ for some $\lambda>0$. It must be then that $0 \in C$ as desired.

Definition 1.9.4 (Tangent Cone)

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$ with $x \in \mathbb{R}^{n}$. The tangent cone to C at x is

$$
T_{C}(x)= \begin{cases}\overline{\operatorname{cone}}(C-x)=\overline{\bigcup_{\lambda \in \mathbb{R}_{++}} \lambda(C-x)}, & x \in C \\ \varnothing, & x \notin C\end{cases}
$$

Definition 1.9.5 (Normal Cone)

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$ with $x \in \mathbb{R}^{n}$. The normal cone to C at x is

$$
N_{C}(x)= \begin{cases}\left\{u \in \mathbb{R}^{n}: \sup _{c \in C}\langle c-x, u\rangle \leq 0\right\}, & x \in C \\ \varnothing, & x \notin C\end{cases}
$$

Theorem 1.9.3

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$ be closed and convex. Let $X \in \mathbb{R}^{n}$.
Both $N_{C}(x), T_{C}(x)$ are closed convex cones.

Lemma 1.9.4

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$ be closed and convex with $x \in C$.

$$
n \in N_{C}(x) \Longleftrightarrow \forall t \in T_{C}(x),\langle n, t\rangle \leq 0
$$

Proof

(\Longrightarrow) Let $n \in N_{C}(x)$ and $t \in T_{C}(x)$. Recall that $T_{C}(x)=\overline{\operatorname{cone}}(C-x)$. Thus there is $\overline{\text { some } \lambda_{k}}>0$ and $t_{k} \in \mathbb{R}^{n}$ such that

$$
x+\lambda_{k} t_{k} \in C
$$

and $t_{k} \rightarrow t$.
Since $n \in N_{C}(x)$ and $x+\lambda_{k} t_{k} \in C$, it follows that for all $k,\left\langle n, \lambda_{k} t_{k}\right\rangle \leq 0$. But then as
$k \rightarrow \infty$ we see that

$$
\langle n, t\rangle \leq 0 .
$$

(\Longleftarrow) Suppose that $\forall t \in T_{C}(x)$, we have $\langle n, t\rangle \leq 0$. Pick $y \in C$ and observe that

$$
\begin{aligned}
y-x & \in C-x \\
& \subseteq \operatorname{cone}(C-x) \\
& \subseteq \overline{\operatorname{cone}}(C-x) \\
& =T_{C}(x) .
\end{aligned}
$$

It follows that $\langle n, y-x\rangle \leq 0$ and $n \in N_{C}(x)$.

Theorem 1.9.5

Let $C \subseteq \mathbb{R}^{n}$ be convex such that $\operatorname{int} C \neq \varnothing$. Let $x \in C$. The following are equivalent.
(1) $x \in \operatorname{int} C$
(2) $T_{C}(x)=\mathbb{R}^{n}$
(3) $N_{C}(x)=\{0\}$

Proof

(1) $\Longleftrightarrow(2)$ Observe that $x \in \operatorname{int} C$ if and only if $0 \in \operatorname{int}(C-x)$ if and only if there is some $\epsilon>0$ with

$$
B(0 ; \epsilon) \subseteq C-x .
$$

Now,

$$
\begin{aligned}
\mathbb{R}^{n} & =\operatorname{cone}(B(0 ; \epsilon)) \\
& \subseteq \operatorname{cone}(C-x) \\
& \subseteq \overline{\operatorname{cone}(C-x)} \\
& =\overline{\operatorname{cone}}(C-x) \\
& =T_{C}(x) \\
& \subseteq \mathbb{R}^{n} .
\end{aligned}
$$

$(2) \Longleftrightarrow(3)$ Our previous lemma combined with (1) yields

$$
\begin{aligned}
n \in N_{C}(x) & \Longleftrightarrow \forall t \in T_{C}(x)=\mathbb{R}^{n},\langle n, t\rangle \leq 0 \\
& \Longleftrightarrow n=0 .
\end{aligned}
$$

Hence $N_{C}(x)=\{0\}$.

Conversely, suppose $N_{C}(x)=\{0\}$. It is clear that $0 \in T_{C}(x)$. Pick $y \in \mathbb{R}^{n}$. We claim that $y \in T_{C}(x)$. To see this recall that $T_{C}(x)$ is a closed convex cone, hence $p=P_{T_{C}(x)}(y)$ exists and is unique. Moreover, it suffices to show that $y=p \in T_{C}(x)$.

Indeed, by the projection theorem

$$
\langle y-p, t-p\rangle \leq 0
$$

for all $t \in T_{C}(x)$. In particular, it holds for $t=p, 2 p \in T_{C}(x)\left(T_{C}(x)\right.$ is a cone). So

$$
\langle y-p, \pm p\rangle \leq 0 \Longrightarrow\langle y-p, p\rangle=0 .
$$

But then $\langle y-p, t\rangle \leq 0$ for all $t \in T_{C}(x)$, which implies that $y-p \in N_{C}(x)=\{0\}$ and

$$
y=p \in T_{C}(x)
$$

as desired.

Chapter 2

Convex Functions

2.1 Definitions \& Basic Results

Definition 2.1.1 (Epigraph)

Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$. The epigraph of f is

$$
\operatorname{epi} f:=\{(x, \alpha): f(x) \leq \alpha\} \subseteq \mathbb{R}^{n} \times \mathbb{R}
$$

Definition 2.1.2 (Domain)
For $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$,

$$
\operatorname{dom} f:=\left\{x \in \mathbb{R}^{n}: f(x)<\infty\right\} .
$$

Definition 2.1.3 (Proper Function)
We say that f is proper if $\operatorname{dom} f \neq \varnothing$ and $f\left(\mathbb{R}^{n}\right)>-\infty$.

Definition 2.1.4 (Indicator Function)
Let $C \subseteq \mathbb{R}^{n}$. The indicator function of C is given by

$$
\delta_{C}(x):= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

Definition 2.1.5 (Lower Semicontinuous)
f is lower semicontinuous (l.s.c.) if epi (f) is closed.

Definition 2.1.6 (Convex Function)

f is convex if epi f is convex.

Proposition 2.1.1

Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ be convex. Then $\operatorname{dom} f$ is convex.
Recall that linear transformations $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ preserve set convexity $\left(C \subseteq \mathbb{R}^{n}\right.$ convex implies that $A(C)$ is convex).

Proof

Consider the linear transformation $L: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ given by

$$
(x, \alpha) \mapsto x .
$$

Then $\operatorname{dom} f=L($ epi $f)$ is convex.

Theorem 2.1.2
Let $f: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$. Then f is convex if and only if for all $x, y \in \operatorname{dom} f$ and $\lambda \in(0,1)$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Proof

If $f=\infty \Longleftrightarrow$ epi $f=\varnothing \Longleftrightarrow \operatorname{dom} f=\varnothing$, then result is trivial. Hence let us suppose that $f \neq \infty \Longleftrightarrow \operatorname{dom} f \neq \varnothing$.
(\Longrightarrow) Pick $x, y \in \operatorname{dom} f$ and $\lambda \in(0,1)$. Observe that $(x, f(x)),(y, f(y)) \in$ epi f. By convexity,

$$
\begin{aligned}
\lambda(x, f(x))+(1-\lambda)(y, f(y)) & =(\lambda x+(1-\lambda) y, \lambda f(x)-(1-\lambda) f(y)) \quad \in \operatorname{epi}(f) \\
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y) .
\end{aligned}
$$

(\Longleftarrow) Conversely, suppose the function inequality holds. Pick $(x, \alpha),(y, \beta) \in$ epi f as $\overline{\text { well as }} \lambda \in(0,1)$. Now,

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y) \\
& \leq \lambda \alpha+(1-\lambda) \beta
\end{aligned}
$$

and

$$
(\lambda x+(1-\lambda) y, \lambda \alpha,(1-\lambda) \beta) \in \operatorname{epi} f
$$

as desired.
It follows that epi f is convex and so is f.

2.2 Lower Semicontinuity

Definition 2.2.1 (Lower Semicontinuity; Alternative)

Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ and $x \in \mathbb{R}^{n}$. f is lower semicontinuous (l.s.c) at x if for every sequence $\left(x_{n}\right)_{n \geq 1} \in \mathbb{R}^{n}$ such that $x_{n} \rightarrow x$,

$$
f(x) \leq \liminf f\left(x_{n}\right) .
$$

We say f is l.s.c. if f is l.s.c. at every point in \mathbb{R}^{n}.
Remark that continuity implies lower semicontinuity. One can show that the two definitions of l.s.c. are equivalent, but we omit the proof.

Theorem 2.2.1

Let $C \subseteq \mathbb{R}^{m}$. Then the following hold:
(i) $C \neq \varnothing$ if and only if δ_{C} is proper
(ii) C is convex if and only if δ_{C} is convex
(iii) C is closed if and only if δ_{C} is l.s.c.

We prove (i) and (ii) in A2.

Proof ((iii))
Observe that $C=\varnothing \Longleftrightarrow$ epi $\delta_{C}=\varnothing$, which is certainly closed. Thus we proceed assuming $C \neq \varnothing$.
(\Longrightarrow) Suppose C is closed. We want to show that epi δ_{C} is closed.
Pick a converging sequence sequence $\left(x_{n}, \alpha_{n}\right) \rightarrow(x, \alpha)$ with every element in epi δ_{C}. Observe that x_{n} is a sequence in C, hence $x \in C$. Moreover, $\alpha_{n} \in[0, \infty)$ and $\alpha \geq 0$.

It follows that $(x, \alpha) \in \operatorname{epi} \delta_{C}$ as required.
(\Longleftarrow) Conversely, suppose that δ_{C} is l.s.c. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in C with $x_{n} \rightarrow x$.

By the definition of δ_{C}, it suffices to show that $\delta_{C}(x)=0$.
By lower semicontinuity,

$$
\begin{aligned}
0 & \leq \delta_{C}(x) \\
& \leq \liminf \delta_{C}\left(x_{n}\right) \\
& =0
\end{aligned}
$$

and we have equality throughout.

Proposition 2.2.2

Let I be an indexing set and let $\left(f_{i}\right)_{i \in I}$ be a family of l.s.c. convex functions on \mathbb{R}^{n}. Then

$$
F:=\sup _{i \in I} f_{i}
$$

is convex and l.s.c.

Proof

We claim that epi $F=\bigcap_{i \in I}$ epi f. Indeed,

$$
\begin{aligned}
(x, \alpha) \in \operatorname{epi} F & \Longleftrightarrow \sup _{i \in I} f_{i}(x) \leq \alpha \\
& \Longleftrightarrow \forall i \in I, f_{i}(x) \leq \alpha \\
& \Longleftrightarrow \forall i \in I,(x, \alpha) \in \operatorname{epi} f_{i} \\
& \Longleftrightarrow \forall i \in I(x, \alpha) \in \operatorname{epi} f_{i}
\end{aligned}
$$

The result follows by the definition of convex functions and lower semicontinuity as intersections preserve both set convexity and closedness.

2.3 The Support Function

Definition 2.3.1 (Support Function)
Let $C \subseteq \mathbb{R}^{m}$. The support function $\sigma_{C}: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$ of C is

$$
u \mapsto \sup _{c \in C}\langle c, u\rangle .
$$

Proposition 2.3.1

Let $\varnothing \neq C \subseteq \mathbb{R}^{n}$. Then σ_{C} is convex, l.s.c., and proper.

Proof

For each $c \in C$, define

$$
f_{C}(x):=\langle x, c\rangle .
$$

Then f_{c} is linear and hence proper, l.s.c., and convex. Moreover,

$$
\sigma_{C}=\sup _{c \in C} f_{c} .
$$

Combined with our previous proposition, we learn that σ_{C} is convex and l.s.c.
Observe that since $C \neq \varnothing$,

$$
\sigma_{C}(0)=\sup _{c \in C}\langle 0, c\rangle=0<\infty
$$

Hence $\operatorname{dom} \sigma_{C} \neq \varnothing$. In addition, fix $\bar{c} \in C$. Then for all $u \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\sigma_{C}(u) & =\sup _{c \in C}\langle u, c\rangle \\
& \geq\langle u, \bar{c}\rangle \\
& >-\infty .
\end{aligned}
$$

Hence σ_{C} is proper as well.

2.4 Further Notions of Convexity

Let $f: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$ be proper. Then f is strictly convex if for every $x \neq y \in \operatorname{dom} f$ and $\lambda \in(0,1)$,

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

Moreover, f is strongly convex with constant $\beta>0$ if for every $x, y \in \operatorname{dom} f, \lambda \in(0,1)$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)-\frac{\beta}{2} \lambda(1-\lambda)\|x-y\|^{2}
$$

Clearly, strong convexity implies strict convexity, which in turn implies convexity.

2.5 Operations Preserving Convexity

Proposition 2.5.1

Let I be a finite indexing set and $\left(f_{i}\right)_{i \in I}$ a family of convex functions $\mathbb{R}^{m} \rightarrow[-\infty, \infty]$. Then

$$
\sum_{i \in I} f_{i}
$$

is convex.

Proposition 2.5.2

Let f be convex and l.s.c. and pick $\lambda>0$. Then

$$
\lambda f
$$

is convex and l.s.c.

2.6 Minimizers

Definition 2.6.1 (Global Minimizer)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and $x \in \mathbb{R}^{m}$. Then x is a (global) minimizer of f if

$$
f(x)=\min f\left(\mathbb{R}^{m}\right)
$$

We will use $\operatorname{argmin} f$ to denote the set of minimizers of f.

Definition 2.6.2 (Local Minimum)

Let $\left.\left.f: \mathbb{R}^{m} \rightarrow\right]-\infty, \infty\right]$ be be proper and $\bar{x} \in \mathbb{R}^{m}$. Then \bar{x} is a local minimum of f if there is $\delta>0$ such that

$$
\|x-\bar{x}\|<\delta \Longrightarrow f(\bar{x}) \leq f(x)
$$

We way that \bar{x} is a global minimum of f if for all $x \in \operatorname{dom} f$,

$$
f(\bar{x}) \leq f(x) .
$$

Analogously, we define the local maximum and global maximum.
Why are convex functions so special?

Proposition 2.6.1

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and convex. Then every local minimizer of f is a global minimizer.

Proof

Let x be a local minimizer of f. There is some $\rho>0$ such that

$$
f(x)=\min f(B(x ; \rho))
$$

Pick some $y \in \operatorname{dom} f \backslash B(x ; \rho)$. Notice that

$$
\lambda:=1-\frac{\rho}{\|x-y\|} \in(0,1)
$$

Set

$$
z:=\lambda x+(1-\lambda) y \in \operatorname{dom} f
$$

We know this is in the domain as $\operatorname{dom} f$ is convex by our prior work.
We have

$$
\begin{aligned}
z-x & =(1-\lambda) y-(1-\lambda) x \\
& =(1-\lambda)(y-x) \\
\|z-x\| & =\|(1-\lambda)(y-x)\| \\
& =\frac{\rho}{\|y-x\|}\|y-x\| \\
& =\rho .
\end{aligned}
$$

This shows that $z \in B(x ; \rho)$.
By the convexity of f,

$$
\begin{aligned}
f(x) & \leq f(z) \\
& \leq \lambda f(x)+(1-\lambda) f(y) \\
(1-\lambda) f(x) & \leq(1-\lambda) f(y) \\
f(x) & \leq f(y) .
\end{aligned}
$$

Proposition 2.6.2

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and convex. Let $C \subseteq \mathbb{R}^{m}$. Suppose that x is a minimizer of f over C such that $x \in \operatorname{int} C$. Then x is a minimizer of f.

Proof

There is some $\epsilon>0$ such that x minimizes f over $B(x ; \epsilon) \subseteq \operatorname{int} C$. Since x is a local minimizer, it is a global minimizer as well.

2.7 Conjugates

Definition 2.7.1 (Fenchel-Legendre/Convex Conjugate)

Let $f: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$. Then Fenchel-Legendre/Convex Conjugate of f, denoted $f^{*}: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$ is given by

$$
u \mapsto \sup _{x \in \mathbb{R}^{m}}\langle x, u\rangle-f(x) .
$$

Recall that a closed convex set is the intersection of all supporting hyperplanes. The idea is that the epigraph of a convex, l.s.c. function f can be recovered by the supremum of affine functions majorized by f.

Given a slope $x \in \mathbb{R}^{m}$, we want the best translation α which supports f.

$$
\begin{array}{rlrl}
f(x) & \geq\langle u, x\rangle-\alpha & \forall x & \in \mathbb{R}^{n} \\
\alpha & \geq\langle u, x\rangle-f(x) & \forall x \in \mathbb{R}^{n} .
\end{array}
$$

Thus $f^{*}(u):=\sup _{x \in \mathbb{R}^{n}}\langle u, x\rangle-f(x)$ is the best translation such that $\langle u, x\rangle-f^{*}(u)$ is majorized by f.

Proposition 2.7.1

Let $f: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$. Then f^{*} is convex and l.s.c.

Proof

Observe that $f \equiv \infty \Longleftrightarrow \operatorname{dom} f=\varnothing$. Hence if $f \equiv \infty$, for all $u \in \mathbb{R}^{m}$

$$
\begin{aligned}
f^{*}(u) & =\sup _{x \in \mathbb{R}^{m}}\langle x, u\rangle-f(x) \\
& =\sup _{x \in \operatorname{dom} f}\langle x, u\rangle-f(x) \\
& =-\infty .
\end{aligned}
$$

This is trivially convex and l.s.c.
Now suppose that $f \not \equiv \infty$. We claim that $f^{*}(u)=\sup _{(x, \alpha) \in \operatorname{epi} f}\langle x, u\rangle-\alpha$. Observe that
$f_{(x, \alpha)}:=\langle x, \cdot\rangle-\alpha$ is an affine function. By definition,

$$
\sup _{x \in \operatorname{dom} f}\langle x, u\rangle-f(x) \geq \sup _{(x, \alpha) \in \operatorname{epi} f}\langle x, u\rangle-\alpha
$$

as $f(x) \leq \alpha$ by the definition of the epigraph. On the other hand,

$$
\sup _{(x, f(x)): x \in \operatorname{dom} f}\langle x, u\rangle-f(x) \leq \sup _{(x, \alpha) \in \mathrm{epi} f}\langle x, u\rangle-\alpha
$$

as each $(x, f(x)) \in$ epi f.
But then

$$
f^{*}(u)=\sup _{(x, \alpha) \in \operatorname{epi} f} f_{(x, \alpha)}(u)
$$

is a supremum of convex and l.s.c. (affine) functions which is convex and l.s.c. by our earlier work.

Example 2.7.2

Let $1<p, q$ such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Then for $f(x):=\frac{|x|^{p}}{p}$,

$$
f *(x)=\frac{|u|^{q}}{q} .
$$

This can be shown by differentiating to find maximums.

Example 2.7.3

Let $f(x):=e^{x}$. Then

$$
f^{*}(u)= \begin{cases}u \ln u-u, & u>0 \\ 0, & u=0 \\ \infty, & u<0\end{cases}
$$

Example 2.7.4

Let $C \subseteq \mathbb{R}^{m}$, then

$$
\delta_{C}^{*}=\sigma_{C} .
$$

By definition,

$$
\begin{aligned}
\delta_{C}^{*}(y) & :=\sup _{y \in \operatorname{dom} \delta_{C}}\langle x, y\rangle-\delta_{C}(y) \\
& =\sup _{y \in C}\langle x, y\rangle .
\end{aligned}
$$

2.8 The Subdifferential Operator

Definition 2.8.1 (Subdifferential)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper. The subdifferential of f is the set-valued operator $\partial f: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m}$ given by

$$
x \mapsto\left\{u \in \mathbb{R}^{m}: \forall y \in \mathbb{R}^{m}, f(y) \geq f(x)+\langle u, y-x\rangle\right\} .
$$

We say f is subdifferentiable at x if $\partial f(x) \neq \varnothing$.
The elements of $\partial f(x)$ are called the subgradient of f at x.
The idea is that for a differentiable convex function, the derivative at $x \in \mathbb{R}^{n}$ is the slope for a line tangent to x which lies strictly below f. If f is not differentiable at x, we can still ask for slopes of line segments tangent to x which lie below x.

Theorem 2.8.1 (Fermat)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper. Then

$$
\operatorname{argmin} f=\left\{x \in \mathbb{R}^{m}: 0 \in \partial f(x)\right\}=: \text { zer } \partial f
$$

Proof

Let $x \in \mathbb{R}^{m}$.

$$
\begin{aligned}
x \in \operatorname{argmin} f & \Longleftrightarrow \forall y \in \mathbb{R}^{m}, f(x) \leq f(y) \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m},\langle 0, y-x\rangle+f(x) \leq f(y) \\
& \Longleftrightarrow 0 \in \partial f(x)
\end{aligned}
$$

Example 2.8.2

Consider $f(x)=|x|$. Then

$$
\partial f(x)= \begin{cases}\{-1\}, & x<0 \\ {[-1,1],} & x=0 \\ \{1\}, & x>0\end{cases}
$$

Lemma 2.8.3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper. Then

$$
\operatorname{dom} \partial f \subseteq \operatorname{dom} f
$$

Proof

We argue by the contrapositive, suppose $x \notin \operatorname{dom} f$. Then $f(x)=\infty$ and $\partial f(x)=\varnothing$.

Proposition 2.8.4

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ be closed and convex. Then

$$
\partial \delta_{C}(x)=N_{C}(x)
$$

Proof

Let $u \in \mathbb{R}^{m}$ and $x \in C=\operatorname{dom} \delta_{C}$. Then

$$
\begin{aligned}
u \in \partial \delta_{C}(x) & \Longleftrightarrow \forall y \in \mathbb{R}^{m}, \delta_{C}(y) \geq \delta_{C}(x)+\langle u, y-x\rangle \\
& \Longleftrightarrow \forall y \in C, \delta_{C}(y) \geq \delta_{C}(x)+\langle u, y-x\rangle \\
& \Longleftrightarrow \forall y \in C, 0 \geq\langle u, y-x\rangle \\
& \Longleftrightarrow u \in N_{C}(x) .
\end{aligned}
$$

Consider the constrained optimization problem $\min f(x), x \in C$, where f is proper, convex, l.s.c. and $C \neq \varnothing$ is closed and convex. We can rephrase this as min $f(x)+\delta_{C}(x)$.

In some cases, $\partial\left(f+\delta_{C}\right)=\partial f+\partial \delta_{C}=\partial f+N_{C}(x)$. Thus by Fermat's theorem, we look for some x where

$$
0 \in \partial f(x)+N_{C}(x)
$$

2.9 Calculus of Subdifferentials

The main question we are concerned with is whether the subdifferential operator is additive.

