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Convex Sets

1.1 Introduction

Let f : Rn → R be differentiable. Consider the problem

min f(x) (P )

x ∈ C ⊆ Rn

In the case when C = Rn, the minimizers of f will occur at the critical points of f . Namely,
at x ∈ Rn when ∇f(x) = 0. This is known as “Fermat’s Rule”.

In this course, we seek to approach (P ) when f is not differentiable but f is convex and
when ∅ 6= C ( Rn is a convex set.

1.2 Affine Sets & Subspaces

Definition 1.2.1 (Affine Set)
S ⊆ Rn is affine if for all x, y ∈ S and λ ∈ R,

λx+ (1− λ)y ∈ S.

Definition 1.2.2 (Affine Subspace)
An affine set ∅ 6= S ⊆ Rn.
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Definition 1.2.3 (Affine Hull)
Let S ⊆ Rn. The affine hull of S

aff(S) :=
⋂

S⊆T⊆Rn:T is affine

T

is the smallest affine set containing S.

Example 1.2.1
Let L be a linear subspace of Rn and a ∈ Rn.

Then L, a+ L,∅,Rn are all examples of affine sets.

1.3 Convex Sets

Definition 1.3.1
C ⊆ Rn is convex if for all x, y ∈ C and λ ∈ (0, 1),

λx = (1− λ)y ∈ C.

Example 1.3.1
∅, Rn, balls, affine, and half-sets are all examples of convex sets.

Theorem 1.3.2
The intersection of an arbitrary collection of convex sets is convex.

Proof
Let I be an index set. Let (Ci)i∈I be a collection of convex subsets of Rn.

Put
C :=

⋂
i∈I

Ci.

Pick x, y ∈ C. By the definition of set intersection, x, y ∈ Ci for all i ∈ I. Since each Ci

is convex, for all λ ∈ (0, 1),
λx+ (1− λ)y ∈ Ci.
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It follows that C is convex by the arbitrary choice of i.

Corollary 1.3.2.1
Let bi ∈ Rn and βi ∈ R for i ∈ I for some arbitrary index set I.
The set

C := {x ∈ Rn : 〈x, bi〉 ≤ βi,∀i ∈ I}

is convex.

1.4 Convex Combinations of Vectors

Definition 1.4.1 (Convex Combinations)
A vector sum

m∑
i=1

λixi

is a convex conbination if λ ≥ 0 and 1Tλ = 1.

Theorem 1.4.1
C ⊆ Rn is convex if and only if it contains all convex combinations of its elements.

Proof
( ⇐= ) Apply the definition of convex combination with m = 2.

( =⇒ ) We argue by induction on m. Observe that by deleting xi’s if necessary, we may
assume without loss of generality that λ > 0.

When m = 2, this is simply the definition of convexity.

For m > 2, we can write
m∑
i=1

λixi =
m−1∑
i=1

λixi + λmxm

= (1− λm)
m−1∑
i=1

λi
1− λm

xi + λmxm

= (1− λm)x
′ + λmxm. x′ ∈ C by induction

Hence C indeed contains all convex combinations of its elements.

9
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Definition 1.4.2 (Convex Hull)
The convex hull of S ⊆ Rn

convS :=
⋂

S⊆T⊆Rn:T is convex

T

is the smallest convex set containing S.

Theorem 1.4.2
Let ⊆ Rn. convS consists of all convex conbinations of elements of S.

Proof
Let D be the set of convex combinations of elements of S.

(convS ⊆ D) D is convex since convex combinations of convex combinations again yields
convex combinations. Moreover, S ⊆ D by considering the trivial convex combination. It
follows that convS ⊆ D by definition.

(D ⊆ convS) By the previous theorem, the convexity of convS means that if contains
all convex combinations of elements. In particular, it contains all convex conbinations of
S ⊆ convS.

1.5 The Projection Theorem

Definition 1.5.1 (Distance Function)
Fix S ⊆ Rn. The distance to S is the function dS : Rn → [0,∞] given by

x 7→ inf
s∈S

‖x− s‖.

