CO463: Convex Optimization and Analysis

Felix Zhou $^{\rm 1}$

January 5, 2024

 $^1\mathrm{From}$ Professor Walaa Moursi's Lectures at the University of Waterloo in Winter 2021

Contents

1	Convex Sets		
	1.1	Introduction	7
	1.2	Affine Sets & Subspaces	7
	1.3	Convex Sets	8
	1.4	Convex Combinations of Vectors	9
	1.5	The Projection Theorem	10
	1.6	Convex Set Operations	14
	1.7	Topological Properties	16
	1.8	Separation Theorems	20
	1.9	More Convex Sets	22
2	Con	vex Functions	29
	2.1	Definitions & Basic Results	29
	2.2	Lower Semicontinuity	31
	2.3	The Support Function	32
	2.4	Further Notions of Convexity	33
	2.5	Operations Preserving Convexity	34
	2.6	Minimizers	34

	2.7	Conjugates	36
	2.8	The Subdifferential Operator	38
	2.9	Calculus of Subdifferentials	39
	2.10	Differentiability	45
	2.11	Conjugacy	49
	2.12	Coercive Functions	52
	2.13	Strong Convexity	53
	2.14	The Proximal Operator	60
	2.15	Nonexpansive & Averaged Operators	68
	2.16	Féjer Monotonocity	71
	2.17	Composition of Averaged Operators	76
0	C		-
3	Con	strained Convex Optimization	79
	3.1	Optimality Conditions	79
	3.1	Optimality Conditions	79 81
	3.1 3.2	Optimality Conditions	79 81 86
	3.13.23.3	Optimality Conditions	79 81 86 88
	3.13.23.3	Optimality Conditions	 79 81 86 88 93
	3.13.23.33.4	Optimality Conditions	 79 81 86 88 93 94
	3.13.23.33.4	Optimality Conditions	 79 81 86 88 93 94 96
	3.13.23.33.4	Optimality Conditions	 79 81 86 88 93 94 96 98
	 3.1 3.2 3.3 3.4 	Optimality Conditions	 79 81 86 88 93 94 96 98 103
	 3.1 3.2 3.3 3.4 	Optimality Conditions	 79 81 86 88 93 94 96 98 103 103

3.6	Iterati	ve Shrinkage Thresholding Algorithm 106
	3.6.1	Norm Comparison
3.7	Dougla	as-Rachford Algorithm
3.8	Stocha	astic Projected Subgradient Method
	3.8.1	Minimizing a Sum of Functions
3.9	Dualit	y
	3.9.1	Fenchel Duality
	3.9.2	Fenchel-Rockafellar Duality
	3.9.3	Self-Duality of Douglas-Rachford

Chapter 1

Convex Sets

1.1 Introduction

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable. Consider the problem

$$\min f(x)$$
$$x \in C \subseteq \mathbb{R}^n$$

In the case when $C = \mathbb{R}^n$, the minimizers of f will occur at the critical points of f. Namely, at $x \in \mathbb{R}^n$ when $\nabla f(x) = 0$. This is known as "Fermat's Rule".

(P)

In this course, we seek to approach (P) when f is not differentiable but f is convex and when $\emptyset \neq C \subsetneq \mathbb{R}^n$ is a convex set.

1.2 Affine Sets & Subspaces

Definition 1.2.1 (Affine Set) $S \subseteq \mathbb{R}^n$ is affine if for all $x, y \in S$ and $\lambda \in \mathbb{R}$,

$$\lambda x + (1 - \lambda)y \in S.$$

Definition 1.2.2 (Affine Subspace) An affine set $\emptyset \neq S \subseteq \mathbb{R}^n$. **Definition 1.2.3 (Affine Hull)** Let $S \subseteq \mathbb{R}^n$. The affine hull of S

$$\operatorname{aff}(S) := \bigcap_{S \subseteq T \subseteq \mathbb{R}^n: T \text{ is affine}} T$$

is the smallest affine set containing S.

Example 1.2.1 Let *L* be a linear subspace of \mathbb{R}^n and $a \in \mathbb{R}^n$.

Then $L, a + L, \emptyset, \mathbb{R}^n$ are all examples of affine sets.

1.3 Convex Sets

Definition 1.3.1 $C \subseteq \mathbb{R}^n$ is convex if for all $x, y \in C$ and $\lambda \in (0, 1)$,

$$\lambda x = (1 - \lambda)y \in C.$$

Example 1.3.1

 \emptyset , \mathbb{R}^n , balls, affine, and half-sets are all examples of convex sets.

Theorem 1.3.2

The intersection of an arbitrary collection of convex sets is convex.

Proof

Let I be an index set. Let $(C_i)_{i \in I}$ be a collection of convex subsets of \mathbb{R}^n .

Put

$$C := \bigcap_{i \in I} C_i.$$

Pick $x, y \in C$. By the definition of set intersection, $x, y \in C_i$ for all $i \in I$. Since each C_i is convex, for all $\lambda \in (0, 1)$,

$$\lambda x + (1 - \lambda)y \in C_i.$$

It follows that C is convex by the arbitrary choice of i.

Corollary 1.3.2.1 Let $b_i \in \mathbb{R}^n$ and $\beta_i \in \mathbb{R}$ for $i \in I$ for some arbitrary index set I. The set

 $C := \{ x \in \mathbb{R}^n : \langle x, b_i \rangle \le \beta_i, \forall i \in I \}$

is convex.

1.4 Convex Combinations of Vectors

Definition 1.4.1 (Convex Combinations) A vector sum

$$\sum_{i=1}^{m} \lambda_i x_i$$

is a convex combination if $\lambda \geq 0$ and $1^T \lambda = 1$.

Theorem 1.4.1

 $C \subseteq \mathbb{R}^n$ is convex if and only if it contains all convex combinations of its elements.

Proof

(\Leftarrow) Apply the definition of convex combination with m = 2.

 (\Longrightarrow) We argue by induction on *m*. Observe that by deleting x_i 's if necessary, we may assume without loss of generality that $\lambda > 0$.

When m = 2, this is simply the definition of convexity.

For m > 2, we can write

$$\sum_{i=1}^{m} \lambda_i x_i = \sum_{i=1}^{m-1} \lambda_i x_i + \lambda_m x_m$$
$$= (1 - \lambda_m) \sum_{i=1}^{m-1} \frac{\lambda_i}{1 - \lambda_m} x_i + \lambda_m x_m$$
$$= (1 - \lambda_m) x' + \lambda_m x_m. \qquad x' \in C \text{ by induction}$$

Hence C indeed contains all convex combinations of its elements.

Definition 1.4.2 (Convex Hull) The convex hull of $S \subseteq \mathbb{R}^n$

$$\operatorname{conv} S := \bigcap_{S \subset T \subset \mathbb{D}^n: T \text{ is conver}} T$$

is the smallest convex set containing S.

Theorem 1.4.2

Let $\subseteq \mathbb{R}^n$. conv S consists of all convex combinations of elements of S.

Proof

Let D be the set of convex combinations of elements of S.

 $(\operatorname{conv} S \subseteq D)$ D is convex since convex combinations of convex combinations again yields convex combinations. Moreover, $S \subseteq D$ by considering the trivial convex combination. It follows that conv $S \subseteq D$ by definition.

 $(D \subseteq \operatorname{conv} S)$ By the previous theorem, the convexity of $\operatorname{conv} S$ means that if contains all convex combinations of elements. In particular, it contains all convex combinations of $S \subseteq \operatorname{conv} S$.

1.5 The Projection Theorem

Definition 1.5.1 (Distance Function) Fix $S \subseteq \mathbb{R}^n$. The distance to S is the function $d_S : \mathbb{R}^n \to [0, \infty]$ given by

$$x \mapsto \inf_{s \in S} \|x - s\|.$$

Definition 1.5.2 (Projection onto a Set) Let $\emptyset \neq C \subseteq \mathbb{R}^n, x \in \mathbb{R}^n$ and $p \in C$. *p* is a projection of *x* onto *C*, if

$$d_C(x) = \|x - p\|$$

If a projection p of x onto C is unique, we denote it by $P_C(x) := p$.

Recall that a *cauchy sequence* $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R}^n is a sequence such that

$$\|x_m - x_n\| \to 0$$

as $\min(m, n) \to \infty$.

Since \mathbb{R}^n is a complete metric space under the Euclidean metric, every cauchy sequence converges in \mathbb{R}^n .

Moreover, recall that a function $f : \mathbb{R}^n \to \mathbb{R}$ is continuous at $\bar{x} \in \mathbb{R}^n$ if and only if for every sequence $x_n \to \bar{x}$, we have

$$f(x_n) \to f(\bar{x}).$$

Fix $y \in \mathbb{R}^n$. The function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$x \mapsto ||x - y||$$

is continuous.

Lemma 1.5.1 Let $x, y, z \in \mathbb{R}^n$. Then

$$||x - y||^{2} = 2||z - x||^{2} + 2||z - y||^{2} - 4\left||z - \frac{x + y}{2}\right||^{2}$$

Proof

This is by computation.

$$2||x - z||^{2} = 2\langle z - x, z - x \rangle$$

= 2||z||² - 4\langle z, x\rangle + 2||x||²
2||z - y||² = 2||z||² - 4\langle z, y\rangle + 2||y||²
4||z - \frac{x + y}{2}||^{2} = 4 \left[||z||^{2} + \frac{1}{4} ||x + y||^{2} - \langle z, x + y\rangle \right]
= 4||z^{2}|| + ||x + y||^{2} - 4\langle z, x\rangle - 4\langle z, y\rangle.

Putting everything together yields

$$2\|z - x\|^{2} + 2\|z - y\|^{2} - 4\left\|z - \frac{x + y}{2}\right\|^{2} = 2\|x\|^{2} + 2\|y\|^{2} - \|x + y\|^{2}$$
$$= \|x\|^{2} + \|y\|^{2} - 2\langle x, y \rangle$$
$$= \|x - y\|^{2}.$$

Lemma 1.5.2 Let $x, y \in \mathbb{R}^n$. Then

$$\langle x, y \rangle \le 0 \iff \forall \lambda \in [0, 1], \|x\| \le \|x - \lambda y\|.$$

Proof (\Longrightarrow) Suppose $\langle x, y \rangle \leq 0$. Then

$$\|x - \lambda y\|^2 - \|x\|^2 = \lambda \left(\lambda \|y\|^2 - 2\langle x, y \rangle\right)$$

$$\geq 0.$$

(
$$\Leftarrow$$
) Conversely, we have $\lambda ||y||^2 - 2\langle x, y \rangle \ge 0$. This implies

$$\langle x, y \rangle \leq \frac{\lambda}{2} \|y\|^2$$

 $\to 0. \qquad \qquad \lambda \to 0$

Theorem 1.5.3 (Projection)

Let $\varnothing \neq C \subseteq \mathbb{R}^n$ be closed and convex. Then the following hold:

- i) For all $x \in \mathbb{R}^n$, $P_C(x)$ exists and is unique.
- ii) For every $x \in \mathbb{R}^n$ and $p \in \mathbb{R}^n$, $p = P_C(x) \iff p \in C \land \forall y \in C, \langle y-p, x-p \rangle \leq 0$.

Proof (i) Recall that

$$d_C(x) := \inf_{c \in C} \|x - c\|.$$

Hence there is a sequence $(c_n)_{n\in\mathbb{N}}$ in C such that

$$d_C(x) = \lim_{n \to \infty} ||c_n - x||.$$

Let $m, n \in \mathbb{N}$. By the convexity of C, $\frac{1}{2}c_m + \frac{1}{2}c_n \in C$. But then

$$d_C(x) = \inf_{c \in C} ||x - c|| \le \left| |x - \frac{1}{2}(c_m + c_n) \right||.$$

Apply our first lemma with c_m, c_n, x to see that

$$||c_n - c_m||^2 = 2||c_n - x||^2 + 2||c_m - x||^2 - 4\left||x - \frac{c_n + c_m}{2}\right||^2$$

$$\leq 2||c_n - x||^2 + 2||c_m - x||^2 - 4d_C(x)^2.$$

As $m, n \to \infty$,

$$0 \le ||c_n - c_m||^2 \to 4d_C(x)^2 - 4d_C(x)^2 = 0$$

and (c_n) is a Cauchy sequence. But then there is some $c \in p$ such that $c_n \to p$ by the closedness (completeness) of C.

By the continuity of $||x - \cdot||, c_n \to p$ implies

$$||x - c_n|| \to d_C(x) = ||x - p||.$$

This demonstrates the existence of p.

Suppose there is some $q \in C$ such that $d_C(x) = ||q - x||$. By convexity, $\frac{1}{2}(p+q) \in C$. Using the first lemma again, we have

$$0 \le ||p - q||^{2}$$

= 2||p - x||^{2} + 2||q - x||^{2} - 4 ||x - \frac{p + q}{2}||^{2}
$$\le 2d_{C}(x)^{2} + 2d_{C}(x)^{2} - 4d_{C}(x)^{2}$$

$$\le 0.$$

So $||p-q|| = 0 \implies p = q$.

This shows uniqueness.

Proof (ii) Observe that $p = P_C(x)$ if and only if $p \in C$ and

$$||x - p||^2 = d_C(x)^2.$$

Since C is convex,

$$\forall \alpha \in [0,1], y_{\alpha} := \alpha y + (a - \alpha)p \in C.$$

Thus

$$\begin{aligned} \|x - p\|^2 &= d_C(x)^2 \\ \iff \forall y \in C, \alpha \in [0, 1], \|x - p\|^2 \leq \|x - y_\alpha\|^2 \\ \iff \forall y \in C, \alpha \in [0, 1], \|x - p\|^2 \leq \|x - p - \alpha(y - p)\|^2 \\ \iff \forall y \in C, \langle x - p, y - p \rangle \leq 0 \end{aligned}$$
auxiliary lemma 2.

In the absence of closedness, $P_C(x)$ does not in general exist unless $x \in C$. In the absence of convexity, uniqueness does not in general hold.

Example 1.5.4 Fix $\epsilon > 0$ and $C = B(0; \epsilon)$ be the closed ball around 0 or radius ϵ .

For all $x \in \mathbb{R}^n$, either $P_C(x) = x$ when $x \in C$ or $P_C(x)$ is $\frac{\epsilon}{\|x\|}x$, the vector obtained from x by scaling its norm to ϵ .

In other words,

$$P_C(x) = \frac{\epsilon}{\max(\|x\|, \epsilon)} x$$

1.6 Convex Set Operations

Definition 1.6.1 (Minkowski Sum) Let $C, D \subseteq \mathbb{R}^n$. The Minkowski Sum of C, D is

$$C + D := \{ c + d : c \in C, d \in D \}.$$

Theorem 1.6.1 (Minkowski) Let $C_1, C_2 \subseteq \mathbb{R}^n$ be convex. Then $C_1 + C_2$ is convex.

Proof

If either C_1, C_2 is empty, then $C_1 + C_2 = \emptyset$ by definition.

Otherwise, $C_1 + C_2 \neq \emptyset$. Fix $x_1 + x_2, y_1 + y_2 \in C_1 + C_2$ and $\lambda \in (0, 1)$. By the convexity

of $C_1, C_2,$

$$\lambda(x_1 + x_2) + (1 - \lambda)(y_1 + y_2) = \lambda x_1 + (1 - \lambda)y_1 + \lambda x_2 + (1 - \lambda)y_2$$

$$\in C_1 + C_2$$

as required.

Proposition 1.6.2

Let $\emptyset \neq C, D \subseteq \mathbb{R}^n$ be closed and convex. Moreover, suppose that D is bounded. Then $C + D \neq \emptyset$ is closed and convex.

Proof

We have already shown non-emptiness and convexity in the previous theorem.

Let $(x_n + y_n)_{n \in N}$ be a convergent sequence in C + D. Say that $x_n + y_n \to z$.

Since D is bounded, there is a subsequence $(y_{k_n})_{n \in N}$ such that $y_{k_n} \to y \in D$. It follows that

$$x_{k_n} = z - y_{k_n} \to z - y \in C$$

by the closedness of C.

It follows that $z \in C + y \subseteq C + D$ as desired.

If we drop the assumption that D is bounded, the result no longer holds in general. Indeed, consider $C = \{2, 3, 4, ...\}$ and $D := \{-n + \frac{1}{n} : n = 2, 3, 4, ...\}$. $(\frac{1}{n})_{n \ge 2}$ is the sum but 0 is not!

Theorem 1.6.3

Let $C \subseteq \mathbb{R}^n$ be convex and $\lambda_1, \lambda_2 \ge 0$. Then

$$(\lambda_1 + \lambda_2)C = \lambda_1 C + \lambda_2 C.$$

Proof

 (\subseteq) This is always true, even if C is not convex.

 (\supseteq) Without loss of generality, we may assume that $\lambda_1 + \lambda_2 > 0$. By convexity, we have

$$\frac{\lambda_1}{\lambda_1 + \lambda_2}C + \frac{\lambda_2}{\lambda_1 + \lambda_2}C \subseteq C.$$

In other words, $\lambda_1 C + \lambda_2 C \subseteq (\lambda_1 + \lambda_2)C$.

1.7 Topological Properties

We will write

$$B(x;\epsilon) := \{ y \in \mathbb{R}^n : \|y - x\| \le \epsilon \}$$

to denote the closed ball of radius ϵ about x. In particular, we write

B := B(0; 1)

to denote the closed unit ball.

Definition 1.7.1 (Interior) The interior of $C \subseteq \mathbb{R}^n$ is

$$\operatorname{int} C := \{ x : \exists \epsilon > 0, x + \epsilon B \subseteq C \}.$$

Definition 1.7.2 (Closure) The closure of $C \subseteq \mathbb{R}^n$ is

$$\bar{C} := \bigcap_{\epsilon > 0} C + \epsilon B.$$

Definition 1.7.3 (Relative Interior) The relative interior of a convex $C \subseteq \mathbb{R}^n$ is

 $\operatorname{ri} C := \{ x \in \operatorname{aff} C : \exists \epsilon > 0, (x + \epsilon B) \cap \operatorname{aff} C \subseteq C \}.$

Proposition 1.7.1 Let $C \subseteq \mathbb{R}^n$. Suppose that int $C \neq \emptyset$. Then int $C = \operatorname{ri} C$.

Proof Let $x \in \text{int } C$. There is some $\epsilon > 0$ such that $B(x; \epsilon) \subseteq C$. Hence

$$\mathbb{R}^{n} = \operatorname{aff}(B(x; \epsilon))$$
$$\subseteq \operatorname{aff} C$$
$$\subseteq \mathbb{R}^{n}.$$

But then aff $C = \mathbb{R}^n$ and the result follows from definition.

Let $A \subseteq \mathbb{R}^n$ be affine. Every affine set has a corresponding linear subspace

$$L := A - A.$$

This is a linear subspace as it is affine and contains 0.

Definition 1.7.4 (Dimension) Let $\emptyset \neq A \subseteq \mathbb{R}^n$ be affine. The dimension of A is the dimension of the corresponding linear subspace

 $\dim A := \dim(A - A).$

It may be useful to consider

$$A - A = \bigcup_{a \in A} (A - a)$$

as the union of translations.

Definition 1.7.5 (Dimension)

Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be convex. The dimension of C, denoted dim C, is the dimension of aff C.

Proposition 1.7.2 Let $C \subseteq \mathbb{R}^n$ be convex. For all $x \in \text{int } C$ and $y \in \overline{C}$,

 $[x, y) \subseteq \operatorname{int} C.$

Proof

Let $\lambda \in [0, 1)$. We argue that $(1 - \lambda)x + \lambda y \in \operatorname{int} C$. It suffices to show that

$$(1-\lambda)x + \lambda y + \epsilon B \subseteq C$$

for some $\epsilon > 0$.

As $y \in \overline{C}$, we have that $\forall \epsilon > 0, y \in C + \epsilon B$. Thus for all $\epsilon > 0$,

$$(1 - \lambda)x + \lambda y + \epsilon B \subseteq (1 - \lambda)x + \lambda(C + \epsilon B) + \epsilon B$$

= $(1 - \lambda)x + (1 + \lambda)\epsilon B + \lambda C$ previous theorem
= $(1 - \lambda)\left[x + \frac{1 + \lambda}{1 - \lambda}\epsilon B\right] + \lambda C$
 $\subseteq (1 - \lambda)C + \lambda C$ sufficiently small $\epsilon, x \in$
= $C.$ previous theorem again

 $\operatorname{int} C$

Theorem 1.7.3 Let $C \subseteq \mathbb{R}^n$ be convex. Then for all $x \in \operatorname{ri} C$ and $y \in \overline{C}$,

 $[x,y) \subseteq \operatorname{ri} C.$

Proof

Case I: int $C \neq \emptyset$ This follows by the observation that ri $C = \operatorname{int} C$.

<u>Case II: int $C = \emptyset$ </u> We must have dim C = m < n. Let $L := \operatorname{aff} C - \operatorname{aff} C$ be the corresponding linear subspace of dimension m.

Through translation by $-c \in C$ if necessary, we may assume without loss of generality that $C \subseteq L \cong \mathbb{R}^m$.

But then the interior of C with respect to \mathbb{R}^m is ri C in \mathbb{R}^n . An application of Case I with $C \subseteq \mathbb{R}^m$ yields the result.

Theorem 1.7.4

Let $C \subseteq \mathbb{R}^n$ be convex. The following hold:

- (i) \overline{C} is convex.
- (ii) int C is convex.
- (iii) If int $C \neq \emptyset$, then int $C = \operatorname{int} \overline{C}$ and $\overline{C} = \operatorname{int} \overline{C}$.

Proof (i) Let $x, y \in \overline{C}$ and $\lambda \in (0, 1)$. There are sequences $x_n, y_n \in C$ such that

$$x_n \to x, y_n \to y.$$

It follows by convexity that

$$C \ni \lambda x_n + (1 - \lambda)y \to \lambda x + (1 - \lambda y) \in \overline{C}.$$

By definition, \overline{C} is convex.

Proof (ii) If int $C = \emptyset$, the conclusion is clear.

Otherwise, use the previous proposition with $y \in C \subseteq \overline{C}$ to see that

$$[x, y] = [x, y) \cup \{y\}$$
$$\subseteq \operatorname{int} C \cup \operatorname{int} C$$
$$= \operatorname{int} C.$$

Proof (iii) Since $C \subseteq \overline{C}$, it must hold that int $C \subseteq \operatorname{int} \overline{C}$.

Conversely, let $y \in \operatorname{int} \overline{C}$. If $y \in \operatorname{int} C$, then we are done. Thus suppose otherwise.

There is some $\epsilon > 0$ such that $B(y; \epsilon) \subseteq \overline{C}$. We may thus choose some int $C \not\supseteq y \neq x \in$ int $C \neq \emptyset$ and $\lambda > 0$ sufficiently small such that

$$y + \lambda(y - x) \in B(y; \epsilon) \subseteq \overline{C}.$$

By a previous proposition applied with $y + \lambda(y - x)$, we have that

$$[x, y + \lambda(y - x)) \subseteq \operatorname{int} C$$

We now claim that $y \in [x, y + \lambda(y - x))$. Indeed, set $\alpha := \frac{1}{1+\lambda} \in (0, 1)$. We have

$$(1 - \alpha)x + \alpha(y + \lambda(y - x)) = (1 - \alpha(1 + \lambda))x + \alpha(1 + \lambda)y$$

= y.

It follows by the arbitrary choice of y that $\operatorname{int} \overline{C} \subseteq \operatorname{int} C$. We now turn to the second identity.

Since int $C \subseteq C$, we must have $\overline{\operatorname{int} C} \subseteq \overline{C}$. Conversely, let $y \in \overline{C}$ and $x \in \operatorname{int} C$. For $\lambda \in [0, 1)$, define

$$y_{\lambda} = (1 - \lambda)x + \lambda y.$$

The previous proposition agains tells us that

$$y_{\lambda} \in [x, y) \subseteq \operatorname{int} C.$$

But then $y = \lim_{\lambda \to 0} y_{\lambda} \in \overline{\operatorname{int} C}$ and $\overline{C} \subseteq \overline{\operatorname{int} C}$.

This concludes the argument.

Theorem 1.7.5 Let $C \subseteq \mathbb{R}^n$ be convex. Then $\operatorname{ri} C, \overline{C}$ are convex. Moreover,

 $C \neq \emptyset \iff \operatorname{ri} C \neq \emptyset.$

1.8 Separation Theorems

Definition 1.8.1 (Separated)

Let $C_1, C_2 \subseteq \mathbb{R}^n$. We say C_1, C_2 are separated if there is some $b \in \mathbb{R}^n \setminus \{0\}$ such that

$$\sup_{c_1 \in C_1} \langle c_1, b \rangle \leq \inf_{c_2 \in C_2} \langle c_2, b \rangle.$$

If

$$\sup_{c_1 \in C_1} \langle c_1, b \rangle \leq \inf_{c_2 \in C_2} \langle c_2, b \rangle$$

then we say C_1, C_2 are strongly separated.