Proposition 2.9.1

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Then

$$
\varnothing \neq \operatorname{ridom} f \subseteq \operatorname{dom} \partial f
$$

In particular,

$$
\begin{aligned}
\operatorname{ridom} f & =\operatorname{ridom} \partial f \\
\overline{\operatorname{dom} f} & =\overline{\operatorname{dom} \partial f} .
\end{aligned}
$$

Definition 2.9.1 (Properly Separated)

Let $\varnothing \neq C_{1}, C_{2} \subseteq \mathbb{R}^{m}$. Then C_{1}, C_{2} are properly separated if there is some $b \neq 0$ such that

$$
\sup _{c_{1} \in C}\left\langle b, c_{1}\right\rangle \leq \inf _{c_{2} \in C}\left\langle b, c_{2}\right\rangle
$$

(separated) AND such that

$$
\inf _{c_{1} \in C_{2}}\left\langle b, c_{1}\right\rangle<\sup _{c_{2} \in C_{2}}\left\langle b, c_{2}\right\rangle .
$$

A problem with the definition of separated is that a set can be separated from itself. Indeed, the x-axis is separated from itself with itself as a separating hyperplane. To be properly separated, there must be some $c_{1} \in C_{1}, c_{2} \in C_{2}$ such that

$$
\left\langle b, c_{1}\right\rangle<\left\langle b, c_{2}\right\rangle .
$$

In otherwords, $C_{1} \cup C_{2}$ is not fully contained in the hyperplane.

Proposition 2.9.2

Let $\varnothing \neq C_{1}, C_{2} \subseteq \mathbb{R}^{m}$ be convex. Then C_{1}, C_{2} are properly separated if and only if

$$
\text { ri } C_{1} \cap \text { ri } C_{2}=\varnothing .
$$

Proposition 2.9.3

Let $C_{1}, C_{2} \subseteq \mathbb{R}^{m}$ be convex. Then

$$
\operatorname{ri}\left(C_{1}+C_{2}\right)=\operatorname{ri} C_{1}+\operatorname{ri} C_{2} .
$$

Moreover,

$$
\operatorname{ri}(\lambda C)=\lambda(\operatorname{ri} C)
$$

for all $\lambda \in \mathbb{R}$.

Proposition 2.9.4

Let $C_{1} \subseteq \mathbb{R}^{m}$ and $C_{2} \subseteq \mathbb{R}^{p}$ be convex. Then

$$
\operatorname{ri}\left(C_{1} \oplus C_{2}\right)=\operatorname{ri} C_{1} \oplus \operatorname{ri} C_{2}
$$

Theorem 2.9.5

Let $C_{1}, C_{2} \subseteq \mathbb{R}^{m}$ be convex such that ri $C_{1} \cap$ ri $C_{2} \neq \varnothing$. For each $x \in C_{1} \cap C_{2}$,

$$
N_{C_{1} \cap C_{2}}(x)=N_{C_{1}}(x)+N_{C_{2}}(x) .
$$

Proof

The reverse inclusion is not hard. Hence we check the inclusion only.
Let $x \in C_{1} \cap C_{2}$ and $n \in N_{C_{1} \cap C_{2}}(x)$. Then for each $u \in C_{1} \cap C_{2}$,

$$
\langle n, y-x\rangle \leq 0
$$

Set $E_{1}:=\operatorname{epi} \delta_{C_{1}}=C_{1} \times[0, \infty) \subseteq \mathbb{R}^{m} \times \mathbb{R}$. Moreover, put

$$
E_{2}:=\left\{(y, \alpha): y \in C_{2}, \alpha \leq\langle n, y-x\rangle\right\} \subseteq \mathbb{R}^{m} \times \mathbb{R} .
$$

By a previous fact,

$$
\text { ri } E_{1}=\operatorname{ri} C_{1} \times(0, \infty)
$$

Similarly,

$$
\text { ri } E_{2}=\{(y, \alpha), \alpha<\langle n, y-x\rangle\} .
$$

We claim that ri $E_{1} \cap$ ri $E_{2}=\varnothing$. Indeed, suppose towards a contradiction that there is some $(z, \alpha) \in \operatorname{ri} E_{1} \cap$ ri E_{2}. Then

$$
0<\alpha<\langle n, z-x\rangle \leq 0
$$

which is impossible.
It follows by a previous fact that E_{1}, E_{2} are properly separated. Namely, there is $(b, \gamma) \in$ $\mathbb{R}^{m} \times \mathbb{R} \backslash\{0\}$ such that

$$
\begin{array}{ll}
\langle x, b\rangle+\alpha \gamma \leq\langle y, b\rangle+\beta \gamma & \forall(x, \alpha) \in E_{1},(y, \beta) \in E_{2} \\
\langle\bar{x}, b\rangle+\bar{\alpha} \gamma<\langle\bar{y}, b\rangle+\bar{\beta} \gamma & \exists(\bar{x}, \bar{\alpha}) \in E_{1},(\bar{y}, \bar{\beta}) \in E_{2}
\end{array}
$$

We claim that $\gamma<0$. Indeed, $(x, 1) \in E$ and $(x, 0) \in E_{2}$. So

$$
\langle x, b\rangle+\gamma \leq\langle x, b\rangle \Longrightarrow \gamma \leq 0
$$

Next we claim that $\gamma \neq 0$. Suppose to the contrary that $\gamma=0$. But then

$$
\begin{array}{ll}
\langle x, b\rangle \leq\langle y, b\rangle & \forall(x, \alpha) \in E_{1},(y, \beta) \in E_{2} \\
\langle\bar{x}, b\rangle<\langle\bar{y}, b\rangle & \exists(\bar{x}, \bar{\alpha}) \in E_{1},(\bar{y}, \bar{\beta}) \in E_{2}
\end{array}
$$

and C_{1}, C_{2} are properly separated.
From our earlier fact, this contradicts the assumption that ri $C_{1} \cap$ ri $C_{2} \neq \varnothing$. Altogether, $\gamma<0$.

Our goal is to show that

$$
n=\underbrace{-\frac{b}{\gamma}}_{\in N_{C_{1}}(x)}+\underbrace{n+\frac{b}{\gamma}}_{\in N_{C_{2}}(x)} .
$$

First, we claim that $b \in N_{C_{1}}(x)$. This happens if and only if for all $y \in C_{1}$,

$$
\langle y-x, b\rangle \leq 0 \Longleftrightarrow\langle b, y\rangle \leq\langle b, x\rangle .
$$

Indeed, we know that $(y, 0) \in E_{1}$. Moreover, $(x, 0) \in E_{2}$ by construction. Hence

$$
\langle y, b\rangle+0 \cdot \gamma \leq\langle x, b\rangle+0 \cdot \gamma
$$

Thus $b \in N_{C_{1}}(x) \Longrightarrow-\frac{1}{\gamma} b \in N_{C_{1}}(x)$.
Now, for all $y \in C_{2},(y,\langle n, y-x\rangle) \in E_{2}$ by construction, Hence for all $y \in C_{2}$,

$$
\langle b, x\rangle+0 \cdot \gamma \leq\langle b, y\rangle+\gamma\langle n, y-x\rangle
$$

Equivalently,

$$
\left\langle\frac{b}{\gamma}+n, y-x\right\rangle \leq 0
$$

This shows that

$$
\frac{b}{\gamma}+n \in N_{C_{2}}(x) .
$$

Thus $n \in N_{C_{1}}(x)+N_{C_{2}}(x)$ and we are done.

Proposition 2.9.6

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty)$ be convex, l.s.c. and proper. Let $x, u \in \mathbb{R}^{m}$. Then

$$
u \in \partial f(x) \Longleftrightarrow(u,-1) \in N_{\text {epi } f}(x, f(x)) .
$$

Proof

Observe that epi $f \neq \varnothing$ and is convex since f is proper and convex. Now let $u \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
& (u,-1) \in N_{\text {epi } f}(x, f(x)) \\
& \Longleftrightarrow x \in \operatorname{dom} f \wedge \forall(y, \beta) \in \text { epi } f,\langle(y, \beta)-(x, f(x)),(u,-1)\rangle \leq 0 \\
& \Longleftrightarrow x \in \operatorname{dom} f \wedge \forall(y, \beta) \in \operatorname{epi} f,\langle(y-x), \beta-f(x),(u,-1)\rangle \leq 0 \\
& \Longleftrightarrow \forall(y, \beta) \in \operatorname{epi} f,\langle y-x, u\rangle+f(x) \leq \beta \\
& \Longleftrightarrow \forall y \in \operatorname{dom} f,\langle y-x, u\rangle+f(x) \leq f(y) \\
& \Longleftrightarrow u \in \partial f(x)
\end{aligned}
$$

Theorem 2.9.7

Let $f, g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Suppose that ridom $f \cap$ ri dom $g \neq \varnothing$. Then for all $x \in \mathbb{R}^{m}$,

$$
\partial f(x)+\partial g(x)=\partial(f+g)(x)
$$

Proof

Let $x \in \mathbb{R}^{m}$. If $x \notin \operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$, then $\partial f(x)+\partial g(x)=\varnothing$. Also, $\partial(f+g)(x)=\varnothing$.

Suppose now that $x \in \operatorname{dom} f \cap \operatorname{dom} g=\operatorname{dom}(f+g)$. It is easy to check that

$$
\partial f(x)+\partial g(x) \subseteq \partial(f+g)(x)
$$

We verify the reverse inclusion.
Pick any $u \in \partial(f+g)(x)$. By definition, for all $y \in \mathbb{R}^{m}$,

$$
(f+g)(y) \geq(f+g)(x)+\langle u, y-x\rangle .
$$

Consider the closed convex sets

$$
\begin{aligned}
& E_{1}=\left\{(x, \alpha, \beta) \in \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R}: f(x) \leq \alpha\right\}=\operatorname{epi} f \times \mathbb{R} \\
& E_{2}=\left\{(x, \alpha, \beta) \in \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R}: g(x) \leq \beta\right\} \cong \operatorname{epi} g \times \mathbb{R}
\end{aligned}
$$

We claim that

$$
(u,-1,-1) \in N_{E_{1} \cap E_{2}}(x, f(x), g(x)) .
$$

Indeed, let $(y, \alpha, \beta) \in E_{1}, E_{2}$. We have by construction $f(y)-\alpha, g(y)-\beta \leq 0$.

Now,

$$
\begin{aligned}
& \langle(u,-1,-1),(y, \alpha, \beta)-(x, f(x), g(x))\rangle \\
& =\langle u, y-x\rangle-(\alpha-f(x))-(\beta-g(x)) \\
& =\langle u, y-x\rangle+(f+g)(x)-(\alpha+\beta) \\
& \leq(f+g)(y)-\alpha-\beta \quad u \in \partial(f+g)(x) \\
& \leq 0
\end{aligned}
$$

Next, we claim that ri $E_{i} \cap$ ri $E_{2} \neq \varnothing$. Indeed, by a previous fact,

$$
\begin{aligned}
\operatorname{ri} E_{1} & =\operatorname{ri}(\operatorname{epi} f \times \mathbb{R}) \\
& =\operatorname{ri} \operatorname{epi} f \times \mathbb{R} .
\end{aligned}
$$

Similarly,

$$
\text { ri } E_{2}=\left\{(x, \alpha, \beta) \in \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R}: g(x)<\beta\right\}
$$

Pick $z \in \operatorname{ridom} f \cap \operatorname{ri} \operatorname{dom} g$. Then $(z, f(z)+1, g(z)+1) \in$ ri E_{1}, ri E_{2}. Hence, $(z, f(z)+$ $1, g(z)+1) \in \operatorname{ri} E_{1} \cap$ ri $E_{2} \neq \varnothing$.

All in all, $E_{1}, E_{2} \neq \varnothing$ are closed, convex, with ri $E_{1} \cap$ ri $E_{2} \neq \varnothing$. Hence by the previous theorem,

$$
N_{E_{1} \cap E_{2}}(x, f(x), g(x))=N_{E_{1}}(x, f(x), g(x))+N_{E_{2}}(x, f(x), g(x)) .
$$

Now, it can be shown that $N_{\text {epi } f \times \mathbb{R}}=N_{\text {epi } f} \times N_{\mathbb{R}}$ and similarly for E_{2}. Therefore, there is some $u_{1}, u_{2} \in \mathbb{R}^{m}, \alpha, \beta \in \mathbb{R}$ for which

$$
(u,-1,-1)=\left(u_{1},-\alpha, 0\right)+\left(u_{2}, 0,-\beta\right) .
$$

Thus $u=u_{1}+u_{2}$ and $\alpha=\beta=1$. It follows that

$$
\begin{aligned}
& \left(u_{1},-1\right) \in N_{\mathrm{epi} f}(x, f(x)) \\
& \left(u_{2},-1\right) \in N_{\mathrm{epi} g}(x, g(x)) .
\end{aligned}
$$

From a previous proposition, we conclude that $u_{1} \in \partial f(x)$ and $u_{2} \in \partial g(x)$. Hence

$$
u=u_{1}+u_{2} \in \partial f(x)+\partial g(x)
$$

completing the proof.
Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Suppose $\phi \neq C \subseteq \mathbb{R}^{m}$ is closed and
convex. Furthermore, suppose ri $C \cap$ ri $\operatorname{dom} f \neq \varnothing$. Consider the problem

$$
\min _{x \in C} f(x)
$$

Then $\bar{x} \in \mathbb{R}^{m}$ solves (P) if and only if

$$
(\partial f(\bar{x})) \cap\left(-N_{C}(\bar{x})\right) \neq \varnothing .
$$

Indeed, we convert this to the unconstrained minimization problem $\min f+\delta_{C}$. This function is convex, l.s.c., and proper. By Fermat's theorem, \bar{x} solves P if and only if

$$
0 \in \partial\left(f+\delta_{C}\right)(\bar{x})
$$

Now, ri dom $f \cap$ ri dom $\delta_{C} \neq \varnothing$. Hence by the previous theorem, \bar{x} solves (P) if and only if

$$
\begin{aligned}
0 \in \partial\left(f+\delta_{C}\right)(\bar{x})=\partial f(\bar{x})+N_{C}(\bar{x}) & \Longleftrightarrow \exists u \in \partial f(\bar{x}),-u \in N_{C}(\bar{x}) \\
& \Longleftrightarrow \partial f(\bar{x}) \cap\left(-N_{C}(\bar{x})\right) \neq \varnothing
\end{aligned}
$$

Example 2.9.8

Let $d \in \mathbb{R}^{m}$ and $\varnothing \neq C \subseteq \mathbb{R}^{m}$ be convex and closed. Consider

$$
\begin{equation*}
\min _{x \in C}^{\min }\langle d, x\rangle \tag{P}
\end{equation*}
$$

Let $\bar{x} \in \mathbb{R}^{m}$. Then \bar{x} solves (P) if and only if

$$
-d \in N_{C}(\bar{x}) .
$$

2.10 Differentiability

Definition 2.10.1 (Directional Derivative)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and $x \in \operatorname{dom} f$. The directional derivative of f at x in the direction of d is

$$
f^{\prime}(x ; d):=\lim _{t \downarrow 0} \frac{f(x+t d)-f(x)}{t} .
$$

Definition 2.10.2 (Differentiable)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and $x \in \operatorname{dom} f . f$ is differentiable at x if there is a linear operator $\boldsymbol{\nabla} f(x): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, called the derivative (gradient) of f at x, that satisfies

$$
\lim _{0 \neq\|y\| \rightarrow 0} \frac{\|f(x+y)-f(x)-\nabla f(x) \cdot y\|}{\|y\|}=0 .
$$

If f is differentiable at x, then the directional derivative of f at x in the direction of d is

$$
f^{\prime}(x ; d)=\langle\nabla f(x), d\rangle .
$$

Theorem 2.10.1

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex. Suppose $f(x)<\infty$. For each y, the quotient in the definition of $f^{\prime}(x ; y)$ is a non-decreasing function of $\lambda>0$. So $f^{\prime}(x ; y)$ exists and

$$
f^{\prime}(x ; y)=\inf _{\lambda>0} \frac{f(x+\lambda y)-f(x)}{\lambda} .
$$

Theorem 2.10.2

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex and proper. Let $x \in \operatorname{dom} f$ and $u \in \mathbb{R}^{m}$. Then u is a subgradient of f at x if and only if

$$
\forall y \in \mathbb{R}^{m}, f^{\prime}(x ; y) \geq\langle u, y\rangle
$$

Proof

By definition,

$$
\begin{aligned}
u \in \partial f(x) & \Longleftrightarrow \forall y \in \mathbb{R}^{m}, \lambda>0, f(x+\lambda y) \geq f(x)+\langle u, \lambda y\rangle \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m}, \lambda>0, \frac{f(x+\lambda y)-f(x)}{\lambda} \geq\langle u, y\rangle \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m}, \inf _{\lambda>0} \frac{f(x+\lambda y)-f(x)}{\lambda} \geq\langle u, y\rangle \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m}, f^{\prime}(x ; y) \geq\langle u, y\rangle .
\end{aligned}
$$

Theorem 2.10.3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex and proper. Suppose $x \in \operatorname{dom} f$. If f is differentiable at x, then $\boldsymbol{\nabla} f(x)$ is the unique subgradient of f at x.

Proof

Recall that for each $y \in \mathbb{R}^{m}$,

$$
f^{\prime}(x ; y)=\langle\nabla f(x), y\rangle
$$

Let $u \in \mathbb{R}^{m}$. By the previous theorem,

$$
\begin{aligned}
u \in \partial f(x) & \Longleftrightarrow \forall y \in \mathbb{R}^{m}, f^{\prime}(x ; y) \geq\langle u, y\rangle \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m},\langle\boldsymbol{\nabla} f(x), y\rangle \geq\langle u, y\rangle
\end{aligned}
$$

It is clear that $\nabla f(x) \in \partial f(x)$. Conversely, by setting $y:=u-\nabla f(x)$. We see that

$$
\begin{aligned}
\langle\nabla f(x), u-\nabla f(x)\rangle \geq\langle u, u-\nabla f(x)\rangle & \Longleftrightarrow\langle u-\nabla f(x), u-\nabla f(x)\rangle \leq 0 \\
& \Longleftrightarrow u=\nabla f(x)
\end{aligned}
$$

Lemma 2.10.4

Let $\varphi: \mathbb{R} \rightarrow(-\infty, \infty]$ be a proper function that is differentiable on an interval $\varnothing \neq I \subseteq \operatorname{dom} \varphi$. If φ^{\prime} is increasing on I, then φ is convex on I.

Proof

Fix $x, y \in I$ and $\lambda \in(0,1)$. Let $\psi: \mathbb{R} \rightarrow(-\infty, \infty]$ be given by

$$
z \mapsto \lambda \varphi(x)+(1-\lambda) \varphi(z)-\varphi(\lambda x+(1-\lambda) z) .
$$

Then

$$
\psi^{\prime}(z)=(1-\lambda) \phi^{\prime}(z)-(1-\lambda) \phi^{\prime}(\lambda x+(1-\lambda) z)
$$

and $\psi^{\prime}(x)=0=\psi(x)$.
Since ϕ^{\prime} is increasing, $\psi^{\prime}(z) \leq 0$ when $z<x$ and $\psi^{\prime}(z)>0$ whenever $z>x$. It follows that ψ achieves its infimum on I at x.

That is, for all $y \in I, \psi(y) \geq \psi(x)=0$. But then

$$
\lambda \phi(x)+(1-\lambda) \phi(y) \geq \phi(\lambda x+(1-\lambda) y)
$$

as desired.

Proposition 2.10.5

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper. Suppose that $\operatorname{dom} f$ is open and convex, and that f is differentiable on $\operatorname{dom} f$. The following are equivalent.
(i) f is convex
(ii) $\forall x, y \in \operatorname{dom} f,\langle x-y, \nabla f(y)\rangle+f(y) \leq f(x)$
(iii) $\forall x, y \in \operatorname{dom} f,\langle x-y, \boldsymbol{\nabla} f(x)-\nabla f(y)\rangle \geq 0$

Proof

$\underline{(i) \Longrightarrow(\text { ii) }} \boldsymbol{\nabla} f(y)$ is the unique subgradient of f at y. Hence for all $x \in \mathbb{R}^{m}$ and $y \in \operatorname{dom} f$,

$$
f(x) \geq\langle x-y, \nabla f(y)\rangle+f(y)
$$

(ii) \Longrightarrow (iii) We prove this in assignment 2 .
(iii) \Longrightarrow (i) Fix $x, y \in \operatorname{dom} f$ and $z \in \mathbb{R}^{m}$. By assumption, $\operatorname{dom} f$ is open. Thus there is some $\epsilon>0$ such that

$$
\begin{aligned}
y+(1+\epsilon)(x-y) & =x+\epsilon(x-y) \in \operatorname{dom} f \\
y-\epsilon(x-y) & =y+\epsilon(y-x) \in \operatorname{dom} f .
\end{aligned}
$$

By the convexity of $\operatorname{dom} f$, for every $\alpha \in(-\epsilon, 1+\epsilon), y+\alpha(x-y) \in \operatorname{dom} f$.
Set $C=(-\epsilon, 1+\epsilon) \subseteq \mathbb{R}$ and $\phi: \mathbb{R} \rightarrow(-\infty, \infty]$ be given by

$$
\phi(\alpha):=f(y+\alpha(x-y))+\delta_{C}(\alpha)
$$

By construction, ϕ is differentiable on C and for each $\alpha \in C$,

$$
\phi^{\prime}(\alpha)=\langle\nabla f(y+\alpha(x-y)), x-y\rangle .
$$

Now, take $\alpha<\beta \in C$. Set

$$
\begin{aligned}
y_{\alpha} & :=y+\alpha(x-y) \\
y_{\beta} & :=y+\beta(x-y) \\
y_{\beta}-y_{\alpha} & =(\beta-\alpha)(x-y) .
\end{aligned}
$$

Then by assumption,

$$
\begin{aligned}
\varphi^{\prime}(\beta)-\varphi^{\prime}(\alpha) & =\langle\nabla f(y+\beta(x-y)), x-y\rangle-\langle\nabla f(y+\alpha(x-y)), x-y\rangle \\
& =\left\langle\nabla f\left(y_{\beta}\right)-\nabla f\left(y_{\alpha}\right), x-y\right\rangle \\
& =\frac{1}{\beta-\alpha}\left\langle\nabla f\left(y_{\beta}\right)-\nabla f\left(y_{\alpha}\right), y_{\beta}-y_{\alpha}\right\rangle \\
& \geq 0
\end{aligned}
$$

That is, φ^{\prime} is increasing on C and φ is convex on C. But then

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & =\varphi(\alpha) \\
& \leq \alpha \varphi(1)+(1-\alpha) \varphi(0) \\
& =\alpha f(x)+(1-\alpha) f(y) .
\end{aligned}
$$

Example 2.10.6

Let A be a $m \times m$ matrix, and set $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by

$$
f(x)=\langle x, A x\rangle
$$

Then $\nabla f(x)=A+A^{T}$ and f is convex if and only if $A+A^{T}$ is posiitve semidefinite.