Definition 1.5.2 (Projection onto a Set)
Let ∅ 6= C ⊆ Rn, x ∈ Rn and p ∈ C. p is a projection of x onto C, if

dC(x) = ‖x− p‖.

If a projection p of x onto C is unique, we denote it by PC(x) := p.

10
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Recall that a cauchy sequence (xn)n∈N in Rn is a sequence such that

‖xm − xn‖ → 0

as min(m,n) → ∞.

Since Rn is a complete metric space under the Euclidean metric, every cauchy sequence
converges in Rn.

Moreover, recall that a function f : Rn → R is continuous at x̄ ∈ Rn if and only if for every
sequence xn → x̄, we have

f(xn) → f(x̄).

Fix y ∈ Rn. The function f : Rn → R given by

x 7→ ‖x− y‖

is continuous.

Lemma 1.5.1
Let x, y, z ∈ Rn. Then

‖x− y‖2 = 2‖z − x‖2 + 2‖z − y‖2 − 4

∥∥∥∥z − x+ y

2

∥∥∥∥2.
Proof
This is by computation.

2‖x− z‖2 = 2〈z − x, z − x〉
= 2‖z‖2 − 4〈z, x〉+ 2‖x‖2

2‖z − y‖2 = 2‖z‖2 − 4〈z, y〉+ 2‖y‖2

4

∥∥∥∥z − x+ y

2

∥∥∥∥2 = 4

[
‖z‖2 + 1

4
‖x+ y‖2 − 〈z, x+ y〉

]
= 4‖z2‖+ ‖x+ y‖2 − 4〈z, x〉 − 4〈z, y〉.

11
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Putting everything together yields

2‖z − x‖2 + 2‖z − y‖2 − 4

∥∥∥∥z − x+ y

2

∥∥∥∥2 = 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2

= ‖x‖2 + ‖y‖2 − 2〈x, y〉
= ‖x− y‖2.

Lemma 1.5.2
Let x, y ∈ Rn. Then

〈x, y〉 ≤ 0 ⇐⇒ ∀λ ∈ [0, 1], ‖x‖ ≤ ‖x− λy‖.

Proof
( =⇒ ) Suppose 〈x, y〉 ≤ 0. Then

‖x− λy‖2 − ‖x‖2 = λ
(
λ‖y‖2 − 2〈x, y〉

)
≥ 0.

( ⇐= ) Conversely, we have λ‖y‖2 − 2〈x, y〉 ≥ 0. This implies

〈x, y〉 ≤ λ

2
‖y‖2

→ 0. λ→ 0

Theorem 1.5.3 (Projection)
Let ∅ 6= C ⊆ Rn be closed and convex. Then the following hold:

i) For all x ∈ Rn, PC(x) exists and is unique.
ii) For every x ∈ Rn and p ∈ Rn, p = PC(x) ⇐⇒ p ∈ C∧∀y ∈ C, 〈y−p, x−p〉 ≤ 0.

Proof (i)
Recall that

dC(x) := inf
c∈C

‖x− c‖.

Hence there is a sequence (cn)n∈N in C such that

dC(x) = lim
n→∞

‖cn − x‖.

12
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Let m,n ∈ N. By the convexity of C, 1
2
cm + 1

2
cn ∈ C. But then

dC(x) = inf
c∈C

‖x− c‖ ≤
∥∥∥∥x− 1

2
(cm + cn)

∥∥∥∥.
Apply our first lemma with cm, cn, x to see that

‖cn − cm‖2 = 2‖cn − x‖2 + 2‖cm − x‖2 − 4

∥∥∥∥x− cn + cm
2

∥∥∥∥2
≤ 2‖cn − x‖2 + 2‖cm − x‖2 − 4dC(x)

2.

As m,n→ ∞,
0 ≤ ‖cn − cm‖2 → 4dC(x)

2 − 4dC(x)
2 = 0

and (cn) is a Cauchy sequence. But then there is some c ∈ p such that cn → p by the
closedness (completeness) of C.