Theorem 1.8.1 Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be closed and convex and suppose $x \notin C$. Then x is strongly separated from C.

Proof

The goal is to find some $b \neq 0$ such that

 $\sup \langle c, b \rangle < \langle x, b \rangle$ $\sup \langle c - x, b \rangle < 0.$

Set $p := P_C(X)$ and $b := x - p \neq \emptyset$. Let $y \in C$. By the projection theorem,

$$\begin{array}{l} \langle y - p, x - p \rangle \leq 0 & \forall y \in C \\ \langle y - (x - b), x - (x - b) \rangle \leq 0 & p = x - b \\ & \langle y - x, b \rangle \leq -\langle b, b \rangle \\ & = - \|b\|^2 \\ \sup_{y \in C} \langle y, b \rangle - \langle x, b \rangle \leq - \|b\|^2 \\ < 0 \end{array}$$

as desired.

Corollary 1.8.1.1

Let $C_1 \cap C_2 = \emptyset$ be nonempty subsets of \mathbb{R}^n such that $C_1 - C_2$ is closed and convex. Then C_1, C_2 are strongly separated.

Proof

By definition, C_1, C_2 are strongly separated if and only if there is $b \neq 0$ such that

$$\sup_{c_1 \in C_1} \langle c_1, b \rangle < \inf_{c_2 \in C_2} \langle c_2, b \rangle$$
$$\sup_{c_1 \in C_1} \langle c_1, b \rangle < -\sup_{c_2 \in C_2} \langle c_2, b \rangle$$
$$\sup_{c_1 \in C_1} \langle c_1, b \rangle + \sup_{c_2 \in C_2} \langle c_2, b \rangle < 0$$
$$\sup_{c_1 \in C_1, c_2 \in C_2} \langle c_1 - c_2, b \rangle < 0.$$

Since $C_1 \cap C_2 = \emptyset$, we know that $0 \notin C_1 - C_2$. Hence $C_1 - C_2$ is strongly separated from 0 and the conclusion follows.

Corollary 1.8.1.2

Let $\emptyset \neq C_1, C_2 \subseteq \mathbb{R}^n$ be closed and convex such that $C_1 \cap C_2 = \emptyset$ and C_2 is bounded. Then C_1, C_2 are strongly separted.

Proof

 $C_1 \cap C_2 = \emptyset \implies 0 \notin C_1 - C_2$. In addition, $-C_2$ is also closed and convex. It follows by a previous theorem that $C_1 + (-C_2)$ is nonempty, closed, and convex.

Theorem 1.8.2

Let $\emptyset \neq C_1, C_2 \subseteq \mathbb{R}^n$ be closed and convex such that $C_1 \cap C_2 = \emptyset$. Then C_1, C_2 are separated.

Proof

For each $n \in \mathbb{N}$, set

$$D_n := C_2 \cap B(0; n).$$

Observe that $C_1 \cap D_n = \emptyset$ for all n. Moreover, D_n is bounded by construction.

It follows that there is a hyperplane u_n that separates C_1, D_n for all n. Specifically, $||u_n|| = 1$ and

$$\sup \langle C_1, u_n \rangle < \inf \langle D_n, u_n \rangle.$$

But the sequence u_n is bounded, hence there is a convergent subsequence u_{k_n} . where $u_{k_n} \to u$ with ||u|| = 1.

Let $x \in C_1, y \in C_2$. For sufficiently large $n, y \in B(0; k_n)$ and

$$\langle x, u_{k_n} \rangle < \langle y, u_{k_n} \rangle.$$

Taking the limit as $k \to \infty$ yields

$$\langle x, u \rangle \le \langle y, u \rangle.$$

This completes the proof.

1.9 More Convex Sets

Definition 1.9.1 (Cone) $C \subseteq \mathbb{R}^n$ is a cone if

$C = \mathbb{R}_{++}C.$

Definition 1.9.2 (Conical Hull)

 $\operatorname{cone} C$ is the intersection of all cones containing C.

Definition 1.9.3 (Closed Conical Hull)

 $\overline{\text{cone}}(C)$ is the smallest closed cone containing C.

Proposition 1.9.1 Let $C \subseteq \mathbb{R}^n$. The following hold:

- (i) cone $C = \mathbb{R}_{++}C$
- (ii) $\overline{\operatorname{cone} C} = \overline{\operatorname{cone}}(C)$
- (iii) $\operatorname{cone}(\operatorname{conv} C) = \operatorname{conv}(\operatorname{cone} C)$
- (iv) $\overline{\operatorname{cone}}(\operatorname{conv} C) = \overline{\operatorname{conv}}(\operatorname{cone} C)$

The proofs of all these are trivial if $C = \emptyset$. Thus in our proofs, we assume that C is nonempty.

Proof (i)

Set $D := \mathbb{R}_{++}C$. It is clear that $C \subseteq D$ with D being a cone. Hence cone $C \subseteq D$.

Conversely, for $y \in D$, there is some $\lambda > 0, c \in C$ for which $y = \lambda c$. Then $y \in \operatorname{cone} C$ and $D \subseteq \operatorname{cone} C$.

Proof (ii)

 $\overline{\operatorname{cone}}(C)$ is a closed cone with $C \subseteq \overline{\operatorname{cone}}(C)$. Hence

$$\overline{\operatorname{cone} C} \subseteq \overline{\overline{\operatorname{cone}}(C)} = \overline{\operatorname{cone}}(C).$$

Conversely, since $\operatorname{cone} C$ is a cone,

$$\overline{\operatorname{cone}}(C) \subseteq \overline{\operatorname{cone} C}.$$

Proof (iii)

 (\subseteq) Let $x \in \operatorname{cone}(\operatorname{conv} C)$. By i, there is $\lambda > 0, y \in \operatorname{conv} C$ such that $x = \lambda y$. Since $y \in \operatorname{conv} C$, we can express is as a convex combination

$$x = \lambda y$$

= $\lambda \sum_{i=1}^{m} \lambda_i x_i$
= $\sum_{i=1}^{m} \lambda_i \lambda x_i$
 $\in \operatorname{conv}(\operatorname{cone} C).$

 (\supseteq) Let $x \in \operatorname{conv}(\operatorname{cone} C)$. We can write x as convex combinations of scalar multiples of \overline{C} .

$$x = \sum_{i=1}^{m} \mu_i \lambda_i x_i$$
$$= \left(\sum_{i=1}^{m} \lambda_i \mu_i\right) \left(\sum_{i=1}^{m} \frac{\lambda_i \mu_i}{\sum \lambda_i \mu_i} x_i\right)$$
$$= \alpha \sum_{i=1}^{m} \beta_i x_i.$$

This is a scalar multiple of a convex combination of C and thus $x \in \operatorname{cone}(\operatorname{conv} C)$ as desired.

Proof (iv)

This is a direct consequence of iii.

Lemma 1.9.2

Let $0 \in C \subseteq \mathbb{R}^n$ be convex with $\operatorname{int} C \neq \emptyset$. The following are equivalent: (i) $0 \in \operatorname{int} C$ (ii) $\operatorname{cone} C = \mathbb{R}^n$ (iii) $\overline{\operatorname{cone}} C = \mathbb{R}^n$

It is a fact that for $0 \in C \subseteq \mathbb{R}^n$ convex with $\operatorname{int} C \neq \emptyset$,

$$\operatorname{int}(\operatorname{cone} C) = \operatorname{cone}(\operatorname{int} C).$$

Proof $(i) \implies (ii)$ Suppose $0 \in int C$. Then $B(0; \epsilon) \subseteq C$ for some $\epsilon > 0$. But then $\mathbb{R}^n = \operatorname{cone}(B(0;\epsilon))$ $\subseteq \operatorname{cone} C$ $\subset \mathbb{R}^n$ and we have equality. $(ii) \implies (iii)$ Recall that $\overline{\text{cone } C} = \overline{\text{cone}}C$. But then $\mathbb{R}^n = \operatorname{cone} C \subseteq \overline{\operatorname{cone}} C.$ $(iii) \implies (i)$ Recall that cone(conv C) = conv(cone C). Thus $\operatorname{conv}(\operatorname{cone} C) = \operatorname{cone} C$ and cone C is convex. By assumption, $\emptyset \neq \operatorname{int} C \subseteq \operatorname{int}(\operatorname{cone} C)$ and cone C has nonempty interior. Recall that $\operatorname{int}(\operatorname{cone} C) = \operatorname{int}(\overline{\operatorname{cone}}C)$ as cone C is convex.

Hence

$$\mathbb{R}^{n} = \operatorname{int} \mathbb{R}^{n}$$
$$= \operatorname{int}(\overline{\operatorname{cone}}C)$$
$$= \operatorname{int}(\operatorname{cone}C)$$
$$= \operatorname{cone}(\operatorname{int}C).$$

Thus $0 \in \lambda$ int C for some $\lambda > 0$. It must be then that $0 \in C$ as desired.

Definition 1.9.4 (Tangent Cone) Let $\emptyset \neq C \subseteq \mathbb{R}^n$ with $x \in \mathbb{R}^n$. The tangent cone to C at x is

$$T_C(x) = \begin{cases} \overline{\operatorname{cone}}(C-x) = \overline{\bigcup_{\lambda \in \mathbb{R}_{++}} \lambda(C-x)}, & x \in C \\ \emptyset, & x \notin C \end{cases}$$

Definition 1.9.5 (Normal Cone) Let $\emptyset \neq C \subseteq \mathbb{R}^n$ with $x \in \mathbb{R}^n$. The normal cone to C at x is

$$N_C(x) = \begin{cases} \{u \in \mathbb{R}^n : \sup_{c \in C} \langle c - x, u \rangle \le 0\}, & x \in C \\ \emptyset, & x \notin C \end{cases}$$

Theorem 1.9.3

Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be closed and convex. Let $X \in \mathbb{R}^n$. Both $N_C(x), T_C(x)$ are closed convex cones.

Lemma 1.9.4

Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be closed and convex with $x \in C$.

$$n \in N_C(x) \iff \forall t \in T_C(x), \langle n, t \rangle \le 0.$$

Proof

 (\Longrightarrow) Let $n \in N_C(x)$ and $t \in T_C(x)$. Recall that $T_C(x) = \overline{\operatorname{cone}}(C-x)$. Thus there is some $\lambda_k > 0$ and $t_k \in \mathbb{R}^n$ such that

$$x + \lambda_k t_k \in C$$

and $t_k \to t$.

Since $n \in N_C(x)$ and $x + \lambda_k t_k \in C$, it follows that for all $k, \langle n, \lambda_k t_k \rangle \leq 0$. But then as

 $k \to \infty$ we see that

$$\langle n, t \rangle \le 0.$$

(\Leftarrow) Suppose that $\forall t \in T_C(x)$, we have $\langle n, t \rangle \leq 0$. Pick $y \in C$ and observe that

$$y - x \in C - x$$

$$\subseteq \operatorname{cone}(C - x)$$

$$\subseteq \overline{\operatorname{cone}}(C - x)$$

$$=: T_C(x).$$

It follows that $\langle n, y - x \rangle \leq 0$ and $n \in N_C(x)$.

Theorem 1.9.5

Let $C \subseteq \mathbb{R}^n$ be convex such that int $C \neq \emptyset$. Let $x \in C$. The following are equivalent.

- (1) $x \in \operatorname{int} C$
- (2) $T_C(x) = \mathbb{R}^n$
- (3) $N_C(x) = \{0\}$

Proof

 $(1) \iff (2)$ Observe that $x \in \operatorname{int} C$ if and only if $0 \in \operatorname{int}(C-x)$ if and only if there is some $\epsilon > 0$ with

$$B(0;\epsilon) \subseteq C - x.$$

Now,

$$\mathbb{R}^{n} = \operatorname{cone}(B(0; \epsilon))$$

$$\subseteq \operatorname{cone}(C - x)$$

$$\subseteq \overline{\operatorname{cone}(C - x)}$$

$$= \overline{\operatorname{cone}(C - x)}$$

$$= T_{C}(x)$$

$$\subseteq \mathbb{R}^{n}.$$

(2) \iff (3) Our previous lemma combined with (1) yields

$$n \in N_C(x) \iff \forall t \in T_C(x) = \mathbb{R}^n, \langle n, t \rangle \le 0$$

 $\iff n = 0.$

Hence $N_C(x) = \{0\}.$

Conversely, suppose $N_C(x) = \{0\}$. It is clear that $0 \in T_C(x)$. Pick $y \in \mathbb{R}^n$. We claim that $y \in T_C(x)$. To see this recall that $T_C(x)$ is a closed convex cone, hence $p = P_{T_C(x)}(y)$ exists and is unique. Moreover, it suffices to show that $y = p \in T_C(x)$.

Indeed, by the projection theorem

$$\langle y - p, t - p \rangle \le 0$$

for all $t \in T_C(x)$. In particular, it holds for $t = p, 2p \in T_C(x)$ ($T_C(x)$ is a cone). So

$$\langle y - p, \pm p \rangle \le 0 \implies \langle y - p, p \rangle = 0.$$

But then $\langle y - p, t \rangle \leq 0$ for all $t \in T_C(x)$, which implies that $y - p \in N_C(x) = \{0\}$ and

$$y = p \in T_C(x)$$

as desired.

Chapter 2

Convex Functions

2.1 Definitions & Basic Results

Definition 2.1.1 (Epigraph) Let $f : \mathbb{R}^n \to [-\infty, \infty]$. The epigraph of f is

 $epi f := \{ (x, \alpha) : f(x) \le \alpha \} \subseteq \mathbb{R}^n \times \mathbb{R}.$

Definition 2.1.2 (Domain) For $f : \mathbb{R}^n \to [-\infty, \infty]$,

dom $f := \{x \in \mathbb{R}^n : f(x) < \infty\}.$

Definition 2.1.3 (Proper Function) We say that f is *proper* if dom $f \neq \emptyset$ and $f(\mathbb{R}^n) > -\infty$.

Definition 2.1.4 (Indicator Function) Let $C \subseteq \mathbb{R}^n$. The indicator function of C is given by

$$\delta_C(x) := \begin{cases} 0, & x \in C\\ \infty, & x \notin C \end{cases}$$

Definition 2.1.5 (Lower Semicontinuous)

f is lower semicontinuous (l.s.c.) if epi(f) is closed.

Definition 2.1.6 (Convex Function) f is convex if epi f is convex.

Proposition 2.1.1

Let $f : \mathbb{R}^n \to [-\infty, \infty]$ be convex. Then dom f is convex.

Recall that linear transformations $A : \mathbb{R}^n \to \mathbb{R}^m$ preserve set convexity $(C \subseteq \mathbb{R}^n$ convex implies that A(C) is convex).

Proof

Consider the linear transformation $L: \mathbb{R}^{n+1} \to \mathbb{R}^n$ given by

$$(x, \alpha) \mapsto x.$$

Then dom f = L(epi f) is convex.

Theorem 2.1.2 Let $f : \mathbb{R}^m \to [-\infty, \infty]$. Then f is convex if and only if for all $x, y \in \text{dom } f$ and $\lambda \in (0, 1),$ $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$

Proof

If $f = \infty \iff \operatorname{epi} f = \emptyset \iff \operatorname{dom} f = \emptyset$, then result is trivial. Hence let us suppose that $f \neq \infty \iff \operatorname{dom} f \neq \emptyset$.

 (\implies) Pick $x, y \in \text{dom } f$ and $\lambda \in (0, 1)$. Observe that $(x, f(x)), (y, f(y)) \in \text{epi } f$. By convexity,

$$\lambda(x, f(x)) + (1 - \lambda)(y, f(y)) = (\lambda x + (1 - \lambda)y, \lambda f(x) - (1 - \lambda)f(y)) \quad \in \operatorname{epi}(f)$$
$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

 (\Leftarrow) Conversely, suppose the function inequality holds. Pick $(x, \alpha), (y, \beta) \in \text{epi} f$ as well as $\lambda \in (0, 1)$. Now,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

$$< \lambda \alpha + (1 - \lambda)\beta$$

and

$$(\lambda x + (1 - \lambda)y, \lambda \alpha, (1 - \lambda)\beta) \in \operatorname{epi} f$$

as desired.

It follows that epi f is convex and so is f.

2.2 Lower Semicontinuity

Definition 2.2.1 (Lower Semicontinuity; Alternative) Let $f : \mathbb{R}^n \to [-\infty, \infty]$ and $x \in \mathbb{R}^n$. f is lower semicontinuous (l.s.c) at x if for every sequence $(x_n)_{n\geq 1} \in \mathbb{R}^n$ such that $x_n \to x$,

 $f(x) \le \liminf f(x_n).$

We say f is l.s.c. if f is l.s.c. at every point in \mathbb{R}^n .

Remark that continuity implies lower semicontinuity. One can show that the two definitions of l.s.c. are equivalent, but we omit the proof.

Theorem 2.2.1

Let $C \subseteq \mathbb{R}^m$. Then the following hold:

- (i) $C \neq \emptyset$ if and only if δ_C is proper
- (ii) C is convex if and only if δ_C is convex
- (iii) C is closed if and only if δ_C is l.s.c.

We prove (i) and (ii) in A2.

Proof ((iii))

Observe that $C = \emptyset \iff \operatorname{epi} \delta_C = \emptyset$, which is certainly closed. Thus we proceed assuming $C \neq \emptyset$.

 (\Longrightarrow) Suppose C is closed. We want to show that epi δ_C is closed.

Pick a converging sequence sequence $(x_n, \alpha_n) \to (x, \alpha)$ with every element in $epi \delta_C$. Observe that x_n is a sequence in C, hence $x \in C$. Moreover, $\alpha_n \in [0, \infty)$ and $\alpha \ge 0$.

It follows that $(x, \alpha) \in \operatorname{epi} \delta_C$ as required.

(\Leftarrow) Conversely, suppose that δ_C is l.s.c. Let $(x_n)_{n\geq 1}$ be a sequence in C with $x_n \to x$.

By the definition of δ_C , it suffices to show that $\delta_C(x) = 0$.

By lower semicontinuity,

$$0 \le \delta_C(x)$$

$$\le \liminf \delta_C(x_n)$$

$$= 0$$

and we have equality throughout.

Proposition 2.2.2

Let I be an indexing set and let $(f_i)_{i \in I}$ be a family of l.s.c. convex functions on \mathbb{R}^n . Then

$$F := \sup_{i \in I} f_i$$

is convex and l.s.c.

Proof

We claim that $\operatorname{epi} F = \bigcap_{i \in I} \operatorname{epi} f$. Indeed,

$$\begin{aligned} x, \alpha) \in \operatorname{epi} F \iff \sup_{i \in I} f_i(x) \leq \alpha \\ \iff \forall i \in I, f_i(x) \leq \alpha \\ \iff \forall i \in I, (x, \alpha) \in \operatorname{epi} f_i \\ \iff \forall i \in I(x, \alpha) \in \operatorname{epi} f_i. \end{aligned}$$

The result follows by the definition of convex functions and lower semicontinuity as intersections preserve both set convexity and closedness.

2.3 The Support Function

Definition 2.3.1 (Support Function) Let $C \subseteq \mathbb{R}^m$. The support function $\sigma_C : \mathbb{R}^m \to [-\infty, \infty]$ of C is

 $u\mapsto \sup_{c\in C} \langle c,u\rangle.$

Proposition 2.3.1

Let $\emptyset \neq C \subseteq \mathbb{R}^n$. Then σ_C is convex, l.s.c., and proper.

Proof For each $c \in C$, define

$$f_C(x) := \langle x, c \rangle.$$

Then f_c is linear and hence proper, l.s.c., and convex. Moreover,

$$\sigma_C = \sup_{c \in C} f_c.$$

Combined with our previous proposition, we learn that σ_C is convex and l.s.c.

Observe that since $C \neq \emptyset$,

$$\sigma_C(0) = \sup_{c \in C} \langle 0, c \rangle = 0 < \infty$$

Hence dom $\sigma_C \neq \emptyset$. In addition, fix $\bar{c} \in C$. Then for all $u \in \mathbb{R}^m$,

$$\sigma_C(u) = \sup_{c \in C} \langle u, c \rangle$$
$$\geq \langle u, \bar{c} \rangle$$
$$> -\infty.$$

Hence σ_C is proper as well.

2.4 Further Notions of Convexity

Let $f : \mathbb{R}^m \to [-\infty, \infty]$ be proper. Then f is strictly convex if for every $x \neq y \in \text{dom } f$ and $\lambda \in (0, 1)$,

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

Moreover, f is strongly convex with constant $\beta > 0$ if for every $x, y \in \text{dom } f, \lambda \in (0, 1)$,

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \frac{\beta}{2}\lambda(1-\lambda)||x-y||^2.$$

Clearly, strong convexity implies strict convexity, which in turn implies convexity.

2.5 Operations Preserving Convexity

Proposition 2.5.1

Let I be a finite indexing set and $(f_i)_{i \in I}$ a family of convex functions $\mathbb{R}^m \to [-\infty, \infty]$. Then

$$\sum_{i\in I} f_i$$

is convex.

Proposition 2.5.2 Let f be convex and l.s.c. and pick $\lambda > 0$. Then

 λf

is convex and l.s.c.

2.6 Minimizers

Definition 2.6.1 (Global Minimizer) Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper and $x \in \mathbb{R}^m$. Then x is a (global) minimizer of f if

 $f(x) = \min f(\mathbb{R}^m).$

We will use $\operatorname{argmin} f$ to denote the set of minimizers of f.

Definition 2.6.2 (Local Minimum) Let $f : \mathbb{R}^m \to]-\infty, \infty]$ be be proper and $\bar{x} \in \mathbb{R}^m$. Then \bar{x} is a local minimum of f if there is $\delta > 0$ such that

$$||x - \bar{x}|| < \delta \implies f(\bar{x}) \le f(x).$$

We way that \bar{x} is a global minimum of f if for all $x \in \text{dom } f$,

$$f(\bar{x}) \le f(x)$$

Analogously, we define the *local maximum* and *global maximum*.

Why are convex functions so special?

Proposition 2.6.1

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper and convex. Then every local minimizer of f is a global minimizer.

Proof

Let x be a local minimizer of f. There is some $\rho > 0$ such that

$$f(x) = \min f(B(x; \rho)).$$

Pick some $y \in \text{dom } f \setminus B(x; \rho)$. Notice that

$$\lambda:=1-\frac{\rho}{\|x-y\|}\in(0,1)$$

 Set

$$z := \lambda x + (1 - \lambda)y \in \operatorname{dom} f.$$

We know this is in the domain as dom f is convex by our prior work.

We have

$$z - x = (1 - \lambda)y - (1 - \lambda)x \\= (1 - \lambda)(y - x) \\\|z - x\| = \|(1 - \lambda)(y - x)\| \\= \frac{\rho}{\|y - x\|} \|y - x\| \\= \rho.$$

This shows that $z \in B(x; \rho)$.

By the convexity of f,

$$f(x) \le f(z)$$

$$\le \lambda f(x) + (1 - \lambda)f(y)$$

$$(1 - \lambda)f(x) \le (1 - \lambda)f(y)$$

$$f(x) \le f(y).$$

Proposition 2.6.2

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper and convex. Let $C \subseteq \mathbb{R}^m$. Suppose that x is a minimizer of f over C such that $x \in \operatorname{int} C$. Then x is a minimizer of f.

Proof

There is some $\epsilon > 0$ such that x minimizes f over $B(x; \epsilon) \subseteq \text{int } C$. Since x is a local minimizer, it is a global minimizer as well.

2.7 Conjugates

Definition 2.7.1 (Fenchel-Legendre/Convex Conjugate) Let $f : \mathbb{R}^m \to [-\infty, \infty]$. Then Fenchel-Legendre/Convex Conjugate of f, denoted $f^* : \mathbb{R}^m \to [-\infty, \infty]$ is given by

$$u \mapsto \sup_{x \in \mathbb{R}^m} \langle x, u \rangle - f(x).$$

Recall that a closed convex set is the intersection of all supporting hyperplanes. The idea is that the epigraph of a convex, l.s.c. function f can be recovered by the supremum of affine functions majorized by f.

Given a slope $x \in \mathbb{R}^m$, we want the best translation α which supports f.

$$f(x) \ge \langle u, x \rangle - \alpha \qquad \qquad \forall x \in \mathbb{R}^n \\ \alpha \ge \langle u, x \rangle - f(x) \qquad \qquad \forall x \in \mathbb{R}^n.$$

Thus $f^*(u) := \sup_{x \in \mathbb{R}^n} \langle u, x \rangle - f(x)$ is the best translation such that $\langle u, x \rangle - f^*(u)$ is majorized by f.