2.11 Conjugacy

Proposition 2.11.1

Let f, g be functions from $\mathbb{R}^{m} \rightarrow[-\infty, \infty]$. Then
(1) $f^{* *}:=\left(f^{*}\right)^{*} \leq f$
(2) $f \leq g \Longrightarrow f^{*} \geq g^{*}, f^{* *} \leq g^{* *}$

Proposition 2.11.2 (Fenchel-Young Inequality)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper. Then for all $x, u \in \mathbb{R}^{m}$,

$$
f(x)+f^{*}(u) \geq\langle x, u\rangle
$$

Proof

By definition, $f^{*}(x)=-\infty \Longleftrightarrow f \equiv \infty$. Hence by assumption $f^{*}\left(\mathbb{R}^{m}\right)>0$.
Now, let $x, u \in \mathbb{R}^{m}$. If $f(x)=\infty$, the inequality trivially holds. Otherwise,

$$
f^{*}(u):=\sup _{y \in \mathbb{R}^{m}}\langle y, u\rangle-f(u) \geq\langle y, x\rangle-f(x)
$$

as desired.

Proposition 2.11.3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex and proper. For $x, u \in \mathbb{R}^{m}$,

$$
u \in \partial f(x) \Longleftrightarrow f(x)+f^{*}(x)=\langle x, u\rangle
$$

Proof

We have

$$
\begin{aligned}
& u \in \partial f(x) \\
& \Longleftrightarrow \forall y \in \operatorname{dom} f,\langle y-x, u\rangle+f(x) \leq f(y) \\
& \Longleftrightarrow \forall y \in \operatorname{dom} f,\langle y, u\rangle-f(y) \leq\langle x, u\rangle-f(x) \\
& \Longleftrightarrow f^{*}(u)=\sup _{y \in \mathbb{R}^{m}}\langle y, u\rangle-f(y) \leq\langle x, u\rangle-f(x) \\
& \Longleftrightarrow f^{*}(u)=\langle x, u\rangle-f(x) . \quad\langle x, u\rangle-f(x) \leq f^{*}(u)
\end{aligned}
$$

Proposition 2.11.4

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex and proper. Pick $x \in \mathbb{R}^{n}$ such that $\partial f(x) \neq \varnothing$. Then

$$
f^{* *}(x)=f(x) .
$$

Proof

Let $u \in \partial f(x)$. By the previous proposition,

$$
\langle u, x\rangle=f(x)+f^{*}(u) .
$$

Consequently,

$$
\begin{aligned}
f^{* *}(x) & :=\sup _{y \in \mathbb{R}^{m}}\langle x, y\rangle-f^{*}(y) \\
& \geq\langle x, u\rangle-f^{*}(u) \\
& =f(x) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
f^{* *}(x) & =\sup _{y \in \mathbb{R}^{m}}\langle y, x\rangle-f^{*}(y) \\
& =\sup _{y \in \mathbb{R}^{m}}\langle y, x\rangle-\sup _{z \in \mathbb{R}^{m}}(\langle z, y\rangle-f(z)) \\
& =\sup _{y \in \mathbb{R}^{m}}\langle y, x\rangle+\inf _{z \in \mathbb{R}^{m}}(f(z)-\langle y, z\rangle) \\
& =\sup _{y \in \mathbb{R}^{m}} \inf _{z \in \mathbb{R}^{m}}(f(z)+\langle y, x-z\rangle) \\
& \leq \sup _{y \in \mathbb{R}^{m}} f(x)+\langle y, x-x\rangle \\
& =\sup _{y \in \mathbb{R}^{m}} f(x) \\
& =f(x)
\end{aligned}
$$

Proposition 2.11.5

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper. Then f is convex and l.s.c. if and only if

$$
f=f^{* *}
$$

In this case, f^{*} is also proper.

Corollary 2.11.5.1

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c. and proper. Then
(i) f^{*} is convex, l.s.c., and proper
(ii) $f^{* *}=f$

Proof

To see (i), combine the previous proposition and the fact that f^{*} is always convex and l.s.c.
(ii) follows from the previous proposition.

Proposition 2.11.6

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Then

$$
u \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(u)
$$

Proof

Recall that

$$
u \in \partial f(x) \Longleftrightarrow f(x)+f^{*}(u)=\langle x, u\rangle .
$$

By a previous proposition, $g:=f^{*}$ satifies $g^{*}=f$. Moreover, g is convex, l.s.c., and proper.

Hence,

$$
\begin{aligned}
u \in \partial f(x) & \Longleftrightarrow f(x)+f^{*}(u)=\langle x, u\rangle \\
& \Longleftrightarrow g^{*}(x)+g(u)=\langle x, u\rangle \\
& \Longleftrightarrow x \in \partial g(u)=\partial f^{*}(u)
\end{aligned}
$$

as desired.

2.12 Coercive Functions

Theorem 2.12.1

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be proper, l.s.c. and compact $C \subseteq \mathbb{R}^{m}$ such that

$$
C \cap \operatorname{dom} f \neq \varnothing .
$$

Then the following hold:
(i) f is bounded below over C
(ii) f attains its minimal value over C

Proof

(i): Suppose towards a contradiction that f is not bounded below over C. There is a sequence x_{n} in C such that

$$
\lim _{n} f\left(x_{n}\right)=-\infty
$$

Since C is (sequentially) compact, there there is a convergent subsequence $x_{k_{n}} \rightarrow \bar{x} \in C$. But f is l.s.c., hence

$$
f(\bar{x}) \leq \liminf _{n} f\left(x_{k_{n}}\right)=-\infty
$$

which contradicts the properness of f.
(ii): Since f is bounded below,

$$
f_{\min }:=\inf _{x \in C} f(x)
$$

exists. There is a sequence x_{n} in C such that $f\left(x_{n}\right) \rightarrow f_{\text {min }}$.
Again, there is a convergent subsequence $x_{k_{n}} \rightarrow \bar{x} \in C$. Then

$$
f(\bar{x}) \leq \lim \inf _{n} f\left(x_{k_{n}}\right)=f_{\min } .
$$

Thus \bar{x} is a minimizer of f over C.

Definition 2.12.1 (Coercive Function)
Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$. Then f is coercive if

$$
\lim _{\|x\| \rightarrow \infty} f(x)=\infty
$$

Definition 2.12.2 (Super Coercive)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$. Then f is super coercive if

$$
\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=\infty
$$

Theorem 2.12.2

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper, l.s.c., and coercive. Let $C \subseteq \mathbb{R}^{m}$ be a closed subset of \mathbb{R}^{m} satisfying

$$
C \cap \operatorname{dom} f \neq \varnothing
$$

Then f attains its minimal value over C.

Proof

Let $x \in C \cap \operatorname{dom} f$. Since f is coercive, there is some M such that

$$
\forall y,\|y\|>M \Longrightarrow f(y)>f(x) .
$$

But then the set of minimizers of f over C is the same as the set of minimizers of f over $C \cap B(0 ; M)$. This set is compact. Hence by the previous theorem, f attains its minimal value over C.

2.13 Strong Convexity

Definition 2.13.1 (Lipschitz Function)

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $L \geq 0$. Then T is L-Lipschitz if for all $x, y \in \mathbb{R}^{m}$,

$$
\|T x-T y\| \leq L\|x-y\|
$$

Example 2.13.1

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by

$$
x \mapsto \frac{1}{2}\langle x, A x\rangle+\langle b, x\rangle+x
$$

where $A \succeq 0$ is positive semi-definite, $b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.
Then
(i) $\boldsymbol{\nabla} f(x)=A x$ for all $x \in \mathbb{R}^{m}$
(ii) $\boldsymbol{\nabla} f$ is Lipschitz with constant $\|A\|$, the operator norm of A

Example 2.13.2

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ be closed and convex. Then P_{C} is Lipschitz continuous with constant 1.

Lemma 2.13.3 (Descent)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be differentiable on $\varnothing \neq D \subseteq \operatorname{int} \operatorname{dom} f$ such that ∇f is L-Lipschitz. Moreover, suppose that D is convex.
Then for all $x, y \in D$,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2}
$$

Proof

Recall that the fundamental theorem of calculus implies that

$$
\begin{aligned}
f(y)-f(x) & =\int_{0}^{1}\langle\boldsymbol{\nabla} f(x+t(y-x)), y-x\rangle d t \\
& =\langle\boldsymbol{\nabla} f(x), y-x\rangle+\int_{0}^{1}\langle\boldsymbol{\nabla} f(x+t(y-x))-\boldsymbol{\nabla} f(x), y-x\rangle d t
\end{aligned}
$$

Hence

$$
\begin{aligned}
& |f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \\
& =\left|\int_{0}^{1}\langle\nabla f(x+t(y-x))-\nabla f(x), y-x\rangle d t\right| \\
& \leq \int_{0}^{1}|\langle\nabla f(x+t(y-x))-\nabla f(x), y-x\rangle| d t \\
& \leq \int_{0}^{1}\|\nabla f(x+t(y-x))-\nabla f(x)\| \cdot\|y-x\| d t \\
& \leq \int_{0}^{1} L\|x+t(y-x)-x\| \cdot\|y-x\| d t \\
& =\int_{0}^{1} t L\|x-y\|^{2} d t \\
& =\frac{L}{2}\|x-y\|^{2} .
\end{aligned}
$$

It follows that

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2}
$$

Theorem 2.13.4

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be convex and differentiable and $L>0$. The following are equivalent:
(i) $\boldsymbol{\nabla} f$ is L-Lipschitz
(ii) for all $x, y \in \mathbb{R}^{m}, f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2}$
(iii) for all $x, y \in \mathbb{R}^{m}, f(y) \geq f(x)+\langle\boldsymbol{\nabla} f(x), y-x\rangle+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2}$
(iv) for all $x, y \in \mathbb{R}^{m},\langle\boldsymbol{\nabla} f(x)-\nabla f(y), x-y\rangle \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|^{2}$

Proof

$(\mathrm{i}) \Longrightarrow$ (ii): This is the descent lemma.
(ii) \Longrightarrow (iii): If $\nabla f(x)=\nabla f(y)$, the this follows immediately from the subgradient inequality and the fact that $\partial f(x)=\{\nabla f(x)\}$.

Fix $x \in \mathbb{R}^{m}$ and define

$$
h_{x}(y):=f(y)-f(x)-\langle\boldsymbol{\nabla} f(x), y-x\rangle .
$$

Observe that h_{x} is convex, differentiable, with

$$
\nabla h_{x}(y)=\nabla f(y)-\nabla f(x) .
$$

We claim that for all $y, z \in \mathbb{R}^{m}$,

$$
h_{x}(z) \leq h_{x}(y)+\left\langle\nabla h_{x}(y), z-y\right\rangle+\frac{L}{2}\|z-y\|^{2} .
$$

Indeed,

$$
\begin{aligned}
h_{x}(z) & =f(z)-f(x)-\langle\boldsymbol{\nabla} f(x), z-x\rangle \\
& \leq f(y)+\langle\boldsymbol{\nabla} f(y), z-y\rangle+\frac{L}{2}\|z-y\|^{2}-f(x)-\langle\boldsymbol{\nabla} f(x), z-x\rangle \\
& =f(y)-f(x)-\langle\nabla f(x), y-x\rangle-\langle\boldsymbol{\nabla} f(x), z-y\rangle+\langle\boldsymbol{\nabla} f(y), z-y\rangle+\frac{L}{2}\|z-y\|^{2} \\
& =f(y)-f(x)-\langle\boldsymbol{\nabla} f(x), y-x\rangle+\langle\boldsymbol{\nabla} f(y)-\boldsymbol{\nabla} f(x), z-y\rangle+\frac{L}{2}\|z-y\|^{2} \\
& =h_{x}(y)+\left\langle\boldsymbol{\nabla} h_{x}(y), z-y\right\rangle+\frac{L}{2}\|z-y\|^{2} .
\end{aligned}
$$

By construction, $\boldsymbol{\nabla} h_{x}(x)=0$. But the convexity of h_{x} then asserts that x is a global minimizer of h_{x}. That is, for all $z \in \mathbb{R}^{n}$,

$$
h_{x}(x) \leq h_{x}(z) .
$$

Pick $y, v \in \mathbb{R}^{m}$ be such that $\|v\|=1$ and $\left\langle\nabla h_{x}(y), v\right\rangle=\left\|\nabla h_{x}(y)\right\|$. Set

$$
z=y-\frac{\left\|\nabla h_{x}(y)\right\|}{L} v
$$

From the fact that x is a global minimizer, we have

$$
\begin{aligned}
0 & =h_{x}(x) \\
& \leq h_{x}\left(y-\frac{\left\|\nabla h_{x}(y)\right\|}{L} v\right) .
\end{aligned}
$$

On the other hand, the earlier inequality yields

$$
\begin{aligned}
0 & =h_{x}(x) \\
& \leq h_{x}(y)-\frac{\left\|\boldsymbol{\nabla} h_{x}(y)\right\|}{L}\left\langle\boldsymbol{\nabla} h_{x}(y), v\right\rangle+\frac{1}{2 L}\left\|\nabla h_{x}(y)\right\|^{2}\|v\|^{2} \\
& =h_{x}(y)-\frac{\left\|\boldsymbol{\nabla} h_{x}(y)\right\|^{2}}{L}+\frac{1}{2 L}\left\|\nabla h_{x}(y)\right\|^{2} \\
& =h_{x}(y)-\frac{1}{2 L}\left\|\boldsymbol{\nabla} h_{x}(y)\right\|^{2} \\
& =f(y)-f(x)-\langle\boldsymbol{\nabla} f(x), y-x\rangle-\frac{1}{2 L}\|\boldsymbol{\nabla} f(x)-\boldsymbol{\nabla} g(y)\|^{2} .
\end{aligned}
$$

(iii) \Longrightarrow (iv): Using (iii),

$$
\begin{aligned}
& f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2} \\
& f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|^{2}
\end{aligned}
$$

(iv) \Longrightarrow (i): If $\boldsymbol{\nabla} f(x)=\boldsymbol{\nabla} f(y)$, the implication is trivial. We proceed assuming otherwise.

We have

$$
\begin{aligned}
\|\nabla f(x)-\nabla f(y)\|^{2} & \leq L\langle\boldsymbol{\nabla} f(x)-\boldsymbol{\nabla} f(y), x-y\rangle \\
& \leq L\|\boldsymbol{\nabla} f(x)-\boldsymbol{\nabla} f(y)\| \cdot\|x-y\| \\
\|\boldsymbol{\nabla} f(x)-\nabla f(y)\| & \leq L\|x-y\| .
\end{aligned}
$$

Example 2.13.5 (Firm Nonexpansiveness)

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ be closed and convex. Then for each $x, y \in \mathbb{R}^{m}$,

$$
\left\|P_{C}(x)-P_{c}(y)\right\|^{2} \leq\left\langle P_{C}(x)-P_{C}(y), x-y\right\rangle .
$$

Example 2.13.6

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ be closed and convex. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by

$$
f(x)=\frac{1}{2} d_{C}^{2}(x) .
$$

Then the following holds
(i) f is differentiable over \mathbb{R}^{m} with $\boldsymbol{\nabla} f(x)=x-P_{C}(x)$ for all $x \in \mathbb{R}^{m}$
(ii) $\boldsymbol{\nabla} f$ is 1 -Lipschitz

Indeed, for $x \in \mathbb{R}^{m}$, define

$$
h_{x}(y):=f(x+y)-f(x)-\left\langle y, x-P_{C}(x)\right\rangle .
$$

It can be shown that

$$
\frac{\left|h_{x}(y)\right|}{\|y\|} \rightarrow 0
$$

as $y \rightarrow 0$ by bounding $\left|h_{x}(y)\right| \leq \frac{1}{2}\|y\|^{2}$.
To see the 1-Lipschitz continuity of $\boldsymbol{\nabla} f$, we would apply the non-expansiveness of projections onto closed convex sets.

Theorem 2.13.7 (Second Order Characterization)

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be twice continuously differentiable over \mathbb{R}^{m} and let $L \geq 0$. The following are equivalent.
(i) $\boldsymbol{\nabla} f$ is L-Lipschitz
(ii) for all $x \in \mathbb{R}^{m},\left\|\nabla^{2} f(x)\right\| \leq L$ (operator norm)

Proof

(i) \Longrightarrow (ii) Suppose that $\boldsymbol{\nabla} f$ is L-Lipschitz continuous. For any $y \in \mathbb{R}^{m}$ and $\alpha>0$,

$$
\|\boldsymbol{\nabla} f(x+\alpha y)-\boldsymbol{\nabla} f(x)\| \leq L\|x+\alpha y-x\|=\alpha L\|y\|
$$

That is,

$$
\begin{aligned}
\left\|\boldsymbol{\nabla}^{2} f(x)(y)\right\| & =\lim _{\alpha \downarrow 0} \frac{\|\boldsymbol{\nabla} f(x+\alpha y)-\boldsymbol{\nabla} f(x)\|}{\alpha} \\
& \leq \lim _{\alpha \downarrow 0} \frac{L\|x+\alpha y-x\|}{\alpha} \\
& =\lim _{\alpha \downarrow 0} L\|y\| \\
& =L\|y\|
\end{aligned}
$$

Equivalently,

$$
\left\|\boldsymbol{\nabla}^{2} f(x)\right\| \leq L
$$

as desired. Note that we used the fact that $\boldsymbol{\nabla}^{2} f(x)(y)=(\boldsymbol{\nabla} f)^{\prime}(x ; y)$.
(ii) \Longrightarrow (i) Suppose that $\left\|\nabla^{2} f(x)\right\| \leq L$ and fix $x, y \in \mathbb{R}^{m}$. By the fundamental theorem of calculus,

$$
\begin{aligned}
\nabla f(x) & =\nabla f(y)+\int_{0}^{1} \nabla^{2} f(y+\alpha(x-y))(x-y) d \alpha \\
& =\nabla f(y)+\left[\int_{0}^{1} \nabla^{2} f(y+\alpha(x-y)) d \alpha\right](x-y)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\|\nabla f(x)-\nabla f(y)\| & \leq\left\|\int_{0}^{1} \nabla^{2} f(x+\alpha(x-y)) d \alpha\right\| \cdot\|x-y\| \\
& \leq \int_{0}^{1}\left\|\nabla^{2} f(x+\alpha(x-y))\right\| d \alpha\|x-y\| \\
& \leq L\|x-y\| .
\end{aligned}
$$

Proposition 2.13.8

For a symmetric $A \in \mathbb{R}^{m \times m}$,

$$
\sup _{\|x\|=1}\|A x\|=\max _{1 \leq i \leq m}\left|\lambda_{i}\right|
$$

where λ_{i} are the eigenvalues of A.

Proof

Write x as a linear combination of some orthonormal eigenvector basis of A.

Proposition 2.13.9

A twice continuously differentiable function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is convex if and only if $\nabla^{2} f(x)$ is positive semi-definite.

Proof

See A3.

Corollary 2.13.9.1

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be convex and twice continuously differentiable. Suppose $L \geq 0$. Then ∇f is L-Lipschitz if and only if for all $x \in \mathbb{R}^{m}$,

$$
\lambda_{\max }\left(\nabla^{2} f(x)\right) \leq L
$$

Proof

Since f is convex and twice continuously differentiable, $\boldsymbol{\nabla}^{2} f(x)$ is positive semidefinite everwhere. Combined with the earlier result,

$$
\begin{aligned}
L & \geq\left\|\boldsymbol{\nabla}^{2} f(x)\right\| \\
& =\left|\lambda_{\max }\left(\boldsymbol{\nabla}^{2} f(x)\right)\right| \\
& =\lambda_{\max }\left(\boldsymbol{\nabla}^{2} f(x)\right) .
\end{aligned}
$$

Example 2.13.10

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by

$$
x \mapsto \sqrt{1+\|x\|^{2}} .
$$

Then
(i) f is convex
(ii) $\boldsymbol{\nabla} f$ is 1-Lipschitz

Proposition 2.13.11

Let $\beta>0 . f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ is β-strongly convex if and only if

$$
f-\frac{\beta}{2}\|\cdot\|^{2}
$$

is convex.

Proof

See A3.

Proposition 2.13.12

Let $f, g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ and $\beta>0$. Suppose that f is β-strongly convex and that g is convex. Then $f+g$ is β-strongly convex.

Proof
Define

$$
h:=\left(f-\frac{\beta}{2}\|\cdot\|^{2}\right)+g .
$$

Then h is convex as it is the sum of two convex functions. Thus applying the previous proposition yields the result.

Proposition 2.13.13
Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be strongly convex, l.s.c., and proper. Then f has a unique minimizer.

2.14 The Proximal Operator

Definition 2.14.1 (Proximal Point Mapping)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$. The proximal point mapping of f is the operator Prox_{f} : $\mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m}$ given by

$$
\operatorname{Prox}_{f}(x):=\operatorname{argmin}_{u \in \mathbb{R}^{m}}\left\{f(u)+\frac{1}{2}\|u-x\|^{2}\right\} .
$$

Theorem 2.14.1

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Then for every $x \in \mathbb{R}^{m}$, $\operatorname{Prox}_{f}(x)$ is a singleton.

Proof

For a fixed $x \in \mathbb{R}^{m}$,

$$
h_{x}:=\frac{1}{2}\|\cdot-x\|^{2}
$$

is β-strongly convex for all $\beta<1$. Therefore,

$$
g_{x}:=f+h_{x}
$$

is strongly convex for every $x \in \mathbb{R}^{m}$.
We know that g_{x} is l.s.c. as f, h_{x} are l.s.c. Moreover, g_{x} is proper as f, g is proper with $\operatorname{dom} f \cap \operatorname{dom} g_{x}=\operatorname{dom} f$. Thus from the previous proposition,

$$
\operatorname{argmin}_{u \in \mathbb{R}^{m}} g_{x}=: \operatorname{Prox}_{f}(x)
$$

exists and is unique.