By the continuity of ‖x− ·‖, cn → p implies

‖x− cn‖ → dC(x) = ‖x− p‖.

This demonstrates the existence of p.

Suppose there is some q ∈ C such that dC(x) = ‖q − x‖. By convexity, 1
2
(p + q) ∈ C.

Using the first lemma again, we have

0 ≤ ‖p− q‖2

= 2‖p− x‖2 + 2‖q − x‖2 − 4

∥∥∥∥x− p+ q

2

∥∥∥∥2
≤ 2dC(x)

2 + 2dC(x)
2 − 4dC(x)

2

≤ 0.

So ‖p− q‖ = 0 =⇒ p = q.

This shows uniqueness.

Proof (ii)
Observe that p = PC(x) if and only if p ∈ C and

‖x− p‖2 = dC(x)
2.

13



©Fel
ix

Zh
ou

Since C is convex,
∀α ∈ [0, 1], yα := αy + (a− α)p ∈ C.

Thus

‖x− p‖2 = dC(x)
2

⇐⇒ ∀y ∈ C, α ∈ [0, 1], ‖x− p‖2 ≤ ‖x− yα‖2

⇐⇒ ∀y ∈ C, α ∈ [0, 1], ‖x− p‖2 ≤ ‖x− p− α(y − p)‖2

⇐⇒ ∀y ∈ C, 〈x− p, y − p〉 ≤ 0 auxiliary lemma 2.

In the absence of closedness, PC(x) does not in general exist unless x ∈ C. In the absence
of convexity, uniqueness does not in general hold.

Example 1.5.4
Fix ε > 0 and C = B(0; ε) be the closed ball around 0 or radius ε.

For all x ∈ Rn, either PC(x) = x when x ∈ C or PC(x) is ε
‖x‖x, the vector obtained from

x by scaling its norm to ε.

In other words,
PC(x) =

ε

max(‖x‖, ε)
x.

1.6 Convex Set Operations

Definition 1.6.1 (Minkowski Sum)
Let C,D ⊆ Rn. The Minkowski Sum of C,D is

C +D := {c+ d : c ∈ C, d ∈ D}.

Theorem 1.6.1 (Minkowski)
Let C1, C2 ⊆ Rn be convex. Then C1 + C2 is convex.

Proof
If either C1, C2 is empty, then C1 + C2 = ∅ by definition.

Otherwise, C1 +C2 6= ∅. Fix x1 + x2, y1 + y2 ∈ C1 +C2 and λ ∈ (0, 1). By the convexity

14
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of C1, C2,

λ(x1 + x2) + (1− λ)(y1 + y2) = λx1 + (1− λ)y1 + λx2 + (1− λ)y2

∈ C1 + C2

as required.

Proposition 1.6.2
Let ∅ 6= C,D ⊆ Rn be closed and convex. Moreover, suppose that D is bounded.
Then C +D 6= ∅ is closed and convex.

Proof
We have already shown non-emptiness and convexity in the previous theorem.

Let (xn + yn)n∈N be a convergent sequence in C +D. Say that xn + yn → z.

Since D is bounded, there is a subsequence (ykn)n∈N such that ykn → y ∈ D. It follows
that

xkn = z − ykn → z − y ∈ C

by the closedness of C.

It follows that z ∈ C + y ⊆ C +D as desired.

If we drop the assumption that D is bounded, the result no longer holds in general. Indeed,
consider C = {2, 3, 4, . . .} and D := {−n + 1

n
: n = 2, 3, 4, . . .}.

(
1
n

)
n≥2

is the sum but 0 is
not!

Theorem 1.6.3
Let C ⊆ Rn be convex and λ1, λ2 ≥ 0. Then

(λ1 + λ2)C = λ1C + λ2C.

Proof
(⊆) This is always true, even if C is not convex.