Proposition 2.7.1 Let $f : \mathbb{R}^m \to [-\infty, \infty]$. Then f^* is convex and l.s.c.

Proof Observe that $f \equiv \infty \iff \text{dom } f = \emptyset$. Hence if $f \equiv \infty$, for all $u \in \mathbb{R}^m$

$$f^{*}(u) = \sup_{x \in \mathbb{R}^{m}} \langle x, u \rangle - f(x)$$
$$= \sup_{x \in \text{dom } f} \langle x, u \rangle - f(x)$$
$$= -\infty$$

This is trivially convex and l.s.c.

Now suppose that $f \not\equiv \infty$. We claim that $f^*(u) = \sup_{(x,\alpha) \in epi f} \langle x, u \rangle - \alpha$. Observe that
$f_{(x,\alpha)} := \langle x, \cdot \rangle - \alpha$ is an affine function. By definition,

$$\sup_{x \in \operatorname{dom} f} \langle x, u \rangle - f(x) \ge \sup_{(x,\alpha) \in \operatorname{epi} f} \langle x, u \rangle - \alpha$$

as $f(x) \leq \alpha$ by the definition of the epigraph. On the other hand,

$$\sup_{(x,f(x)):x\in\operatorname{dom} f} \langle x,u\rangle - f(x) \le \sup_{(x,\alpha)\in\operatorname{epi} f} \langle x,u\rangle - \alpha$$

as each $(x, f(x)) \in \operatorname{epi} f$.

But then

$$f^*(u) = \sup_{(x,\alpha) \in \operatorname{epi} f} f_{(x,\alpha)}(u)$$

is a supremum of convex and l.s.c. (affine) functions which is convex and l.s.c. by our earlier work.

Example 2.7.2 Let 1 < p, q such that

$$\frac{1}{p} + \frac{1}{q} = 1$$

Then for $f(x) := \frac{|x|^p}{p}$,

$$f * (x) = \frac{|u|^q}{q}.$$

This can be shown by differentiating to find maximums.

Example 2.7.3 Let $f(x) := e^x$. Then

$$f^*(u) = \begin{cases} u \ln u - u, & u > 0\\ 0, & u = 0\\ \infty, & u < 0 \end{cases}$$

Example 2.7.4 Let $C \subseteq \mathbb{R}^m$, then

$$\delta_C^* = \sigma_C$$

By definition,

$$\delta_C^*(y) := \sup_{\substack{y \in \text{dom } \delta_C}} \langle x, y \rangle - \delta_C(y)$$
$$= \sup_{\substack{y \in C}} \langle x, y \rangle.$$

2.8 The Subdifferential Operator

Definition 2.8.1 (Subdifferential)

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper. The subdifferential of f is the set-valued operator $\partial f : \mathbb{R}^m \rightrightarrows \mathbb{R}^m$ given by

$$x \mapsto \{u \in \mathbb{R}^m : \forall y \in \mathbb{R}^m, f(y) \ge f(x) + \langle u, y - x \rangle \}.$$

We say f is subdifferentiable at x if $\partial f(x) \neq \emptyset$.

The elements of $\partial f(x)$ are called the *subgradient* of f at x.

The idea is that for a differentiable convex function, the derivative at $x \in \mathbb{R}^n$ is the slope for a line tangent to x which lies strictly below f. If f is not differentiable at x, we can still ask for slopes of line segments tangent to x which lie below x.

Theorem 2.8.1 (Fermat) Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper. Then

 $\operatorname{argmin} f = \{ x \in \mathbb{R}^m : 0 \in \partial f(x) \} =: \operatorname{zer} \partial f.$

Proof Let $x \in \mathbb{R}^m$

$$\begin{aligned} x \in \operatorname{argmin} f \iff \forall y \in \mathbb{R}^m, f(x) \leq f(y) \\ \iff \forall y \in \mathbb{R}^m, \langle 0, y - x \rangle + f(x) \leq f(y) \\ \iff 0 \in \partial f(x). \end{aligned}$$

Example 2.8.2 Consider f(x) = |x|. Then

$$\partial f(x) = \begin{cases} \{-1\}, & x < 0\\ [-1,1], & x = 0\\ \{1\}, & x > 0 \end{cases}$$

Lemma 2.8.3 Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper. Then

 $\operatorname{dom} \partial f \subseteq \operatorname{dom} f.$

Proof

We argue by the contrapositive, suppose $x \notin \text{dom } f$. Then $f(x) = \infty$ and $\partial f(x) = \emptyset$.

Proposition 2.8.4 Let $\emptyset \neq C \subseteq \mathbb{R}^m$ be closed and convex. Then

$$\partial \delta_C(x) = N_C(x).$$

Proof Let $u \in \mathbb{R}^m$ and $x \in C = \operatorname{dom} \delta_C$. Then

$$u \in \partial \delta_C(x) \iff \forall y \in \mathbb{R}^m, \delta_C(y) \ge \delta_C(x) + \langle u, y - x \rangle$$
$$\iff \forall y \in C, \delta_C(y) \ge \delta_C(x) + \langle u, y - x \rangle$$
$$\iff \forall y \in C, 0 \ge \langle u, y - x \rangle$$
$$\iff u \in N_C(x).$$

Consider the constrained optimization problem $\min f(x), x \in C$, where f is proper, convex, l.s.c. and $C \neq \emptyset$ is closed and convex. We can rephrase this as $\min f(x) + \delta_C(x)$.

In some cases, $\partial(f + \delta_C) = \partial f + \partial \delta_C = \partial f + N_C(x)$. Thus by Fermat's theorem, we look for some x where

$$0 \in \partial f(x) + N_C(x).$$

2.9 Calculus of Subdifferentials

The main question we are concerned with is whether the subdifferential operator is additive.

Proposition 2.9.1 Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Then

 $\emptyset \neq \operatorname{ri} \operatorname{dom} f \subseteq \operatorname{dom} \partial f.$

In particular,

$$\operatorname{ri} \operatorname{dom} f = \operatorname{ri} \operatorname{dom} \partial f$$
$$\overline{\operatorname{dom} f} = \overline{\operatorname{dom} \partial f}.$$

Definition 2.9.1 (Properly Separated)

Let $\emptyset \neq C_1, C_2 \subseteq \mathbb{R}^m$. Then C_1, C_2 are properly separated if there is some $b \neq 0$ such that

$$\sup_{c_1 \in C} \langle b, c_1 \rangle \le \inf_{c_2 \in C} \langle b, c_2 \rangle$$

(separated) AND such that

$$\inf_{c_1 \in C_2} \langle b, c_1 \rangle < \sup_{c_2 \in C_2} \langle b, c_2 \rangle.$$

A problem with the definition of separated is that a set can be separated from itself. Indeed, the x-axis is separated from itself with itself as a separating hyperplane. To be properly separated, there must be some $c_1 \in C_1, c_2 \in C_2$ such that

$$\langle b, c_1 \rangle < \langle b, c_2 \rangle.$$

In otherwords, $C_1 \cup C_2$ is not fully contained in the hyperplane.

Proposition 2.9.2

Let $\emptyset \neq C_1, C_2 \subseteq \mathbb{R}^m$ be convex. Then C_1, C_2 are properly separated if and only if

 $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 = \emptyset.$

Proposition 2.9.3 Let $C_1, C_2 \subseteq \mathbb{R}^m$ be convex. Then

 $\operatorname{ri}(C_1 + C_2) = \operatorname{ri} C_1 + \operatorname{ri} C_2.$

Moreover,

$$\operatorname{ri}(\lambda C) = \lambda(\operatorname{ri} C)$$

for all $\lambda \in \mathbb{R}$.

Proposition 2.9.4 Let $C_1 \subseteq \mathbb{R}^m$ and $C_2 \subseteq \mathbb{R}^p$ be convex. Then

 $\operatorname{ri}(C_1 \oplus C_2) = \operatorname{ri} C_1 \oplus \operatorname{ri} C_2.$

Theorem 2.9.5 Let $C_1, C_2 \subseteq \mathbb{R}^m$ be convex such that $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 \neq \emptyset$. For each $x \in C_1 \cap C_2$,

 $N_{C_1 \cap C_2}(x) = N_{C_1}(x) + N_{C_2}(x).$

Proof

The reverse inclusion is not hard. Hence we check the inclusion only.

Let $x \in C_1 \cap C_2$ and $n \in N_{C_1 \cap C_2}(x)$. Then for each $u \in C_1 \cap C_2$,

$$\langle n, y - x \rangle \le 0.$$

Set $E_1 := \operatorname{epi} \delta_{C_1} = C_1 \times [0, \infty) \subseteq \mathbb{R}^m \times \mathbb{R}$. Moreover, put

$$E_2 := \{ (y, \alpha) : y \in C_2, \alpha \le \langle n, y - x \rangle \} \subseteq \mathbb{R}^m \times \mathbb{R}$$

By a previous fact,

$$\operatorname{ri} E_1 = \operatorname{ri} C_1 \times (0, \infty).$$

Similarly,

ri $E_2 = \{(y, \alpha), \alpha < \langle n, y - x \rangle\}.$

We claim that $\operatorname{ri} E_1 \cap \operatorname{ri} E_2 = \emptyset$. Indeed, suppose towards a contradiction that there is some $(z, \alpha) \in \operatorname{ri} E_1 \cap \operatorname{ri} E_2$. Then

$$0 < \alpha < \langle n, z - x \rangle \le 0$$

which is impossible.

It follows by a previous fact that E_1, E_2 are properly separated. Namely, there is $(b, \gamma) \in \mathbb{R}^m \times \mathbb{R} \setminus \{0\}$ such that

$$\begin{aligned} \langle x, b \rangle + \alpha \gamma &\leq \langle y, b \rangle + \beta \gamma \\ \langle \bar{x}, b \rangle + \bar{\alpha} \gamma &< \langle \bar{y}, b \rangle + \bar{\beta} \gamma \end{aligned} \qquad \qquad \forall (x, \alpha) \in E_1, (y, \beta) \in E_2 \\ \exists (\bar{x}, \bar{\alpha}) \in E_1, (\bar{y}, \bar{\beta}) \in E_2 \end{aligned}$$

We claim that $\gamma < 0$. Indeed, $(x, 1) \in E$ and $(x, 0) \in E_2$. So

$$\langle x, b \rangle + \gamma \le \langle x, b \rangle \implies \gamma \le 0.$$

Next we claim that $\gamma \neq 0$. Suppose to the contrary that $\gamma = 0$. But then

$$\langle x, b \rangle \le \langle y, b \rangle \qquad \qquad \forall (x, \alpha) \in E_1, (y, \beta) \in E_2 \langle \bar{x}, b \rangle < \langle \bar{y}, b \rangle \qquad \qquad \exists (\bar{x}, \bar{\alpha}) \in E_1, (\bar{y}, \bar{\beta}) \in E_2$$

and C_1, C_2 are properly separated.

From our earlier fact, this contradicts the assumption that $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 \neq \emptyset$. Altogether, $\gamma < 0$.

Our goal is to show that

$$n = \underbrace{-\frac{b}{\gamma}}_{\in N_{C_1}(x)} + \underbrace{n + \frac{b}{\gamma}}_{\in N_{C_2}(x)}.$$

First, we claim that $b \in N_{C_1}(x)$. This happens if and only if for all $y \in C_1$,

$$\langle y - x, b \rangle \le 0 \iff \langle b, y \rangle \le \langle b, x \rangle$$

Indeed, we know that $(y, 0) \in E_1$. Moreover, $(x, 0) \in E_2$ by construction. Hence

$$\langle y, b \rangle + 0 \cdot \gamma \le \langle x, b \rangle + 0 \cdot \gamma.$$

Thus $b \in N_{C_1}(x) \implies -\frac{1}{\gamma}b \in N_{C_1}(x).$

Now, for all $y \in C_2$, $(y, \langle n, y - x \rangle) \in E_2$ by construction, Hence for all $y \in C_2$,

$$\langle b, x \rangle + 0 \cdot \gamma \leq \langle b, y \rangle + \gamma \langle n, y - x \rangle.$$

Equivalently,

$$\left\langle \frac{b}{\gamma} + n, y - x \right\rangle \le 0.$$

This shows that

$$\frac{b}{\gamma} + n \in N_{C_2}(x).$$

Thus $n \in N_{C_1}(x) + N_{C_2}(x)$ and we are done.

Proposition 2.9.6 Let $f : \mathbb{R}^m \to (-\infty, \infty)$ be convex, l.s.c. and proper. Let $x, u \in \mathbb{R}^m$. Then

$$u \in \partial f(x) \iff (u, -1) \in N_{\operatorname{epi} f}(x, f(x))$$

Proof

Observe that epi $f \neq \emptyset$ and is convex since f is proper and convex. Now let $u \in \mathbb{R}^m$. Then

$$(u, -1) \in N_{\text{epi}\,f}(x, f(x))$$

$$\iff x \in \text{dom}\, f \land \forall (y, \beta) \in \text{epi}\, f, \langle (y, \beta) - (x, f(x)), (u, -1) \rangle \leq 0$$

$$\iff x \in \text{dom}\, f \land \forall (y, \beta) \in \text{epi}\, f, \langle (y - x), \beta - f(x), (u, -1) \rangle \leq 0$$

$$\iff \forall (y, \beta) \in \text{epi}\, f, \langle y - x, u \rangle + f(x) \leq \beta$$

$$\iff \forall y \in \text{dom}\, f, \langle y - x, u \rangle + f(x) \leq f(y)$$

$$\iff u \in \partial f(x).$$

Theorem 2.9.7

Let $f, g : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Suppose that $\operatorname{ridom} f \cap \operatorname{ridom} g \neq \emptyset$. Then for all $x \in \mathbb{R}^m$,

$$\partial f(x) + \partial g(x) = \partial (f+g)(x).$$

\mathbf{Proof}

Let $x \in \mathbb{R}^m$. If $x \notin \text{dom}(f+g) = \text{dom} f \cap \text{dom} g$, then $\partial f(x) + \partial g(x) = \emptyset$. Also, $\partial (f+g)(x) = \emptyset$.

Suppose now that $x \in \text{dom } f \cap \text{dom } g = \text{dom}(f + g)$. It is easy to check that

$$\partial f(x) + \partial g(x) \subseteq \partial (f+g)(x).$$

We verify the reverse inclusion.

Pick any $u \in \partial(f+g)(x)$. By definition, for all $y \in \mathbb{R}^m$,

$$(f+g)(y) \ge (f+g)(x) + \langle u, y - x \rangle.$$

Consider the closed convex sets

$$E_1 = \{ (x, \alpha, \beta) \in \mathbb{R}^m \times \mathbb{R} \times \mathbb{R} : f(x) \le \alpha \} = \operatorname{epi} f \times \mathbb{R}$$
$$E_2 = \{ (x, \alpha, \beta) \in \mathbb{R}^m \times \mathbb{R} \times \mathbb{R} : g(x) \le \beta \} \cong \operatorname{epi} g \times \mathbb{R}.$$

We claim that

$$(u, -1, -1) \in N_{E_1 \cap E_2}(x, f(x), g(x))$$

Indeed, let $(y, \alpha, \beta) \in E_1, E_2$. We have by construction $f(y) - \alpha, g(y) - \beta \leq 0$.

Now,

$$\begin{aligned} \langle (u, -1, -1), (y, \alpha, \beta) - (x, f(x), g(x)) \rangle \\ &= \langle u, y - x \rangle - (\alpha - f(x)) - (\beta - g(x)) \\ &= \langle u, y - x \rangle + (f + g)(x) - (\alpha + \beta) \\ &\leq (f + g)(y) - \alpha - \beta \qquad \qquad u \in \partial(f + g)(x) \\ &\leq 0. \end{aligned}$$

Next, we claim that ri $E_i \cap$ ri $E_2 \neq \emptyset$. Indeed, by a previous fact,

$$\operatorname{ri} E_1 = \operatorname{ri}(\operatorname{epi} f \times \mathbb{R}) \\ = \operatorname{ri} \operatorname{epi} f \times \mathbb{R}.$$

Similarly,

ri
$$E_2 = \{(x, \alpha, \beta) \in \mathbb{R}^m \times \mathbb{R} \times \mathbb{R} : g(x) < \beta\}.$$

Pick $z \in \operatorname{ri} \operatorname{dom} f \cap \operatorname{ri} \operatorname{dom} g$. Then $(z, f(z) + 1, g(z) + 1) \in \operatorname{ri} E_1, \operatorname{ri} E_2$. Hence, $(z, f(z) + 1, g(z) + 1) \in \operatorname{ri} E_1 \cap \operatorname{ri} E_2 \neq \emptyset$.

All in all, $E_1, E_2 \neq \emptyset$ are closed, convex, with ri $E_1 \cap$ ri $E_2 \neq \emptyset$. Hence by the previous theorem,

$$N_{E_1 \cap E_2}(x, f(x), g(x)) = N_{E_1}(x, f(x), g(x)) + N_{E_2}(x, f(x), g(x))$$

Now, it can be shown that $N_{\text{epi}f \times \mathbb{R}} = N_{\text{epi}f} \times N_{\mathbb{R}}$ and similarly for E_2 . Therefore, there is some $u_1, u_2 \in \mathbb{R}^m, \alpha, \beta \in \mathbb{R}$ for which

$$(u, -1, -1) = (u_1, -\alpha, 0) + (u_2, 0, -\beta).$$

Thus $u = u_1 + u_2$ and $\alpha = \beta = 1$. It follows that

$$(u_1, -1) \in N_{\text{epi}\,f}(x, f(x))$$

 $(u_2, -1) \in N_{\text{epi}\,g}(x, g(x)).$

From a previous proposition, we conclude that $u_1 \in \partial f(x)$ and $u_2 \in \partial g(x)$. Hence

$$u = u_1 + u_2 \in \partial f(x) + \partial g(x),$$

completing the proof.

Let $f: \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Suppose $\phi \neq C \subseteq \mathbb{R}^m$ is closed and

convex. Furthermore, suppose ri $C \cap$ ri dom $f \neq \emptyset$. Consider the problem

$$\min f(x) \tag{P}$$
$$x \in C$$

Then $\bar{x} \in \mathbb{R}^m$ solves (P) if and only if

$$(\partial f(\bar{x})) \cap (-N_C(\bar{x})) \neq \emptyset.$$

Indeed, we convert this to the unconstrained minimization problem min $f + \delta_C$. This function is convex, l.s.c., and proper. By Fermat's theorem, \bar{x} solves P if and only if

$$0 \in \partial (f + \delta_C)(\bar{x}).$$

Now, ri dom $f \cap$ ri dom $\delta_C \neq \emptyset$. Hence by the previous theorem, \bar{x} solves (P) if and only if

$$0 \in \partial (f + \delta_C)(\bar{x}) = \partial f(\bar{x}) + N_C(\bar{x}) \iff \exists u \in \partial f(\bar{x}), -u \in N_C(\bar{x}) \\ \iff \partial f(\bar{x}) \cap (-N_C(\bar{x})) \neq \emptyset.$$

Example 2.9.8 Let $d \in \mathbb{R}^m$ and $\emptyset \neq C \subseteq \mathbb{R}^m$ be convex and closed. Consider

$$\min\langle d, x \rangle \tag{P}$$
$$c \in C$$

Let $\bar{x} \in \mathbb{R}^m$. Then \bar{x} solves (P) if and only if

$$-d \in N_C(\bar{x}).$$

2.10 Differentiability

Definition 2.10.1 (Directional Derivative) Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper and $x \in \text{dom } f$. The directional derivative of f at x in the direction of d is

$$f'(x;d) := \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t}.$$

Definition 2.10.2 (Differentiable)

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper and $x \in \text{dom } f$. f is differentiable at x if there is a linear operator $\nabla f(x) : \mathbb{R}^m \to \mathbb{R}^m$, called the derivative (gradient) of f at x, that satisfies $\|f(x + a) - f(x) - \nabla f(x) - \nabla f(x)\|$

$$\lim_{0 \neq \|y\| \to 0} \frac{\|f(x+y) - f(x) - \nabla f(x) \cdot y\|}{\|y\|} = 0.$$

If f is differentiable at x, then the directional derivative of f at x in the direction of d is

$$f'(x;d) = \langle \nabla f(x), d \rangle.$$

Theorem 2.10.1

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex. Suppose $f(x) < \infty$. For each y, the quotient in the definition of f'(x; y) is a non-decreasing function of $\lambda > 0$. So f'(x; y) exists and

$$f'(x;y) = \inf_{\lambda>0} \frac{f(x+\lambda y) - f(x)}{\lambda}.$$

Theorem 2.10.2

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex and proper. Let $x \in \text{dom } f$ and $u \in \mathbb{R}^m$. Then u is a subgradient of f at x if and only if

$$\forall y \in \mathbb{R}^m, f'(x;y) \ge \langle u, y \rangle$$

Proof

By definition,

$$\begin{split} u \in \partial f(x) \iff \forall y \in \mathbb{R}^m, \lambda > 0, f(x + \lambda y) \ge f(x) + \langle u, \lambda y \rangle \\ \iff \forall y \in \mathbb{R}^m, \lambda > 0, \frac{f(x + \lambda y) - f(x)}{\lambda} \ge \langle u, y \rangle \\ \iff \forall y \in \mathbb{R}^m, \inf_{\lambda > 0} \frac{f(x + \lambda y) - f(x)}{\lambda} \ge \langle u, y \rangle \\ \iff \forall y \in \mathbb{R}^m, f'(x; y) \ge \langle u, y \rangle. \end{split}$$

Theorem 2.10.3

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex and proper. Suppose $x \in \text{dom } f$. If f is differentiable at x, then $\nabla f(x)$ is the unique subgradient of f at x.

Proof

Recall that for each $y \in \mathbb{R}^m$,

$$f'(x;y) = \langle \nabla f(x), y \rangle$$

Let $u \in \mathbb{R}^m$. By the previous theorem,

$$u \in \partial f(x) \iff \forall y \in \mathbb{R}^m, f'(x;y) \ge \langle u, y \rangle$$
$$\iff \forall y \in \mathbb{R}^m, \langle \nabla f(x), y \rangle \ge \langle u, y \rangle$$

It is clear that $\nabla f(x) \in \partial f(x)$. Conversely, by setting $y := u - \nabla f(x)$. We see that

$$\langle \boldsymbol{\nabla} f(x), u - \boldsymbol{\nabla} f(x) \rangle \ge \langle u, u - \boldsymbol{\nabla} f(x) \rangle \iff \langle u - \boldsymbol{\nabla} f(x), u - \boldsymbol{\nabla} f(x) \rangle \le 0$$
$$\iff u = \boldsymbol{\nabla} f(x).$$

Lemma 2.10.4

Let $\varphi : \mathbb{R} \to (-\infty, \infty]$ be a proper function that is differentiable on an interval $\emptyset \neq I \subseteq \operatorname{dom} \varphi$. If φ' is increasing on I, then φ is convex on I.

Proof

Fix $x, y \in I$ and $\lambda \in (0, 1)$. Let $\psi : \mathbb{R} \to (-\infty, \infty]$ be given by

$$z \mapsto \lambda \varphi(x) + (1 - \lambda)\varphi(z) - \varphi(\lambda x + (1 - \lambda)z).$$

Then

$$\psi'(z) = (1-\lambda)\phi'(z) - (1-\lambda)\phi'(\lambda x + (1-\lambda)z)$$

and $\psi'(x) = 0 = \psi(x)$.

Since ϕ' is increasing, $\psi'(z) \leq 0$ when z < x and $\psi'(z) > 0$ whenever z > x. It follows that ψ achieves its infimum on I at x.

That is, for all $y \in I$, $\psi(y) \ge \psi(x) = 0$. But then

$$\lambda\phi(x) + (1-\lambda)\phi(y) \ge \phi(\lambda x + (1-\lambda)y)$$

as desired.

Proposition 2.10.5

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper. Suppose that dom f is open and convex, and that f is differentiable on dom f. The following are equivalent.

- (i) f is convex
- (ii) $\forall x, y \in \text{dom } f, \langle x y, \nabla f(y) \rangle + f(y) \le f(x)$
- (iii) $\forall x, y \in \text{dom } f, \langle x y, \nabla f(x) \nabla f(y) \rangle \ge 0$

Proof (i) \Longrightarrow (ii) $\nabla f(y)$ is the unique subgradient of f at y. Hence for all $x \in \mathbb{R}^m$ and $y \in \text{dom } f$,

$$f(x) \ge \langle x - y, \nabla f(y) \rangle + f(y).$$

(ii) \implies (iii) We prove this in assignment 2.