Example 2.14.2

For $\varnothing \neq C \subseteq \mathbb{R}^{m}$ closed and convex,

$$
\operatorname{Prox}_{\delta_{C}}=P_{C}
$$

Proposition 2.14.3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Let $x, p \in \mathbb{R}^{m}$. Then $p=\operatorname{Prox}_{f}(x)$ if and only if for all $y \in \mathbb{R}^{m}$,

$$
\langle y-p, x-p\rangle+f(p) \leq f(y)
$$

Proof

(\Longrightarrow) Suppose that $p=\operatorname{Prox}_{f}(x)$. For each $\lambda \in(0,1)$, set

$$
p_{\lambda}:=\lambda y+(1-\lambda) p
$$

Thus

$$
\begin{aligned}
f(p) & \leq f\left(p_{\lambda}\right)+\frac{1}{2}\left\|x-p_{\lambda}\right\|^{2}-\frac{1}{2}\|x-p\|^{2} \\
& \leq f\left(p_{\lambda}\right)+\frac{1}{2}\|x-\lambda y-(1-\lambda) p\|^{2}-\frac{1}{2}\|x-p\|^{2} \\
& =f\left(p_{\lambda}\right)+\frac{1}{2}\langle x-p-\lambda(y-p)-(x-p), x-p-\lambda(y-p)+(x-p)\rangle \\
& =f\left(p_{\lambda}\right)+\frac{1}{2}\langle-\lambda(y-p), 2(x-p)-\lambda(y-p)\rangle \\
& =f\left(p_{\lambda}\right)+\frac{\lambda}{2}\|y-p\|^{2}-\lambda\langle x-p, y-p\rangle \\
& =f(\lambda y+(1-\lambda) p)+\frac{\lambda^{2}}{2}\|y-p\|^{2}-\lambda\langle x-p, y-p\rangle \\
f(p) & \leq \lambda f(y)+(1-\lambda) f(p)+\frac{\lambda^{2}}{2}\|y-p\|^{2}-\lambda\langle x-p, y-p\rangle \\
\lambda\langle x-p, y-p\rangle+\lambda f(p) & \leq \lambda f(y)+\frac{\lambda^{2}}{2}\|y-p\|^{2} .
\end{aligned}
$$

Division by λ and taking the limit as $\lambda \rightarrow 0$ yields the result.
(\Longleftarrow) Suppose that

$$
\langle y-p, x-p\rangle+f(p) \leq f(y)
$$

Then

$$
f(p) \leq f(y)-\langle y-p, x-p\rangle=f(y)+\langle x-p, p-y\rangle .
$$

It follows that

$$
\begin{aligned}
f(p)+\frac{1}{2}\|x-p\|^{2} & \leq f(y)+\langle x-p, p-y\rangle+\frac{1}{2}\|x-p\|^{2} \\
& \leq f(y)+\langle x-p, p-y\rangle+\frac{1}{2}\|x-p\|^{2}+\frac{1}{2}\|p-y\|^{2} \\
& \leq f(y)+\|x-p+p-y\|^{2} \\
& =f(y)+\|x-y\|^{2} .
\end{aligned}
$$

Example 2.14.4

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by

$$
x \mapsto|x| .
$$

Then

$$
\operatorname{Prox}_{f}(x):= \begin{cases}x-1, & x>1 \\ 0, & x \in[-1,1] \\ x+1, & x<-1\end{cases}
$$

We need only apply the previous proposition and consider 3 cases.

Proposition 2.14.5

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be convex, l.s.c., and proper. Then x minimizes f over \mathbb{R}^{m} if and only if

$$
x=\operatorname{Prox}_{f}(x) .
$$

Proof

By the previous proposition,

$$
\begin{aligned}
x=\operatorname{Prox}_{f}(x) & \Longleftrightarrow \forall y \in \mathbb{R}^{m},\langle y-x, x-x\rangle+f(x) \leq f(y) \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m}, f(x) \leq f(y) .
\end{aligned}
$$

Convexity is crucial for the proximal operator to be well-defined.

Example 2.14.6

Let $g, h: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
\begin{aligned}
& g(x):= \begin{cases}0, & x \neq 0 \\
\lambda, & x=0\end{cases} \\
& h(x):= \begin{cases}0, & x \neq 0 \\
-\lambda, & x=0\end{cases}
\end{aligned}
$$

for some $\lambda>0$.
Then

$$
\begin{aligned}
& \operatorname{Prox}_{h}(x)= \begin{cases}\{x\}, & |x|>\sqrt{2 \lambda} \\
\{0, x\}, & |x|=\sqrt{2 \lambda} \\
\{0\}, & |x|<\sqrt{2 \lambda}\end{cases} \\
& \operatorname{Prox}_{h}(x)= \begin{cases}\{x\}, & x \neq 0 \\
\varnothing, & x=0\end{cases}
\end{aligned}
$$

Example 2.14.7 (Soft Threshold)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
x \mapsto \lambda|x|
$$

for some $\lambda \geq 0$.
For all $x \in \mathbb{R}$,

$$
\operatorname{Prox}_{f}(x)= \begin{cases}x-\lambda, & x>\lambda \\ 0, & x \in[-\lambda, \lambda] \\ x+\lambda, & x<-\lambda\end{cases}
$$

Note that the above formula can be written as

$$
\operatorname{Prox}_{f}(x)=\operatorname{sign}(x)(|x|-\lambda)_{+}
$$

where $\operatorname{sign}(y)$ is $1,-1$ depending on the sign of y and $[-1,1]$ if $y=0$. Moreover, $(y)_{+}=y$ if $y \geq 0$ and is 0 otherwise.

Theorem 2.14.8

Suppose $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ is given by

$$
f(x):=\sum_{i=1}^{m} f_{i}\left(x_{i}\right)
$$

for $f_{i} \mathbb{R} \rightarrow(-\infty, \infty]$ convex, l.s.c,, and proper.
Then for all $x \in \mathbb{R}^{m}$,

$$
\operatorname{Prox}_{f}(x)=\left(\operatorname{Prox}_{f_{i}}\left(x_{i}\right)\right)_{i=1}^{m} .
$$

Proof

From A2, f is convex, l.s.c., and proper. We know that

$$
\begin{aligned}
p=\operatorname{Prox}_{f}(x) & \Longleftrightarrow \forall y \in \mathbb{R}^{m}, f(y) \geq f(p)+\langle y-p, x-p\rangle \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m}, \sum_{i=1}^{m} f_{i}\left(y_{i}\right) \geq \sum_{i=1}^{m} f_{i}\left(p_{i}\right)+\sum_{i=1}^{m}\left(y_{i}-p_{i}\right)\left(x_{i}-p_{i}\right) .
\end{aligned}
$$

In particular, for some $j \in[m]$, let $y_{j} \in \mathbb{R}$ and $y_{i}=0$ for all $i \neq j$. Then

$$
f_{i}\left(y_{i}\right) \geq f_{i}\left(p_{i}\right)+\left(y_{i}-p_{i}\right)\left(x_{i}-p_{i}\right)
$$

which happens if and only if $p_{i}=\operatorname{Prox}_{f_{i}}\left(x_{i}\right)$.
Conversely, if $f_{i}\left(y_{i}\right) \geq f_{i}\left(p_{i}\right)+\left(y_{i}-p_{i}\right)\left(x_{i}-p_{i}\right)$ for each $i \in[m]$, then clearly $p=\operatorname{Prox}_{f}(x)$.

Example 2.14.9

Let $g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be given by

$$
x \mapsto \begin{cases}-\alpha \sum_{i=1}^{m} \log x_{i}, & x>0 \\ \infty, & \text { else }\end{cases}
$$

where $\alpha>1$.
Then

$$
\operatorname{Prox}_{g}(x)=\left(\frac{x_{i}+\sqrt{x_{i}^{2}+4 \alpha}}{2}\right)_{i=1}^{m}
$$

since

$$
\operatorname{Prox}_{g_{i}}\left(x_{i}\right)=\frac{x_{i}+\sqrt{x_{i}^{2}+4 \alpha}}{2} .
$$

This can be proven by differentiating to find the minimizer of $h_{i}\left(y_{i}\right):=g_{i}\left(y_{i}\right)+\frac{1}{2}\left(y_{i}-x_{i}\right)^{2}$.

Theorem 2.14.10

Let $g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and $c>0$. Let $a \in \mathbb{R}^{m}, \gamma \in \mathbb{R}$. For each $x \in \mathbb{R}^{m}$, define

$$
f(x)=g(x)+\frac{c}{2}\|x\|^{2}+\langle a, x\rangle+\gamma
$$

Then for all $x \in \mathbb{R}^{m}$,

$$
\operatorname{Prox}_{f}(x)=\operatorname{Prox}_{\frac{1}{c+1} g}\left(\frac{x-a}{c+1}\right) .
$$

Proof

Indeed, recall that

$$
\begin{aligned}
\operatorname{Prox}_{f}(x) & :=\operatorname{argmin}_{u \in \mathbb{R}^{m}} f(u)+\frac{1}{2}\|u-x\|^{2} \\
& =\operatorname{argmin}_{u \in \mathbb{R}^{m}} g(u)+\frac{c}{2}\|u\|^{2}+\langle a, u\rangle+\gamma+\frac{1}{2}\|u-x\|^{2} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{c}{2}\|u\|^{2}+\langle a, u\rangle+\frac{1}{2}\|u-x\|^{2} & =\frac{c}{2}\|u\|^{2}+\langle a, u\rangle+\frac{1}{2}\|u\|^{2}-\langle u, x\rangle+\frac{1}{2}\|x\|^{2} \\
& =\frac{c+1}{2}\|u\|^{2}-\langle u, x-a\rangle+\frac{1}{2}\|x\|^{2} \\
& =\frac{c+1}{2}\left[\|u\|^{2}-2\left\langle u, \frac{x-a}{c+1}\right\rangle+\frac{1}{c+1}\|x\|^{2}\right] \\
& =\frac{c+1}{2}\left[\left\|u-\frac{x-a}{c+1}\right\|^{2}-\frac{\|x-a\|^{2}}{c+1}+\frac{1}{c+1}\|x\|^{2}\right] \\
& =\frac{c+1}{2}\left\|u-\frac{x-a}{c+1}\right\|^{2}-\frac{\|x-a\|^{2}}{2}+\frac{1}{2}\|x\|^{2}
\end{aligned}
$$

Finally, since minimizers are preserved under positive scalar multiplication and translation,

$$
\begin{aligned}
\operatorname{Prox}_{f}(x) & =\operatorname{argmin}_{u \in \mathbb{R}^{m}} g(u)+\frac{c+1}{2}\left\|u-\frac{x+a}{c+1}\right\|^{2}+\gamma-\frac{\|x-a\|^{2}}{2}+\frac{1}{2}\|x\|^{2} \\
& =\operatorname{argmin}_{u \in \mathbb{R}^{m}} g(u)+\frac{c+1}{2}\left\|u-\frac{x+a}{c+1}\right\|^{2} \\
& =\operatorname{argmin}_{u \in \mathbb{R}^{m}} \frac{1}{c+1} g(u)+\frac{1}{2}\left\|u-\frac{x-a}{c+1}\right\|^{2} \\
& =\operatorname{Prox}_{\frac{1}{c+1} g}\left(\frac{x+a}{c+1}\right) .
\end{aligned}
$$

Example 2.14.11

Let $\mu \in \mathbb{R}$ and $\alpha \geq 0$. Consider $f: \mathbb{R} \rightarrow(-\infty, \infty]$ given by

$$
f(x):= \begin{cases}\mu x, & x \in[0, \alpha] \\ \infty, & \text { else }\end{cases}
$$

For each $x \in \mathbb{R}$,

$$
f(x)=\mu x+\delta_{[0, \alpha]}(x) .
$$

Moreover,

$$
\operatorname{Prox}_{f}(x)=\min (\max (x-\mu, 0), \alpha)
$$

Indeed, apply the previous theorem with $g=\delta_{[0, \alpha]}$ and $c=\gamma=0$. Then

$$
\operatorname{Prox}_{f}(x)=\operatorname{Prox}_{g}(x-\mu)=P_{C}(x-\mu)
$$

Theorem 2.14.12

Let $g: \mathbb{R} \rightarrow(-\infty, \infty]$ be convex, l.s.c. and proper such that $\operatorname{dom} g \subseteq[0, \infty)$ and let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by

$$
f(x)=g(\|x\|)
$$

Then

$$
\operatorname{Prox}_{f}(x)= \begin{cases}\operatorname{Prox}_{g}(\|x\|) \frac{x}{\|x\|}, & x \neq 0 \\ \left\{u \in \mathbb{R}^{m}:\|u\|=\operatorname{Prox}_{g}(x)\right\}, & x=0\end{cases}
$$

Proof

Case I: $x=0$ By definition,

$$
\operatorname{Prox}_{f}(x)=\operatorname{argmin}_{u \in \mathbb{R}^{m}} f(u)+\frac{1}{2}\|u\|^{2} .
$$

By the change of variable $w=\|u\|$, then above set of minimizers is the same as

$$
\operatorname{argmin}_{w \in \mathbb{R}^{m}} g(w)+\frac{1}{2} w^{2}=: \operatorname{Prox}_{g}(0) .
$$

Case II: $x \neq 0$ By definition, $\operatorname{Prox}_{f}(x)$ is the set of solutions to the minimization problem

$$
\begin{aligned}
& \min _{u \in \mathbb{R}^{m}} g(\|u\|)+\frac{1}{2}\|u-x\|^{2} \\
& =\min _{u \in \mathbb{R}^{m}} g(\|u\|)+\frac{1}{2}\|u\|^{2}-\langle u, x\rangle+\frac{1}{2}\|x\|^{2} \\
& =\min _{\alpha \geq 0} \min _{u \in \mathbb{R}^{m}:\|u\|=\alpha} g(\alpha)+\frac{1}{2} \alpha^{2}-\langle u, x\rangle+\frac{1}{2}\|x\|^{2}
\end{aligned}
$$

Now, $\langle u, x\rangle \leq\|u\| \cdot\|x\|$ by the Cauchy-Schwartz inequality with equality when $u=\lambda x$ for some $\lambda \geq 0$. Thus

$$
\left\{\alpha \frac{x}{\|x\|}\right\}=\min _{u \in \mathbb{R}^{m}:\|u\|=\alpha} g(\alpha)+\frac{1}{2} \alpha^{2}-\langle u, x\rangle+\frac{1}{2}\|x\|^{2} .
$$

The values of α which minimize $\alpha \frac{x}{\|x\|}$ are then given by

$$
\begin{aligned}
& \min _{\alpha \geq 0} g(\alpha)+\frac{1}{2} \alpha^{2}-\alpha\|x\|+\frac{1}{2}\|x\|^{2} \\
& =\min _{\alpha \geq 0} g(\alpha)+\frac{1}{2}(\alpha-\|x\|)^{2} .
\end{aligned}
$$

This is precisely $\operatorname{Prox}_{g}(\|x\|)$.
Hence

$$
\operatorname{Prox}_{f}(x)=\operatorname{Prox}_{g}(\|x\|) \frac{x}{\|x\|}
$$

as desired.

Example 2.14.13

Let $\alpha>0, \lambda \geq 0$, and $f: \mathbb{R}^{\rightarrow}(-\infty, \infty]$ be given by

$$
f(x)= \begin{cases}\lambda|x|, & |x| \leq \alpha \\ \infty, & |x|>\alpha\end{cases}
$$

Then f is convex, l.s.c. and proper (see A3).
Define

$$
g(x)= \begin{cases}\lambda x, & x \in[0, \alpha] \\ \infty, & x \notin[0, \alpha]\end{cases}
$$

so that $f(x)=g(|x|)$. By the previous theorem,

$$
\begin{aligned}
\operatorname{Prox}_{f}(x) & = \begin{cases}\operatorname{Prox}_{g}(|x|) \operatorname{sgn}(x), & x \neq 0 \\
0, & x=0\end{cases} \\
& =\min (\max (|x|-\lambda, 0), \alpha) \operatorname{sgn}(x) .
\end{aligned}
$$

Example 2.14.14

Let $w, \alpha \in \mathbb{R}_{+}^{m}$ and $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ given by

$$
f(x)= \begin{cases}\sum_{i=1}^{m} w_{i}\left|x_{i}\right|, & -\alpha \leq x \leq \alpha \\ \infty, & \text { else }\end{cases}
$$

Then $\operatorname{Prox}_{f}(x)=\left(\min \left(\max \left(\left|x_{i}\right|-w_{i}, 0\right), \alpha_{i}\right) \operatorname{sgn}\left(x_{i}\right)\right)_{i=1}^{m}($ see A3 $)$.
Moreover, consider the problem

$$
\begin{array}{cl}
\min \sum_{i=1}^{m} w_{i}\left|x_{i}\right| & (P) \\
\left|x_{i}\right| \leq \alpha_{i}, & \forall i \in[m]
\end{array}
$$

Let the sequence $\left(x_{n}\right)_{n \geq 0}$ be recursively defined by $x_{0} \in \mathbb{R}^{m}$ and $x_{n+1}=\operatorname{Prox}_{f}\left(x_{n}\right)$. Then $x_{n} \rightarrow \bar{x}$ where \bar{x} is a minimizer of (P).

2.15 Nonexpansive \& Averaged Operators

We use Id : $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ to denote the $m \times m$ identity matrix.

Definition 2.15.1 (Nonexpansive)

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Then T is nonexpansive if for all $x, y \in \mathbb{R}^{m}$,

$$
\|T x-T y\| \leq\|x-y\|
$$

Definition 2.15.2 (Firmly Nonexpansive)

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Then T is firmly nonexpansive (f.n.e.) if for all $x, y \in \mathbb{R}^{m}$,

$$
\|T x-T y\|^{2}+\|(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\|^{2} \leq\|x-y\|^{2}
$$

Definition 2.15.3 (Averaged)

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\alpha \in(0,1)$. Then T is α-averaged if there is some $N: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that N is nonexpansive and

$$
T=(1-\alpha) \operatorname{Id}+\alpha N
$$

Proposition 2.15.1

$T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. The following are equivalent.
(i) T is f.n.e.
(ii) $\operatorname{Id}-T$ is f.n.e.
(iii) $2 T$ - Id is nonexpansive
(iv) for all $x, y \in \mathbb{R}^{m},\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle$.
(v) for all $x, y \in \mathbb{R}^{m},\langle T x-T y,(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\rangle \geq 0$

Proof

(i) \Longleftrightarrow (ii): This is clear from the definition.
(i) $\Longleftrightarrow($ iii $) \Longleftrightarrow(\mathrm{iv}) \Longleftrightarrow(\mathrm{v}):$ See A3.

We can refine the previous result when T is linear.

Proposition 2.15.2

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be linear. Then the following are equivalent.
(i) T is f.n.e.
(ii) $\| 2 T-$ Id $\| \leq 1$
(iii) for all $x \in \mathbb{R}^{m},\|T x\|^{2} \leq\langle x, T x\rangle$
(iv) for all $x \in \mathbb{R}^{m},\langle T x, x-T x\rangle \geq 0$

Proof

(i) \Longleftrightarrow (ii) We know that T is f.n.e. if and only if $2 T-\mathrm{Id}$ is nonexpansive. This happens if and only if for all $x \neq y$,

$$
\begin{aligned}
\|(2 T-\mathrm{Id})(x-y)\| & =\|(2 T-\mathrm{Id}) x-(2 T-\mathrm{Id}) y\| \\
& \leq\|x-y\| \\
& \Longleftrightarrow \\
& \|2 T-\mathrm{Id}\| \leq 1 .
\end{aligned}
$$

(i) \Longleftrightarrow (iii) This is easily seen by the previous proposition and the fact that $T x-T y=$ $\overline{T(x-y)}$.
(i) \Longleftrightarrow (iv) This is seen by applying the previous proposition and observing that $T x-$

$$
(\operatorname{Id}-T) x-(\operatorname{Id}-T) y=x-y-T(x-y)
$$

Observe that T is f.n.e. if and only if $N:=2 T-\mathrm{Id}$ is nonexpansive if and only if $2 T=\operatorname{Id}+N$ for N nonexpansive if and only if $T=\frac{1}{2} \operatorname{Id}+\frac{1}{2} N$ for N nonexpansive if and only if T is $\frac{1}{2}-$ averaged.

Example 2.15.3

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ be convex and closed. Then $P_{C}(x)$ is f.n.e. Indeed, for all $x, y \in \mathbb{R}^{m}$,

$$
\left\|P_{C}(x)-P_{C}(y)\right\| \leq\left\langle P_{C}(x)-P_{C}(y), x-y\right\rangle
$$

Example 2.15.4

Suppose that $T=-\frac{1}{2} \mathrm{Id}$. Then T is averaged but NOT f.n.e.
We have

$$
T=\frac{1}{4} \mathrm{Id}+\frac{3}{4}(-\mathrm{Id})
$$

and so T is $\frac{3}{4}$-averaged.
But T is not f.n.e. as for all $0 \neq x \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\|T x\|^{2}+\|x-T x\|^{2} & =\frac{1}{4}\|x\|^{2}+\frac{9}{4}\|x\|^{2} \\
& =\frac{5}{2}\|x\|^{2} \\
& >\|x\|^{2} .
\end{aligned}
$$

Example 2.15.5

$T:=-$ Id is nonexpansive but NOT averaged. Indeed suppose there is some nonexpansive $N: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\alpha \in(0,1)$ such that

$$
\begin{aligned}
T=(1-\alpha) \operatorname{Id}+\alpha N & \Longleftrightarrow-\operatorname{Id}=(1-\alpha) \operatorname{Id}+\alpha N \\
& \Longleftrightarrow(-1+\alpha) \operatorname{Id}=\alpha N \\
& \Longleftrightarrow N=\frac{\alpha-2}{\alpha} \mathrm{Id} .
\end{aligned}
$$

But then

$$
\begin{gathered}
\|N\|=\left|\frac{\alpha-2}{\alpha}\right| \leq 1 \\
\Longleftrightarrow \frac{2-\alpha}{\alpha} \leq 1 \\
\Longleftrightarrow 2-\alpha \leq \alpha \\
\Longleftrightarrow \alpha \geq 1
\end{gathered}
$$

which is impossible by the definition of averaged.
Proposition 2.15.6
Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be nonexpansive. Then T is continuous.

Proof

Suppose $x_{n} \rightarrow \bar{x}$. Then

$$
\left\|T x_{n}-T \bar{x}\right\| \leq\left\|x_{n}-\bar{x}\right\| \rightarrow 0
$$

Definition 2.15.4 (Fixed Point)

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ then

$$
\operatorname{Fix} T:=\left\{x \in \mathbb{R}^{m}: x=T x\right\}
$$

2.16 Féjer Monotonocity

Definition 2.16.1 (Féjer Monotone)

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ a sequence in \mathbb{R}^{m}. Then $\left(x_{n}\right)$ is a Féjer monotone with respect to C if for all $c \in C, n \in \mathbb{N}$,

$$
\left\|x_{n+1}-c\right\| \leq\left\|x_{n}-c\right\| .
$$

Example 2.16.1

Suppose Fix $T \neq \varnothing$ for some nonexpansive $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. For any $x_{0} \in \mathbb{R}^{n}$, the sequence defined recursively by

$$
x_{n}:=T\left(x_{n-1}\right)
$$

is Féjer monotone with respect to Fix T.