(⊇) Without loss of generality, we may assume that λ1 + λ2 > 0. By convexity, we have

λ1
λ1 + λ2

C +
λ2

λ1 + λ2
C ⊆ C.

In other words, λ1C + λ2C ⊆ (λ1 + λ2)C.

15
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1.7 Topological Properties

We will write
B(x; ε) := {y ∈ Rn : ‖y − x‖ ≤ ε}

to denote the closed ball of radius ε about x. In particular, we write
B := B(0; 1)

to denote the closed unit ball.

Definition 1.7.1 (Interior)
The interior of C ⊆ Rn is

intC := {x : ∃ε > 0, x+ εB ⊆ C}.

Definition 1.7.2 (Closure)
The closure of C ⊆ Rn is

C̄ :=
⋂
ε>0

C + εB.

Definition 1.7.3 (Relative Interior)
The relative interior of a convex C ⊆ Rn is

riC := {x ∈ aff C : ∃ε > 0, (x+ εB) ∩ aff C ⊆ C}.

Proposition 1.7.1
Let C ⊆ Rn. Suppose that intC 6= ∅. Then intC = riC.

Proof
Let x ∈ intC. There is some ε > 0 such that B(x; ε) ⊆ C. Hence

Rn = aff(B(x; ε))

⊆ aff C

⊆ Rn.

But then aff C = Rn and the result follows from definition.

Let A ⊆ Rn be affine. Every affine set has a corresponding linear subspace
L := A− A.

16
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This is a linear subspace as it is affine and contains 0.

Definition 1.7.4 (Dimension)
Let ∅ 6= A ⊆ Rn be affine. The dimension of A is the dimension of the corresponding
linear subspace

dimA := dim(A− A).

It may be useful to consider

A− A =
⋃
a∈A

(A− a)

as the union of translations.

Definition 1.7.5 (Dimension)
Let ∅ 6= C ⊆ Rn be convex. The dimension of C, denoted dimC, is the dimension of
aff C.

Proposition 1.7.2
Let C ⊆ Rn be convex. For all x ∈ intC and y ∈ C̄,

[x, y) ⊆ intC.

Proof
Let λ ∈ [0, 1). We argue that (1− λ)x+ λy ∈ intC. It suffices to show that

(1− λ)x+ λy + εB ⊆ C

for some ε > 0.

As y ∈ C̄, we have that ∀ε > 0, y ∈ C + εB. Thus for all ε > 0,

(1− λ)x+ λy + εB ⊆ (1− λ)x+ λ(C + εB) + εB

= (1− λ)x+ (1 + λ)εB + λC previous theorem

= (1− λ)

[
x+

1 + λ

1− λ
εB

]
+ λC

⊆ (1− λ)C + λC sufficiently small ε, x ∈ intC

= C. previous theorem again

17
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Theorem 1.7.3
Let C ⊆ Rn be convex. Then for all x ∈ riC and y ∈ C̄,

[x, y) ⊆ riC.

Proof
Case I: intC 6= ∅ This follows by the observation that riC = intC.

Case II: intC = ∅ We must have dimC = m < n. Let L := aff C − aff C be the corre-
sponding linear subspace of dimension m.

Through translation by −c ∈ C if necessary, we may assume without loss of generality
that C ⊆ L ∼= Rm.

But then the interior of C with respect to Rm is riC in Rn. An application of Case I with
C ⊆ Rm yields the result.

Theorem 1.7.4
Let C ⊆ Rn be convex. The following hold:

(i) C̄ is convex.
(ii) intC is convex.
(iii) If intC 6= ∅, then intC = int C̄ and C̄ = intC.

Proof (i)
Let x, y ∈ C̄ and λ ∈ (0, 1). There are sequences xn, yn ∈ C such that

xn → x, yn → y.

It follows by convexity that

C 3 λxn + (1− λ)y → λx+ (1− λy) ∈ C̄.

By definition, C̄ is convex.

Proof (ii)
If intC = ∅, the conclusion is clear.