 $(iii) \Longrightarrow (i)$ Fix $x, y \in \text{dom } f$ and $z \in \mathbb{R}^m$. By assumption, dom f is open. Thus there is some $\epsilon > 0$ such that

$$y + (1+\epsilon)(x-y) = x + \epsilon(x-y) \in \operatorname{dom} f$$
$$y - \epsilon(x-y) = y + \epsilon(y-x) \in \operatorname{dom} f$$

By the convexity of dom f, for every $\alpha \in (-\epsilon, 1+\epsilon), y + \alpha(x-y) \in \text{dom } f$.

Set $C = (-\epsilon, 1+\epsilon) \subseteq \mathbb{R}$ and $\phi : \mathbb{R} \to (-\infty, \infty]$ be given by

 $\phi(\alpha) := f(y + \alpha(x - y)) + \delta_C(\alpha).$

By construction, ϕ is differentiable on C and for each $\alpha \in C$,

$$\phi'(\alpha) = \langle \nabla f(y + \alpha(x - y)), x - y \rangle.$$

Now, take $\alpha < \beta \in C$. Set

$$y_{\alpha} := y + \alpha(x - y)$$
$$y_{\beta} := y + \beta(x - y)$$
$$y_{\beta} - y_{\alpha} = (\beta - \alpha)(x - y).$$

Then by assumption,

$$\varphi'(\beta) - \varphi'(\alpha) = \langle \nabla f(y + \beta(x - y)), x - y \rangle - \langle \nabla f(y + \alpha(x - y)), x - y \rangle$$

= $\langle \nabla f(y_{\beta}) - \nabla f(y_{\alpha}), x - y \rangle$
= $\frac{1}{\beta - \alpha} \langle \nabla f(y_{\beta}) - \nabla f(y_{\alpha}), y_{\beta} - y_{\alpha} \rangle$
 $\geq 0.$

That is, φ' is increasing on C and φ is convex on C. But then

$$f(\alpha x + (1 - \alpha)y) = \varphi(\alpha)$$

$$\leq \alpha \varphi(1) + (1 - \alpha)\varphi(0)$$

$$= \alpha f(x) + (1 - \alpha)f(y).$$

Example 2.10.6 Let A be a $m \times m$ matrix, and set $f : \mathbb{R}^m \to \mathbb{R}$ be given by

$$f(x) = \langle x, Ax \rangle.$$

Then $\nabla f(x) = A + A^T$ and f is convex if and only if $A + A^T$ is posiitve semidefinite.

2.11 Conjugacy

Proposition 2.11.1 Let f, g be functions from $\mathbb{R}^m \to [-\infty, \infty]$. Then (1) $f^{**} := (f^*)^* \leq f$ (2) $f \leq g \implies f^* \geq g^*, f^{**} \leq g^{**}$

Proposition 2.11.2 (Fenchel-Young Inequality) Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper. Then for all $x, u \in \mathbb{R}^m$,

$$f(x) + f^*(u) \ge \langle x, u \rangle.$$

Proof

By definition, $f^*(x) = -\infty \iff f \equiv \infty$. Hence by assumption $f^*(\mathbb{R}^m) > 0$.

Now, let $x, u \in \mathbb{R}^m$. If $f(x) = \infty$, the inequality trivially holds. Otherwise,

$$f^*(u) := \sup_{y \in \mathbb{R}^m} \langle y, u \rangle - f(u) \ge \langle y, x \rangle - f(x)$$

as desired.

Proposition 2.11.3 Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex and proper. For $x, u \in \mathbb{R}^m$,

 $u \in \partial f(x) \iff f(x) + f^*(x) = \langle x, u \rangle.$

Proof

We have

$$\begin{split} u &\in \partial f(x) \\ \iff \forall y \in \text{dom} f, \langle y - x, u \rangle + f(x) \leq f(y) \\ \iff \forall y \in \text{dom} f, \langle y, u \rangle - f(y) \leq \langle x, u \rangle - f(x) \\ \iff f^*(u) = \sup_{y \in \mathbb{R}^m} \langle y, u \rangle - f(y) \leq \langle x, u \rangle - f(x) \\ \iff f^*(u) = \langle x, u \rangle - f(x). \qquad \langle x, u \rangle - f(x) \leq f^*(u) \end{split}$$

Proposition 2.11.4 Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex and proper. Pick $x \in \mathbb{R}^n$ such that $\partial f(x) \neq \emptyset$. Then

$$f^{**}(x) = f(x).$$

Proof

Let $u \in \partial f(x)$. By the previous proposition,

$$\langle u, x \rangle = f(x) + f^*(u)$$

Consequently,

$$f^{**}(x) := \sup_{y \in \mathbb{R}^m} \langle x, y \rangle - f^*(y)$$
$$\geq \langle x, u \rangle - f^*(u)$$
$$= f(x).$$

Conversely,

$$f^{**}(x) = \sup_{y \in \mathbb{R}^m} \langle y, x \rangle - f^*(y)$$

= $\sup_{y \in \mathbb{R}^m} \langle y, x \rangle - \sup_{z \in \mathbb{R}^m} (\langle z, y \rangle - f(z))$
= $\sup_{y \in \mathbb{R}^m} \langle y, x \rangle + \inf_{z \in \mathbb{R}^m} (f(z) - \langle y, z \rangle)$
= $\sup_{y \in \mathbb{R}^m} \inf_{z \in \mathbb{R}^m} (f(z) + \langle y, x - z \rangle)$
 $\leq \sup_{y \in \mathbb{R}^m} f(x) + \langle y, x - x \rangle$
= $\sup_{y \in \mathbb{R}^m} f(x)$
= $f(x)$.

Proposition 2.11.5 Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper. Then f is convex and l.s.c. if and only if

 $f = f^{**}.$

In this case, f^* is also proper.

Corollary 2.11.5.1

Let $f: \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c. and proper. Then

(i) f^* is convex, l.s.c., and proper

(ii) $f^{**} = f$

Proof

To see (i), combine the previous proposition and the fact that f^* is always convex and l.s.c.

(ii) follows from the previous proposition.

Proposition 2.11.6

Let $f: \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Then

$$u \in \partial f(x) \iff x \in \partial f^*(u).$$

Proof

Recall that

$$u \in \partial f(x) \iff f(x) + f^*(u) = \langle x, u \rangle.$$

By a previous proposition, $g := f^*$ satisfies $g^* = f$. Moreover, g is convex, l.s.c., and proper.

Hence,

$$u \in \partial f(x) \iff f(x) + f^*(u) = \langle x, u \rangle$$
$$\iff g^*(x) + g(u) = \langle x, u \rangle$$
$$\iff x \in \partial g(u) = \partial f^*(u)$$

as desired.

2.12 Coercive Functions

Theorem 2.12.1

Let $f: \mathbb{R}^m \to \mathbb{R}$ be proper, l.s.c. and compact $C \subseteq \mathbb{R}^m$ such that

 $C \cap \operatorname{dom} f \neq \emptyset$.

Then the following hold:

(i) f is bounded below over C

(ii) f attains its minimal value over C

Proof

(i): Suppose towards a contradiction that f is not bounded below over C. There is a sequence x_n in C such that

$$\lim_{n} f(x_n) = -\infty.$$

Since C is (sequentially) compact, there there is a convergent subsequence $x_{k_n} \to \bar{x} \in C$. But f is l.s.c., hence

$$f(\bar{x}) \le \liminf_{n} f(x_{k_n}) = -\infty$$

which contradicts the properness of f.

(ii): Since f is bounded below,

$$f_{\min} := \inf_{x \in C} f(x)$$

exists. There is a sequence x_n in C such that $f(x_n) \to f_{\min}$.

Again, there is a convergent subsequence $x_{k_n} \to \bar{x} \in C$. Then

$$f(\bar{x}) \leq \liminf_{n} f(x_{k_n}) = f_{\min}.$$

Thus \bar{x} is a minimizer of f over C.

Definition 2.12.1 (Coercive Function) Let $f : \mathbb{R}^m \to (-\infty, \infty]$. Then f is coercive if

$$\lim_{\|x\| \to \infty} f(x) = \infty.$$

Definition 2.12.2 (Super Coercive) Let $f : \mathbb{R}^m \to (-\infty, \infty]$. Then f is super coercive if

$$\lim_{\|x\| \to \infty} \frac{f(x)}{\|x\|} = \infty.$$

Theorem 2.12.2

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper, l.s.c., and coercive. Let $C \subseteq \mathbb{R}^m$ be a closed subset of \mathbb{R}^m satisfying

 $C \cap \operatorname{dom} f \neq \emptyset.$

Then f attains its minimal value over C.

Proof

Let $x \in C \cap \text{dom } f$. Since f is coercive, there is some M such that

$$\forall y, \|y\| > M \implies f(y) > f(x).$$

But then the set of minimizers of f over C is the same as the set of minimizers of f over $C \cap B(0; M)$. This set is compact. Hence by the previous theorem, f attains its minimal value over C.

2.13 Strong Convexity

Definition 2.13.1 (Lipschitz Function) Let $T : \mathbb{R}^m \to \mathbb{R}^m$ and $L \ge 0$. Then T is L-Lipschitz if for all $x, y \in \mathbb{R}^m$,

$$||Tx - Ty|| \le L||x - y||.$$

Example 2.13.1 Let $f : \mathbb{R}^m \to \mathbb{R}$ be given by

$$x \mapsto \frac{1}{2} \langle x, Ax \rangle + \langle b, x \rangle + x$$

where $A \succeq 0$ is positive semi-definite, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Then

(i) $\nabla f(x) = Ax$ for all $x \in \mathbb{R}^m$

(ii) ∇f is Lipschitz with constant ||A||, the operator norm of A

Example 2.13.2

Let $\varnothing \neq C \subseteq \mathbb{R}^m$ be closed and convex. Then P_C is Lipschitz continuous with constant 1.

Lemma 2.13.3 (Descent)

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be differentiable on $\emptyset \neq D \subseteq \text{int dom } f$ such that ∇f is *L*-Lipschitz. Moreover, suppose that *D* is convex. Then for all $x, y \in D$,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||x - y||^2.$$

Proof

Recall that the fundamental theorem of calculus implies that

$$\begin{aligned} f(y) - f(x) &= \int_0^1 \langle \boldsymbol{\nabla} f(x + t(y - x)), y - x \rangle dt \\ &= \langle \boldsymbol{\nabla} f(x), y - x \rangle + \int_0^1 \langle \boldsymbol{\nabla} f(x + t(y - x)) - \boldsymbol{\nabla} f(x), y - x \rangle dt. \end{aligned}$$

Hence

$$\begin{split} |f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \\ &= \left| \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt \right| \\ &\leq \int_0^1 |\langle \nabla f(x + t(y - x)) - \nabla f(x)|| \cdot ||y - x|| dt \\ &\leq \int_0^1 L ||x + t(y - x) - x|| \cdot ||y - x|| dt \qquad f \text{ is } L\text{-Lipschitz} \\ &= \int_0^1 t L ||x - y||^2 dt \\ &= \frac{L}{2} ||x - y||^2. \end{split}$$

It follows that

$$f(y) \le f(x) + \langle \boldsymbol{\nabla} f(x), y - x \rangle + \frac{L}{2} \|x - y\|^2.$$

Theorem 2.13.4

Let $f : \mathbb{R}^m \to \mathbb{R}$ be convex and differentiable and L > 0. The following are equivalent:

- (i) ∇f is *L*-Lipschitz
- (ii) for all $x, y \in \mathbb{R}^m$, $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} ||x y||^2$
- (iii) for all $x, y \in \mathbb{R}^m$, $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2L} \| \nabla f(x) \nabla f(y) \|^2$
- (iv) for all $x, y \in \mathbb{R}^m$, $\langle \nabla f(x) \nabla f(y), x y \rangle \geq \frac{1}{L} \|\nabla f(x) \nabla f(y)\|^2$

Proof

(i) \implies (ii): This is the descent lemma.

 $(ii) \Longrightarrow (iii)$: If $\nabla f(x) = \nabla f(y)$, the this follows immediately from the subgradient inequality and the fact that $\partial f(x) = \{\nabla f(x)\}$.

Fix $x \in \mathbb{R}^m$ and define

$$h_x(y) := f(y) - f(x) - \langle \nabla f(x), y - x \rangle.$$

Observe that h_x is convex, differentiable, with

$$\boldsymbol{\nabla} h_x(y) = \boldsymbol{\nabla} f(y) - \boldsymbol{\nabla} f(x).$$

We claim that for all $y, z \in \mathbb{R}^m$,

$$h_x(z) \le h_x(y) + \langle \boldsymbol{\nabla} h_x(y), z - y \rangle + \frac{L}{2} \|z - y\|^2.$$

Indeed,

$$\begin{split} h_x(z) &= f(z) - f(x) - \langle \boldsymbol{\nabla} f(x), z - x \rangle \\ &\leq f(y) + \langle \boldsymbol{\nabla} f(y), z - y \rangle + \frac{L}{2} \| z - y \|^2 - f(x) - \langle \boldsymbol{\nabla} f(x), z - x \rangle \\ &= f(y) - f(x) - \langle \boldsymbol{\nabla} f(x), y - x \rangle - \langle \boldsymbol{\nabla} f(x), z - y \rangle + \langle \boldsymbol{\nabla} f(y), z - y \rangle + \frac{L}{2} \| z - y \|^2 \\ &= f(y) - f(x) - \langle \boldsymbol{\nabla} f(x), y - x \rangle + \langle \boldsymbol{\nabla} f(y) - \boldsymbol{\nabla} f(x), z - y \rangle + \frac{L}{2} \| z - y \|^2 \\ &= h_x(y) + \langle \boldsymbol{\nabla} h_x(y), z - y \rangle + \frac{L}{2} \| z - y \|^2. \end{split}$$

By construction, $\nabla h_x(x) = 0$. But the convexity of h_x then asserts that x is a global minimizer of h_x . That is, for all $z \in \mathbb{R}^n$,

$$h_x(x) \le h_x(z).$$

Pick $y, v \in \mathbb{R}^m$ be such that ||v|| = 1 and $\langle \nabla h_x(y), v \rangle = ||\nabla h_x(y)||$. Set

$$z = y - \frac{\|\boldsymbol{\nabla}h_x(y)\|}{L}v.$$

From the fact that x is a global minimizer, we have

$$0 = h_x(x)$$

$$\leq h_x \left(y - \frac{\|\nabla h_x(y)\|}{L} v \right)$$

On the other hand, the earlier inequality yields

$$0 = h_x(x)$$

$$\leq h_x(y) - \frac{\|\nabla h_x(y)\|}{L} \langle \nabla h_x(y), v \rangle + \frac{1}{2L} \|\nabla h_x(y)\|^2 \|v\|^2$$

$$= h_x(y) - \frac{\|\nabla h_x(y)\|^2}{L} + \frac{1}{2L} \|\nabla h_x(y)\|^2$$

$$= h_x(y) - \frac{1}{2L} \|\nabla h_x(y)\|^2$$

$$= f(y) - f(x) - \langle \nabla f(x), y - x \rangle - \frac{1}{2L} \|\nabla f(x) - \nabla g(y)\|^2$$

 $(iii) \Longrightarrow (iv)$: Using (iii)

$$f(y) \ge f(x) + \langle \boldsymbol{\nabla} f(x), y - x \rangle + \frac{1}{2L} \| \boldsymbol{\nabla} f(x) - \boldsymbol{\nabla} f(y) \|^2$$

$$f(x) \ge f(y) + \langle \boldsymbol{\nabla} f(y), x - y \rangle + \frac{1}{2L} \| \boldsymbol{\nabla} f(y) - \boldsymbol{\nabla} f(x) \|^2.$$

(iv) \implies (i): If $\nabla f(x) = \nabla f(y)$, the implication is trivial. We proceed assuming otherwise.

We have

$$\begin{aligned} \|\boldsymbol{\nabla}f(x) - \boldsymbol{\nabla}f(y)\|^2 &\leq L\langle \boldsymbol{\nabla}f(x) - \boldsymbol{\nabla}f(y), x - y \rangle \\ &\leq L \|\boldsymbol{\nabla}f(x) - \boldsymbol{\nabla}f(y)\| \cdot \|x - y\| \\ \|\boldsymbol{\nabla}f(x) - \boldsymbol{\nabla}f(y)\| &\leq L \|x - y\|. \end{aligned}$$

Example 2.13.5 (Firm Nonexpansiveness)

Let $\emptyset \neq C \subseteq \mathbb{R}^m$ be closed and convex. Then for each $x, y \in \mathbb{R}^m$,

$$||P_C(x) - P_c(y)||^2 \le \langle P_C(x) - P_C(y), x - y \rangle.$$

Example 2.13.6

Let $\emptyset \neq C \subseteq \mathbb{R}^m$ be closed and convex. Let $f : \mathbb{R}^m \to \mathbb{R}$ be given by

$$f(x) = \frac{1}{2}d_C^2(x).$$

Then the following holds

- (i) f is differentiable over \mathbb{R}^m with $\nabla f(x) = x P_C(x)$ for all $x \in \mathbb{R}^m$
- (ii) ∇f is 1-Lipschitz

Indeed, for $x \in \mathbb{R}^m$, define

$$h_x(y) := f(x+y) - f(x) - \langle y, x - P_C(x) \rangle$$

It can be shown that

$$\frac{|h_x(y)|}{\|y\|} \to 0$$

as $y \to 0$ by bounding $|h_x(y)| \leq \frac{1}{2} ||y||^2$.

To see the 1-Lipschitz continuity of ∇f , we would apply the non-expansiveness of projections onto closed convex sets.

Theorem 2.13.7 (Second Order Characterization)

Let $f : \mathbb{R}^m \to \mathbb{R}$ be twice continuously differentiable over \mathbb{R}^m and let $L \ge 0$. The following are equivalent.

- (i) ∇f is *L*-Lipschitz
- (ii) for all $x \in \mathbb{R}^m$, $\|\nabla^2 f(x)\| \le L$ (operator norm)

Proof

(i) \Longrightarrow (ii) Suppose that ∇f is *L*-Lipschitz continuous. For any $y \in \mathbb{R}^m$ and $\alpha > 0$,

$$\|\nabla f(x + \alpha y) - \nabla f(x)\| \le L \|x + \alpha y - x\| = \alpha L \|y\|$$

That is,

$$\|\nabla^2 f(x)(y)\| = \lim_{\alpha \downarrow 0} \frac{\|\nabla f(x + \alpha y) - \nabla f(x)\|}{\alpha}$$
$$\leq \lim_{\alpha \downarrow 0} \frac{L\|x + \alpha y - x\|}{\alpha}$$
$$= \lim_{\alpha \downarrow 0} L\|y\|$$
$$= L\|y\|.$$

Equivalently,

 $\|\boldsymbol{\nabla}^2 f(x)\| \le L$

as desired. Note that we used the fact that $\boldsymbol{\nabla}^2 f(x)(y) = (\boldsymbol{\nabla} f)'(x; y).$

 $\underline{(\text{ii}) \Longrightarrow (\text{i})}_{\text{of calculus}}$ Suppose that $\|\nabla^2 f(x)\| \leq L$ and fix $x, y \in \mathbb{R}^m$. By the fundamental theorem

$$\nabla f(x) = \nabla f(y) + \int_0^1 \nabla^2 f(y + \alpha(x - y))(x - y) d\alpha$$
$$= \nabla f(y) + \left[\int_0^1 \nabla^2 f(y + \alpha(x - y)) d\alpha\right] (x - y)$$

Hence

$$\begin{aligned} \|\boldsymbol{\nabla}f(x) - \boldsymbol{\nabla}f(y)\| &\leq \left\| \int_0^1 \boldsymbol{\nabla}^2 f(x + \alpha(x - y)) d\alpha \right\| \cdot \|x - y\| \\ &\leq \int_0^1 \|\boldsymbol{\nabla}^2 f(x + \alpha(x - y))\| d\alpha \|x - y\| \\ &\leq L \|x - y\|. \end{aligned}$$

Proposition 2.13.8 For a symmetric $A \in \mathbb{R}^{m \times m}$,

$$\sup_{\|x\|=1} \|Ax\| = \max_{1 \le i \le m} |\lambda_i|$$

where λ_i are the eigenvalues of A.

Proof

Write x as a linear combination of some orthonormal eigenvector basis of A.

Proposition 2.13.9

A twice continuously differentiable function $f : \mathbb{R}^m \to \mathbb{R}$ is convex if and only if $\nabla^2 f(x)$ is positive semi-definite.

Proof See A3.

Corollary 2.13.9.1

Let $f : \mathbb{R}^m \to \mathbb{R}$ be convex and twice continuously differentiable. Suppose $L \ge 0$. Then ∇f is *L*-Lipschitz if and only if for all $x \in \mathbb{R}^m$,

$$\lambda_{\max}(\boldsymbol{\nabla}^2 f(x)) \le L.$$

Proof

Since f is convex and twice continuously differentiable, $\nabla^2 f(x)$ is positive semidefinite everwhere. Combined with the earlier result,

$$L \ge \|\nabla^2 f(x)\|$$

= $|\lambda_{\max}(\nabla^2 f(x))|$
= $\lambda_{\max}(\nabla^2 f(x)).$

Example 2.13.10 Let $f : \mathbb{R}^m \to \mathbb{R}$ be given by

$$x \mapsto \sqrt{1 + \|x\|^2}$$

Then

(i) f is convex

(ii) ∇f is 1-Lipschitz

Proposition 2.13.11 Let $\beta > 0$. $f : \mathbb{R}^m \to (-\infty, \infty]$ is β -strongly convex if and only if

$$f - \frac{\beta}{2} \| \cdot \|^2$$

is convex.

Proof

See A3.

Proposition 2.13.12

Let $f, g: \mathbb{R}^m \to (-\infty, \infty]$ and $\beta > 0$. Suppose that f is β -strongly convex and that g is convex. Then f + g is β -strongly convex.

Proof

Define

$$h := \left(f - \frac{\beta}{2} \|\cdot\|^2\right) + g.$$

Then h is convex as it is the sum of two convex functions. Thus applying the previous proposition yields the result.

Proposition 2.13.13

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be strongly convex, l.s.c., and proper. Then f has a unique minimizer.

2.14 The Proximal Operator

Definition 2.14.1 (Proximal Point Mapping) Let $f : \mathbb{R}^m \to (-\infty, \infty]$. The proximal point mapping of f is the operator Prox_f :

 $\mathbb{R}^m \rightrightarrows \mathbb{R}^m$ given by

$$Prox_f(x) := \operatorname{argmin}_{u \in \mathbb{R}^m} \{ f(u) + \frac{1}{2} \| u - x \|^2 \}$$

Theorem 2.14.1

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Then for every $x \in \mathbb{R}^m$, $\operatorname{Prox}_f(x)$ is a singleton.

Proof

For a fixed $x \in \mathbb{R}^m$,

$$h_x := \frac{1}{2} \| \cdot - x \|^2$$

is β -strongly convex for all $\beta < 1$. Therefore,

 $g_x := f + h_x$

is strongly convex for every $x \in \mathbb{R}^m$.

We know that g_x is l.s.c. as f, h_x are l.s.c. Moreover, g_x is proper as f, g is proper with dom $f \cap \text{dom } g_x = \text{dom } f$. Thus from the previous proposition,

$$\operatorname{argmin}_{u \in \mathbb{R}^m} g_x =: \operatorname{Prox}_f(x)$$

exists and is unique.

Example 2.14.2 For $\emptyset \neq C \subseteq \mathbb{R}^m$ closed and convex,

$$\operatorname{Prox}_{\delta_C} = P_C.$$

Proposition 2.14.3 Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Let $x, p \in \mathbb{R}^m$. Then $p = \operatorname{Prox}_f(x)$ if and only if for all $y \in \mathbb{R}^m$,

$$\langle y - p, x - p \rangle + f(p) \le f(y).$$

Proof

 (\Longrightarrow) Suppose that $p = \operatorname{Prox}_f(x)$. For each $\lambda \in (0, 1)$, set

$$p_{\lambda} := \lambda y + (1 - \lambda)p_{\lambda}$$

Thus

$$\begin{split} f(p) &\leq f(p_{\lambda}) + \frac{1}{2} \|x - p_{\lambda}\|^2 - \frac{1}{2} \|x - p\|^2 \\ &\leq f(p_{\lambda}) + \frac{1}{2} \|x - \lambda y - (1 - \lambda)p\|^2 - \frac{1}{2} \|x - p\|^2 \\ &= f(p_{\lambda}) + \frac{1}{2} \langle x - p - \lambda (y - p) - (x - p), x - p - \lambda (y - p) + (x - p) \rangle \\ &= f(p_{\lambda}) + \frac{1}{2} \langle -\lambda (y - p), 2(x - p) - \lambda (y - p) \rangle \\ &= f(p_{\lambda}) + \frac{\lambda}{2} \|y - p\|^2 - \lambda \langle x - p, y - p \rangle \\ &= f(\lambda y + (1 - \lambda)p) + \frac{\lambda^2}{2} \|y - p\|^2 - \lambda \langle x - p, y - p \rangle \\ &= f(p) \leq \lambda f(y) + (1 - \lambda) f(p) + \frac{\lambda^2}{2} \|y - p\|^2 - \lambda \langle x - p, y - p \rangle \\ \lambda \langle x - p, y - p \rangle + \lambda f(p) \leq \lambda f(y) + \frac{\lambda^2}{2} \|y - p\|^2. \end{split}$$

Division by λ and taking the limit as $\lambda \to 0$ yields the result.