Proposition 2.16.2

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ and $\left(x_{n}\right)_{n \geq 0}$ a Féjer monotone sequence in \mathbb{R}^{m} with respect to C. The following hold:
(i) $\left(x_{n}\right)$ is bounded
(ii) for every $c \in C,\left(\left\|x_{n}-c\right\|\right)_{n \geq 0}$ converges
(iii) $\left(d_{C}\left(x_{n}\right)\right)_{n \geq 0}$ is decreasing and converges

Proof

Fix $c \in C$. We have

$$
\begin{aligned}
\left\|x_{n}\right\| & \leq\|c\|+\left\|x_{n}-c\right\| \\
& \leq\|c\|+\left\|x_{0}-c\right\| .
\end{aligned}
$$

Hence $\left(x_{n}\right)$ is a bounded sequence.
Now, $\left\|x_{n}-c\right\|$ is bounded below by 0 and monotonic, hence necessarily converges to the infimum.

Observe that for each $n \in \mathbb{N}, c \in C$,

$$
\left\|x_{n+1}-c\right\| \leq\left\|x_{n}-c\right\| .
$$

Taking infimums on both sides preserve this inequality.
Recall the following analysis fact.

Proposition 2.16.3

A bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}^{m} converges if and only if it has a unique cluster point.

Proof

The forward direction is clear. Suppose now that $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a unique cluster point \bar{x}. Suppose that $x_{n} \nrightarrow \bar{x}$. Then there is some $\epsilon_{0}>0$ and subsequence $x_{k_{n}}$ such that for all n,

$$
\left\|x_{k_{n}}-\bar{x}\right\| \geq \epsilon_{0}
$$

But then $\left(x_{k_{n}}\right)_{n \in \mathbb{N}}$ is bounded and hence contains a convergent subsequence. This is still a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ but cannot converge to \bar{x}.

It follows that $\left(x_{n}\right)_{n \in \mathbb{N}}$ has more than one cluster point. By contradiction, $x_{n} \rightarrow \bar{x}$.

Lemma 2.16.4

Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{m} and $\varnothing \neq C \subseteq \mathbb{R}^{m}$ be such that for all $c \in C$, $\left(\left\|x_{n}-c\right\|\right)_{n \in \mathbb{N}}$ converges and every cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in C.
Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a point in C.

Proof

$\left(x_{n}\right)$ is necessarily bounded since $\left\|x_{n}\right\| \leq\|c\|+\left\|x_{n}-c\right\|$ is bounded. It suffices by the previous proposition to show that $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a unique cluster point.

Let x, y be two cluster points of $\left(x_{n}\right)_{n \in \mathbb{N}}$. That is, there are subsequences

$$
x_{k_{n}} \rightarrow x, x_{\ell_{n}} \rightarrow y
$$

By assumption, $x, y \in C$. Hence $\left\|x_{n}-x\right\|,\left\|x_{n}-y\right\|$ converges.
Observe that

$$
\begin{aligned}
& 2\left\langle x_{n}, x-y\right\rangle \\
& =\left\|x_{n}\right\|^{2}+\|y\|^{2}-2\left\langle x_{n}, y\right\rangle-\left\|x_{n}\right\|^{2}-\|x\|^{2}+2\left\langle x_{n}, x\right\rangle+\|x\|^{2}-\|y\|^{2} \\
& =\left\|x_{n}-y\right\|-\left\|x_{n}-x\right\|^{2}+\|x\|^{2}-\|y\|^{2} \\
& \rightarrow L \in \mathbb{R}^{m} .
\end{aligned}
$$

But then taking the limit along k_{n}, ℓ_{n},

$$
\begin{aligned}
\langle x, x-y\rangle & =\langle y, x-y\rangle \\
\|x-y\|^{2} & =0 \\
x & =y .
\end{aligned}
$$

Theorem 2.16.5

Let $\varnothing \neq C \subseteq \mathbb{R}^{m}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ a sequence in \mathbb{R}^{m}. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Féjer monotone with respect to C, and that every cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in C. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a point in C.

Proof

We know that for all $c \in C$,

$$
\left\|x_{n}-c\right\|
$$

converges. Hence the result follows from the previous lemma.

Let $x, y \in \mathbb{R}^{m}$ and $\alpha \in \mathbb{R}$. By computation,

$$
\|\alpha x+(1-\alpha) y\|^{2}+\alpha(1-\alpha)\|x-y\|^{2}=\alpha\|x\|^{2}+(1-\alpha)\|y\|^{2} .
$$

Theorem 2.16.6

Let $\alpha \in(0,1]$ and $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be α-averaged such that Fix $T \neq \varnothing$. Let $x_{0} \in \mathbb{R}^{m}$. Define

$$
x_{n+1}:=T x_{n} .
$$

The following hold:
(i) $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to Fix T.
(ii) $T x_{n}-x_{n} \rightarrow 0$.
(iii) $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a point in Fix T.

Proof

Now, T being averaged implies that it is nonexpansive. The example earlier shows that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Féjer monotone.

By the definition of averaged, there is some nonexpansive $N: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that

$$
T=(1-\alpha) \operatorname{Id}+\alpha N
$$

Hence for each $n \in \mathbb{N}$,

$$
x_{n+1}=(1-\alpha) x_{n}+\alpha N\left(x_{n}\right) .
$$

Let $f \in \operatorname{Fix} T$.

$$
\begin{aligned}
\left\|x_{n+1}-f\right\|^{2} & =\left\|(1-\alpha)\left(x_{n}-f\right)+\alpha\left(N\left(x_{n}\right)-f\right)\right\|^{2} \\
& =(1-\alpha)\left\|x_{n}-f\right\|^{2}+\alpha\left\|N\left(x_{n}\right)-N(f)\right\|^{2}-\alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} \\
& \leq(1-\alpha)\left\|x_{n}-f\right\|^{2}+\alpha\left\|x_{n}-f\right\|^{2}-\alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} \\
& =\left\|x_{n}-f\right\|^{2}-\alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} \\
\alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} & \leq\left\|x_{n}-f\right\|^{2}-\left\|x_{n+1}-f\right\|^{2} .
\end{aligned}
$$

By a telescoping sum argument,

$$
\begin{aligned}
\sum_{n=0}^{k} \alpha(1-\alpha)\left\|N\left(x_{0}\right)-x_{n}\right\|^{2} & =\left\|x_{0}-f\right\|^{2}-\left\|x_{k+1}-f\right\|^{2} \\
& \leq\left\|x_{0}-f\right\|^{2} .
\end{aligned}
$$

By our work with non-negative monotone series, it must be that $\left\|N\left(x_{n}\right)-x_{n}\right\| \rightarrow 0$.

In particular,

$$
\begin{aligned}
\left\|T x_{n}-x_{n}\right\| & =\left\|(1-\alpha) x_{n}+\alpha N\left(x_{n}\right)-x_{n}\right\| \quad=\alpha\left\|N\left(x_{n}\right)-x_{n}\right\| \\
& \rightarrow 0
\end{aligned}
$$

Now, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Féjer monotone with respect to Fix $T=\operatorname{Fix} N$. Let \bar{x} be a cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$, say $x_{k_{n}} \rightarrow \bar{x}$. Observe that N being nonexpansive implies that N is continuous.

Since $N x_{n}-x_{n} \rightarrow 0$, we must also have $N x_{k_{n}}-x_{k_{n}} \rightarrow 0$. Thus

$$
N x_{k_{n}}=\left(N x_{k_{n}}-x_{k_{n}}\right)+x_{k_{n}} \rightarrow 0+\bar{x} .
$$

By continuity,

$$
N \bar{x}=\lim _{n} N x_{k_{n}}=\bar{x}
$$

That is, every cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in Fix $N=\operatorname{Fix} T$. Combined with a previous theorem, this yield the proof.

Corollary 2.16.6.1

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be f.n.e. and suppose that $\operatorname{Fix} T \neq \varnothing$. Put $x_{0} \in \mathbb{R}^{m}$. Recursively define

$$
x_{n+1}:=T x_{n}
$$

There is some $\bar{x} \in \operatorname{Fix} T$ such that

$$
x_{n} \rightarrow \bar{x}
$$

Proof

Since T is f.n.e., T is also averaged. The result follows then by the previous theorem.

Proposition 2.16.7

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Then Prox_{f} is f.n.e.

Proof

Let $x, y \in \mathbb{R}^{m}$. Set $p:=\operatorname{Prox}_{f}(x)$ and $q:=\operatorname{Prox}_{f}(y)$.
By our work with the proximal operator, p, q are characterized as $\forall z \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& \langle z-p, x-p\rangle+f(p) \leq f(z) \\
& \langle z-q, y-q\rangle+f(q) \leq f(z) .
\end{aligned}
$$

By choosing $z=p, q$,

$$
\begin{aligned}
\langle q-p, x-p\rangle+f(p) & \leq f(q) \\
\langle p-q, y-q\rangle+f(q) & \leq f(p) \\
\langle q-p,(x-p)-(y-q)\rangle & \leq 0 \\
\langle p-q,(x-p)-(y-q)\rangle & \geq 0
\end{aligned}
$$

But then by our characterization of f.n.e. operators, Prox_{f} is f.n.e.

Corollary 2.16.7.1

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper such that argmin $f \neq \varnothing$. Let $x_{0} \in \mathbb{R}^{m}$ and updated via

$$
x_{n+1}=\operatorname{Prox}_{f}\left(x_{n}\right)
$$

There is some $\bar{x} \in \operatorname{argmin} f$ such that $x_{n} \rightarrow \bar{x}$.

Proof

Recall that

$$
x \in \operatorname{argmin} f \Longleftrightarrow x=\operatorname{Prox}_{f}(x) \Longleftrightarrow x \in \operatorname{Fix}^{\operatorname{Prox}_{f}}
$$

Thus $\operatorname{argmin} f=$ Fix $\operatorname{Prox}_{f} \neq \varnothing$.
By the previous proposition, Prox_{f} is f.n.e. Thus the result follows from a previous theorem.

2.17 Composition of Averaged Operators

Consider the following identity for all $x, y \in \mathbb{R}^{m}, \alpha \in \mathbb{R} \backslash\{0\}$:

$$
\alpha^{2}\left(\|x\|^{2}-\left\|\left(1-\frac{1}{\alpha}\right) x+\frac{1}{\alpha} y\right\|^{2}\right)=\alpha\left(\|x\|^{2}-\frac{1-\alpha}{\alpha}\|x-y\|^{2}-\|y\|^{2}\right)
$$

Proposition 2.17.1

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be nonexpansive and $\alpha \in(0,1)$. The following are equivalent:

1. T is α-averaged
2. $\left(1-\frac{1}{\alpha}\right) \mathrm{Id}+\frac{1}{\alpha} T$ is nonexpansive
3. For each $x, y \in \mathbb{R}^{m},\|T x-T y\|^{2} \leq\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\|^{2}$

Proof

(i) \Longleftrightarrow (ii): We have T is α-averaged if and only if there is some $N: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ nonexpansive such that

$$
\begin{aligned}
T=(1-\alpha) \operatorname{Id}+\alpha N & \\
& \Longleftrightarrow N=\frac{1}{\alpha}(T-(1-\alpha) \mathrm{Id}) \\
& \Longleftrightarrow N=\left(1-\frac{1}{\alpha}\right) \mathrm{Id}+\frac{1}{\alpha} T
\end{aligned}
$$

if and only if $\left(1-\frac{1}{\alpha}\right) \operatorname{Id}+\frac{1}{\alpha} T$ is nonexpansive.
(ii) \Longleftrightarrow (iii) By definition $\left(1-\frac{1}{\alpha}\right) \operatorname{Id}+\frac{1}{\alpha} T$ is nonexpansive if and only if for all $x, y \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& \|x-y\|^{2} \\
& \geq\left\|\left(1-\frac{1}{\alpha}\right) x+\frac{1}{\alpha} T x-\left(1-\frac{1}{\alpha}\right) y-\frac{1}{\alpha} T y\right\|^{2} \\
& =\left\|\left(1-\frac{1}{\alpha}\right)(x-y)+\frac{1}{\alpha}(T x-T y)\right\|^{2} \\
& =\|x-y\|^{2}-\frac{1}{\alpha}\left(\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(x-T x)-(y-T y)\|^{2}-\|T x-T y\|^{2}\right) \\
0 & \geq-\frac{1}{\alpha}\left(\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(x-T x)-(y-T y)\|^{2}-\|T x-T y\|^{2}\right) \\
0 & \leq\|x-y\|^{2}+\frac{1-\alpha}{\alpha}\|(x-T x)-(y-T y)\|^{2}-\|T x-T y\|^{2}
\end{aligned}
$$

Theorem 2.17.2

Let $\alpha_{1}, \alpha_{2} \in(0,1)$ and $T_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be α_{i}-averaged. Define

$$
\begin{aligned}
T & :=T_{1} T_{2} \\
\alpha & :=\frac{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}}{1-\alpha_{1} \alpha_{2}} .
\end{aligned}
$$

Then T is α-averaged.

Proof

First observe that by computation,

$$
\alpha \in(0,1) \Longleftrightarrow \alpha_{1}\left(1-\alpha_{2}\right)<1-\alpha_{2}
$$

which is a tautology.

By the previous proposition, for each $x, y \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& \|T x-T y\|^{2} \\
& =\left\|T_{1} T_{2} x-T_{1} T_{2} y\right\|^{2} \\
& \leq\left\|T_{2} x-T_{2} y\right\|^{2}-\frac{1-\alpha_{1}}{\alpha_{1}}\left\|\left(\operatorname{Id}-T_{1}\right) T_{2} x-\left(\operatorname{Id}-T_{1}\right) T_{2} y\right\|^{2} \\
& \leq\|x-y\|^{2}-\frac{1-\alpha_{2}}{\alpha_{2}}\left\|\left(\operatorname{Id}-T_{2}\right) x-\left(\operatorname{Id}-T_{2}\right) y\right\|^{2}-\frac{1-\alpha_{1}}{\alpha_{1}}\left\|\left(\operatorname{Id}-T_{1}\right) T_{2} x-\left(\operatorname{Id}-T_{1}\right) T_{2} y\right\|^{2} \\
& =\|x-y\|^{2}-V_{1}-V_{2}
\end{aligned}
$$

Set

$$
\beta:=\frac{1-\alpha_{1}}{\alpha_{1}}+\frac{1-\alpha_{2}}{\alpha_{2}}>0 .
$$

By computation,

$$
V_{1}+V_{2} \geq \frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\beta \alpha_{1} \alpha_{2}}\|(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\|^{2}
$$

Consequently,

$$
\begin{aligned}
\|T x-T y\|^{2} & \leq\|x-y\|^{2}-\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\beta \alpha_{1} \alpha_{2}}\|(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\|^{2} \\
& =\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\|^{2}
\end{aligned}
$$

By the previous proposition, we are done.

Chapter 3

Constrained Convex Optimization

We now consider the problem

$$
\begin{equation*}
\min _{x \in C} f(x) \tag{P}
\end{equation*}
$$

where $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ is convex, l.s.c., and proper with $C \neq \varnothing$ being convex and closed.

3.1 Optimality Conditions

Recall that if ri $C \cap \operatorname{ridom} f \neq \varnothing$, then $\bar{x} \in \mathbb{R}^{m}$ solves (P) if and only if

$$
(\partial f(\bar{x})) \cap\left(-N_{C}(\bar{x})\right) \neq \varnothing .
$$

We now explore weaker results in the absence of convexity.

Theorem 3.1.1

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and $g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ convex, l.s.c., proper with $\operatorname{dom} g \subseteq \operatorname{int}(\operatorname{dom} f)$. Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{m}} f(x)+g(x) \tag{P}
\end{equation*}
$$

(i) If f is differentiable at $x^{*} \in \operatorname{dom} g$ and x^{*} is a local minima of (P), then $-\nabla f\left(x^{*}\right) \in \partial g\left(x^{*}\right)$
(ii) If f is convex and differentiable at $x^{*} \in \operatorname{dom} g$ then x^{*} is a global minimizer of (P) if and only if $-\boldsymbol{\nabla} f\left(x^{*}\right) \in \partial g\left(x^{*}\right)$

Proof (i)

Let $y \in \operatorname{dom} g$. Since g is convex, we know that $\operatorname{dom} g$ is convex. Hence for any $\lambda \in(0,1)$,

$$
\begin{aligned}
x^{*}+\lambda\left(y-x^{*}\right) & =(1-\lambda) x^{*}+\lambda y \\
& =: x_{\lambda} \\
& \in \operatorname{dom} g .
\end{aligned}
$$

Hence for sufficiently small λ,

$$
\begin{array}{rlr}
f\left(x_{\lambda}\right)+g\left(x_{\lambda}\right) & \geq f\left(x^{*}\right)+g\left(x^{*}\right) & \\
f\left(x_{\lambda}\right)+(1-\lambda) g\left(x^{*}\right)+\lambda g(y) & \geq f\left(x^{*}\right)+g\left(x^{*}\right) & \\
\lambda g\left(x^{*}\right)-\lambda g(y) & \leq f\left(x_{\lambda}\right)-f\left(x^{*}\right) & \\
g\left(x^{*}\right)-g(y) & \leq \frac{f\left(x_{\lambda}\right)-f\left(x^{*}\right)}{\lambda} & \\
& \rightarrow f^{\prime}\left(x^{*} ; y-x^{*}\right) & \\
& =\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle . &
\end{array}
$$

In other words, for all $y \in \operatorname{dom} g$,

$$
\begin{aligned}
g(y) & \geq g\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \\
& \Longrightarrow \\
-\nabla f\left(x^{*}\right) & \in \partial g\left(x^{*}\right)
\end{aligned}
$$

Proof (ii)
Suppose that f is convex and observe that (i) proves the forward direction.

Now suppose $-\boldsymbol{\nabla} f\left(x^{*}\right) \in \partial g\left(x^{*}\right)$. By definition, for each $y \in \operatorname{dom} g$,

$$
g(y) \geq g\left(x^{*}\right)+\left\langle-\nabla f\left(x^{*}\right), y-x\right\rangle
$$

Moreover, since f is differentiable at x^{*} one of our characterizations of the convexity of f is that for any $y \in \operatorname{dom} g \subseteq \operatorname{int} \operatorname{dom} f$,

$$
f(y) \geq f\left(x^{*}\right)+\left\langle\boldsymbol{\nabla} f\left(x^{*}\right), y-x^{*}\right\rangle .
$$

Adding the inequalities yield that for all $y \in \operatorname{dom} g$,

$$
f(y)+g(y) \geq f\left(x^{*}\right)+g\left(x^{*}\right)
$$

and x^{*} solves (P).

3.1.1 The Karush-Kuhn-Tucker Conditions

In the following, we assume that

$$
f, g_{1}, \ldots, g_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

are of full domain.
Consider the problem

$$
\begin{array}{ll}
\min f(x) & (P) \\
g_{i}(x) \leq & \forall i \in[n]
\end{array}
$$

We assume that (P) has at least one solution and that

$$
\mu:=\min \{f(x): \forall i \in I, f(x) \leq 0\} \in \mathbb{R}
$$

is the optimal value. Put

$$
F(x):=\max \{\underbrace{f(x)-\mu}_{=: g_{0}(x)}, g_{1}(x), \ldots, g_{n}(x)\} .
$$

Lemma 3.1.2

For all $x \in \mathbb{R}^{m}, F(x) \geq 0$. Moreover, the solution of (P) are precisely the minimizers of

$$
F:=\{x: F(x)=0\} .
$$

Proof

Let $x \in \mathbb{R}^{n}$.
Case Ia: x is infeasible Then there is some $j \in[n]$ such that $g_{j}(x)>0$. Hence $F(x) \geq$ $g_{i}(x)>0$.

Case Ib: x is not optimal Then $g_{i}(x) \leq 0$ but $f(x)>\mu$. Thus $F(x) \geq g_{0}(x)>0$.
Case II: x solves (P) Then x is feasible and $f(x)=\mu$. Hence $F(x)=0$.

Proposition 3.1.3 (Max Rule for Subdifferential Calculus)
Let $g_{1}, \ldots, g_{n}: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Define

$$
\begin{aligned}
g(x) & =\max \left\{g_{i}(x), \ldots, g_{n}(x)\right\} \\
A(x) & =\left\{i \in[n]: g_{i}(x)=g(x)\right\} .
\end{aligned}
$$

Now, let

$$
x \in \bigcap_{n=1}^{n} \operatorname{int} \operatorname{dom} g_{i} .
$$

We have

$$
\partial g(x)=\operatorname{conv}\left(\bigcup_{i \in A(x)} \partial g_{i}(x)\right)
$$

Theorem 3.1.4 (Fritz-John Optimality Conditions)
Suppose that f, g_{1}, \ldots, g_{n} are convex and x^{*} solves (P). There exists

$$
\alpha_{0}, \ldots, \alpha \geq 0
$$

not all 0 for which

$$
\begin{array}{rlr}
0 & \in \alpha_{0} \partial f\left(x^{*}\right)+\sum_{i=1}^{n} \alpha_{i} \partial g_{i}\left(x^{*}\right) & \\
\alpha_{i} g_{i}\left(x^{*}\right) & =0 & \forall i \in[n] \\
& (\text { complementary slackness) } &
\end{array}
$$

Proof

Recall that $F(x):=\max \left\{f(x)-\mu, g_{i}(x), \ldots, g_{n}(x)\right\}$. By the previous lemma,

$$
F\left(x^{*}\right)=0=\min F\left(\mathbb{R}^{n}\right) .
$$

Hence

$$
0 \in \partial F\left(x^{*}\right)=\operatorname{conv}_{i \in A\left(x^{*}\right)} \partial g_{i}\left(x^{*}\right)
$$

where $A\left(x^{*}\right):=\left\{0 \leq i \leq n: g_{i}\left(x^{*}\right)=0\right\}$.
Note that $0 \in \partial f\left(x^{*}\right)$ since $f_{0}\left(x^{*}\right)=f\left(x^{*}\right)-\mu=0$. So

$$
0 \in \partial g_{0}=\partial f
$$

By our work with convex hulls, there is some $\alpha_{0}, \ldots, \alpha_{n}$ such that $\sum_{i \in A\left(x^{*}\right)} \alpha_{i}=1$ (so $\alpha_{j}=0$ if $\left.j \notin A\left(x^{*}\right)\right)$ and that

$$
\begin{aligned}
0 & \in \sum_{i \in A\left(x^{*}\right)} \alpha_{i} \partial g_{i}\left(x^{*}\right) \\
& =\alpha_{0} \partial g_{0}\left(x^{*}\right)+\sum_{i \in A\left(x^{*}\right) \backslash\{0\}} \alpha_{i} \partial g_{i}\left(x^{*}\right) \\
& =\alpha_{0} \partial g_{0}\left(x^{*}\right)+\sum_{i=1}^{n} \alpha_{i} \partial g_{i}\left(x^{*}\right) .
\end{aligned}
$$

Now to see complementary slackness: If $i \in A\left(x^{*}\right) \cap[n]$, then $g_{i}\left(x^{*}\right)=0$. Else if $i \in$ $[n] \backslash A^{*}(x)$, then $\alpha_{i}=0$. In all cases,

$$
\alpha_{i} g_{i}\left(x^{*}\right)=0
$$

for all $i \in[n]$.