18
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Otherwise, use the previous proposition with y ∈ C ⊆ C̄ to see that

[x, y] = [x, y) ∪ {y}
⊆ intC ∪ intC

= intC.

Proof (iii)
Since C ⊆ C̄, it must hold that intC ⊆ int C̄.

Conversely, let y ∈ int C̄. If y ∈ intC, then we are done. Thus suppose otherwise.

There is some ε > 0 such that B(y; ε) ⊆ C̄. We may thus choose some intC 63 y 6= x ∈
intC 6= ∅ and λ > 0 sufficiently small such that

y + λ(y − x) ∈ B(y; ε) ⊆ C̄.

By a previous proposition applied with y + λ(y − x), we have that

[x, y + λ(y − x)) ⊆ intC.

We now claim that y ∈ [x, y + λ(y − x)). Indeed, set α := 1
1+λ

∈ (0, 1). We have

(1− α)x+ α(y + λ(y − x)) = (1− α(1 + λ))x+ α(1 + λ)y

= y.

It follows by the arbitrary choice of y that int C̄ ⊆ intC. We now turn to the second
identity.

Since intC ⊆ C, we must have intC ⊆ C̄. Conversely, let y ∈ C̄ and x ∈ intC. For
λ ∈ [0, 1), define

yλ = (1− λ)x+ λy.

The previous proposition agains tells us that

yλ ∈ [x, y) ⊆ intC.

But then y = limλ→0 yλ ∈ intC and C̄ ⊆ intC.

This concludes the argument.

19



©Fel
ix

Zh
ou

Theorem 1.7.5
Let C ⊆ Rn be convex. Then riC, C̄ are convex.
Moreover,

C 6= ∅ ⇐⇒ riC 6= ∅.

1.8 Separation Theorems

Definition 1.8.1 (Separated)
Let C1, C2 ⊆ Rn. We say C1, C2 are separated if there is some b ∈ Rn \ {0} such that

sup
c1∈C1

〈c1, b〉 ≤ inf
c2∈C2

〈c2, b〉.

If
sup
c1∈C1

〈c1, b〉 < inf
c2∈C2

〈c2, b〉,

then we say C1, C2 are strongly separated.

Theorem 1.8.1
Let ∅ 6= C ⊆ Rn be closed and convex and suppose x /∈ C. Then x is strongly
separated from C.

Proof
The goal is to find some b 6= 0 such that

sup〈c, b〉 < 〈x, b〉
sup〈c− x, b〉 < 0.

Set p := PC(X) and b := x− p 6= ∅. Let y ∈ C. By the projection theorem,

〈y − p, x− p〉 ≤ 0 ∀y ∈ C

〈y − (x− b), x− (x− b)〉 ≤ 0 p = x− b

〈y − x, b〉 ≤ −〈b, b〉
= −‖b‖2

sup
y∈C

〈y, b〉 − 〈x, b〉 ≤ −‖b‖2

< 0

as desired.
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Corollary 1.8.1.1
Let C1 ∩ C2 = ∅ be nonempty subsets of Rn such that C1 − C2 is closed and convex.
Then C1, C2 are strongly separated.

Proof
By definition, C1, C2 are strongly separated if and only if there is b 6= 0 such that

sup
c1∈C1

〈c1, b〉 < inf
c2∈C2

〈c2, b〉

sup
c1∈C1

〈c1, b〉 < − sup
c2∈C2

〈c2, b〉

sup
c1∈C1

〈c1, b〉+ sup
c2∈C2

〈c2, b〉 < 0

sup
c1∈C1,c2∈C2

〈c1 − c2, b〉 < 0.

Since C1 ∩C2 = ∅, we know that 0 /∈ C1 −C2. Hence C1 −C2 is strongly separated from
0 and the conclusion follows.

Corollary 1.8.1.2
Let ∅ 6= C1, C2 ⊆ Rn be closed and convex such that C1 ∩ C2 = ∅ and C2 is bounded.
Then C1, C2 are strongly separted.