 (\Leftarrow) Suppose that

$$\langle y - p, x - p \rangle + f(p) \le f(y).$$

Then

$$f(p) \le f(y) - \langle y - p, x - p \rangle = f(y) + \langle x - p, p - y \rangle$$

It follows that

$$\begin{split} f(p) &+ \frac{1}{2} \|x - p\|^2 \leq f(y) + \langle x - p, p - y \rangle + \frac{1}{2} \|x - p\|^2 \\ &\leq f(y) + \langle x - p, p - y \rangle + \frac{1}{2} \|x - p\|^2 + \frac{1}{2} \|p - y\|^2 \\ &\leq f(y) + \|x - p + p - y\|^2 \\ &= f(y) + \|x - y\|^2. \end{split}$$

Example 2.14.4 Let $f : \mathbb{R}^m \to \mathbb{R}$ be given by

 $x \mapsto |x|.$

Then

$$\operatorname{Prox}_{f}(x) := \begin{cases} x - 1, & x > 1 \\ 0, & x \in [-1, 1] \\ x + 1, & x < -1 \end{cases}$$

We need only apply the previous proposition and consider 3 cases.

Proposition 2.14.5 Let $f : \mathbb{R}^m \to \mathbb{R}$ be convex, l.s.c., and proper. Then x minimizes f over \mathbb{R}^m if and only if

 $x = \operatorname{Prox}_f(x).$

Proof

By the previous proposition,

$$x = \operatorname{Prox}_{f}(x) \iff \forall y \in \mathbb{R}^{m}, \langle y - x, x - x \rangle + f(x) \leq f(y)$$
$$\iff \forall y \in \mathbb{R}^{m}, f(x) < f(y).$$

Convexity is crucial for the proximal operator to be well-defined.

Example 2.14.6 Let $g, h : \mathbb{R} \to \mathbb{R}$ be given by

$$g(x) := \begin{cases} 0, & x \neq 0\\ \lambda, & x = 0 \end{cases}$$
$$h(x) := \begin{cases} 0, & x \neq 0\\ -\lambda, & x = 0 \end{cases}$$

for some $\lambda > 0$.

Then

$$\operatorname{Prox}_{h}(x) = \begin{cases} \{x\}, & |x| > \sqrt{2\lambda} \\ \{0, x\}, & |x| = \sqrt{2\lambda} \\ \{0\}, & |x| < \sqrt{2\lambda} \end{cases}$$
$$\operatorname{Prox}_{h}(x) = \begin{cases} \{x\}, & x \neq 0 \\ \varnothing, & x = 0 \end{cases}$$

Example 2.14.7 (Soft Threshold) Let $f : \mathbb{R} \to \mathbb{R}$ be given by

 $x\mapsto \lambda |x|$

for some $\lambda \geq 0$.

For all $x \in \mathbb{R}$,

$$\operatorname{Prox}_{f}(x) = \begin{cases} x - \lambda, & x > \lambda \\ 0, & x \in [-\lambda, \lambda] \\ x + \lambda, & x < -\lambda \end{cases}$$

Note that the above formula can be written as

$$\operatorname{Prox}_f(x) = \operatorname{sign}(x)(|x| - \lambda)_+$$

where sign(y) is 1, -1 depending on the sign of y and [-1, 1] if y = 0. Moreover, $(y)_+ = y$ if $y \ge 0$ and is 0 otherwise.

Theorem 2.14.8 Suppose $f : \mathbb{R}^m \to (-\infty, \infty]$ is given by

$$f(x) := \sum_{i=1}^{m} f_i(x_i)$$

for $f_i \mathbb{R} \to (-\infty, \infty]$ convex, l.s.c., and proper. Then for all $x \in \mathbb{R}^m$,

$$\operatorname{Prox}_{f}(x) = (\operatorname{Prox}_{f_i}(x_i))_{i=1}^m.$$

Proof

From A2, f is convex, l.s.c., and proper. We know that

$$p = \operatorname{Prox}_{f}(x) \iff \forall y \in \mathbb{R}^{m}, f(y) \ge f(p) + \langle y - p, x - p \rangle$$
$$\iff \forall y \in \mathbb{R}^{m}, \sum_{i=1}^{m} f_{i}(y_{i}) \ge \sum_{i=1}^{m} f_{i}(p_{i}) + \sum_{i=1}^{m} (y_{i} - p_{i})(x_{i} - p_{i}).$$

In particular, for some $j \in [m]$, let $y_j \in \mathbb{R}$ and $y_i = 0$ for all $i \neq j$. Then

$$f_i(y_i) \ge f_i(p_i) + (y_i - p_i)(x_i - p_i)$$

which happens if and only if $p_i = \operatorname{Prox}_{f_i}(x_i)$.

Conversely, if $f_i(y_i) \ge f_i(p_i) + (y_i - p_i)(x_i - p_i)$ for each $i \in [m]$, then clearly $p = \operatorname{Prox}_f(x)$.

Example 2.14.9 Let $g : \mathbb{R}^m \to (-\infty, \infty]$ be given by

$$x \mapsto \begin{cases} -\alpha \sum_{i=1}^{m} \log x_i, & x > 0\\ \infty, & \text{else} \end{cases}$$

where $\alpha > 1$.

Then

$$\operatorname{Prox}_{g}(x) = \left(\frac{x_{i} + \sqrt{x_{i}^{2} + 4\alpha}}{2}\right)_{i=1}^{m}$$

since

$$\operatorname{Prox}_{g_i}(x_i) = \frac{x_i + \sqrt{x_i^2 + 4\alpha}}{2}$$

This can be proven by differentiating to find the minimizer of $h_i(y_i) := g_i(y_i) + \frac{1}{2}(y_i - x_i)^2$.

Theorem 2.14.10

Let $g: \mathbb{R}^m \to (-\infty, \infty]$ be proper and c > 0. Let $a \in \mathbb{R}^m, \gamma \in \mathbb{R}$. For each $x \in \mathbb{R}^m$, define

$$f(x) = g(x) + \frac{c}{2} ||x||^2 + \langle a, x \rangle + \gamma.$$

Then for all $x \in \mathbb{R}^m$,

$$\operatorname{Prox}_{f}(x) = \operatorname{Prox}_{\frac{1}{c+1}g}\left(\frac{x-a}{c+1}\right)$$

Proof

Indeed, recall that

$$\operatorname{Prox}_{f}(x) := \operatorname{argmin}_{u \in \mathbb{R}^{m}} f(u) + \frac{1}{2} ||u - x||^{2}$$
$$= \operatorname{argmin}_{u \in \mathbb{R}^{m}} g(u) + \frac{c}{2} ||u||^{2} + \langle a, u \rangle + \gamma + \frac{1}{2} ||u - x||^{2}.$$

Now,

$$\begin{split} \frac{c}{2} \|u\|^2 + \langle a, u \rangle + \frac{1}{2} \|u - x\|^2 &= \frac{c}{2} \|u\|^2 + \langle a, u \rangle + \frac{1}{2} \|u\|^2 - \langle u, x \rangle + \frac{1}{2} \|x\|^2 \\ &= \frac{c+1}{2} \|u\|^2 - \langle u, x - a \rangle + \frac{1}{2} \|x\|^2 \\ &= \frac{c+1}{2} \left[\|u\|^2 - 2\left\langle u, \frac{x-a}{c+1}\right\rangle + \frac{1}{c+1} \|x\|^2 \right] \\ &= \frac{c+1}{2} \left[\left\|u - \frac{x-a}{c+1}\right\|^2 - \frac{\|x-a\|^2}{c+1} + \frac{1}{c+1} \|x\|^2 \right] \\ &= \frac{c+1}{2} \left\|u - \frac{x-a}{c+1}\right\|^2 - \frac{\|x-a\|^2}{2} + \frac{1}{2} \|x\|^2. \end{split}$$

Finally, since minimizers are preserved under positive scalar multiplication and translation,

$$\begin{aligned} \operatorname{Prox}_{f}(x) &= \operatorname{argmin}_{u \in \mathbb{R}^{m}} g(u) + \frac{c+1}{2} \left\| u - \frac{x+a}{c+1} \right\|^{2} + \gamma - \frac{\|x-a\|^{2}}{2} + \frac{1}{2} \|x\|^{2} \\ &= \operatorname{argmin}_{u \in \mathbb{R}^{m}} g(u) + \frac{c+1}{2} \left\| u - \frac{x+a}{c+1} \right\|^{2} \\ &= \operatorname{argmin}_{u \in \mathbb{R}^{m}} \frac{1}{c+1} g(u) + \frac{1}{2} \left\| u - \frac{x-a}{c+1} \right\|^{2} \\ &=: \operatorname{Prox}_{\frac{1}{c+1}g} \left(\frac{x+a}{c+1} \right). \end{aligned}$$

Example 2.14.11 Let $\mu \in \mathbb{R}$ and $\alpha \geq 0$. Consider $f : \mathbb{R} \to (-\infty, \infty]$ given by

$$f(x) := \begin{cases} \mu x, & x \in [0, \alpha] \\ \infty, & \text{else} \end{cases}$$

For each $x \in \mathbb{R}$,

$$f(x) = \mu x + \delta_{[0,\alpha]}(x).$$

Moreover,

$$\operatorname{Prox}_{f}(x) = \min(\max(x - \mu, 0), \alpha).$$

Indeed, apply the previous theorem with $g = \delta_{[0,\alpha]}$ and $c = \gamma = 0$. Then

$$\operatorname{Prox}_f(x) = \operatorname{Prox}_g(x - \mu) = P_C(x - \mu).$$

Theorem 2.14.12

Let $g : \mathbb{R} \to (-\infty, \infty]$ be convex, l.s.c. and proper such that dom $g \subseteq [0, \infty)$ and let $f : \mathbb{R}^m \to \mathbb{R}$ be given by

$$f(x) = g(\|x\|).$$

Then

$$\operatorname{Prox}_{f}(x) = \begin{cases} \operatorname{Prox}_{g}(\|x\|) \frac{x}{\|x\|}, & x \neq 0\\ \{u \in \mathbb{R}^{m} : \|u\| = \operatorname{Prox}_{g}(x)\}, & x = 0 \end{cases}$$

Proof

<u>Case I: x = 0</u> By definition,

$$\operatorname{Prox}_{f}(x) = \operatorname{argmin}_{u \in \mathbb{R}^{m}} f(u) + \frac{1}{2} ||u||^{2}.$$

By the change of variable w = ||u||, then above set of minimizers is the same as

$$\operatorname{argmin}_{w \in \mathbb{R}^m} g(w) + \frac{1}{2}w^2 =: \operatorname{Prox}_g(0).$$

Case II: $x \neq 0$ By definition, $\operatorname{Prox}_f(x)$ is the set of solutions to the minimization problem

$$\begin{split} \min_{u \in \mathbb{R}^m} g(\|u\|) &+ \frac{1}{2} \|u - x\|^2 \\ &= \min_{u \in \mathbb{R}^m} g(\|u\|) + \frac{1}{2} \|u\|^2 - \langle u, x \rangle + \frac{1}{2} \|x\|^2 \\ &= \min_{\alpha \ge 0} \min_{u \in \mathbb{R}^m: \|u\| = \alpha} g(\alpha) + \frac{1}{2} \alpha^2 - \langle u, x \rangle + \frac{1}{2} \|x\|^2 \end{split}$$

Now, $\langle u, x \rangle \leq ||u|| \cdot ||x||$ by the Cauchy-Schwartz inequality with equality when $u = \lambda x$ for some $\lambda \geq 0$. Thus

$$\left\{\alpha \frac{x}{\|x\|}\right\} = \min_{u \in \mathbb{R}^m : \|u\| = \alpha} g(\alpha) + \frac{1}{2}\alpha^2 - \langle u, x \rangle + \frac{1}{2}\|x\|^2$$

The values of α which minimize $\alpha \frac{x}{\|x\|}$ are then given by

$$\min_{\alpha \ge 0} g(\alpha) + \frac{1}{2}\alpha^2 - \alpha \|x\| + \frac{1}{2}\|x\|^2$$
$$= \min_{\alpha \ge 0} g(\alpha) + \frac{1}{2}(\alpha - \|x\|)^2.$$

This is precisely $\operatorname{Prox}_g(\|x\|)$.

Hence

$$\operatorname{Prox}_{f}(x) = \operatorname{Prox}_{g}(\|x\|) \frac{x}{\|x\|}$$

as desired.

Example 2.14.13 Let $\alpha > 0, \lambda \ge 0$, and $f : \mathbb{R}^{\rightarrow}(-\infty, \infty]$ be given by

$$f(x) = \begin{cases} \lambda |x|, & |x| \le \alpha \\ \infty, & |x| > \alpha \end{cases}$$

Then f is convex, l.s.c. and proper (see A3).

Define

$$g(x) = \begin{cases} \lambda x, & x \in [0, \alpha] \\ \infty, & x \notin [0, \alpha] \end{cases}$$

so that f(x) = g(|x|). By the previous theorem,

$$\operatorname{Prox}_{f}(x) = \begin{cases} \operatorname{Prox}_{g}(|x|)\operatorname{sgn}(x), & x \neq 0\\ 0, & x = 0\\ = \min(\max(|x| - \lambda, 0), \alpha)\operatorname{sgn}(x) \end{cases}$$

Example 2.14.14 Let $w, \alpha \in \mathbb{R}^m_+$ and $f : \mathbb{R}^m \to (-\infty, \infty]$ given by

$$f(x) = \begin{cases} \sum_{i=1}^{m} w_i |x_i|, & -\alpha \le x \le \alpha \\ \infty, & \text{else} \end{cases}$$

Then $\operatorname{Prox}_{f}(x) = (\min(\max(|x_{i}| - w_{i}, 0), \alpha_{i})\operatorname{sgn}(x_{i}))_{i=1}^{m}$ (see A3).

Moreover, consider the problem

$$\min \sum_{i=1}^{m} w_i |x_i| \tag{P}$$
$$|x_i| \le \alpha_i, \qquad \forall i \in [m]$$

Let the sequence $(x_n)_{n\geq 0}$ be recursively defined by $x_0 \in \mathbb{R}^m$ and $x_{n+1} = \operatorname{Prox}_f(x_n)$. Then $x_n \to \bar{x}$ where \bar{x} is a minimizer of (P).

2.15 Nonexpansive & Averaged Operators

We use $\mathrm{Id}: \mathbb{R}^m \to \mathbb{R}^m$ to denote the $m \times m$ identity matrix.

Definition 2.15.1 (Nonexpansive) Let $T : \mathbb{R}^m \to \mathbb{R}^m$. Then T is nonexpansive if for all $x, y \in \mathbb{R}^m$,

$$||Tx - Ty|| \le ||x - y||$$

Definition 2.15.2 (Firmly Nonexpansive) Let $T : \mathbb{R}^m \to \mathbb{R}^m$. Then T is firmly nonexpansive (f.n.e.) if for all $x, y \in \mathbb{R}^m$,

 $||Tx - Ty||^2 + ||(\mathrm{Id} - T)x - (\mathrm{Id} - T)y||^2 \le ||x - y||^2$

Definition 2.15.3 (Averaged)

Let $T : \mathbb{R}^m \to \mathbb{R}^m$ and $\alpha \in (0, 1)$. Then T is α -averaged if there is some $N : \mathbb{R}^m \to \mathbb{R}^m$ such that N is nonexpansive and

$$T = (1 - \alpha) \operatorname{Id} + \alpha N.$$

Proposition 2.15.1

 $T: \mathbb{R}^m \to \mathbb{R}^m$. The following are equivalent.

(i) T is f.n.e.

(ii) $\operatorname{Id} -T$ is f.n.e.

(iii) 2T - Id is nonexpansive

- (iv) for all $x, y \in \mathbb{R}^m$, $||Tx Ty||^2 \le \langle x y, Tx Ty \rangle$.
- (v) for all $x, y \in \mathbb{R}^m$, $\langle Tx Ty, (\mathrm{Id} T)x (\mathrm{Id} T)y \rangle \ge 0$

Proof

(i) \iff (ii): This is clear from the definition.

(i) \iff (iii) \iff (iv) \iff (v): See A3.

We can refine the previous result when T is linear.

Proposition 2.15.2

Let $T : \mathbb{R}^m \to \mathbb{R}^m$ be linear. Then the following are equivalent.

(i) T is f.n.e.

(ii)
$$||2T - \mathrm{Id}|| \le 1$$

- (iii) for all $x \in \mathbb{R}^m$, $||Tx||^2 \le \langle x, Tx \rangle$
- (iv) for all $x \in \mathbb{R}^m$, $\langle Tx, x Tx \rangle \ge 0$

Proof

(i) \iff (ii) We know that T is f.n.e. if and only if 2T - Id is nonexpansive. This happens if and only if for all $x \neq y$,

$$\|(2T - \mathrm{Id})(x - y)\| = \|(2T - \mathrm{Id})x - (2T - \mathrm{Id})y\|$$
$$\leq \|x - y\|$$
$$\iff$$
$$\|2T - \mathrm{Id}\| \leq 1.$$

 $(i) \iff (iii)$ This is easily seen by the previous proposition and the fact that Tx - Ty = T(x - y).

 $(i) \iff (iv)$ This is seen by applying the previous proposition and observing that Tx - Ty = T(x - y) as well as

$$(\mathrm{Id} - T)x - (\mathrm{Id} - T)y = x - y - T(x - y).$$

Observe that T is f.n.e. if and only if N := 2T - Id is nonexpansive if and only if 2T = Id + N for N nonexpansive if and only if $T = \frac{1}{2} \text{Id} + \frac{1}{2}N$ for N nonexpansive if and only if T is $\frac{1}{2}$ -averaged.

Example 2.15.3 Let $\emptyset \neq C \subseteq \mathbb{R}^m$ be convex and closed. Then $P_C(x)$ is f.n.e. Indeed, for all $x, y \in \mathbb{R}^m$,

$$||P_C(x) - P_C(y)|| \le \langle P_C(x) - P_C(y), x - y \rangle$$

Example 2.15.4

Suppose that $T = -\frac{1}{2}$ Id. Then T is averaged but NOT f.n.e.

We have

$$T = \frac{1}{4}\operatorname{Id} + \frac{3}{4}(-\operatorname{Id})$$

and so T is $\frac{3}{4}$ -averaged.

But T is not f.n.e. as for all $0 \neq x \in \mathbb{R}^m$,

$$||Tx||^{2} + ||x - Tx||^{2} = \frac{1}{4} ||x||^{2} + \frac{9}{4} ||x||^{2}$$
$$= \frac{5}{2} ||x||^{2}$$
$$> ||x||^{2}.$$

Example 2.15.5

T := - Id is nonexpansive but NOT averaged. Indeed suppose there is some nonexpansive $N : \mathbb{R}^m \to \mathbb{R}^m$ and $\alpha \in (0, 1)$ such that

$$T = (1 - \alpha) \operatorname{Id} + \alpha N \iff -\operatorname{Id} = (1 - \alpha) \operatorname{Id} + \alpha N$$
$$\iff (-1 + \alpha) \operatorname{Id} = \alpha N$$
$$\iff N = \frac{\alpha - 2}{\alpha} \operatorname{Id}.$$

But then

$$\|N\| = \left|\frac{\alpha - 2}{\alpha}\right| \le 1$$
$$\iff \frac{2 - \alpha}{\alpha} \le 1$$
$$\iff 2 - \alpha \le \alpha$$
$$\iff \alpha \ge 1$$

which is impossible by the definition of averaged.

Proposition 2.15.6 Let $T : \mathbb{R}^m \to \mathbb{R}^m$ be nonexpansive. Then T is continuous.

Proof Suppose $x_n \to \bar{x}$. Then

$$||Tx_n - T\bar{x}|| \le ||x_n - \bar{x}|| \to 0.$$

Definition 2.15.4 (Fixed Point) Let $T : \mathbb{R}^m \to \mathbb{R}^m$ then

Fix $T := \{x \in \mathbb{R}^m : x = Tx\}.$

2.16 Féjer Monotonocity

Definition 2.16.1 (Féjer Monotone)

Let $\emptyset \neq C \subseteq \mathbb{R}^m$ and $(x_n)_{n \in \mathbb{N}}$ a sequence in \mathbb{R}^m . Then (x_n) is a Féjer monotone with respect to C if for all $c \in C, n \in \mathbb{N}$,

$$||x_{n+1} - c|| \le ||x_n - c||.$$

Example 2.16.1

Suppose Fix $T \neq \emptyset$ for some nonexpansive $T : \mathbb{R}^m \to \mathbb{R}^m$. For any $x_0 \in \mathbb{R}^n$, the sequence defined recursively by

$$x_n := T(x_{n-1})$$

is Féjer monotone with respect to Fix T.

Proposition 2.16.2

Let $\emptyset \neq C \subseteq \mathbb{R}^m$ and $(x_n)_{n\geq 0}$ a Féjer monotone sequence in \mathbb{R}^m with respect to C. The following hold:

- (i) (x_n) is bounded
- (ii) for every $c \in C$, $(||x_n c||)_{n \ge 0}$ converges
- (iii) $(d_C(x_n))_{n\geq 0}$ is decreasing and converges

Proof Fix $c \in C$. We have

$$||x_n|| \le ||c|| + ||x_n - c|| \le ||c|| + ||x_0 - c||.$$

Hence (x_n) is a bounded sequence.

Now, $||x_n - c||$ is bounded below by 0 and monotonic, hence necessarily converges to the infimum.

Observe that for each $n \in \mathbb{N}, c \in C$,

$$||x_{n+1} - c|| \le ||x_n - c||.$$

Taking infimums on both sides preserve this inequality.

Recall the following analysis fact.

Proposition 2.16.3

A bounded sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R}^m converges if and only if it has a unique cluster point.

Proof

The forward direction is clear. Suppose now that $(x_n)_{n \in \mathbb{N}}$ has a unique cluster point \bar{x} .

Suppose that $x_n \not\to \bar{x}$. Then there is some $\epsilon_0 > 0$ and subsequence x_{k_n} such that for all n,

$$\|x_{k_n} - \bar{x}\| \ge \epsilon_0.$$

But then $(x_{k_n})_{n \in \mathbb{N}}$ is bounded and hence contains a convergent subsequence. This is still a subsequence of $(x_n)_{n \in \mathbb{N}}$ but cannot converge to \bar{x} .

It follows that $(x_n)_{n\in\mathbb{N}}$ has more than one cluster point. By contradiction, $x_n \to \bar{x}$.
Lemma 2.16.4

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^m and $\emptyset \neq C \subseteq \mathbb{R}^m$ be such that for all $c \in C$, $(||x_n - c||)_{n\in\mathbb{N}}$ converges and every cluster point of $(x_n)_{n\in\mathbb{N}}$ lies in C. Then $(x_n)_{n\in\mathbb{N}}$ converges to a point in C.

Proof

 (x_n) is necessarily bounded since $||x_n|| \leq ||c|| + ||x_n - c||$ is bounded. It suffices by the previous proposition to show that $(x_n)_{n \in \mathbb{N}}$ has a unique cluster point.

Let x, y be two cluster points of $(x_n)_{n \in \mathbb{N}}$. That is, there are subsequences

$$x_{k_n} \to x, x_{\ell_n} \to y.$$

By assumption, $x, y \in C$. Hence $||x_n - x||, ||x_n - y||$ converges.

Observe that

$$2\langle x_n, x - y \rangle$$

= $||x_n||^2 + ||y||^2 - 2\langle x_n, y \rangle - ||x_n||^2 - ||x||^2 + 2\langle x_n, x \rangle + ||x||^2 - ||y||^2$
= $||x_n - y|| - ||x_n - x||^2 + ||x||^2 - ||y||^2$
 $\rightarrow L \in \mathbb{R}^m.$

But then taking the limit along k_n, ℓ_n ,

$$\begin{aligned} \langle x, x - y \rangle &= \langle y, x - y \rangle \\ \| x - y \|^2 &= 0 \\ x &= y. \end{aligned}$$

Theorem 2.16.5

Let $\emptyset \neq C \subseteq \mathbb{R}^m$ and $(x_n)_{n \in \mathbb{N}}$ a sequence in \mathbb{R}^m . Suppose that $(x_n)_{n \in \mathbb{N}}$ is Féjer monotone with respect to C, and that every cluster point of $(x_n)_{n \in \mathbb{N}}$ lies in C. Then $(x_n)_{n \in \mathbb{N}}$ converges to a point in C.