Theorem 3.1.5 (Karush-Kuhn-Tucker; Necessary Conditions)

Suppose f, g_{1}, \ldots, g_{n} are convex, and x^{*} solves (P). Suppose that Slater's condition holds, ie there is some $s \in \mathbb{R}^{m}$ such that for all $i \in[n]$,

$$
g_{i}(s)<0
$$

Then there exists $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ such that the KKT conditions hold: (stationarity condition)

$$
0 \in \partial f\left(x^{*}\right)+\sum_{i \in I} \lambda_{i} \partial g_{i}\left(x^{*}\right)
$$

and (complementary slackness condition) for each $i \in[n]$,

$$
\lambda_{i} g_{i}\left(x^{*}\right)=0 .
$$

Proof

By the Fritz-John necessary conditions, there are $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \geq 0$ not all 0 such that

$$
0 \in \alpha_{0} \partial f\left(x^{*}\right)+\sum_{i=1}^{n} \alpha_{i} \partial g_{i}\left(x^{*}\right)
$$

and for all $i \in[n]$,

$$
\alpha_{i} g_{i}\left(x^{*}\right)=0 .
$$

We claim that $\alpha_{0} \neq 0$. Then it is necessary that

$$
0 \in \partial f\left(x^{*}\right)+\sum_{i=1}^{n} \frac{\alpha_{i}}{\alpha_{0}} \partial g_{i}\left(x^{*}\right)
$$

Suppose towards a contradiction that $\alpha_{0}=0$. There exist $y_{i} \in \partial g_{i}\left(x^{*}\right)$ such that

$$
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

By the definition of the subgradient, for all $y \in \mathbb{R}^{m}$,

$$
g_{i}\left(x^{*}\right)+\left\langle y_{i}, y-x^{*}\right\rangle \leq g_{i}(y)
$$

Thus for each $i \in[n]$,

$$
g_{i}\left(x^{*}\right)+\left\langle y_{i}, s-x^{*}\right\rangle \leq g_{i}(s) .
$$

Multiplying each inequality by α_{i} and adding them yields

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} \alpha_{i} g_{i}\left(x^{*}\right)+\left\langle\sum_{i=1}^{n} \alpha_{i} y_{i}, s-x^{*}\right\rangle \\
& \leq \sum_{i=1}^{n} \alpha_{i} g_{i}(s) \\
& <0
\end{aligned}
$$

which is absurd.
By contradiction, $\alpha_{0}>0$ and we are done.

Theorem 3.1.6 (Karush-Kuhn-Tucker; Sufficient Conditions)
Suppose f, g_{1}, \ldots, g_{n} are convex and $x^{*} \in \mathbb{R}^{m}$ satisfies

$$
\begin{array}{rlrl}
\forall i \in[n], g_{i}\left(x^{*}\right) & \leq 0 & & \text { primal feasibility } \\
\forall i \in[n], \lambda_{i} \geq 0 & & \text { dual feasibility } \\
\partial f\left(x^{*}\right)+\sum_{i=1}^{n} \lambda_{i} \partial g_{i}\left(x^{*}\right) \ni 0 & & \text { stationarity } \\
\forall i \in[n], \lambda_{i} g_{i}\left(x^{*}\right)=0 & & \text { complementary slackness }
\end{array}
$$

Then x^{*} solves (P).

Proof

Define

$$
h(x):=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x) .
$$

Then h is convex since non-negative multiplication preserves convexity.
Apply the sum rule to obtain that

$$
\partial g(x)=\partial f(x)+\sum_{i=1}^{n} \lambda_{i} \partial g_{i}(x)
$$

By assumption,

$$
0 \in \partial h\left(x^{*}\right)=\partial f\left(x^{*}\right)+\sum_{i=1}^{n} \lambda_{i} \partial g_{i}\left(x^{*}\right) .
$$

Thus by Fermat's theorem, x^{*} is a global minimizer of H.
Let x be feasible for (P). Then

$$
\begin{aligned}
f\left(x^{*}\right) & =f\left(x^{*}\right)+\sum_{i=1}^{n} \lambda_{i} g_{i}\left(x^{*}\right) \\
& =h\left(x^{*}\right) \\
& \leq h(x) \\
& =f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x) \\
& \leq f(x)
\end{aligned}
$$

3.2 Gradient Descent

Consider the problem

$$
\min _{x \in \mathbb{R}^{m}} f(x)
$$

Definition 3.2.1 (Descent Direction)

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and let $x \in \operatorname{int} \operatorname{dom} f . d \in \mathbb{R}^{m} \backslash\{0\}$ is a descent direction of f at x if the directional derivative satisfies

$$
f^{\prime}(x ; d)<0 .
$$

Remark that if $0 \neq \nabla f(x)$ exists, then $\nabla f(x)$ is a descent direction. Indeed,

$$
f^{\prime}(x ;-\nabla f(x))=-\|\nabla f(x)\|^{2}<0
$$

Also remark that for convex f and $x \in \operatorname{dom} f$,

$$
f^{\prime}(x, d)=\lim _{\lambda \rightarrow 0^{+}} \frac{f(x+\lambda d)-f(x)}{\lambda} .
$$

Thus $f(x, d)<0$ implies that there is some ϵ such that $\lambda \in(0, \epsilon)$ implies that

$$
\frac{f(x+\lambda d)-f(x)}{\lambda}<0 \Longleftrightarrow f(x+\lambda d)<f(x)
$$

The gradient/steepest descent method consists of the following:

1. Initialize $x_{0} \in \mathbb{R}^{m}$.
2. For each $n \in \mathbb{N}$:
(a) Pick $t_{n} \in \operatorname{argmin}_{t \geq 0} f\left(x_{n}-t \nabla f\left(x_{n}\right)\right)$.
(b) Update $x_{n+1}:=x_{n}-t_{n} \boldsymbol{\nabla} f\left(x_{n}\right)$

Theorem 3.2.1 (Peressini, Sullivan, Uhl)

If f is strictly convex and coercive, then x_{n} converges to the unique minimizer of f.

In the lack of smoothness, a lot of pathologies happen.

Example 3.2.2 (L. Vandenberghe)

Negative subgradients are NOT necessarily descent directions. Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$ given by

$$
\left(x_{1}, x_{2}\right) \mapsto\left|x_{1}\right|+2\left|x_{2}\right| .
$$

Then f is convex as it is a direct sum of convex functions.
Since f has full domain and is continuous,

$$
\partial f(1,0)=\{1\} \times[-2,2] .
$$

Take $d:=(-1,-2) \in-\partial f(1,0)$.
d is NOT a descent direction. Moreover,

$$
f(1,0)=1<f[(1,0)+t(-1,-2)]
$$

for all $t>0$.

Example 3.2.3 (Wolfe)

Let $\gamma>1$. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
\left(x_{1}, x_{2}\right) \mapsto \begin{cases}\sqrt{x_{1}^{2}+\gamma x_{2}^{2}}, & \left|x_{2}\right| \leq x_{1} \\ \frac{x_{1}+\left|\left|x_{2}\right|\right.}{\sqrt{1+\gamma}}, & \text { else }\end{cases}
$$

Observe that $\operatorname{argmin}_{x \in \mathbb{R}^{m}} f=\varnothing$. One can show that $f=\sigma_{C}$ where

$$
C=\left\{x \in \mathbb{R}^{2}: x_{2}^{2}+\frac{x_{2}^{2}}{\gamma} \leq 1, x_{2} \geq \frac{1}{\sqrt{1+\gamma}}\right\}
$$

Thus f is convex. Moreover, f is differentiable on

$$
\left.D:=\mathbb{R}^{2} \backslash((-\infty, 0] \times\{0\})\right)
$$

Let $x_{0}:=(\gamma, 1) \in D$.
The steepest descent method will generate a equence

$$
x_{n}:=\left(\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{n},\left(-\frac{\gamma-1}{\gamma+1}\right)^{n}\right) \rightarrow(0,0)
$$

which is not a minimizer of f !

3.3 Projected Subgradient Method

Consider

$$
\begin{equation*}
\min _{x \in C} f(x) \tag{P}
\end{equation*}
$$

where $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ is convex, l.s.c., and proper, $\varnothing \neq C \subseteq \operatorname{int} \operatorname{dom} f$ is convex and closed.

Suppose

$$
\begin{aligned}
S & :=\operatorname{argmin}_{x \in C} f(x) \neq \varnothing \\
\mu & :=\min _{x \in C} f(x) .
\end{aligned}
$$

Moreover, there is some $L>0$ such that

$$
\sup \|\partial f(C)\| \leq L<\infty
$$

In other words, for all $c \in C$ and $u \in \partial f(c),\|u\| \leq L$.

1) Get $x_{0} \in C$.
2) Given x_{n}, pick a stepsize $t_{n}>0$ and $f^{\prime}\left(x_{n}\right) \in \partial f\left(x_{n}\right)$
3) Update $x_{n+1}:=P_{C}\left(x_{n}-t_{n} f^{\prime}\left(x_{n}\right)\right)$.

Recall that $C \subseteq \operatorname{int} \operatorname{dom} f$, hence each $x_{n} \in \operatorname{int} \operatorname{dom} f$ and $\partial f\left(x_{n}\right) \neq \varnothing$. Thus the algorithm is well-defined.

Lemma 3.3.1

Let $s \in S:=\operatorname{argmin}_{x \in C} f(x)$. Then

$$
\left\|x_{n+1}-s\right\|^{2} \leq\left\|x_{n}-s\right\|^{2}-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2} .
$$

Observe that $S \subseteq C$.

Proof

We have

$$
\begin{aligned}
\left\|x_{n+1}-s\right\|^{2} & =\left\|P_{C}\left(x_{n}-t_{n} f^{\prime}\left(x_{n}\right)\right)-P_{C}(s)\right\|^{2} \\
& \leq\left\|x_{n}-t_{n} f^{\prime}\left(x_{n}\right)-s\right\|^{2} \\
& =\left\|x_{n}-s\right\|^{2}+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}-2 t_{n}\left\langle x_{n}-s, f^{\prime}\left(x_{n}\right)\right\rangle .
\end{aligned}
$$

It suffices to show that

$$
\begin{aligned}
2 t_{n}\left\langle x_{n}-s, f^{\prime}\left(x_{n}\right)\right\rangle & \leq-2 t_{n}\left(f\left(x_{n}\right)-\mu\right) \\
\left\langle x_{n}-s, f^{\prime}\left(x_{n}\right)\right\rangle & \geq f\left(x_{n}\right)-\mu \\
\left\langle x_{n}-s, f^{\prime}\left(x_{n}\right)\right\rangle & \geq f\left(x_{n}\right)-f(x)
\end{aligned}
$$

which holds by the subgradient inequality.
What is a good step size? We wish to minimize the upper bound derived in the previous lemma.

$$
\begin{aligned}
0 & =\frac{d}{d t_{n}}\left(-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}\right) \\
& =-2\left(f\left(x_{n}\right)-\mu\right)+2 t_{n}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2} .
\end{aligned}
$$

If x_{n} is not a global minimizer, then $0 \notin \partial f\left(x_{n}\right)$ and $f^{\prime}\left(x_{n}\right) \neq 0$. Hence we can take

$$
t_{n}:=\frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}
$$

Definition 3.3.1 (Polyak's Rule)

The projected subgradient method with step size

$$
t_{n}:=\frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}
$$

Theorem 3.3.2

We have
(i) For all $s \in S, n \in \mathbb{N},\left\|x_{n+1}-s\right\| \leq\left\|x_{n}-s\right\|$, ie $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to S
(ii) $f\left(x_{n}\right) \rightarrow \mu$
(iii) $\mu_{n}-\mu \leq \frac{L \cdot d_{S}\left(x_{0}\right)}{\sqrt{n+1}} \in O\left(\frac{1}{\sqrt{n}}\right)$, where $\mu_{n}:=\min _{0 \leq k \leq n} f\left(x_{k}\right)$
(iv) For each $\epsilon>0$, if $n \geq \frac{L^{2} d_{S}^{2}\left(x_{0}\right)}{\epsilon^{2}}-1$, then $\mu_{n} \leq \mu+\epsilon$

Proof (i)
Let $s \in S, n \in \mathbb{N}$ By computation

$$
\begin{aligned}
\left\|x_{n+1}-s\right\|^{2} & \leq\left\|x_{n}-s\right\|^{2}-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2} \\
& =\left\|x_{n}-s\right\|^{2}-2 \frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}\left(f\left(x_{n}\right)-\mu\right)+\left(\frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}\right)^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2} \\
& =\left\|x_{n}-s\right\|^{2}-\frac{\left(f\left(x_{n}\right)-\mu\right)^{2}}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}} \\
& \leq\left\|x_{n}-s\right\|^{2}-\frac{\left(f\left(x_{n}\right)-\mu\right)^{2}}{L^{2}} \\
& \leq\left\|x_{n}-s\right\|^{2} .
\end{aligned}
$$

Proof (ii)
From our work in (i): for all $k \in \mathbb{N}$,

$$
\frac{\left(f\left(x_{k}\right)-\mu\right)^{2}}{L^{2}} \leq\left\|x_{k}-s\right\|^{2}-\left\|x_{k+1}-s\right\|
$$

Summing the above inequalities over $k=0, \ldots, n$ yields

$$
\begin{aligned}
\frac{1}{L^{2}} \sum_{k=0}^{n}\left(f\left(x_{k}\right)-\mu^{2}\right) & \leq\left\|x_{0}-s\right\|^{2}-\left\|x_{n+1}-s\right\|^{2} \\
& \leq\left\|x_{0}-s\right\|^{2} .
\end{aligned}
$$

Letting $n \rightarrow \infty$,

$$
0 \leq \sum_{k=0}^{\infty}\left(f\left(x_{k}\right)-\mu\right)^{2} \leq L^{2}\left\|x_{0}-s\right\|^{2}<\infty
$$

and it must be that $f\left(x_{k}\right) \rightarrow \mu$.

Proof (iii)

Recall that

$$
\mu_{n}:=\min _{0 \leq k \leq n} f\left(x_{k}\right) .
$$

Let $n \geq 0$. For each $0 \leq k \leq n$,

$$
\begin{aligned}
\left(\mu_{n}-\mu\right)^{2} & \leq\left(f\left(x_{k}\right)-\mu\right)^{2} \\
(n+1) \frac{\left(\mu_{n}-\mu\right)^{2}}{L^{2}} & \leq \frac{1}{L^{2}} \sum_{k=0}^{n}\left(f\left(x_{k}\right)-\mu\right)^{2} \\
& \leq\left\|x_{0}-s\right\|^{2} .
\end{aligned}
$$

Minimizing over $s \in S$, we get that

$$
(n+1) \frac{\left(\mu_{n}-\mu\right)^{2}}{L^{2}} \leq d_{S}^{2}\left(x_{0}\right)
$$

Proof (iv)

Suppose that

$$
\begin{aligned}
n & \geq \frac{L^{2} d_{S}^{2}\left(x_{0}\right)}{\epsilon^{2}}-1 \\
& \Longleftrightarrow \\
\frac{d_{S}^{2}\left(x_{0}\right) L^{2}}{n+1} & \leq \epsilon^{2} .
\end{aligned}
$$

Apply (iii) yields

$$
\begin{aligned}
\left(\mu_{n}-\mu\right)^{2} & \leq \frac{d_{S}^{2}\left(x_{0}\right) L^{2}}{n+1} \\
& \leq \epsilon^{2} \\
\mu_{n}-\mu & \leq \epsilon
\end{aligned}
$$

Recall that if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to some $\varnothing \neq C \subseteq \mathbb{R}^{m}$, and every cluster point lies in C, then $x_{n} \rightarrow c \in C$.

Theorem 3.3.3 (Convergence of Projected Subgradient)

Suppose x_{n} is generated as in the projected subgradient method with Polyak's rule. Then $x_{n} \rightarrow s \in S$.

Proof

We have already shown that $\left(x_{n}\right)$ is Fejér monotone with respect to S. Thus the sequence
is also bounded. Also, by the previous theorem,

$$
f\left(x_{n}\right) \rightarrow \mu=\min _{x \in C} f(x) .
$$

By Bolzano-Weirestrass, there is some subsequence $x_{k_{n}} \rightarrow \bar{x} \in C$. Now,

$$
\begin{aligned}
\mu & =\min _{x \in C} f(x) \\
& \leq f(\bar{x}) \\
& \leq \liminf _{n} f\left(x_{k_{n}}\right) \\
& =\mu
\end{aligned}
$$

$$
f\left(x_{n}\right) \rightarrow \mu
$$

Hence $\bar{x} \in S$. That is, all cluster points of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lie in S.
It follows that $x_{n} \rightarrow \bar{x} \in S$ by the Fejér monotonicity theorem.

Example 3.3.4

Let $C \subseteq \mathbb{R}^{m}$ be convex, closed, and non-empty. Fix $x \in \mathbb{R}^{m}$.

$$
\partial d_{C}(x)= \begin{cases}\frac{x-P_{C}(x)}{d_{C}(x)}, & x \notin C \\ N_{C}(x) \cap B(0 ; 1), & x \in C\end{cases}
$$

Moreover, $\sup \left\|\partial d_{C}(x)\right\| \leq 1$.

Lemma 3.3.5

Let f be convex, l.s.c., and proper. Fix $\lambda>0$. Then

$$
\partial(\lambda f)=\lambda \partial f
$$

3.3.1 The Convex Feasibility Problem

Problem 1

Given k closed convex subsets $S_{i} \subseteq \mathbb{R}^{m}$ such that

$$
S:=\bigcap_{i=1}^{k} S_{i} \neq \varnothing,
$$

find $x \in S$.

We take

$$
f(x):=\max \left\{d_{S_{i}}(x): i \in[k]\right\} .
$$

The domain is $C:=\mathbb{R}^{m}$. Observe that $f \geq 0$ with

$$
\begin{aligned}
f(x)=0 & \Longleftrightarrow \forall i, d_{S_{i}}(x)=0 \\
& \Longleftrightarrow \forall i, x \in S_{i} \\
& \Longleftrightarrow x \in S .
\end{aligned}
$$

Recall that the max rule for subdifferentials implies that for all $x \notin S$,

$$
\partial f(x)=\operatorname{conv}\left\{\partial d_{S_{i}}(x): d_{S_{i}}(x)=f(x)>0\right\}
$$

Thus $\|\partial f(x)\| \leq 1$ as a convex combination preserves the norm bound.
Given x_{n}, pick an index \bar{i} such that $d_{S_{\bar{i}}}\left(x_{n}\right)=f\left(x_{n}\right)>0$. Set

$$
f^{\prime}\left(x_{n}\right):=\frac{x_{n}-P_{S_{\bar{i}}}\left(x_{n}\right)}{d_{S_{\bar{i}}}\left(x_{n}\right)} .
$$

Since this is a unit vector, Polyak's step size simplifies to

$$
t_{n}=d_{S_{\bar{i}}}\left(x_{n}\right)
$$

The sequence converging to a member of S is thus

$$
\begin{aligned}
x_{n+1} & :=P_{C}\left(x_{n}-t_{n} f^{\prime}\left(x_{n}\right)\right) \\
& =x_{n}-t_{n} f^{\prime}\left(x_{n}\right) \\
& =x_{n}-d_{S_{\bar{i}}}\left(x_{n}\right) \frac{x_{n}-P_{S_{\overline{\bar{z}}}}\left(x_{n}\right)}{d_{S_{\bar{i}}}\left(x_{n}\right)} \\
& =x_{n}-\left(x_{n}-P_{S_{\bar{i}}}\left(x_{n}\right)\right) \\
& =P_{S_{\bar{i}}}\left(x_{n}\right) .
\end{aligned}
$$

By the convergence of the projected subgradient method, $x_{n} \rightarrow S$.
Note that in practice, it is possible that $\mu:=\min _{x \in C} f(x)$ is NOT known to us. In this case, replace Polyak's stepsize by a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\frac{\sum_{k=0}^{n} t_{k}^{2}}{\sum_{k=0}^{n} t_{k}} \rightarrow 0, n \rightarrow \infty
$$

For example, $t_{k}:=\frac{1}{k+1}$. One can show that

$$
\mu_{n}:=\min _{k=0}^{n} f\left(x_{k}\right) \rightarrow \mu
$$

as $n \rightarrow \infty$.