Proof
C1 ∩C2 = ∅ =⇒ 0 /∈ C1 −C2. In addition, −C2 is also closed and convex. It follows by
a previous theorem that C1 + (−C2) is nonempty, closed, and convex.

Theorem 1.8.2
Let ∅ 6= C1, C2 ⊆ Rn be closed and convex such that C1 ∩ C2 = ∅. Then C1, C2 are
separated.

Proof
For each n ∈ N, set

Dn := C2 ∩B(0;n).

Observe that C1 ∩Dn = ∅ for all n. Moreover, Dn is bounded by construction.

It follows that there is a hyperplane un that separates C1, Dn for all n. Specifically,
‖un‖ = 1 and

sup〈C1, un〉 < inf〈Dn, un〉.
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But the sequence un is bounded, hence there is a convergent subsequence ukn . where
ukn → u with ‖u‖ = 1.

Let x ∈ C1, y ∈ C2. For sufficiently large n, y ∈ B(0; kn) and

〈x, ukn〉 < 〈y, ukn〉.

Taking the limit as k → ∞ yields

〈x, u〉 ≤ 〈y, u〉.

This completes the proof.

1.9 More Convex Sets

Definition 1.9.1 (Cone)
C ⊆ Rn is a cone if

C = R++C.

Definition 1.9.2 (Conical Hull)
coneC is the intersection of all cones containing C.

Definition 1.9.3 (Closed Conical Hull)
cone(C) is the smallest closed cone containing C.

Proposition 1.9.1
Let C ⊆ Rn. The following hold:

(i) coneC = R++C

(ii) coneC = cone(C)

(iii) cone(convC) = conv(coneC)

(iv) cone(convC) = conv(coneC)

The proofs of all these are trivial if C = ∅. Thus in our proofs, we assume that C is
nonempty.
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Proof (i)
Set D := R++C. It is clear that C ⊆ D with D being a cone. Hence coneC ⊆ D.

Conversely, for y ∈ D, there is some λ > 0, c ∈ C for which y = λc. Then y ∈ coneC and
D ⊆ coneC.

Proof (ii)
cone(C) is a closed cone with C ⊆ cone(C). Hence

coneC ⊆ cone(C) = cone(C).

Conversely, since coneC is a cone,

cone(C) ⊆ coneC.

Proof (iii)
(⊆) Let x ∈ cone(convC). By i, there is λ > 0, y ∈ convC such that x = λy. Since
y ∈ convC, we can express is as a convex combination

x = λy

= λ
m∑
i=1

λixi

=
m∑
i=1

λiλxi

∈ conv(coneC).

(⊇) Let x ∈ conv(coneC). We can write x as convex combinations of scalar multiples of
C.

x =
m∑
i=1

µiλixi

=

(
m∑
i=1

λiµi

)(
m∑
i=1

λiµi∑
λiµi

xi

)

= α

m∑
i=1

βixi.

This is a scalar multiple of a convex combination of C and thus x ∈ cone(convC) as
desired.
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Proof (iv)
This is a direct consequence of iii.

Lemma 1.9.2
Let 0 ∈ C ⊆ Rn be convex with intC 6= ∅. The following are equivalent:

(i) 0 ∈ intC

(ii) coneC = Rn

(iii) coneC = Rn

It is a fact that for 0 ∈ C ⊆ Rn convex with intC 6= ∅,

int(coneC) = cone(intC).

Proof
(i) =⇒ (ii) Suppose 0 ∈ intC. Then B(0; ε) ⊆ C for some ε > 0. But then

Rn = cone(B(0; ε))

⊆ coneC

⊆ Rn

and we have equality.

(ii) =⇒ (iii) Recall that coneC = coneC. But then

Rn = coneC ⊆ coneC.

(iii) =⇒ (i) Recall that cone(convC) = conv(coneC). Thus

conv(coneC) = coneC

and coneC is convex.

By assumption,
∅ 6= intC ⊆ int(coneC)

and coneC has nonempty interior.