Proof

We know that for all $c \in C$,

 $||x_n - c||$

converges. Hence the result follows from the previous lemma.

Let $x, y \in \mathbb{R}^m$ and $\alpha \in \mathbb{R}$. By computation,

 $\|\alpha x + (1 - \alpha)y\|^{2} + \alpha(1 - \alpha)\|x - y\|^{2} = \alpha \|x\|^{2} + (1 - \alpha)\|y\|^{2}.$

Theorem 2.16.6

Let $\alpha \in (0,1]$ and $T : \mathbb{R}^m \to \mathbb{R}^m$ be α -averaged such that Fix $T \neq \emptyset$. Let $x_0 \in \mathbb{R}^m$. Define

$$x_{n+1} := Tx_n.$$

The following hold:

- (i) $(x_n)_{n \in \mathbb{N}}$ is Fejér monotone with respect to Fix T.
- (ii) $Tx_n x_n \to 0.$
- (iii) $(x_n)_{n \in \mathbb{N}}$ converges to a point in Fix T.

Proof

Now, T being averaged implies that it is nonexpansive. The example earlier shows that $(x_n)_{n \in \mathbb{N}}$ is Féjer monotone.

By the definition of averaged, there is some nonexpansive $N:\mathbb{R}^m\to\mathbb{R}^m$ such that

$$T = (1 - \alpha) \operatorname{Id} + \alpha N.$$

Hence for each $n \in \mathbb{N}$,

$$x_{n+1} = (1 - \alpha)x_n + \alpha N(x_n).$$

Let $f \in \operatorname{Fix} T$.

$$||x_{n+1} - f||^2 = ||(1 - \alpha)(x_n - f) + \alpha(N(x_n) - f)||^2$$

= $(1 - \alpha)||x_n - f||^2 + \alpha||N(x_n) - N(f)||^2 - \alpha(1 - \alpha)||N(x_n) - x_n||^2$
 $\leq (1 - \alpha)||x_n - f||^2 + \alpha||x_n - f||^2 - \alpha(1 - \alpha)||N(x_n) - x_n||^2$
= $||x_n - f||^2 - \alpha(1 - \alpha)||N(x_n) - x_n||^2$
 $\alpha(1 - \alpha)||N(x_n) - x_n||^2 \leq ||x_n - f||^2 - ||x_{n+1} - f||^2.$

By a telescoping sum argument,

$$\sum_{n=0}^{k} \alpha(1-\alpha) \|N(x_0) - x_n\|^2 = \|x_0 - f\|^2 - \|x_{k+1} - f\|^2$$
$$\leq \|x_0 - f\|^2.$$

By our work with non-negative monotone series, it must be that $||N(x_n) - x_n|| \to 0$.

In particular,

$$||Tx_n - x_n|| = ||(1 - \alpha)x_n + \alpha N(x_n) - x_n|| = \alpha ||N(x_n) - x_n|| \to 0.$$

Now, $(x_n)_{n\in\mathbb{N}}$ is Féjer monotone with respect to Fix T = Fix N. Let \bar{x} be a cluster point of $(x_n)_{n\in\mathbb{N}}$, say $x_{k_n} \to \bar{x}$. Observe that N being nonexpansive implies that N is continuous.

Since $Nx_n - x_n \to 0$, we must also have $Nx_{k_n} - x_{k_n} \to 0$. Thus

$$Nx_{k_n} = (Nx_{k_n} - x_{k_n}) + x_{k_n} \to 0 + \bar{x}$$

By continuity,

$$N\bar{x} = \lim_{n \to \infty} Nx_{k_n} = \bar{x}.$$

That is, every cluster point of $(x_n)_{n \in \mathbb{N}}$ lies in Fix N = Fix T. Combined with a previous theorem, this yield the proof.

Corollary 2.16.6.1 Let $T : \mathbb{R}^m \to \mathbb{R}^m$ be f.n.e. and suppose that Fix $T \neq \emptyset$. Put $x_0 \in \mathbb{R}^m$. Recursively define

 $x_{n+1} := Tx_n.$

There is some $\bar{x} \in \operatorname{Fix} T$ such that

 $x_n \to \bar{x}.$

Proof

Since T is f.n.e., T is also averaged. The result follows then by the previous theorem.

Proposition 2.16.7

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Then Prox_f is f.n.e.

Proof

Let $x, y \in \mathbb{R}^m$. Set $p := \operatorname{Prox}_f(x)$ and $q := \operatorname{Prox}_f(y)$.

By our work with the proximal operator, p, q are characterized as $\forall z \in \mathbb{R}^m$,

$$\langle z - p, x - p \rangle + f(p) \le f(z) \langle z - q, y - q \rangle + f(q) \le f(z).$$

By choosing z = p, q,

$$\begin{aligned} \langle q - p, x - p \rangle + f(p) &\leq f(q) \\ \langle p - q, y - q \rangle + f(q) &\leq f(p) \\ \langle q - p, (x - p) - (y - q) \rangle &\leq 0 \\ \langle p - q, (x - p) - (y - q) \rangle &\geq 0. \end{aligned}$$

But then by our characterization of f.n.e. operators, $Prox_f$ is f.n.e.

Corollary 2.16.7.1

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper such that $\operatorname{argmin} f \neq \emptyset$. Let $x_0 \in \mathbb{R}^m$ and updated via

$$x_{n+1} = \operatorname{Prox}_f(x_n).$$

There is some $\bar{x} \in \operatorname{argmin} f$ such that $x_n \to \bar{x}$.

Proof

Recall that

$$x \in \operatorname{argmin} f \iff x = \operatorname{Prox}_f(x) \iff x \in \operatorname{Fix} \operatorname{Prox}_f$$
.

Thus argmin $f = \operatorname{Fix} \operatorname{Prox}_f \neq \emptyset$.

By the previous proposition, Prox_f is f.n.e. Thus the result follows from a previous theorem.

2.17 Composition of Averaged Operators

Consider the following identity for all $x, y \in \mathbb{R}^m, \alpha \in \mathbb{R} \setminus \{0\}$:

$$\alpha^{2} \left(\|x\|^{2} - \left\| \left(1 - \frac{1}{\alpha}\right)x + \frac{1}{\alpha}y \right\|^{2} \right) = \alpha \left(\|x\|^{2} - \frac{1 - \alpha}{\alpha}\|x - y\|^{2} - \|y\|^{2} \right)$$

Proposition 2.17.1

Let $T: \mathbb{R}^m \to \mathbb{R}^m$ be nonexpansive and $\alpha \in (0, 1)$. The following are equivalent:

1. T is α -averaged

- 2. $\left(1-\frac{1}{\alpha}\right)$ Id $+\frac{1}{\alpha}T$ is nonexpansive
- 3. For each $x, y \in \mathbb{R}^m$, $||Tx Ty||^2 \le ||x y||^2 \frac{1-\alpha}{\alpha} ||(\mathrm{Id} T)x (\mathrm{Id} T)y||^2$

Proof

(i) \iff (ii): We have T is α -averaged if and only if there is some $N : \mathbb{R}^m \to \mathbb{R}^m$ nonexpansive such that

$$T = (1 - \alpha) \operatorname{Id} + \alpha N$$

$$\iff N = \frac{1}{\alpha} (T - (1 - \alpha) \operatorname{Id})$$

$$\iff N = \left(1 - \frac{1}{\alpha}\right) \operatorname{Id} + \frac{1}{\alpha} T$$

if and only if $\left(1 - \frac{1}{\alpha}\right) \operatorname{Id} + \frac{1}{\alpha}T$ is nonexpansive.

 $(ii) \iff (iii) \text{ By definition } \left(1 - \frac{1}{\alpha}\right) \text{Id} + \frac{1}{\alpha}T \text{ is nonexpansive if and only if for all } x, y \in \mathbb{R}^m,$

$$\begin{split} \|x - y\|^{2} \\ &\geq \left\| \left(1 - \frac{1}{\alpha}\right) x + \frac{1}{\alpha} Tx - \left(1 - \frac{1}{\alpha}\right) y - \frac{1}{\alpha} Ty \right\|^{2} \\ &= \left\| \left(1 - \frac{1}{\alpha}\right) (x - y) + \frac{1}{\alpha} (Tx - Ty) \right\|^{2} \\ &= \|x - y\|^{2} - \frac{1}{\alpha} \left(\|x - y\|^{2} - \frac{1 - \alpha}{\alpha} \| (x - Tx) - (y - Ty) \|^{2} - \|Tx - Ty\|^{2} \right) \quad \text{identity} \\ &0 \geq -\frac{1}{\alpha} \left(\|x - y\|^{2} - \frac{1 - \alpha}{\alpha} \| (x - Tx) - (y - Ty) \|^{2} - \|Tx - Ty\|^{2} \right) \\ &0 \leq \|x - y\|^{2} + \frac{1 - \alpha}{\alpha} \| (x - Tx) - (y - Ty) \|^{2} - \|Tx - Ty\|^{2} \qquad \alpha > 0. \end{split}$$

Theorem 2.17.2 Let $\alpha_1, \alpha_2 \in (0, 1)$ and $T_i : \mathbb{R}^m \to \mathbb{R}^m$ be α_i -averaged. Define

$$T := T_1 T_2$$
$$\alpha := \frac{\alpha_1 + \alpha_2 - 2\alpha_1 \alpha_2}{1 - \alpha_1 \alpha_2}.$$

Then T is α -averaged.

Proof

First observe that by computation,

$$\alpha \in (0,1) \iff \alpha_1(1-\alpha_2) < 1-\alpha_2$$

which is a tautology.

By the previous proposition, for each $x,y\in \mathbb{R}^m,$

$$\begin{aligned} \|Tx - Ty\|^2 \\ &= \|T_1 T_2 x - T_1 T_2 y\|^2 \\ &\leq \|T_2 x - T_2 y\|^2 - \frac{1 - \alpha_1}{\alpha_1} \|(\mathrm{Id} - T_1) T_2 x - (\mathrm{Id} - T_1) T_2 y\|^2 \\ &\leq \|x - y\|^2 - \frac{1 - \alpha_2}{\alpha_2} \|(\mathrm{Id} - T_2) x - (\mathrm{Id} - T_2) y\|^2 - \frac{1 - \alpha_1}{\alpha_1} \|(\mathrm{Id} - T_1) T_2 x - (\mathrm{Id} - T_1) T_2 y\|^2 \\ &= \|x - y\|^2 - V_1 - V_2. \end{aligned}$$

 Set

$$\beta := \frac{1-\alpha_1}{\alpha_1} + \frac{1-\alpha_2}{\alpha_2} > 0.$$

By computation,

$$V_1 + V_2 \ge \frac{(1 - \alpha_1)(1 - \alpha_2)}{\beta \alpha_1 \alpha_2} \| (\mathrm{Id} - T)x - (\mathrm{Id} - T)y \|^2.$$

Consequently,

$$||Tx - Ty||^{2} \le ||x - y||^{2} - \frac{(1 - \alpha_{1})(1 - \alpha_{2})}{\beta \alpha_{1} \alpha_{2}} ||(\mathrm{Id} - T)x - (\mathrm{Id} - T)y||^{2}$$
$$= ||x - y||^{2} - \frac{1 - \alpha}{\alpha} ||(\mathrm{Id} - T)x - (\mathrm{Id} - T)y||^{2}.$$

By the previous proposition, we are done.

Chapter 3

Constrained Convex Optimization

We now consider the problem

$$\min f(x) \\ x \in C$$

(P)

where $f : \mathbb{R}^m \to (-\infty, \infty]$ is convex, l.s.c., and proper with $C \neq \emptyset$ being convex and closed.

3.1 Optimality Conditions

Recall that if $\operatorname{ri} C \cap \operatorname{ri} \operatorname{dom} f \neq \emptyset$, then $\bar{x} \in \mathbb{R}^m$ solves (P) if and only if

$$(\partial f(\bar{x})) \cap (-N_C(\bar{x})) \neq \emptyset.$$

We now explore weaker results in the absence of convexity.

Theorem 3.1.1

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper and $g : \mathbb{R}^m \to (-\infty, \infty]$ convex, l.s.c., proper with dom $g \subseteq \operatorname{int}(\operatorname{dom} f)$. Consider the problem

$$\min f(x) + g(x). \tag{P}$$
$$x \in \mathbb{R}^m$$

- (i) If f is differentiable at $x^* \in \text{dom } g$ and x^* is a local minima of (P), then $-\nabla f(x^*) \in \partial g(x^*)$
- (ii) If f is convex and differentiable at $x^* \in \text{dom } g$ then x^* is a global minimizer of (P) if and only if $-\nabla f(x^*) \in \partial g(x^*)$

Proof (i)

Let $y \in \text{dom } g$. Since g is convex, we know that dom g is convex. Hence for any $\lambda \in (0, 1)$,

$$\begin{aligned} x^* + \lambda(y - x^*) &= (1 - \lambda)x^* + \lambda y \\ &=: x_\lambda \\ &\in \operatorname{dom} g. \end{aligned}$$

Hence for sufficiently small λ ,

$$f(x_{\lambda}) + g(x_{\lambda}) \ge f(x^{*}) + g(x^{*})$$

$$f(x_{\lambda}) + (1 - \lambda)g(x^{*}) + \lambda g(y) \ge f(x^{*}) + g(x^{*})$$

$$\lambda g(x^{*}) - \lambda g(y) \le f(x_{\lambda}) - f(x^{*})$$

$$g(x^{*}) - g(y) \le \frac{f(x_{\lambda}) - f(x^{*})}{\lambda}$$

$$\to f'(x^{*}; y - x^{*}) \qquad \lambda \to 0^{+}$$

$$= \langle \nabla f(x^{*}), y - x^{*} \rangle.$$

In other words, for all $y \in \operatorname{dom} g$,

$$g(y) \ge g(x^*) + \langle \nabla f(x^*), y - x^* \rangle$$
$$\implies$$
$$\nabla f(x^*) \in \partial g(x^*)$$

Proof (ii) Suppose that f is convex and observe that (i) proves the forward direction. Now suppose $-\nabla f(x^*) \in \partial g(x^*)$. By definition, for each $y \in \operatorname{dom} g$,

$$g(y) \ge g(x^*) + \langle -\nabla f(x^*), y - x \rangle.$$

Moreover, since f is differentiable at x^* one of our characterizations of the convexity of f is that for any $y \in \text{dom } g \subseteq \text{int dom } f$,

$$f(y) \ge f(x^*) + \langle \nabla f(x^*), y - x^* \rangle.$$

Adding the inequalities yield that for all $y \in \text{dom } g$,

$$f(y) + g(y) \ge f(x^*) + g(x^*)$$

and x^* solves (P).

3.1.1 The Karush-Kuhn-Tucker Conditions

In the following, we assume that

$$f, g_1, \ldots, g_n : \mathbb{R}^m \to \mathbb{R}$$

are of full domain.

Consider the problem

$$\min f(x) \qquad (P)$$

$$g_i(x) \le \qquad \forall i \in [n]$$

We assume that (P) has at least one solution and that

$$\mu := \min\{f(x) : \forall i \in I, f(x) \le 0\} \in \mathbb{R}$$

is the optimal value. Put

$$F(x) := \max\{\underbrace{f(x) - \mu}_{=:g_0(x)}, g_1(x), \dots, g_n(x)\}.$$

Lemma 3.1.2 For all $x \in \mathbb{R}^m$, $F(x) \ge 0$. Moreover, the solution of (P) are precisely the minimizers of

 $F := \{ x : F(x) = 0 \}.$

Proof

Let $x \in \mathbb{R}^n$.

<u>Case Ia:</u> x is infeasible Then there is some $j \in [n]$ such that $g_j(x) > 0$. Hence $F(x) \ge g_i(x) > 0$.

Case Ib: x is not optimal Then $g_i(x) \leq 0$ but $f(x) > \mu$. Thus $F(x) \geq g_0(x) > 0$.

Case II: x solves (P) Then x is feasible and $f(x) = \mu$. Hence F(x) = 0.

Proposition 3.1.3 (Max Rule for Subdifferential Calculus)

Let $g_1, \ldots, g_n : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Define

$$g(x) = \max\{g_i(x), \dots, g_n(x)\}\$$

$$A(x) = \{i \in [n] : g_i(x) = g(x)\}.$$

Now, let

$$x \in \bigcap_{n=1}^{n} \operatorname{int} \operatorname{dom} g_i.$$

We have

$$\partial g(x) = \operatorname{conv}\left(\bigcup_{i \in A(x)} \partial g_i(x)\right)$$

Theorem 3.1.4 (Fritz-John Optimality Conditions) Suppose that f, g_1, \ldots, g_n are convex and x^* solves (P). There exists

 $\alpha_0,\ldots,\alpha\geq 0$

not all 0 for which

$$0 \in \alpha_0 \partial f(x^*) + \sum_{i=1}^n \alpha_i \partial g_i(x^*)$$

$$\alpha_i g_i(x^*) = 0 \qquad \qquad \forall i \in [n]$$

(complementary slackness)

Proof Recall that $F(x) := \max\{f(x) - \mu, g_i(x), \dots, g_n(x)\}$. By the previous lemma,

 $F(x^*) = 0 = \min F(\mathbb{R}^n).$

Hence

$$0 \in \partial F(x^*) = \operatorname{conv}_{i \in A(x^*)} \partial g_i(x^*).$$

where $A(x^*) := \{ 0 \le i \le n : g_i(x^*) = 0 \}.$

Note that $0 \in \partial f(x^*)$ since $f_0(x^*) = f(x^*) - \mu = 0$. So

$$0 \in \partial g_0 = \partial f.$$

By our work with convex hulls, there is some $\alpha_0, \ldots, \alpha_n$ such that $\sum_{i \in A(x^*)} \alpha_i = 1$ (so $\alpha_j = 0$ if $j \notin A(x^*)$) and that

$$0 \in \sum_{i \in A(x^*)} \alpha_i \partial g_i(x^*)$$

= $\alpha_0 \partial g_0(x^*) + \sum_{i \in A(x^*) \setminus \{0\}} \alpha_i \partial g_i(x^*)$
= $\alpha_0 \partial g_0(x^*) + \sum_{i=1}^n \alpha_i \partial g_i(x^*).$

Now to see complementary slackness: If $i \in A(x^*) \cap [n]$, then $g_i(x^*) = 0$. Else if $i \in [n] \setminus A^*(x)$, then $\alpha_i = 0$. In all cases,

$$\alpha_i g_i(x^*) = 0$$

for all $i \in [n]$.

Theorem 3.1.5 (Karush-Kuhn-Tucker; Necessary Conditions)

Suppose f, g_1, \ldots, g_n are convex, and x^* solves (P). Suppose that Slater's condition holds, if there is some $s \in \mathbb{R}^m$ such that for all $i \in [n]$,

 $g_i(s) < 0.$

Then there exists $\lambda_1, \ldots, \lambda_m \geq 0$ such that the KKT conditions hold: (stationarity condition)

$$0 \in \partial f(x^*) + \sum_{i \in I} \lambda_i \partial g_i(x^*)$$

and (complementary slackness condition) for each $i \in [n]$,

 $\lambda_i g_i(x^*) = 0.$

Proof

By the Fritz-John necessary conditions, there are $\alpha_0, \alpha_1, \ldots, \alpha_n \ge 0$ not all 0 such that

$$0 \in \alpha_0 \partial f(x^*) + \sum_{i=1}^n \alpha_i \partial g_i(x^*).$$

and for all $i \in [n]$,

$$\alpha_i g_i(x^*) = 0.$$

We claim that $\alpha_0 \neq 0$. Then it is necessary that

$$0 \in \partial f(x^*) + \sum_{i=1}^n \frac{\alpha_i}{\alpha_0} \partial g_i(x^*)$$

Suppose towards a contradiction that $\alpha_0 = 0$. There exist $y_i \in \partial g_i(x^*)$ such that

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

By the definition of the subgradient, for all $y \in \mathbb{R}^m$,

$$g_i(x^*) + \langle y_i, y - x^* \rangle \le g_i(y).$$

Thus for each $i \in [n]$,

$$g_i(x^*) + \langle y_i, s - x^* \rangle \le g_i(s).$$

Multiplying each inequality by α_i and adding them yields

$$0 = \sum_{i=1}^{n} \alpha_i g_i(x^*) + \left\langle \sum_{i=1}^{n} \alpha_i y_i, s - x^* \right\rangle$$
$$\leq \sum_{i=1}^{n} \alpha_i g_i(s)$$
$$< 0$$

which is absurd.

By contradiction, $\alpha_0 > 0$ and we are done.

Theorem 3.1.6 (Karush-Kuhn-Tucker; Sufficient Conditions)

Suppose f, g_1, \ldots, g_n are convex and $x^* \in \mathbb{R}^m$ satisfies

 $\begin{aligned} \forall i \in [n], g_i(x^*) &\leq 0 & \text{primal feasibility} \\ \forall i \in [n], \lambda_i &\geq 0 & \text{dual feasibility} \\ \partial f(x^*) &+ \sum_{i=1}^n \lambda_i \partial g_i(x^*) &\geq 0 & \text{stationarity} \\ \forall i \in [n], \lambda_i g_i(x^*) &= 0 & \text{complementary slackness} \end{aligned}$

Then x^* solves (P).

Proof

Define

$$h(x) := f(x) + \sum_{i=1}^{n} \lambda_i g_i(x).$$

Then h is convex since non-negative multiplication preserves convexity.

Apply the sum rule to obtain that

$$\partial g(x) = \partial f(x) + \sum_{i=1}^{n} \lambda_i \partial g_i(x).$$

By assumption,

$$0 \in \partial h(x^*) = \partial f(x^*) + \sum_{i=1}^n \lambda_i \partial g_i(x^*).$$

Thus by Fermat's theorem, x^* is a global minimizer of H.

Let x be feasible for (P). Then

$$f(x^*) = f(x^*) + \sum_{i=1}^n \lambda_i g_i(x^*)$$

= $h(x^*)$
 $\leq h(x)$
= $f(x) + \sum_{i=1}^n \lambda_i g_i(x)$
 $\leq f(x).$

3.2 Gradient Descent

Consider the problem

$$\min f(x) \tag{P}$$
$$x \in \mathbb{R}^m$$

Definition 3.2.1 (Descent Direction) Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be proper and let $x \in \text{int dom } f$. $d \in \mathbb{R}^m \setminus \{0\}$ is a descent

direction of f at x if the directional derivative satisfies

$$f'(x;d) < 0.$$

Remark that if $0 \neq \nabla f(x)$ exists, then $\nabla f(x)$ is a descent direction. Indeed,

$$f'(x; -\nabla f(x)) = -\|\nabla f(x)\|^2 < 0$$

Also remark that for convex f and $x \in \text{dom } f$,

$$f'(x,d) = \lim_{\lambda \to 0^+} \frac{f(x+\lambda d) - f(x)}{\lambda}.$$

Thus f(x, d) < 0 implies that there is some ϵ such that $\lambda \in (0, \epsilon)$ implies that

$$\frac{f(x+\lambda d) - f(x)}{\lambda} < 0 \iff f(x+\lambda d) < f(x).$$

The gradient/steepest descent method consists of the following:

- 1. Initialize $x_0 \in \mathbb{R}^m$.
- 2. For each $n \in \mathbb{N}$:
 - (a) Pick $t_n \in \operatorname{argmin}_{t>0} f(x_n t \nabla f(x_n))$.
 - (b) Update $x_{n+1} := x_n t_n \nabla f(x_n)$

Theorem 3.2.1 (Peressini, Sullivan, Uhl)

If f is strictly convex and coercive, then x_n converges to the unique minimizer of f.

In the lack of smoothness, a lot of pathologies happen.

Example 3.2.2 (L. Vandenberghe)

Negative subgradients are NOT necessarily descent directions. Consider $f : \mathbb{R}^2 \to \mathbb{R}_+$ given by

$$(x_1, x_2) \mapsto |x_1| + 2|x_2|$$

Then f is convex as it is a direct sum of convex functions.

Since f has full domain and is continuous,

$$\partial f(1,0) = \{1\} \times [-2,2].$$

Take $d := (-1, -2) \in -\partial f(1, 0)$.

d is NOT a descent direction. Moreover,

$$f(1,0) = 1 < f[(1,0) + t(-1,-2)]$$

for all t > 0.