3.4 Proximal Gradient Method

Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{m}} F(x):=f(x)+g(x) \tag{P}
\end{equation*}
$$

We shall assume that $S:=\operatorname{argmin}_{x \in \mathbb{R}^{m}} F(x) \neq \varnothing$ and define

$$
\mu:=\min _{x \in \mathbb{R}^{m}} F(x) .
$$

f is "nice" in that it is convex, l.s.c., proper, and differentiable on int $\operatorname{dom} f \neq \varnothing$. Moreover, ∇f is L-Lipschitz on $\operatorname{int} \operatorname{dom} f$.
g is convex, l.s.c., and proper with $\operatorname{dom} g \subseteq \operatorname{int} \operatorname{dom} f$. In particular,

$$
\begin{aligned}
\varnothing & \neq \operatorname{ridom} g \\
& \subseteq \operatorname{dom} g \\
& \subseteq \operatorname{ridom} f \\
& =\operatorname{int} \operatorname{dom} f \\
& \Longrightarrow \\
\text { ri dom } g \cap \operatorname{ridom} f & =\operatorname{ridom} g \\
& \neq \varnothing
\end{aligned}
$$

Example 3.4.1

We can model contrained optimization functions as

$$
\min _{x \in \mathbb{R}^{m}} f(x)+\delta_{C}(x)
$$

where $\varnothing \neq C \subseteq \mathbb{R}^{m}$ is convex and closed.
Let $x \in \operatorname{int} \operatorname{dom} f \supseteq \operatorname{dom} g$. Update via

$$
\begin{aligned}
x_{+} & :=\operatorname{Prox}_{\frac{1}{L} g}\left(x-\frac{1}{L} \boldsymbol{\nabla} f(x)\right) \\
& =\operatorname{argmin}_{y \in \mathbb{R}^{m}} \frac{1}{L} g(y)+\frac{1}{2}\left\|y-\left(\frac{1}{L} \boldsymbol{\nabla} f(x)\right)\right\|^{2} \\
& \in \operatorname{dom} g \\
& \subseteq \operatorname{int} \operatorname{dom} f \\
& =\operatorname{dom} \boldsymbol{\nabla} f .
\end{aligned}
$$

Let the update operator be denoted

$$
T:=\operatorname{Prox}_{\frac{1}{L} g}\left(\operatorname{Id}-\frac{1}{L} \boldsymbol{\nabla} f\right)
$$

Theorem 3.4.2
Let $x \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
x & \in S \\
& =\operatorname{argmin}_{x \in \mathbb{R}^{m}} F \\
& =\operatorname{argmin}_{x \in \mathbb{R}^{m}}(f+g) \\
& \Longleftrightarrow \\
x & =T x \\
& \Longleftrightarrow \\
x & \Longleftrightarrow \operatorname{Fix} T .
\end{aligned}
$$

Proof

By Fermat's theorem,

$$
\begin{aligned}
x \in S & \Longleftrightarrow 0 \in \partial(f+g)(x)=\nabla f(x)+\partial g(x) \\
& \Longleftrightarrow-\nabla f(x) \in \partial g(x) \\
& \Longleftrightarrow x-\frac{1}{L} \nabla f(x) \in x+\frac{1}{L} \partial g(x)=\left(\operatorname{Id}+\partial\left(\frac{1}{L} g\right)\right)(x) \\
& \Longleftrightarrow x \in\left(\operatorname{Id}+\partial\left(\frac{1}{L} g\right)\right)^{-1}\left(x-\frac{1}{L} \nabla f(x)\right) \\
& \Longleftrightarrow x=\operatorname{Prox}_{\frac{1}{L} g}\left(\operatorname{Id}-\frac{1}{L} \nabla f\right)(x)=T x
\end{aligned}
$$

Proposition 3.4.3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Fix $\beta>0$. Then f is β-strongly convex if and only if for all $x \in \operatorname{dom} \partial f, u \in \partial f(x)$,

$$
f(y) \geq f(x)+\langle u, y-x\rangle+\frac{\beta}{2}\|y-x\|^{2} .
$$

3.4.1 Proximal-Gradient Inequality

Proposition 3.4.4

Let $x \in \mathbb{R}^{m}, y_{+} \in \operatorname{int} \operatorname{dom} f$, and

$$
y_{+}:=\operatorname{Prox}_{\frac{1}{L} g}(y-\nabla f(y))=T y .
$$

Then

$$
F(x)-F\left(y_{+}\right) \geq \frac{L}{2}\left\|x-y_{+}\right\|^{2}-\frac{L}{2}\|x-y\|^{2}+D_{f}(x, y) .
$$

where

$$
D_{f}(x, y):=f(x)-f(y)-\langle\nabla f(y), x-y\rangle .
$$

D_{f} is known as the Bregman distance.

Proof
Define

$$
h(z):=f(y)+\langle\nabla f(y), z-y\rangle+g(z)+\frac{L}{2}\|z-y\|^{2} .
$$

Then h is L-strongly convex.

We claim that y_{+}is the unique minimizer of h. Indeed, for $z \in \mathbb{R}^{m}$,

$$
\begin{aligned}
z \in \operatorname{argmin} h & \Longleftrightarrow 0 \in \partial\left(f(y)+\langle\nabla f(y), z-y\rangle+g(z)+\frac{L}{2}\|z-y\|^{2}\right) \\
& \Longleftrightarrow 0 \in \partial\left(\langle\nabla f(y), z-y\rangle+g(z)+\frac{L}{2}\|z-y\|^{2}\right) \\
& \Longleftrightarrow 0 \in \nabla f(y)+\partial g(z)+L(z-y) \\
& \Longleftrightarrow 0 \in \frac{1}{L} \nabla f(y)+\partial\left(\frac{1}{L} g\right)(z)+(z-y) \\
& \Longleftrightarrow y-\frac{1}{L} \nabla f(y) \in z+\partial\left(\frac{1}{L} g\right)(z) \\
& \Longleftrightarrow y-\frac{1}{L} \nabla f(y) \in\left(\operatorname{Id}+\partial\left(\frac{1}{L} g\right)\right)(z) \\
& \Longleftrightarrow z \in\left(\operatorname{Id}+\partial\left(\frac{1}{L} g\right)\right)^{-1}\left(y-\frac{1}{L} \nabla f(y)\right) \\
& \Longleftrightarrow z=\operatorname{Prox}_{\frac{1}{L} g}\left(y-\frac{1}{L} \nabla f(y)\right) \\
& \Longleftrightarrow z=T y=y_{+} .
\end{aligned}
$$

Applying the previous proposition yields that

$$
\begin{aligned}
h(x) & \geq h\left(y_{+}\right)+\left\langle 0, x-y_{+}\right\rangle+\frac{L}{2}\left\|x-y_{+}\right\|^{2} \\
& =h\left(y_{+}\right)+\frac{L}{2}\left\|x-y_{+}\right\|^{2} \\
h(x)-h\left(y_{+}\right) & \geq \frac{L}{2}\left\|x-y_{+}\right\|^{2} .
\end{aligned}
$$

Moreover, by the descent lemma,

$$
f\left(y_{+}\right) \leq f(y)+\left\langle\nabla f(y), y_{+}-y\right\rangle+\frac{L}{2}\left\|y_{+}-y\right\|^{2}
$$

Hence

$$
\begin{aligned}
h\left(y_{+}\right) & :=f(y)+\left\langle\boldsymbol{\nabla} f(y), y_{+}-y\right\rangle+g\left(y_{+}\right)+\frac{L}{2}\left\|y_{+}-y\right\|^{2} \\
& \geq f\left(y_{+}\right)+g\left(y_{+}\right) \\
& =F\left(y_{+}\right) .
\end{aligned}
$$

Combining with our work above,

$$
\begin{aligned}
h(x)-F\left(y_{+}\right) & \geq h(x)-h\left(y_{+}\right) \\
& \geq \frac{L}{2}\left\|x-y_{+}\right\|^{2} \\
f(y)+\langle\nabla f(y), x-y\rangle+g(x)+\frac{L}{2}\|x-y\|^{2}-F\left(y_{+}\right) & \geq \frac{L}{2}\left\|x-y_{+}\right\|^{2} \\
f(x)+g(x)-F\left(y_{+}\right) & \geq \frac{L}{2}\left\|x-y_{+}\right\|^{2}-\frac{L}{2}\|x-y\|^{2}+D_{f}(x, y) .
\end{aligned}
$$

Lemma 3.4.5 (Sufficient Decrease)

We have

$$
F\left(y_{+}\right) \leq F(y)-\frac{L}{2}\left\|y-y_{+}\right\|^{2}
$$

Proof

Recall that

$$
\begin{array}{rlr}
F(y)-F\left(y_{+}\right) & \geq \frac{L}{2}\left\|y-y_{+}\right\|^{2}-\frac{L}{2}\|y-y\|^{2}+D_{f}(y, y) \\
F(y)-F\left(y_{+}\right) & \geq \frac{L}{2}\left\|y-y_{+}\right\|^{2} & f \text { is convex } \\
F\left(y_{+}\right) & \leq F(y)-\frac{L}{2}\left\|y-y_{+}\right\|^{2} .
\end{array}
$$

3.4.2 The Algorithm

Given $x_{0} \in \operatorname{int} \operatorname{dom} f$, update via

$$
x_{n+1}:=T x_{n}=\operatorname{Prox}_{\frac{1}{L} g}\left(x_{n}-\frac{1}{L} \boldsymbol{\nabla} f\left(x_{n}\right)\right) .
$$

Theorem 3.4.6 (Rate of Convergence)

The following hold:
(i) For all $s \in S, n \in \mathbb{N},\left\|x_{n+1}-s\right\| \leq\left\|x_{n}-s\right\|$ (ie x_{n} is Fejér monotone with respect to S).
(ii) $\left(F\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ satisfies $0 \leq F\left(x_{n}\right)-\mu \leq \frac{L d_{S}^{2}\left(x_{0}\right)}{2 n} \in O\left(\frac{1}{n}\right)$. Hence $F\left(x_{n}\right) \rightarrow \mu$.

Proof

(i): Recall the previous proposition that

$$
\begin{array}{rlr}
0 & \geq F(s)-F\left(x_{k+1}\right) & F(x)=\mu \\
& \geq \frac{L}{2}\left\|s-x_{k+1}\right\|^{2}-\frac{L}{2}\left\|s-x_{k}\right\|^{2} . &
\end{array}
$$

Thus $\left(x_{n}\right)$ is Fejér monotone with respect to S.
(ii): Multiplying this inequality by $\frac{2}{L}$ and adding the resulting inequalities from $k=$ $\overline{0, \ldots}, n-1$ and telescoping yields

$$
\begin{aligned}
\frac{2}{L}\left(\sum_{k=0}^{n-1}\left(\mu-F\left(x_{k+1}\right)\right)\right) & \geq\left\|s-x_{k}\right\|^{2}-\left\|s-x_{0}\right\|^{2} \\
& \geq-\left\|s-x_{0}\right\|^{2}
\end{aligned}
$$

In particular, by setting $s:=P_{S}\left(x_{0}\right) \in S$, we obtain

$$
\begin{aligned}
d_{S}^{2}\left(x_{0}\right) & =\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|^{2} \\
& \geq \frac{2}{L} \sum_{k=0}^{n-1}\left(F\left(x_{k+1}\right)-\mu\right) \\
& \geq \frac{2}{L} \sum_{k=0}^{n-1}\left(F\left(x_{n}\right)-\mu\right) \\
& =\frac{2}{L} n\left(F\left(x_{n}\right)-\mu\right) .
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
0 & \leq F\left(x_{n}\right)-\mu \\
& \leq \frac{L d_{S}^{2}\left(x_{0}\right)}{2 n}
\end{aligned}
$$

and $F\left(x_{n}\right) \rightarrow \mu$.

Theorem 3.4.7 (Convergence of Proximal Gradient Method)

x_{n} converges to some solution in

$$
S:=\operatorname{argmin}_{x \in \mathbb{R}^{m}} F(x)
$$

Proof

By the previous theorem we know that $\left(x_{n}\right)$ is Fejér monotone with respect to S. Thus it suffices to show that every cluster point of $\left(x_{n}\right)$ lies in S.

Suppose \bar{x} is a cluster point of $\left(x_{n}\right)$, say $x_{k_{n}} \rightarrow \bar{x}$. We argue that $F(\bar{x})=\mu$. Indeed,

$$
\begin{aligned}
\mu & \leq F(\bar{x}) \\
& \leq \lim \inf _{n} F\left(x_{k_{n}}\right) \\
& =\mu
\end{aligned}
$$

Hence $F(\bar{x})=\mu$ and $\bar{x} \in S$.

Proposition 3.4.8

The following hold:
(i) $\frac{1}{L} \boldsymbol{\nabla} f$ is f.n.e.
(ii) $\operatorname{Id}-\frac{1}{L} \boldsymbol{\nabla} f$ is f.n.e.
(iii) $T=\operatorname{Prox}_{\frac{1}{L} g}(\operatorname{Id}-\nabla f)$ is $\frac{2}{3}$-averaged.

Proof

(i), (ii): Recall for real-valued, convex, differentiable functions with L-Lipschitz gradient,

$$
\begin{aligned}
\langle\boldsymbol{\nabla} f(x)-\boldsymbol{\nabla} f(y), x-y\rangle & \geq \frac{1}{L}\|\boldsymbol{\nabla} f(x)-\boldsymbol{\nabla} f(y)\|^{2} \\
\left\langle\frac{1}{L} \boldsymbol{\nabla} f(x)-\frac{1}{L} \boldsymbol{\nabla} f(y), x-y\right\rangle & \geq\left\|\frac{1}{L} \boldsymbol{\nabla} f(x)-\frac{1}{L} \boldsymbol{\nabla} f(y)\right\|^{2} .
\end{aligned}
$$

The result follows then from the two equivalent characterizations of f.n.e.: $\operatorname{Id}-T$ is nonexpansive and

$$
\langle T x-T y, T x-T y\rangle \geq\|T x-T y\|^{2}
$$

(iii): Recall that $\operatorname{Prox}_{\frac{1}{L} g}$ is f.n.e. Hence, $\operatorname{Prox}_{\frac{1}{L} g}$ and $\operatorname{Id}-\frac{1}{L} \boldsymbol{\nabla} f$ are both $\frac{1}{2}$-averaged. Consequently, the composition

$$
\operatorname{Prox}_{\frac{1}{L} g}\left(\operatorname{Id}-\frac{1}{L} \nabla f\right)
$$

is averaged with constant $\frac{2}{3}$.

Theorem 3.4.9

The PGM iteration satisifes

$$
\left\|x_{n+1}-x_{n}\right\| \leq \frac{\sqrt{2} d_{S}\left(x_{0}\right)}{\sqrt{n}} \in O\left(\frac{1}{\sqrt{n}}\right)
$$

Proof

Using the previous remark, we have that for all x, y,

$$
\frac{1}{2}\|(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\|^{2}<\|x-y\|^{2}-\|T x-T y\|^{2}
$$

Let $x \in S$ and observe that $s \in \operatorname{Fix} s$ by a previous theorem. Applying the above inequality with $x=x_{k}, y=s$ yields

$$
\begin{aligned}
\frac{1}{2}\left\|(\operatorname{Id}-T) x_{k}-(\operatorname{Id}-T) s\right\| & \leq\left\|x_{k}-s\right\|^{2}-\left\|T x_{k}-T s\right\|^{2} \\
\frac{1}{2}\left\|x_{k}-x_{k+1}\right\|^{2} & \leq\left\|x_{k}-s\right\|^{2}-\left\|x_{k+1}-s\right\|^{2}
\end{aligned}
$$

Now, T is $\frac{2}{3}$ averaged and thus nonexpansive. Therefore,

$$
\begin{aligned}
\left\|x_{k}-x_{k+1}\right\| & =\left\|T x_{k-1}-T x_{k}\right\| \quad \leq\left\|x_{k-1}-x_{k}\right\| \\
& \leq \ldots \\
& \leq\left\|x_{0}-x_{1}\right\| .
\end{aligned}
$$

Summing over $k=0 \ldots, n-1$ yields

$$
\begin{aligned}
\left\|x_{0}-s\right\|^{2}-\left\|x_{n}-s\right\|^{2} & \geq \frac{1}{2} \sum_{k=0}^{n-1}\left\|x_{k}-x_{k+1}\right\|^{2} \\
& \geq \frac{1}{2} n\left\|x_{n-1}-x_{n}\right\|^{2}
\end{aligned}
$$

Specifically, for $x:=P_{S}\left(x_{0}\right)$,

$$
\begin{aligned}
\frac{1}{2} n\left\|x_{n-1}-x_{n}\right\|^{2} & \leq d_{S}^{2}\left(x_{0}\right) \\
\left\|x_{n-1}-x_{n}\right\| & \leq \frac{\sqrt{2}}{\sqrt{n}} d_{S}\left(x_{0}\right)
\end{aligned}
$$

Corollary 3.4.9.1 (Classical Proximal Point Algorithm)
Let $g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. Fix $c>0$. Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{m}}(x) \tag{P}
\end{equation*}
$$

Assume that $S:=\operatorname{argmin}_{x \in \mathbb{R}^{m}} g(x) \leq \varnothing$.
Let $x_{0} \in \mathbb{R}^{m}$ and update via

$$
x_{n+1}:=\operatorname{Prox}_{c g} x_{n}
$$

Then
(i) $g\left(x_{n}\right) \downarrow \mu:=\min g\left(\mathbb{R}^{m}\right)$
(ii) $0 \leq g\left(x_{n}\right)-\mu \leq \frac{d_{S}^{2}\left(x_{0}\right)}{2 c n}$
(iii) x_{n} converges to a point within S
(iv) $\left\|x_{n-1}-x_{n}\right\| \leq \frac{\sqrt{2} d_{S}\left(x_{0}\right)}{\sqrt{n}}$

Proof

Set $f \equiv 0$ and observe that $\boldsymbol{\nabla} f \equiv 0$ and $\boldsymbol{\nabla} f$ is L-Lipchitz for any $L>0$. Specifically, for $L:=\frac{1}{c}>0$.

We can thus write (P) as

$$
\min _{x \in \mathbb{R}^{m}} f(x)+g(x)
$$

Now, $S=\operatorname{argmin} f+g=\operatorname{argmin} g$. Moreover, $\boldsymbol{\nabla} f \equiv 0 \Longrightarrow \mathrm{Id}-\frac{1}{L} \boldsymbol{\nabla} f=\mathrm{Id}$.
Hence

$$
\begin{aligned}
T & :=\operatorname{Prox}_{\frac{1}{L} g}\left(\operatorname{Id}-\frac{1}{L} \nabla f\right) \\
& =\operatorname{Prox}_{c g}
\end{aligned}
$$

and we are done by the previous results.

3.5 Fast Iterative Shrinkage Thresholding

Consider the following problem

$$
\min _{x \in \mathbb{R}^{m}} F(x):=f(x)+g(x)
$$

We assume (P) has solutions so that

$$
S:=\operatorname{argmin}_{x \in \mathbb{R}^{m}} F(x) \neq \varnothing
$$

and write $\mu:=\min _{x \in \mathbb{R}^{m}} F(x)$.
We assume f is convex, l.s.c., and proper, as well as being differnentiable on \mathbb{R}^{m}. Moreover, $\boldsymbol{\nabla} f$ is L-Lipschitz on \mathbb{R}^{m}.

We also assume that g is convex, l.s.c., and proper.

3.5.1 The Algorithm

Initially, set $x_{0} \in \mathbb{R}^{m}, t_{0}=1, y_{0}=x_{0}$. We update via

$$
\begin{aligned}
t_{n+1} & =\frac{1+\sqrt{1+4 t_{n}^{2}}}{2} \\
x_{n+1} & =\operatorname{Prox}_{\frac{1}{L} g}\left(\operatorname{Id}-\frac{1}{L} \nabla f\right)\left(y_{n}\right)=T y_{n} \\
y_{n+1} & =x_{n+1}+\frac{t_{n}-1}{t_{n+1}}\left(x_{n+1}-x_{n}\right) \\
& =\left(1-\frac{1-t_{n}}{t_{n+1}}\right) x_{n+1}+\frac{1-t_{n}}{t_{n+1}} x_{n} \\
& \in \operatorname{aff}\left\{x_{n}, x_{n+1}\right\}
\end{aligned}
$$

Observe that

$$
t_{n+1}^{2}-t_{n+1}=t_{n}^{2}
$$

3.5.2 Correctness

Proposition 3.5.1

The sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ satisfies

$$
t_{n} \geq \frac{n+2}{2} \geq 1
$$

Proof

Induction.

Theorem 3.5.2 (Quadratic Converge for FISTA)

The sequence $\left(x_{n}\right)$ satisfies

$$
\begin{aligned}
0 & \leq F\left(x_{n}\right)-\mu \\
& \leq \frac{2 L d_{S}^{2}\left(x_{0}\right)}{(n+1)^{2}} \\
& \in O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Notice that this converges significantly faster than $O\left(\frac{1}{n}\right)$ for PGM.

Proof

Set $s:=P_{S}\left(x_{0}\right)$. By the convexity of F,

$$
F\left(\frac{1}{t_{n}} s+\left(1-\frac{1}{t_{n}}\right) x_{n}\right) \leq \frac{1}{t_{n}} F(s)+\left(1-\frac{1}{t_{n}}\right) F\left(x_{n}\right)
$$

For each $n \in \mathbb{N}$, set

$$
s_{n}:=F\left(x_{n}\right)-\mu \geq 0
$$

By computation,

$$
\left(1-\frac{1}{t_{n}}\right) s_{n}-s_{n+1} \geq F\left(\frac{1}{t_{n}} s+\left(1-\frac{1}{t_{n}}\right) x_{n}\right)-F\left(x_{n+1}\right) .
$$

Now, applying the proximal gradient inequality with

$$
\begin{aligned}
x & =\frac{1}{x_{n}} s+\left(1-\frac{1}{t_{n}}\right) x_{n} \\
y & =y_{n} \\
y_{+} & =T y_{n}=x_{n+1}
\end{aligned}
$$

yields

$$
\begin{aligned}
& F\left(\frac{1}{t_{n}} s+\left(1-\frac{1}{t_{n}} x_{n}\right)\right)-F\left(x_{n+1}\right) \\
& \geq \frac{L}{2 t_{n}^{2}}\left\|t_{n} x_{n+1}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2}-\frac{L}{2 t_{n}^{2}}\left\|t_{n} y_{n}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2}
\end{aligned}
$$

Simplying yields that

$$
\left\|t_{n} y_{n}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2}=\left\|t_{n-1} x_{n}-\left(s+\left(t_{n-1}-1\right)\right) x_{n-1}\right\|^{2} .
$$

Combined with the fact that $t_{n+1}^{2}-t_{n+1}=t_{n}^{2}$, we get that

$$
\begin{aligned}
t_{n-1}^{2} s_{n}-t_{n}^{2} s_{n+1} & \geq t_{n}^{2}\left(F\left(\frac{1}{t_{n}} s=\left(1-\frac{1}{t_{n}}\right)\right) x_{n}\right)-F\left(x_{n+1}\right) \\
& \geq \frac{L}{2}\left\|t_{n} x_{n+1}-\left(s+\left(t_{n}-1\right)\right) x_{n}\right\|^{2}-\frac{L}{2}\left\|t_{n} y_{n}-\left(s+\left(t_{n}-1\right)\right) x_{n}\right\|^{2} \\
& =\frac{L}{2}\left\|t_{n} x_{n+1}-\left(s+\left(t_{n}-1\right)\right) x_{n}\right\|^{2}-\frac{L}{2}\left\|t_{n-1} x_{n}-\left(s+\left(t_{n-1}-1\right)\right) x_{n-1}\right\|^{2}
\end{aligned}
$$

Set $u_{n}:=t_{n-1} x_{n}-\left(s+\left(t_{n-1}-1\right) x_{n-1}\right)$. Multiplying the inequality above by $\frac{2}{L}$ and rearranging yields

$$
\left\|u_{n+1}\right\|^{2}+\frac{2}{L} t_{n}^{2} s_{n+1} \leq\left\|u_{n}\right\|^{2}+\frac{2}{L} t_{n-1}^{2} s_{n} .
$$

It follows that

$$
\begin{aligned}
\frac{2}{L} t_{n-1}^{2} s_{n} & \leq\left\|u_{n}\right\|^{2}+\frac{2}{L} t_{n}^{2} s_{n+1} \\
& \leq\left\|u_{1}\right\|^{2}+\frac{2}{L} t_{0}^{2} s_{1} \\
& =\left\|x_{1}-s\right\|^{2}+\frac{2}{L}\left(F\left(x_{1}\right)-\mu\right) \\
& \leq\left\|x_{0}-s\right\|^{2}
\end{aligned}
$$

where the last inequality follows from the proximal gradient inequality.
In other words,

$$
\begin{aligned}
F\left(x_{n}\right)-\mu & =s_{n} \\
& \leq \frac{L}{2}\left\|x_{0}-s\right\|^{2} \frac{1}{t_{n-1}^{2}} \\
& \leq \frac{L}{2}\left\|x_{0}-s\right\|^{2} \frac{4}{(n+1)^{2}} \quad t_{n} \geq \frac{n+2}{2} \\
& =\frac{2 L d_{S}^{2}\left(x_{0}\right)}{(n+1)^{2}}
\end{aligned}
$$

3.6 Iterative Shrinkage Thresholding Algorithm

This is a special case of PGM with $g(x)=\lambda\|x\|, \lambda>0$. Hence

$$
\frac{1}{L} g(x)=\frac{\lambda}{L}\|x\|_{1}
$$

and

$$
\begin{aligned}
\operatorname{Prox}_{\frac{1}{L} g}(x) & =\left(\operatorname{Prox}_{\frac{\lambda}{L}\|\cdot\|_{1}}(x)\right)_{i=1}^{n} \\
& =\left(\operatorname{sign}\left(x_{i}\right) \max \left\{0,\left|x_{i}\right|-\frac{\lambda}{L}\right\}\right)_{i=1}^{n}
\end{aligned}
$$

FISTA is the accelerated version of ISTA.