Example 3.2.3 (Wolfe) Let $\gamma > 1$. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$(x_1, x_2) \mapsto \begin{cases} \sqrt{x_1^2 + \gamma x_2^2}, & |x_2| \le x_1 \\ \frac{x_1 + \gamma |x_2|}{\sqrt{1 + \gamma}}, & \text{else} \end{cases}$$

Observe that $\operatorname{argmin}_{x \in \mathbb{R}^m} f = \emptyset$. One can show that $f = \sigma_C$ where

$$C = \left\{ x \in \mathbb{R}^2 : x_2^2 + \frac{x_2^2}{\gamma} \le 1, x_2 \ge \frac{1}{\sqrt{1+\gamma}} \right\}.$$

Thus f is convex. Moreover, f is differentiable on

$$D := \mathbb{R}^2 \setminus ((-\infty, 0] \times \{0\})).$$

Let $x_0 := (\gamma, 1) \in D$.

The steepest descent method will generate a equence

$$x_n := \left(\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^n, \left(-\frac{\gamma-1}{\gamma+1}\right)^n\right) \to (0,0)$$

which is not a minimizer of f!

3.3 Projected Subgradient Method

Consider

$$\min f(x) \tag{P}$$
$$x \in C$$

where $f : \mathbb{R}^m \to (-\infty, \infty]$ is convex, l.s.c., and proper, $\emptyset \neq C \subseteq \text{int dom } f$ is convex and closed.

Suppose

$$S := \operatorname{argmin}_{x \in C} f(x) \neq \emptyset$$
$$\mu := \min_{x \in C} f(x).$$

Moreover, there is some L > 0 such that

$$\sup \|\partial f(C)\| \le L < \infty.$$

In other words, for all $c \in C$ and $u \in \partial f(c)$, $||u|| \leq L$.

- 1) Get $x_0 \in C$.
- 2) Given x_n , pick a stepsize $t_n > 0$ and $f'(x_n) \in \partial f(x_n)$
- 3) Update $x_{n+1} := P_C(x_n t_n f'(x_n)).$

Recall that $C \subseteq \text{int dom } f$, hence each $x_n \in \text{int dom } f$ and $\partial f(x_n) \neq \emptyset$. Thus the algorithm is well-defined.

Lemma 3.3.1

Let $s \in S := \operatorname{argmin}_{x \in C} f(x)$. Then

$$||x_{n+1} - s||^2 \le ||x_n - s||^2 - 2t_n(f(x_n) - \mu) + t_n^2 ||f'(x_n)||^2.$$

Observe that $S \subseteq C$.

Proof We have

$$||x_{n+1} - s||^2 = ||P_C(x_n - t_n f'(x_n)) - P_C(s)||^2$$

$$\leq ||x_n - t_n f'(x_n) - s||^2$$

$$= ||x_n - s||^2 + t_n^2 ||f'(x_n)||^2 - 2t_n \langle x_n - s, f'(x_n) \rangle.$$

It suffices to show that

$$2t_n \langle x_n - s, f'(x_n) \rangle \leq -2t_n (f(x_n) - \mu)$$

$$\langle x_n - s, f'(x_n) \rangle \geq f(x_n) - \mu$$

$$\langle x_n - s, f'(x_n) \rangle \geq f(x_n) - f(x)$$

which holds by the subgradient inequality.

What is a good step size? We wish to minimize the upper bound derived in the previous lemma.

$$0 = \frac{d}{dt_n} (-2t_n(f(x_n) - \mu) + t_n^2 ||f'(x_n)||^2)$$

= -2(f(x_n) - \mu) + 2t_n ||f'(x_n)||^2.

If x_n is not a global minimizer, then $0 \notin \partial f(x_n)$ and $f'(x_n) \neq 0$. Hence we can take

$$t_n := \frac{f(x_n) - \mu}{\|f'(x_n)\|^2}.$$

Definition 3.3.1 (Polyak's Rule) The projected subgradient method with step size

$$t_n := \frac{f(x_n) - \mu}{\|f'(x_n)\|^2}.$$

Theorem 3.3.2

We have

(i) For all $s \in S, n \in \mathbb{N}$, $||x_{n+1} - s|| \le ||x_n - s||$, ie $(x_n)_{n \in \mathbb{N}}$ is Fejér monotone with respect to S

(ii)
$$f(x_n) \to \mu$$

(iii)
$$\mu_n - \mu \leq \frac{L \cdot d_S(x_0)}{\sqrt{n+1}} \in O\left(\frac{1}{\sqrt{n}}\right)$$
, where $\mu_n := \min_{0 \leq k \leq n} f(x_k)$

(iv) For each $\epsilon > 0$, if $n \ge \frac{L^2 d_S^2(x_0)}{\epsilon^2} - 1$, then $\mu_n \le \mu + \epsilon$

Proof (i) Let $s \in S, n \in \mathbb{N}$ By computation

$$\begin{aligned} |x_{n+1} - s||^2 &\leq ||x_n - s||^2 - 2t_n(f(x_n) - \mu) + t_n^2 ||f'(x_n)||^2 \\ &= ||x_n - s||^2 - 2\frac{f(x_n) - \mu}{||f'(x_n)||^2}(f(x_n) - \mu) + \left(\frac{f(x_n) - \mu}{||f'(x_n)||^2}\right)^2 ||f'(x_n)||^2 \\ &= ||x_n - s||^2 - \frac{(f(x_n) - \mu)^2}{||f'(x_n)||^2} \\ &\leq ||x_n - s||^2 - \frac{(f(x_n) - \mu)^2}{L^2} \\ &\leq ||x_n - s||^2. \end{aligned}$$

Proof (ii)

From our work in (i): for all $k \in \mathbb{N}$,

$$\frac{(f(x_k) - \mu)^2}{L^2} \le ||x_k - s||^2 - ||x_{k+1} - s||.$$

Summing the above inequalities over $k = 0, \ldots, n$ yields

 ∞

$$\frac{1}{L^2} \sum_{k=0}^n (f(x_k) - \mu^2) \le ||x_0 - s||^2 - ||x_{n+1} - s||^2 \le ||x_0 - s||^2.$$

Letting $n \to \infty$,

$$0 \le \sum_{k=0} (f(x_k) - \mu)^2 \le L^2 ||x_0 - s||^2 < \infty$$

and it must be that $f(x_k) \to \mu$.

Proof (iii) Recall that

$$\mu_n := \min_{0 \le k \le n} f(x_k).$$

Let $n \ge 0$. For each $0 \le k \le n$,

$$(\mu_n - \mu)^2 \le (f(x_k) - \mu)^2$$
$$(n+1)\frac{(\mu_n - \mu)^2}{L^2} \le \frac{1}{L^2} \sum_{k=0}^n (f(x_k) - \mu)^2$$
$$\le ||x_0 - s||^2.$$

Minimizing over $s \in S$, we get that

$$(n+1)\frac{(\mu_n-\mu)^2}{L^2} \le d_S^2(x_0).$$

Proof (iv) Suppose that

uppose mai

$$n \ge \frac{L^2 d_S^2(x_0)}{\epsilon^2} - 1$$
$$\iff \frac{d_S^2(x_0)L^2}{n+1} \le \epsilon^2.$$

Apply (iii) yields

$$(\mu_n - \mu)^2 \le \frac{d_S^2(x_0)L^2}{n+1}$$
$$\le \epsilon^2$$
$$\mu_n - \mu \le \epsilon.$$

Recall that if $(x_n)_{n\in\mathbb{N}}$ is Fejér monotone with respect to some $\emptyset \neq C \subseteq \mathbb{R}^m$, and every cluster point lies in C, then $x_n \to c \in C$.

Theorem 3.3.3 (Convergence of Projected Subgradient) Suppose x_n is generated as in the projected subgradient method with Polyak's rule.

Then $x_n \to s \in S$.

Proof

We have already shown that (x_n) is Fejér monotone with respect to S. Thus the sequence

is also bounded. Also, by the previous theorem,

$$f(x_n) \to \mu = \min_{x \in C} f(x).$$

By Bolzano-Weirestrass, there is some subsequence $x_{k_n} \to \bar{x} \in C$. Now,

Hence $\bar{x} \in S$. That is, all cluster points of $(x_n)_{n \in \mathbb{N}}$ lie in S.

It follows that $x_n \to \bar{x} \in S$ by the Fejér monotonicity theorem.

Example 3.3.4 Let $C \subseteq \mathbb{R}^m$ be convex, closed, and non-empty. Fix $x \in \mathbb{R}^m$.

$$\partial d_C(x) = \begin{cases} \frac{x - P_C(x)}{d_C(x)}, & x \notin C\\ N_C(x) \cap B(0; 1), & x \in C \end{cases}$$

Moreover, $\sup \|\partial d_C(x)\| \leq 1$.

Lemma 3.3.5 Let f be convex, l.s.c., and proper. Fix $\lambda > 0$. Then

 $\partial(\lambda f) = \lambda \partial f.$

3.3.1 The Convex Feasibility Problem

Problem 1 Given k closed convex subsets $S_i \subseteq \mathbb{R}^m$ such that

$$S := \bigcap_{i=1}^{k} S_i \neq \emptyset,$$

find $x \in S$.

We take

$$f(x) := \max\{d_{S_i}(x) : i \in [k]\}$$

The domain is $C := \mathbb{R}^m$. Observe that $f \ge 0$ with

$$f(x) = 0 \iff \forall i, d_{S_i}(x) = 0$$
$$\iff \forall i, x \in S_i$$
$$\iff x \in S.$$

Recall that the max rule for subdifferentials implies that for all $x \notin S$,

$$\partial f(x) = \operatorname{conv} \{ \partial d_{S_i}(x) : d_{S_i}(x) = f(x) > 0 \}$$

Thus $\|\partial f(x)\| \leq 1$ as a convex combination preserves the norm bound.

Given x_n , pick an index \overline{i} such that $d_{S_{\overline{i}}}(x_n) = f(x_n) > 0$. Set

$$f'(x_n) := \frac{x_n - P_{S_{\overline{i}}}(x_n)}{d_{S_{\overline{i}}}(x_n)}$$

Since this is a unit vector, Polyak's step size simplifies to

$$t_n = d_{S_{\overline{i}}}(x_n).$$

The sequence converging to a member of S is thus

$$\begin{aligned} x_{n+1} &:= P_C(x_n - t_n f'(x_n)) \\ &= x_n - t_n f'(x_n) \\ &= x_n - d_{S_{\bar{i}}}(x_n) \frac{x_n - P_{S_{\bar{i}}}(x_n)}{d_{S_{\bar{i}}}(x_n)} \\ &= x_n - (x_n - P_{S_{\bar{i}}}(x_n)) \\ &= P_{S_{\bar{i}}}(x_n). \end{aligned}$$

By the convergence of the projected subgradient method, $x_n \to S$.

Note that in practice, it is possible that $\mu := \min_{x \in C} f(x)$ is NOT known to us. In this case, replace Polyak's stepsize by a sequence $(t_n)_{n \in \mathbb{N}}$ such that

$$\frac{\sum_{k=0}^{n} t_k^2}{\sum_{k=0}^{n} t_k} \to 0, n \to \infty.$$

For example, $t_k := \frac{1}{k+1}$. One can show that

$$\mu_n := \min_{k=0}^n f(x_k) \to \mu$$

as $n \to \infty$.

3.4 Proximal Gradient Method

Consider the problem

$$\min F(x) := f(x) + g(x) \tag{P}$$
$$x \in \mathbb{R}^m$$

We shall assume that $S := \operatorname{argmin}_{x \in \mathbb{R}^m} F(x) \neq \emptyset$ and define

$$\mu := \min_{x \in \mathbb{R}^m} F(x).$$

f is "nice" in that it is convex, l.s.c., proper, and differentiable on int dom $f \neq \emptyset$. Moreover, ∇f is L-Lipschitz on int dom f.

g is convex, l.s.c., and proper with dom $g \subseteq$ int dom f. In particular,

ri

Example 3.4.1

We can model contrained optimization functions as

$$\min f(x) + \delta_C(x)$$
$$x \in \mathbb{R}^m$$

where $\varnothing \neq C \subseteq \mathbb{R}^m$ is convex and closed.

Let $x \in \operatorname{int} \operatorname{dom} f \supseteq \operatorname{dom} g$. Update via

$$\begin{aligned} x_{+} &:= \operatorname{Prox}_{\frac{1}{L}g} \left(x - \frac{1}{L} \nabla f(x) \right) \\ &= \operatorname{argmin}_{y \in \mathbb{R}^{m}} \frac{1}{L} g(y) + \frac{1}{2} \left\| y - \left(\frac{1}{L} \nabla f(x) \right) \right\|^{2} \\ &\in \operatorname{dom} g \\ &\subseteq \operatorname{int} \operatorname{dom} f \\ &= \operatorname{dom} \nabla f. \end{aligned}$$

Let the update operator be denoted

$$T := \operatorname{Prox}_{\frac{1}{L}g}(\operatorname{Id} - \frac{1}{L}\nabla f).$$

Theorem 3.4.2 Let $x \in \mathbb{R}^m$. Then

$$x \in S$$

= $\operatorname{argmin}_{x \in \mathbb{R}^m} F$
= $\operatorname{argmin}_{x \in \mathbb{R}^m} (f + g)$
 \iff
 $x = Tx$
 \iff
 $x \in \operatorname{Fix} T.$

Proof

By Fermat's theorem,

$$\begin{aligned} x \in S \iff 0 \in \partial (f+g)(x) &= \nabla f(x) + \partial g(x) \\ \iff -\nabla f(x) \in \partial g(x) \\ \iff x - \frac{1}{L} \nabla f(x) \in x + \frac{1}{L} \partial g(x) = \left(\operatorname{Id} + \partial \left(\frac{1}{L} g \right) \right)(x) \\ \iff x \in \left(\operatorname{Id} + \partial \left(\frac{1}{L} g \right) \right)^{-1} \left(x - \frac{1}{L} \nabla f(x) \right) \\ \iff x = \operatorname{Prox}_{\frac{1}{L}g} \left(\operatorname{Id} - \frac{1}{L} \nabla f \right)(x) = Tx. \end{aligned}$$

Proposition 3.4.3

Let $f : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Fix $\beta > 0$. Then f is β -strongly convex if and only if for all $x \in \text{dom } \partial f, u \in \partial f(x)$,

$$f(y) \ge f(x) + \langle u, y - x \rangle + \frac{\beta}{2} \|y - x\|^2.$$

3.4.1 Proximal-Gradient Inequality

Proposition 3.4.4 Let $x \in \mathbb{R}^m, y_+ \in \text{int dom } f$, and

$$y_+ := \operatorname{Prox}_{\frac{1}{L}g}(y - \nabla f(y)) = Ty$$

Then

$$F(x) - F(y_+) \ge \frac{L}{2} ||x - y_+||^2 - \frac{L}{2} ||x - y||^2 + D_f(x, y).$$

where

$$D_f(x,y) := f(x) - f(y) - \langle \nabla f(y), x - y \rangle$$

 D_f is known as the Bregman distance.

Proof

Define

$$h(z) := f(y) + \langle \nabla f(y), z - y \rangle + g(z) + \frac{L}{2} ||z - y||^2.$$

Then h is L-strongly convex.

We claim that y_+ is the unique minimizer of h. Indeed, for $z \in \mathbb{R}^m$,

$$\begin{split} \in \operatorname{argmin} h \iff 0 \in \partial \left(f(y) + \langle \nabla f(y), z - y \rangle + g(z) + \frac{L}{2} ||z - y||^2 \right) \\ \iff 0 \in \partial \left(\langle \nabla f(y), z - y \rangle + g(z) + \frac{L}{2} ||z - y||^2 \right) \\ \iff 0 \in \partial \left(\langle \nabla f(y) + \partial g(z) + L(z - y) \right) \\ \iff 0 \in \frac{1}{L} \nabla f(y) + \partial \left(\frac{1}{L} g \right) (z) + (z - y) \\ \iff y - \frac{1}{L} \nabla f(y) \in z + \partial \left(\frac{1}{L} g \right) (z) \\ \iff y - \frac{1}{L} \nabla f(y) \in \left(\operatorname{Id} + \partial \left(\frac{1}{L} g \right) \right) (z) \\ \iff z \in \left(\operatorname{Id} + \partial \left(\frac{1}{L} g \right) \right)^{-1} \left(y - \frac{1}{L} \nabla f(y) \right) \\ \iff z = \operatorname{Prox}_{\frac{1}{L} g} \left(y - \frac{1}{L} \nabla f(y) \right) \\ \iff z = Ty = y_+. \end{split}$$

Applying the previous proposition yields that

$$h(x) \ge h(y_{+}) + \langle 0, x - y_{+} \rangle + \frac{L}{2} ||x - y_{+}||^{2}$$
$$= h(y_{+}) + \frac{L}{2} ||x - y_{+}||^{2}$$
$$h(x) - h(y_{+}) \ge \frac{L}{2} ||x - y_{+}||^{2}.$$

Moreover, by the descent lemma,

z

$$f(y_{+}) \le f(y) + \langle \nabla f(y), y_{+} - y \rangle + \frac{L}{2} ||y_{+} - y||^{2}$$

Hence

$$h(y_{+}) := f(y) + \langle \nabla f(y), y_{+} - y \rangle + g(y_{+}) + \frac{L}{2} ||y_{+} - y||^{2}$$

$$\geq f(y_{+}) + g(y_{+})$$

$$= F(y_{+}).$$

Combining with our work above,

$$h(x) - F(y_{+}) \ge h(x) - h(y_{+})$$

$$\ge \frac{L}{2} ||x - y_{+}||^{2}$$

$$f(y) + \langle \nabla f(y), x - y \rangle + g(x) + \frac{L}{2} ||x - y||^{2} - F(y_{+}) \ge \frac{L}{2} ||x - y_{+}||^{2}$$

$$f(x) + g(x) - F(y_{+}) \ge \frac{L}{2} ||x - y_{+}||^{2} - \frac{L}{2} ||x - y||^{2} + D_{f}(x, y).$$

Lemma 3.4.5 (Sufficient Decrease) We have

$$F(y_+) \le F(y) - \frac{L}{2} ||y - y_+||^2.$$

Proof

Recall that

$$F(y) - F(y_{+}) \geq \frac{L}{2} ||y - y_{+}||^{2} - \frac{L}{2} ||y - y||^{2} + D_{f}(y, y)$$

$$F(y) - F(y_{+}) \geq \frac{L}{2} ||y - y_{+}||^{2} \qquad f \text{ is convex}$$

$$F(y_{+}) \leq F(y) - \frac{L}{2} ||y - y_{+}||^{2}.$$

3.4.2 The Algorithm

Given $x_0 \in \operatorname{int} \operatorname{dom} f$, update via

$$x_{n+1} := Tx_n = \operatorname{Prox}_{\frac{1}{L}g}\left(x_n - \frac{1}{L}\nabla f(x_n)\right).$$

Theorem 3.4.6 (Rate of Convergence)

The following hold:

- (i) For all $s \in S, n \in \mathbb{N}$, $||x_{n+1} s|| \leq ||x_n s||$ (ie x_n is Fejér monotone with respect to S).
- (ii) $(F(x_n))_{n \in \mathbb{N}}$ satisfies $0 \le F(x_n) \mu \le \frac{Ld_S^2(x_0)}{2n} \in O\left(\frac{1}{n}\right)$. Hence $F(x_n) \to \mu$.

Proof

(i): Recall the previous proposition that

$$0 \ge F(s) - F(x_{k+1}) \qquad F(x) = \mu$$

$$\ge \frac{L}{2} \|s - x_{k+1}\|^2 - \frac{L}{2} \|s - x_k\|^2.$$

Thus (x_n) is Fejér monotone with respect to S.

(ii): Multiplying this inequality by $\frac{2}{L}$ and adding the resulting inequalities from $k = \overline{0, \dots, n-1}$ and telescoping yields

$$\frac{2}{L} \left(\sum_{k=0}^{n-1} (\mu - F(x_{k+1})) \right) \ge \|s - x_k\|^2 - \|s - x_0\|^2$$
$$\ge -\|s - x_0\|^2.$$

In particular, by setting $s := P_S(x_0) \in S$, we obtain

$$d_{S}^{2}(x_{0}) = \|P_{S}(x_{0}) - x_{0}\|^{2}$$

$$\geq \frac{2}{L} \sum_{k=0}^{n-1} (F(x_{k+1}) - \mu)$$

$$\geq \frac{2}{L} \sum_{k=0}^{n-1} (F(x_{n}) - \mu)$$

$$= \frac{2}{L} n(F(x_{n}) - \mu).$$

Equivalently,

$$0 \le F(x_n) - \mu$$
$$\le \frac{Ld_S^2(x_0)}{2n}$$

and $F(x_n) \to \mu$.

Theorem 3.4.7 (Convergence of Proximal Gradient Method) x_n converges to some solution in

 $S := \operatorname{argmin}_{x \in \mathbb{R}^m} F(x).$

Proof

By the previous theorem we know that (x_n) is Fejér monotone with respect to S. Thus it suffices to show that every cluster point of (x_n) lies in S.

Suppose \bar{x} is a cluster point of (x_n) , say $x_{k_n} \to \bar{x}$. We argue that $F(\bar{x}) = \mu$. Indeed,

$$\mu \leq F(\bar{x})$$

$$\leq \liminf_{n} F(x_{k_n})$$

$$= \mu$$

Hence $F(\bar{x}) = \mu$ and $\bar{x} \in S$.

Proposition 3.4.8

The following hold:

(i) $\frac{1}{L}\nabla f$ is f.n.e.

- (ii) $\operatorname{Id} -\frac{1}{L} \nabla f$ is f.n.e.
- (iii) $T = \operatorname{Prox}_{\frac{1}{L}g}(\operatorname{Id} \nabla f)$ is $\frac{2}{3}$ -averaged.

Proof

(i), (ii): Recall for real-valued, convex, differentiable functions with L-Lipschitz gradient,

$$\langle \boldsymbol{\nabla} f(x) - \boldsymbol{\nabla} f(y), x - y \rangle \ge \frac{1}{L} \| \boldsymbol{\nabla} f(x) - \boldsymbol{\nabla} f(y) \|^{2}$$
$$\left\langle \frac{1}{L} \boldsymbol{\nabla} f(x) - \frac{1}{L} \boldsymbol{\nabla} f(y), x - y \right\rangle \ge \left\| \frac{1}{L} \boldsymbol{\nabla} f(x) - \frac{1}{L} \boldsymbol{\nabla} f(y) \right\|^{2}$$

The result follows then from the two equivalent characterizations of f.n.e.: Id - T is non-expansive and

$$\langle Tx - Ty, Tx - Ty \rangle \ge ||Tx - Ty||^2$$

<u>(iii)</u>: Recall that $\operatorname{Prox}_{\frac{1}{L}g}$ is f.n.e. Hence, $\operatorname{Prox}_{\frac{1}{L}g}$ and $\operatorname{Id} -\frac{1}{L}\nabla f$ are both $\frac{1}{2}$ -averaged. Consequently, the composition

$$\operatorname{Prox}_{\frac{1}{L}g}\left(\operatorname{Id}-\frac{1}{L}\boldsymbol{\nabla}f\right)$$

is averaged with constant $\frac{2}{3}$.

Theorem 3.4.9 The PGM iteration satisifes

$$\|x_{n+1} - x_n\| \le \frac{\sqrt{2}d_S(x_0)}{\sqrt{n}} \in O\left(\frac{1}{\sqrt{n}}\right).$$

Proof

Using the previous remark, we have that for all x, y,

$$\frac{1}{2} \| (\mathrm{Id} - T)x - (\mathrm{Id} - T)y \|^2 < \|x - y\|^2 - \|Tx - Ty\|^2.$$

Let $x \in S$ and observe that $s \in Fix s$ by a previous theorem. Applying the above inequality with $x = x_k, y = s$ yields

$$\frac{1}{2} \| (\mathrm{Id} - T)x_k - (\mathrm{Id} - T)s \| \le \|x_k - s\|^2 - \|Tx_k - Ts\|^2$$
$$\frac{1}{2} \|x_k - x_{k+1}\|^2 \le \|x_k - s\|^2 - \|x_{k+1} - s\|^2.$$

Now, T is $\frac{2}{3}$ averaged and thus nonexpansive. Therefore,

$$||x_k - x_{k+1}|| = ||Tx_{k-1} - Tx_k|| \le ||x_{k-1} - x_k||$$

$$\le \dots$$

$$\le ||x_0 - x_1||.$$

Summing over $k = 0 \dots, n-1$ yields

$$||x_0 - s||^2 - ||x_n - s||^2 \ge \frac{1}{2} \sum_{k=0}^{n-1} ||x_k - x_{k+1}||^2$$
$$\ge \frac{1}{2} n ||x_{n-1} - x_n||^2.$$

Specifically, for $x := P_S(x_0)$,

$$\frac{1}{2}n\|x_{n-1} - x_n\|^2 \le d_S^2(x_0)$$
$$\|x_{n-1} - x_n\| \le \frac{\sqrt{2}}{\sqrt{n}}d_S(x_0)$$

Corollary 3.4.9.1 (Classical Proximal Point Algorithm) Let $g : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. Fix c > 0. Consider the problem

 $\min_{x \in \mathbb{R}^m} g(x) \tag{P}$

Assume that $S := \operatorname{argmin}_{x \in \mathbb{R}^m} g(x) \leq \emptyset$. Let $x_0 \in \mathbb{R}^m$ and update via

$$x_{n+1} := \operatorname{Prox}_{cg} x_n.$$

Then

(i)
$$g(x_n) \downarrow \mu := \min g(\mathbb{R}^m)$$

(ii)
$$0 \le g(x_n) - \mu \le \frac{d_S^2(x_0)}{2m}$$

- (iii) x_n converges to a point within S
- (iv) $||x_{n-1} x_n|| \le \frac{\sqrt{2}d_S(x_0)}{\sqrt{n}}$

Proof

Set $f \equiv 0$ and observe that $\nabla f \equiv 0$ and ∇f is *L*-Lipchitz for any L > 0. Specifically, for $L := \frac{1}{c} > 0$.