3.6.1 Norm Comparison

Consider the problems

$$
\begin{gathered}
\quad \min \|x\|_{2} \\
A x=b \\
\min \|x\|_{1} \\
A x=b
\end{gathered}
$$

Example 3.6.1

Consider the problem

$$
\begin{align*}
& \min \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \tag{P}\\
& x \in \mathbb{R}^{m}
\end{align*}
$$

where $\lambda>0$ and $A \in \mathbb{R}^{n \times m}$. g is convex, l.s.c., and proper, with f being smooth and

$$
\boldsymbol{\nabla} f(x)=A^{T}(A x-b)
$$

Recall that $\boldsymbol{\nabla} f$ is L-Lipschitz if and only if the spectral norm of the Hessian is bounded by L. Thus ∇f is L-Lipschitz for

$$
L:=\lambda_{\max }\left(A^{T} A\right) .
$$

To see the necessarily assumption that $S:=\operatorname{argmin}_{x \in \mathbb{R}^{m}} F(x)$ holds, observe that $f(x)$ is continuous, convex, and coercive, with dom $F=\mathbb{R}^{m}$.

Using the fact that if F is convex, l.s.c., proper, and coercive and $\varnothing \neq C$ is closed and convex with dom $F \cap C \neq \varnothing$, then F has a minimizer over C.

Now, m can be very large and $\lambda_{\max }\left(A^{T} A\right)$ may be difficult to compute. It suffices to use some upper bound on eigenvalues such as the Frobenius norm

$$
\begin{aligned}
\|A\|_{F}^{2} & =\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}^{2} \\
& =\operatorname{tr}\left(A^{T} A\right) \\
& =\sum_{i=1}^{m} \lambda_{i}\left(A^{T} A\right)
\end{aligned}
$$

3.7 Douglas-Rachford Algorithm

Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{m}} F(x):=f(x)+g(x) \tag{P}
\end{equation*}
$$

where f, g are convex, l.s.c., and proper with

$$
S:=\operatorname{argmin}_{x \in \mathbb{R}^{m}} F(x) \neq \varnothing .
$$

Suppose there exists some $s \in S$ such that

$$
0 \in \partial f(s)+\partial g(s) \subseteq \partial(f+g)(s)
$$

This happens for example when ridom $f \cap \operatorname{ridom} g \neq \varnothing$.
Define

$$
\begin{aligned}
R_{f} & :=2 \operatorname{Prox}_{f}-\mathrm{Id} \\
R_{g} & :=2 \operatorname{Prox}_{g}-\mathrm{Id} .
\end{aligned}
$$

Definition 3.7.1 (Douglas-Rachford Operator)
Define

$$
T:=\operatorname{Id}-\operatorname{Prox}_{f}+\operatorname{Prox}_{g} R_{f}
$$

Lemma 3.7.1

The following hold:
(i) R_{f}, R_{g} are nonexpansive
(ii) $T=\frac{1}{2}\left(\operatorname{Id}+R_{g} R_{f}\right)$
(iii) T is firmly nonexpansive

Proof

Since $\operatorname{Prox}_{f}, \operatorname{Prox}_{g}$ are f.n.e., $2 \operatorname{Prox}_{f}-\mathrm{Id}, 2 \operatorname{Prox}_{g}-\mathrm{Id}$ are nonexpansive as shown in the assignments.

Expanding the definitions of R_{g}, R_{f} shows the equivalent expression

$$
T=\frac{1}{2}\left(\operatorname{Id}+R_{g} R_{g}\right) .
$$

The above shows that T is $\frac{1}{2}$-averaged, which is equivalent to firm nonexpansiveness.

Proposition 3.7.2

Fix $T=\operatorname{Fix} R_{g} R_{f}$.

Proof

Let $x \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
x \in \operatorname{Fix} T & \Longleftrightarrow x=\frac{1}{2}\left(x+R_{g} R_{f} x\right) \\
& \Longleftrightarrow x=R_{g} R_{f} x \\
& \Longleftrightarrow x \in \operatorname{Fix} R_{g} R_{f} .
\end{aligned}
$$

Proposition 3.7.3

$\operatorname{Prox}_{f}(\operatorname{Fix} T) \subseteq S$.

Proof

Let $x \in \mathbb{R}^{m}$ and set $s=\operatorname{Prox}_{f}(x)=(\operatorname{Id}+\partial f)^{-1}(x)$. Then

$$
\begin{aligned}
x \in(\operatorname{Id}+\partial f)(s)=s+\partial f(s) & \Longleftrightarrow 2 s-(2 s-x) \in s+\partial f(s) \\
& \Longleftrightarrow 2 s-R_{f}(x)-s \in \partial f(s) \\
& \Longleftrightarrow s-R_{f}(x) \in \partial f(s) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
x \in \operatorname{Fix} T & \Longleftrightarrow x=x-\operatorname{Prox}_{f}(x)+\operatorname{Prox}_{g} R_{f}(x) \\
& \Longleftrightarrow s=\operatorname{Prox}_{g} R_{f}(x)=(\operatorname{Id}+\partial g)^{-1}\left(R_{f}(x)\right) \\
& \Longleftrightarrow R_{f}(x) \in s+\partial g(s) \\
& \Longleftrightarrow R_{f}(x)-s \in \partial g(s)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
0 & =s-R_{f}(x)+R_{f}(x)-s \\
& \in \partial f(s)+\partial g(s) \\
& \subseteq \partial(f+g)(s)
\end{aligned}
$$

and $s \in S$ as required for all $x \in \operatorname{Fix} T$.
Recall that (firmly) nonexpansive operators are continuous and iterating a f.n.e. operator tends to a fixed point.

Theorem 3.7.4

Let $x_{0} \in \mathbb{R}^{m}$. Update via

$$
x_{n+1}:=x_{n}-\operatorname{Prox}_{g} x_{n}+\operatorname{Prox}_{g}\left(2 \operatorname{Prox}_{f} x_{n}-x_{n}\right) .
$$

Then $\operatorname{Prox}_{f}\left(x_{n}\right)$ tends to a minimizer of $f+g$.

Proof

Remark that $x_{n+1}=T x_{n}=T^{n+1} x_{0}$. Since T is f.n.e., we know that $x_{n} \rightarrow \bar{x} \in \operatorname{Fix} T$.
But since Prox_{f} is continuous,

$$
\operatorname{Prox}_{f} x_{n} \rightarrow \operatorname{Prox}_{f} \bar{x} \in \operatorname{Prox}_{f}(\operatorname{Fix} T) \subseteq S
$$

3.8 Stochastic Projected Subgradient Method

Consider the problem

$$
\min _{x \in C} f(x)
$$

f is convex, l.s.c., and proper, $\varnothing \neq C \subseteq \operatorname{int} \operatorname{dom} f$ is closed and convex, and $S:=$
$\operatorname{argmin}_{x \in C} f(x) \neq \varnothing$.
Set

$$
\mu:=\min f(C)
$$

Given $x_{0} \in C$, update via

$$
x_{n+1}:=P_{C}\left(x_{n}-t_{n} g_{n}\right) .
$$

We assume that $t_{n}>0$ and

$$
\begin{array}{rl}
\sum_{n=0}^{\infty} t_{n} \rightarrow \infty & \\
\frac{\sum_{k=0}^{n} t_{k}^{2}}{\sum_{k=0}^{n} t_{k}} \rightarrow 0 & k \rightarrow \infty
\end{array}
$$

for example $t_{n}=\frac{\alpha}{n+1}$ for some $\alpha>0$.
We choose g_{n} to be a random vector satisfying the following assumptions
(A1) For each $n \in \mathbb{N}, E\left[g_{n} \mid x_{n}\right] \in \partial f\left(x_{n}\right)$ (unbiased subgradient)
(A2) For each $n \in \mathbb{N}$, there is some $L>0, E\left[\left\|g_{n}\right\|^{2} \mid x_{n}\right] \leq L^{2}$
Let us write

$$
\mu_{k}:=\min \left\{f\left(x_{i}\right): 0 \leq i \leq k\right\} .
$$

Theorem 3.8.1

Assuming the previous assumptions hold, then $E\left[\mu_{k}\right] \rightarrow \mu$ as $k \rightarrow \infty$.

Proof

Pick $s \in S$ and let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
0 & \leq\left\|x_{n+1}-s\right\|^{2} \\
& =\left\|P_{C}\left(x_{n}-t_{n} g_{n}\right)-P_{C} s\right\|^{2} \\
& \leq\left\|\left(x_{n}-t_{n} g_{n}\right)-s\right\|^{2} \\
& =\left\|\left(x_{n}-s\right)-t_{n} g_{n}\right\|^{2} \\
& =\left\|x_{n}-s\right\|^{2}-2 t_{n}\left\langle g_{n}, x_{n}-s\right\rangle+t_{n}^{2}\left\|g_{n}\right\|^{2}
\end{aligned}
$$

Taking the conditional expectation given x_{n} yields

$$
\begin{align*}
E\left[\left\|x_{n+1}-s\right\|^{2} \mid x_{n}\right] & \leq\left\|x_{n}-s\right\|^{2}+2 t_{n}\left\langle E\left[g_{n} \mid x_{n}\right], s-x_{n}\right\rangle+t_{n}^{2} E\left[\left\|g_{n}\right\|^{2} \mid x_{n}\right] \\
& \leq\left\|x_{n}-s\right\|^{2}+2 t_{n}\left(f(x)-f\left(x_{n}\right)\right)+t_{n}^{2} L^{2} \tag{A1}\\
& =\left\|x_{n}-s\right\|^{2}+2 t_{n}\left(\mu-f\left(x_{n}\right)\right)+t_{n}^{2} L^{2} .
\end{align*}
$$

Now, taking the expection with respect to x_{n} yields

$$
E\left[\left\|x_{n+1}-s\right\|^{2}\right] \leq E\left[\left\|x_{n}-s\right\|^{2}\right]+2 t_{n}\left(\mu-E\left[f\left(x_{n}\right)\right]\right)+t_{n}^{2} L^{2}
$$

Let $k \in \mathbb{N}$. Summing the inequality from $n=0$ to k yields

$$
\begin{aligned}
0 & \leq E\left[\left\|x_{n+1}-s\right\|^{2}\right] \\
& \leq\left\|x_{0}-s\right\|^{2}-2 \sum_{n=0}^{k} t_{n}\left(E\left[f\left(x_{n}\right)\right]-\mu\right)+L^{2} \sum_{n=0}^{k} t_{n}^{2} .
\end{aligned}
$$

Rearranging yields

$$
\begin{aligned}
0 & \leq E\left[\mu_{k}\right]-\mu \\
& \leq \frac{\left\|x_{0}-s\right\|^{2}+L^{2} \sum_{n=0}^{k} t_{n}^{2}}{2 \sum_{n=0}^{k} t_{n}} \\
& \rightarrow 0 \quad k \rightarrow \infty
\end{aligned}
$$

3.8.1 Minimizing a Sum of Functions

Consider the problem

$$
\begin{align*}
& \min f(x):=\sum_{i \in[r]} f_{i}(x) \tag{P}\\
& x \in C
\end{align*}
$$

Suppose $f_{1}, \ldots, f_{r}: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ are convex, l.s.c., and proper.
Set $I:=[r]$ and assume that for each $i \in I$,

$$
\varnothing \neq C \subseteq \operatorname{int} \operatorname{dom} f_{i} .
$$

for some closed convex C.

We also assuem that for each $i \in I$, there is some $L_{i} \geq 0$ for which

$$
\left\|\partial f_{i}(C)\right\| \leq L_{i}
$$

Proposition 3.8.2

$\sup \left\|\partial f_{i}(C)\right\| \leq L_{i}$ if and only if $\left.f_{i}\right|_{C}$ is L_{i}-Lipchistz.
For example, this holds if C is bounded.
Let us assume that (P) has a solution. We verify (A1), (A2) to justify solving the problem with SPSM.

By the triangle inequality,

$$
\sup \|\partial f(C)\| \leq \sum_{i \in I} L_{i}
$$

Let $x_{0} \in C$. Given $x_{n} \in C$, we pick an index $i_{n} \in I$ uniformly randomly and set

$$
g_{n}:=r f_{i_{n}}^{\prime}\left(x_{n}\right) \in \partial f_{i_{n}}\left(x_{n}\right)
$$

Observe that

$$
\begin{aligned}
E\left[g_{n} \mid x_{n}\right] & =\sum_{i=1}^{r} \frac{1}{r} r f_{i}^{\prime}\left(x_{n}\right) \\
& =\sum_{i=1}^{r} f_{i}^{\prime}\left(x_{n}\right) \\
& \in \partial f_{1}\left(x_{n}\right)+\cdots+\partial f_{r}\left(x_{n}\right) \\
& =\partial\left(f_{1}+\cdots+f_{r}\right)\left(x_{n}\right) \quad \text { Sum Rule } \\
& =\partial f\left(x_{n}\right) \quad
\end{aligned}
$$

hence (A1) holds.
Next,

$$
\begin{aligned}
E\left[\left\|g_{n}\right\|^{2} \mid x_{n}\right] & =\sum_{i=1}^{r} \frac{1}{r}\left\|r f_{i}^{\prime}\left(x_{n}\right)\right\|^{2} \\
& =\sum_{i=1}^{r} r\left\|f_{i}^{\prime}\left(x_{n}\right)\right\|^{2} \\
& \leq r \sum_{i=1}^{r} L_{i}^{2} .
\end{aligned}
$$

Thus (A2) holds with $L:=\sqrt{r \sum_{i=1}^{r} L_{i}^{2}}$.
Having verified the assumptions, we may apply SPSM.

3.9 Duality

3.9.1 Fenchel Duality

Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{m}} f(x)+g(x) \tag{P}
\end{equation*}
$$

$f, g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ are convex, l.s.c., and proper.
We can rewrite the problem as

$$
\min _{x, z \in \mathbb{R}^{m}}\{f(x)+g(z): x=z\} .
$$

Construct the Lagrangian

$$
L(x, z ; y):=f(x)+g(z)+\langle y, z-x\rangle .
$$

The dual objective function is obtained by minimizing the Lagrangian with respect to x, z.

$$
\begin{aligned}
d(u) & :=\inf _{x, z} L(x, z ; u) \\
& =\inf _{x, z}\{f(x)-\langle u, x\rangle+g(z)+\langle u, z\rangle\} \\
& =-\sup _{x}(\langle u, x\rangle-f(x))-\sup _{z}(\langle-u, z\rangle-g(z)) \\
& =-f^{*}(u)-g^{*}(-u) .
\end{aligned}
$$

Let

$$
\begin{aligned}
& p:=\inf _{x \in \mathbb{R}^{m}} f(x)+g(x) \\
& d:=\inf _{u \in \mathbb{R}^{m}} f^{*}(u)+g^{*}(-u)
\end{aligned}
$$

and recall that $p \geq-d$ from assignments.

3.9.2 Fenchel-Rockafellar Duality

Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{m}} f(x)+g(A x) \tag{P}
\end{equation*}
$$

where $f: \mathbb{R}^{m}, \rightarrow(-\infty, \infty]$ is convex, l.s.c., and proper, $g: \mathbb{R}^{n}, \rightarrow(-\infty, \infty]$ is convex, l.s.c., and proper, and $A \in \mathbb{R}^{n \times m}$.

The Fenchel-Rockafellar dual is given by

$$
\begin{equation*}
\min _{y \in \mathbb{R}^{n}} f^{*}\left(-A^{T} y\right)+g^{*}(y) \tag{D}
\end{equation*}
$$

As before, let

$$
\begin{aligned}
p & :=\inf _{x \in \mathbb{R}^{m}} f(x)+g(A x) \\
d & :=\inf _{y \in \mathbb{R}^{n}} f^{*}\left(-A^{T} y\right)+g^{*}(y)
\end{aligned}
$$

and recall that $p \geq-d$ from assignments.

Lemma 3.9.1

Let $h: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. For each $x \in \mathbb{R}^{m}$,

$$
h^{v}(x):=h(-x) .
$$

The following hold:
(i) h^{v} is convex, l.s.c., and proper
(ii) $\partial h^{v}=-\partial h \circ(-\mathrm{Id})$

Proof

The convexity, l.s.c., and properness is verified by definition.
Let $u \in \mathbb{R}^{m}$ and $x \in \operatorname{dom} \partial h \circ(-\mathrm{Id})$. Then

$$
\begin{array}{rlrl}
u \in-\partial h \circ(-\operatorname{Id})(x)=-\partial f(-x) & \Longleftrightarrow-u \in \partial h(-x) & \\
& \Longleftrightarrow h(y) \geq h(-x)+\langle-u, y-(-x)\rangle & \forall y \in \mathbb{R}^{m} \\
& \Longleftrightarrow h(-y) \geq h(-x)+\langle-u,-y+x\rangle \quad \forall y \in \mathbb{R}^{m} \\
& \Longleftrightarrow h^{v}(y) \geq h^{v}(x)+\langle u, y-x\rangle & \forall y \in \mathbb{R}^{m} \\
& \Longleftrightarrow u \in \partial h^{v}(x) . &
\end{array}
$$

3.9.3 Self-Duality of Douglas-Rachford

Recal that the DR operator to solve (P) is given by

$$
T_{p}:=\frac{1}{2}\left(\operatorname{Id}+R_{g} R_{f}\right)
$$

where $R_{f}:=2 \operatorname{Prox}_{f}-\mathrm{Id}$ and similarly for R_{g}.
Similarly, the DR operator to solve (D) is defined as

$$
T_{d}:=\frac{1}{2}\left(\operatorname{Id}+R_{\left(g^{*}\right)^{v}} R_{f^{*}}\right) .
$$

Lemma 3.9.2

Let $h: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex, l.s.c., and proper. The following hold:
(i) $\operatorname{Prox}_{h^{v}}=-\operatorname{Prox}_{h} \circ(\mathrm{Id})$
(ii) $R_{h^{*}}=-R_{h}$
(iii) $R_{\left(h^{*}\right)^{v}}=R_{h} \circ(-\mathrm{Id})$

Proof

(i): This is shown using the relation $\operatorname{Prox}_{f}=(\operatorname{Id}+\partial f)^{-1}$ as well as the lemma $\partial h^{v}=$ $\overline{-\partial} h \circ(-\mathrm{Id})$.
(ii): This can be proven by expanding the definition of $R_{h^{*}}$ as well as the relation $\operatorname{Prox}_{h^{*}}=$ $\left.\overline{(\mathrm{Id}}-\operatorname{Prox}_{h}\right)$ proven in A4.
(iii): First, we can shown by definition that

$$
\operatorname{Prox}_{\left(h^{*}\right)^{v}}=-\operatorname{Prox}_{h^{*}} \circ(-\mathrm{Id})
$$

The proof is completed using this fact as well as the relation $\operatorname{Prox}_{h^{*}}=\left(\mathrm{Id}-\operatorname{Prox}_{h}\right)$

Theorem 3.9.3

$T_{p}=T_{d}$.

Proof

From our previous lemma,

$$
\begin{aligned}
T_{d} & :=\frac{1}{2}\left(\mathrm{Id}+R_{\left(g^{*}\right)^{v}} R_{f^{*}}\right) \\
& =\frac{1}{2}\left(\mathrm{Id}+\left[R_{g} \circ(-\mathrm{Id})\right] \circ\left(-R_{f}\right)\right) \\
& =\frac{1}{2}\left(\mathrm{Id}+R_{g} R_{f}\right) \\
& =T_{p} .
\end{aligned}
$$

Theorem 3.9.4

Let $x_{0} \in \mathbb{R}^{m}$. Update via

$$
x_{n+1}:=x_{n}-\operatorname{Prox}_{f}\left(x_{n}\right)+\operatorname{Prox}_{g}\left(2 \operatorname{Prox}_{f} x_{n}-x_{n}\right)=T_{p} x_{n} .
$$

Then $\operatorname{Prox}_{f}\left(x_{n}\right)$ converges to a minimizer of $f+g$ and $x_{n}-\operatorname{Prox}_{f}\left(x_{n}\right)$ converges to a minimizer of $f^{*}+\left(g^{*}\right)^{v}$.

Proof

We already know that $\operatorname{Prox}_{f}\left(x_{n}\right)$ converges to a minimizer of $f+g$. Since $T_{p}=T_{d}$, $\operatorname{Prox}_{f^{*}}\left(x_{n}\right)$ converges to a minimizer of $f^{*}+\left(g^{*}\right)^{v}$. Using the fact that $\operatorname{Prox}_{f^{*}}=\mathrm{Id}-\operatorname{Prox}_{f}$, we conclude the proof.