We can thus write (P) as

$$\min_{x \in \mathbb{R}^{m}} f(x) + g(x) \tag{P}$$

Now, $S = \operatorname{argmin} f + g = \operatorname{argmin} g$. Moreover, $\nabla f \equiv 0 \implies \operatorname{Id} -\frac{1}{L} \nabla f = \operatorname{Id}$.

Hence

$$T := \operatorname{Prox}_{\frac{1}{L}g}(\operatorname{Id} - \frac{1}{L}\nabla f)$$
$$= \operatorname{Prox}_{cg}$$

and we are done by the previous results.

3.5 Fast Iterative Shrinkage Thresholding

Consider the following problem

$$\min F(x) := f(x) + g(x) \tag{P}$$
$$x \in \mathbb{R}^m$$

We assume (P) has solutions so that

$$S := \operatorname{argmin}_{x \in \mathbb{R}^m} F(x) \neq \emptyset$$

and write $\mu := \min_{x \in \mathbb{R}^m} F(x)$.

We assume f is convex, l.s.c., and proper, as well as being differentiable on \mathbb{R}^m . Moreover, ∇f is *L*-Lipschitz on \mathbb{R}^m .

We also assume that g is convex, l.s.c., and proper.

3.5.1 The Algorithm

Initially, set $x_0 \in \mathbb{R}^m, t_0 = 1, y_0 = x_0$. We update via

$$t_{n+1} = \frac{1 + \sqrt{1 + 4t_n^2}}{2}$$
$$x_{n+1} = \operatorname{Prox}_{\frac{1}{L}g} \left(\operatorname{Id} - \frac{1}{L} \nabla f \right) (y_n) = Ty_n$$
$$y_{n+1} = x_{n+1} + \frac{t_n - 1}{t_{n+1}} (x_{n+1} - x_n)$$
$$= \left(1 - \frac{1 - t_n}{t_{n+1}} \right) x_{n+1} + \frac{1 - t_n}{t_{n+1}} x_n$$
$$\in \operatorname{aff}\{x_n, x_{n+1}\}$$

Observe that

$$t_{n+1}^2 - t_{n+1} = t_n^2$$

3.5.2 Correctness

Proposition 3.5.1

The sequence $(t_n)_{n \in \mathbb{N}}$ satisfies

$$t_n \ge \frac{n+2}{2} \ge 1.$$

Proof Induction.

Theorem 3.5.2 (Quadratic Converge for FISTA) The sequence (x_n) satisfies

$$0 \le F(x_n) - \mu$$
$$\le \frac{2Ld_S^2(x_0)}{(n+1)^2}$$
$$\in O\left(\frac{1}{n^2}\right).$$

Notice that this converges significantly faster than $O\left(\frac{1}{n}\right)$ for PGM.

Proof Set $s := P_S(x_0)$. By the convexity of F,

$$F\left(\frac{1}{t_n}s + \left(1 - \frac{1}{t_n}\right)x_n\right) \le \frac{1}{t_n}F(s) + \left(1 - \frac{1}{t_n}\right)F(x_n)$$

For each $n \in \mathbb{N}$, set

$$s_n := F(x_n) - \mu \ge 0.$$

By computation,

$$\left(1-\frac{1}{t_n}\right)s_n - s_{n+1} \ge F\left(\frac{1}{t_n}s + \left(1-\frac{1}{t_n}\right)x_n\right) - F(x_{n+1}).$$

Now, applying the proximal gradient inequality with

$$x = \frac{1}{x_n}s + \left(1 - \frac{1}{t_n}\right)x_n$$
$$y = y_n$$
$$y_+ = Ty_n = x_{n+1}$$

yields

$$F\left(\frac{1}{t_n}s + \left(1 - \frac{1}{t_n}x_n\right)\right) - F(x_{n+1})$$

$$\geq \frac{L}{2t_n^2} \|t_n x_{n+1} - (s + (t_n - 1)x_n)\|^2 - \frac{L}{2t_n^2} \|t_n y_n - (s + (t_n - 1)x_n)\|^2$$

Simplying yields that

$$||t_n y_n - (s + (t_n - 1)x_n)||^2 = ||t_{n-1} x_n - (s + (t_{n-1} - 1))x_{n-1}||^2$$

Combined with the fact that $t_{n+1}^2 - t_{n+1} = t_n^2$, we get that

$$t_{n-1}^{2}s_{n} - t_{n}^{2}s_{n+1} \ge t_{n}^{2} \left(F\left(\frac{1}{t_{n}}s = \left(1 - \frac{1}{t_{n}}\right)\right) x_{n} \right) - F(x_{n+1})$$

$$\ge \frac{L}{2} \|t_{n}x_{n+1} - (s + (t_{n} - 1))x_{n}\|^{2} - \frac{L}{2} \|t_{n}y_{n} - (s + (t_{n} - 1))x_{n}\|^{2}$$

$$= \frac{L}{2} \|t_{n}x_{n+1} - (s + (t_{n} - 1))x_{n}\|^{2} - \frac{L}{2} \|t_{n-1}x_{n} - (s + (t_{n-1} - 1))x_{n-1}\|^{2}$$

Set $u_n := t_{n-1}x_n - (s + (t_{n-1} - 1)x_{n-1})$. Multiplying the inequality above by $\frac{2}{L}$ and rearranging yields

$$||u_{n+1}||^2 + \frac{2}{L}t_n^2 s_{n+1} \le ||u_n||^2 + \frac{2}{L}t_{n-1}^2 s_n$$

It follows that

$$\frac{2}{L}t_{n-1}^{2}s_{n} \leq ||u_{n}||^{2} + \frac{2}{L}t_{n}^{2}s_{n+1}$$

$$\leq ||u_{1}||^{2} + \frac{2}{L}t_{0}^{2}s_{1}$$

$$= ||x_{1} - s||^{2} + \frac{2}{L}(F(x_{1}) - \mu)$$

$$\leq ||x_{0} - s||^{2}$$

where the last inequality follows from the proximal gradient inequality.

In other words,

$$F(x_n) - \mu = s_n$$

$$\leq \frac{L}{2} ||x_0 - s||^2 \frac{1}{t_{n-1}^2}$$

$$\leq \frac{L}{2} ||x_0 - s||^2 \frac{4}{(n+1)^2} \qquad t_n \geq \frac{n+2}{2}$$

$$= \frac{2Ld_S^2(x_0)}{(n+1)^2}.$$

3.6 Iterative Shrinkage Thresholding Algorithm

This is a special case of PGM with $g(x) = \lambda ||x||, \lambda > 0$. Hence

$$\frac{1}{L}g(x) = \frac{\lambda}{L} \|x\|_1$$

and

$$\operatorname{Prox}_{\frac{1}{L}g}(x) = \left(\operatorname{Prox}_{\frac{\lambda}{L}\|\cdot\|_{1}}(x)\right)_{i=1}^{n}$$
$$= \left(\operatorname{sign}(x_{i})\max\{0, |x_{i}| - \frac{\lambda}{L}\}\right)_{i=1}^{n}$$

FISTA is the accelerated version of ISTA.

3.6.1 Norm Comparison

Consider the problems

$$\begin{array}{l} \min \|x\|_2 & (P_1) \\ Ax = b \\ \min \|x\|_1 & (P_2) \\ Ax = b \end{array}$$

Example 3.6.1 Consider the problem

$$\min \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1 \tag{P}$$
$$c \in \mathbb{R}^m$$

where $\lambda > 0$ and $A \in \mathbb{R}^{n \times m}$.

g is convex, l.s.c., and proper, with f being smooth and

$$\nabla f(x) = A^T (Ax - b).$$

Recall that ∇f is *L*-Lipschitz if and only if the spectral norm of the Hessian is bounded by *L*. Thus ∇f is *L*-Lipschitz for

$$L := \lambda_{\max}(A^T A).$$

To see the necessarily assumption that $S := \operatorname{argmin}_{x \in \mathbb{R}^m} F(x)$ holds, observe that f(x) is continuous, convex, and coercive, with dom $F = \mathbb{R}^m$.

Using the fact that if F is convex, l.s.c., proper, and coercive and $\emptyset \neq C$ is closed and convex with dom $F \cap C \neq \emptyset$, then F has a minimizer over C.

Now, m can be very large and $\lambda_{\max}(A^T A)$ may be difficult to compute. It suffices to use some upper bound on eigenvalues such as the Frobenius norm

$$||A||_F^2 = \sum_{j=1}^m \sum_{i=1}^n a_{ij}^2$$
$$= \operatorname{tr}(A^T A)$$
$$= \sum_{i=1}^m \lambda_i (A^T A)$$

3.7 Douglas-Rachford Algorithm

Consider the problem

$$\min F(x) := f(x) + g(x) \tag{P}$$
$$x \in \mathbb{R}^m$$

where f, g are convex, l.s.c., and proper with

$$S := \operatorname{argmin}_{x \in \mathbb{R}^m} F(x) \neq \emptyset.$$

Suppose there exists some $s \in S$ such that

$$0 \in \partial f(s) + \partial g(s) \subseteq \partial (f+g)(s).$$

This happens for example when $\operatorname{ri} \operatorname{dom} f \cap \operatorname{ri} \operatorname{dom} g \neq \emptyset$.

Define

$$R_f := 2 \operatorname{Prox}_f - \operatorname{Id}$$
$$R_g := 2 \operatorname{Prox}_g - \operatorname{Id}$$

 $T := \mathrm{Id} - \mathrm{Prox}_f + \mathrm{Prox}_g R_f.$

Lemma 3.7.1

The following hold:

(i) R_f, R_g are nonexpansive

(ii)
$$T = \frac{1}{2}(\operatorname{Id} + R_g R_f)$$

(iii) T is firmly nonexpansive

Proof

Since $Prox_f$, $Prox_g$ are f.n.e., $2 Prox_f - Id$, $2 Prox_g - Id$ are nonexpansive as shown in the assignments.

Expanding the definitions of R_g, R_f shows the equivalent expression

$$T = \frac{1}{2} (\mathrm{Id} + R_g R_g).$$

The above shows that T is $\frac{1}{2}$ -averaged, which is equivalent to firm nonexpansiveness.

Proposition 3.7.2 Fix $T = \text{Fix } R_g R_f$.

Proof Let $x \in \mathbb{R}^m$. Then

$$x \in \operatorname{Fix} T \iff x = \frac{1}{2}(x + R_g R_f x)$$
$$\iff x = R_g R_f x$$
$$\iff x \in \operatorname{Fix} R_g R_f.$$

Proposition 3.7.3 $\operatorname{Prox}_f(\operatorname{Fix} T) \subseteq S.$

Proof

Let $x \in \mathbb{R}^m$ and set $s = \operatorname{Prox}_f(x) = (\operatorname{Id} + \partial f)^{-1}(x)$. Then

$$x \in (\mathrm{Id} + \partial f)(s) = s + \partial f(s) \iff 2s - (2s - x) \in s + \partial f(s)$$
$$\iff 2s - R_f(x) - s \in \partial f(s)$$
$$\iff s - R_f(x) \in \partial f(s).$$
Moreover,

$$x \in \operatorname{Fix} T \iff x = x - \operatorname{Prox}_f(x) + \operatorname{Prox}_g R_f(x)$$
$$\iff s = \operatorname{Prox}_g R_f(x) = (\operatorname{Id} + \partial g)^{-1}(R_f(x))$$
$$\iff R_f(x) \in s + \partial g(s)$$
$$\iff R_f(x) - s \in \partial g(s)$$

It follows that

$$0 = s - R_f(x) + R_f(x) - s$$

$$\in \partial f(s) + \partial g(s)$$

$$\subseteq \partial (f+g)(s)$$

and $s \in S$ as required for all $x \in \operatorname{Fix} T$.

Recall that (firmly) nonexpansive operators are continuous and iterating a f.n.e. operator tends to a fixed point.

Theorem 3.7.4 Let $x_0 \in \mathbb{R}^m$. Update via

$$x_{n+1} := x_n - \operatorname{Prox}_q x_n + \operatorname{Prox}_q (2 \operatorname{Prox}_f x_n - x_n).$$

Then $\operatorname{Prox}_f(x_n)$ tends to a minimizer of f + g.

Proof

Remark that $x_{n+1} = Tx_n = T^{n+1}x_0$. Since T is f.n.e., we know that $x_n \to \bar{x} \in \operatorname{Fix} T$.

But since $Prox_f$ is continuous,

 $\operatorname{Prox}_f x_n \to \operatorname{Prox}_f \bar{x} \in \operatorname{Prox}_f(\operatorname{Fix} T) \subseteq S.$

3.8 Stochastic Projected Subgradient Method

Consider the problem

$$\min f(x) \tag{P}$$
$$x \in C$$

f is convex, l.s.c., and proper, $\varnothing \neq C \subseteq \operatorname{int} \operatorname{dom} f$ is closed and convex, and S :=

 $\operatorname{argmin}_{x\in C} f(x) \neq \varnothing.$

 Set

$$\mu := \min f(C).$$

Given $x_0 \in C$, update via

$$x_{n+1} := P_C(x_n - t_n g_n).$$

We assume that $t_n > 0$ and

$$\sum_{n=0}^{\infty} t_n \to \infty$$

$$\frac{\sum_{k=0}^{n} t_k^2}{\sum_{k=0}^{n} t_k} \to 0$$

$$k \to \infty$$

for example $t_n = \frac{\alpha}{n+1}$ for some $\alpha > 0$.

We choose g_n to be a random vector satisfying the following assumptions

- (A1) For each $n \in \mathbb{N}$, $E[g_n \mid x_n] \in \partial f(x_n)$ (unbiased subgradient)
- (A2) For each $n \in \mathbb{N}$, there is some L > 0, $E[||g_n||^2 | x_n] \le L^2$

Let us write

$$\mu_k := \min\{f(x_i) : 0 \le i \le k\}.$$

Theorem 3.8.1 Assuming the previous assumptions hold, then $E[\mu_k] \to \mu$ as $k \to \infty$.

Proof

Pick $s \in S$ and let $n \in \mathbb{N}$. Then

$$0 \le ||x_{n+1} - s||^{2}$$

= $||P_{C}(x_{n} - t_{n}g_{n}) - P_{C}s||^{2}$
 $\le ||(x_{n} - t_{n}g_{n}) - s||^{2}$
= $||(x_{n} - s) - t_{n}g_{n}||^{2}$
= $||x_{n} - s||^{2} - 2t_{n}\langle g_{n}, x_{n} - s \rangle + t_{n}^{2}||g_{n}||^{2}$

Taking the conditional expectation given x_n yields

$$E[\|x_{n+1} - s\|^2 | x_n] \le \|x_n - s\|^2 + 2t_n \langle E[g_n | x_n], s - x_n \rangle + t_n^2 E[\|g_n\|^2 | x_n] \\ \le \|x_n - s\|^2 + 2t_n (f(x) - f(x_n)) + t_n^2 L^2 \\ = \|x_n - s\|^2 + 2t_n (\mu - f(x_n)) + t_n^2 L^2.$$
(A1), (A2)

Now, taking the expection with respect to x_n yields

$$E[||x_{n+1} - s||^2] \le E[||x_n - s||^2] + 2t_n(\mu - E[f(x_n)]) + t_n^2 L^2$$

Let $k \in \mathbb{N}$. Summing the inequality from n = 0 to k yields

$$0 \le E[\|x_{n+1} - s\|^2]$$

$$\le \|x_0 - s\|^2 - 2\sum_{n=0}^k t_n(E[f(x_n)] - \mu) + L^2\sum_{n=0}^k t_n^2$$

Rearranging yields

3.8.1 Minimizing a Sum of Functions

Consider the problem

$$\min f(x) := \sum_{i \in [r]} f_i(x) \tag{P}$$
$$x \in C$$

Suppose $f_1, \ldots, f_r : \mathbb{R}^m \to (-\infty, \infty]$ are convex, l.s.c., and proper. Set I := [r] and assume that for each $i \in I$,

$$\emptyset \neq C \subseteq \operatorname{int} \operatorname{dom} f_i.$$

for some closed convex C.

We also assume that for each $i \in I$, there is some $L_i \ge 0$ for which

 $\|\partial f_i(C)\| \le L_i.$

Proposition 3.8.2 $\sup \|\partial f_i(C)\| \leq L_i$ if and only if $f_i|_C$ is L_i -Lipchistz.

For example, this holds if C is bounded.

Let us assume that (P) has a solution. We verify (A1), (A2) to justify solving the problem with SPSM.

By the triangle inequality,

$$\sup \|\partial f(C)\| \le \sum_{i \in I} L_i.$$

Let $x_0 \in C$. Given $x_n \in C$, we pick an index $i_n \in I$ uniformly randomly and set

$$g_n := rf'_{i_n}(x_n) \in \partial f_{i_n}(x_n).$$

Observe that

$$E[g_n \mid x_n] = \sum_{i=1}^r \frac{1}{r} r f'_i(x_n)$$

= $\sum_{i=1}^r f'_i(x_n)$
 $\in \partial f_1(x_n) + \dots + \partial f_r(x_n)$
= $\partial (f_1 + \dots + f_r)(x_n)$ Sum Rule
= $\partial f(x_n)$

hence (A1) holds.

Next,

$$E[||g_n||^2 | x_n] = \sum_{i=1}^r \frac{1}{r} ||rf_i'(x_n)||^2$$
$$= \sum_{i=1}^r r ||f_i'(x_n)||^2$$
$$\leq r \sum_{i=1}^r L_i^2.$$

Thus (A2) holds with $L := \sqrt{r \sum_{i=1}^{r} L_i^2}$.

Having verified the assumptions, we may apply SPSM.

3.9 Duality

3.9.1 Fenchel Duality

Consider the problem

$$\min f(x) + g(x) \tag{P}$$
$$x \in \mathbb{R}^m$$

 $f,g:\mathbb{R}^m\to(-\infty,\infty]$ are convex, l.s.c., and proper.

We can rewrite the problem as

$$\min_{x,z\in\mathbb{R}^m} \{f(x) + g(z) : x = z\}$$

Construct the Lagrangian

$$L(x, z; y) := f(x) + g(z) + \langle y, z - x \rangle$$

The dual objective function is obtained by minimizing the Lagrangian with respect to x, z.

$$d(u) := \inf_{x,z} L(x,z;u)$$

= $\inf_{x,z} \{f(x) - \langle u, x \rangle + g(z) + \langle u, z \rangle \}$
= $-\sup_{x} (\langle u, x \rangle - f(x)) - \sup_{z} (\langle -u, z \rangle - g(z))$
= $-f^{*}(u) - g^{*}(-u).$

Let

$$p := \inf_{x \in \mathbb{R}^m} f(x) + g(x)$$
$$d := \inf_{u \in \mathbb{R}^m} f^*(u) + g^*(-u)$$

and recall that $p \ge -d$ from assignments.

3.9.2 Fenchel-Rockafellar Duality

Consider the problem

$$\min f(x) + g(Ax) \tag{P}$$
$$x \in \mathbb{R}^m$$

where $f : \mathbb{R}^m, \to (-\infty, \infty]$ is convex, l.s.c., and proper, $g : \mathbb{R}^n, \to (-\infty, \infty]$ is convex, l.s.c., and proper, and $A \in \mathbb{R}^{n \times m}$.

The Fenchel-Rockafellar dual is given by

$$\min f^*(-A^T y) + g^*(y) \tag{D}$$
$$y \in \mathbb{R}^n$$

As before, let

$$p := \inf_{x \in \mathbb{R}^m} f(x) + g(Ax)$$
$$d := \inf_{y \in \mathbb{R}^n} f^*(-A^T y) + g^*(y)$$

and recall that $p \ge -d$ from assignments.

Lemma 3.9.1 Let $h : \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. For each $x \in \mathbb{R}^m$,

$$h^v(x) := h(-x).$$

The following hold:

- (i) h^v is convex, l.s.c., and proper
- (ii) $\partial h^v = -\partial h \circ (-\operatorname{Id})$

Proof

The convexity, l.s.c., and properness is verified by definition.

Let $u \in \mathbb{R}^m$ and $x \in \operatorname{dom} \partial h \circ (-\operatorname{Id})$. Then

$$\begin{aligned} u \in -\partial h \circ (-\operatorname{Id})(x) &= -\partial f(-x) \iff -u \in \partial h(-x) \\ \iff h(y) \ge h(-x) + \langle -u, y - (-x) \rangle & \forall y \in \mathbb{R}^m \\ \iff h(-y) \ge h(-x) + \langle -u, -y + x \rangle & \forall y \in \mathbb{R}^m \\ \iff h^v(y) \ge h^v(x) + \langle u, y - x \rangle & \forall y \in \mathbb{R}^m \\ \iff u \in \partial h^v(x). \end{aligned}$$

3.9.3 Self-Duality of Douglas-Rachford

Recal that the DR operator to solve (P) is given by

$$T_p := \frac{1}{2} (\mathrm{Id} + R_g R_f)$$

where $R_f := 2 \operatorname{Prox}_f - \operatorname{Id}$ and similarly for R_g .

Similarly, the DR operator to solve (D) is defined as

$$T_d := \frac{1}{2} (\mathrm{Id} + R_{(g^*)^v} R_{f^*}).$$

Lemma 3.9.2

Let $h: \mathbb{R}^m \to (-\infty, \infty]$ be convex, l.s.c., and proper. The following hold:

- (i) $\operatorname{Prox}_{h^v} = -\operatorname{Prox}_h \circ (\operatorname{Id})$
- (ii) $R_{h^*} = -R_h$
- (iii) $R_{(h^*)^v} = R_h \circ (-\operatorname{Id})$

Proof

(i): This is shown using the relation $\operatorname{Prox}_f = (\operatorname{Id} + \partial f)^{-1}$ as well as the lemma $\partial h^v = -\partial h \circ (-\operatorname{Id})$.

(ii): This can be proven by expanding the definition of R_{h^*} as well as the relation $\operatorname{Prox}_{h^*} = (\operatorname{Id} - \operatorname{Prox}_h)$ proven in A4.

(iii): First, we can shown by definition that

$$\operatorname{Prox}_{(h^*)^v} = -\operatorname{Prox}_{h^*} \circ (-\operatorname{Id}).$$

The proof is completed using this fact as well as the relation $\operatorname{Prox}_{h^*} = (\operatorname{Id} - \operatorname{Prox}_h)$

Theorem 3.9.3 $T_p = T_d.$

Proof

From our previous lemma,

$$\begin{split} T_d &:= \frac{1}{2} (\operatorname{Id} + R_{(g^*)^v} R_{f^*}) \\ &= \frac{1}{2} (\operatorname{Id} + [R_g \circ (-\operatorname{Id})] \circ (-R_f)) \\ &= \frac{1}{2} (\operatorname{Id} + R_g R_f) \\ &= T_n. \end{split}$$

Theorem 3.9.4 Let $x_0 \in \mathbb{R}^m$. Update via

$$x_{n+1} := x_n - \operatorname{Prox}_f(x_n) + \operatorname{Prox}_q(2\operatorname{Prox}_f x_n - x_n) = T_p x_n.$$

Then $\operatorname{Prox}_f(x_n)$ converges to a minimizer of f + g and $x_n - \operatorname{Prox}_f(x_n)$ converges to a minimizer of $f^* + (g^*)^v$.

Proof

We already know that $\operatorname{Prox}_f(x_n)$ converges to a minimizer of f + g. Since $T_p = T_d$, $\operatorname{Prox}_{f^*}(x_n)$ converges to a minimizer of $f^* + (g^*)^v$. Using the fact that $\operatorname{Prox}_{f^*} = \operatorname{Id} - \operatorname{Prox}_f$, we conclude the proof.