Recall that
int(coneC) = int(coneC)

as coneC is convex.
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Hence

Rn = intRn

= int(coneC)

= int(coneC)

= cone(intC).

Thus 0 ∈ λ intC for some λ > 0. It must be then that 0 ∈ C as desired.

Definition 1.9.4 (Tangent Cone)
Let ∅ 6= C ⊆ Rn with x ∈ Rn. The tangent cone to C at x is

TC(x) =

{
cone(C − x) =

⋃
λ∈R++

λ(C − x), x ∈ C

∅, x /∈ C

Definition 1.9.5 (Normal Cone)
Let ∅ 6= C ⊆ Rn with x ∈ Rn. The normal cone to C at x is

NC(x) =

{
{u ∈ Rn : supc∈C〈c− x, u〉 ≤ 0}, x ∈ C

∅, x /∈ C

Theorem 1.9.3
Let ∅ 6= C ⊆ Rn be closed and convex. Let X ∈ Rn.
Both NC(x), TC(x) are closed convex cones.

Lemma 1.9.4
Let ∅ 6= C ⊆ Rn be closed and convex with x ∈ C.

n ∈ NC(x) ⇐⇒ ∀t ∈ TC(x), 〈n, t〉 ≤ 0.

Proof
( =⇒ ) Let n ∈ NC(x) and t ∈ TC(x). Recall that TC(x) = cone(C − x). Thus there is
some λk > 0 and tk ∈ Rn such that

x+ λktk ∈ C

and tk → t.

Since n ∈ NC(x) and x + λktk ∈ C, it follows that for all k, 〈n, λktk〉 ≤ 0. But then as
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k → ∞ we see that
〈n, t〉 ≤ 0.

( ⇐= ) Suppose that ∀t ∈ TC(x), we have 〈n, t〉 ≤ 0. Pick y ∈ C and observe that

y − x ∈ C − x

⊆ cone(C − x)

⊆ cone(C − x)

=: TC(x).

It follows that 〈n, y − x〉 ≤ 0 and n ∈ NC(x).

Theorem 1.9.5
Let C ⊆ Rn be convex such that intC 6= ∅. Let x ∈ C. The following are equivalent.

(1) x ∈ intC

(2) TC(x) = Rn

(3) NC(x) = {0}

Proof
(1) ⇐⇒ (2) Observe that x ∈ intC if and only if 0 ∈ int(C − x) if and only if there is
some ε > 0 with

B(0; ε) ⊆ C − x.

Now,

Rn = cone(B(0; ε))

⊆ cone(C − x)

⊆ cone(C − x)

= cone(C − x)

= TC(x)

⊆ Rn.

(2) ⇐⇒ (3) Our previous lemma combined with (1) yields

n ∈ NC(x) ⇐⇒ ∀t ∈ TC(x) = Rn, 〈n, t〉 ≤ 0

⇐⇒ n = 0.

Hence NC(x) = {0}.
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Conversely, suppose NC(x) = {0}. It is clear that 0 ∈ TC(x). Pick y ∈ Rn. We claim
that y ∈ TC(x). To see this recall that TC(x) is a closed convex cone, hence p = PTC(x)(y)
exists and is unique. Moreover, it suffices to show that y = p ∈ TC(x).

Indeed, by the projection theorem

〈y − p, t− p〉 ≤ 0

for all t ∈ TC(x). In particular, it holds for t = p, 2p ∈ TC(x) (TC(x) is a cone). So

〈y − p,±p〉 ≤ 0 =⇒ 〈y − p, p〉 = 0.

But then 〈y − p, t〉 ≤ 0 for all t ∈ TC(x), which implies that y − p ∈ NC(x) = {0} and

y = p ∈ TC(x)

as desired.
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Convex Functions

2.1 Definitions & Basic Results

Definition 2.1.1 (Epigraph)
Let f : Rn → [−∞,∞]. The epigraph of f is

epi f := {(x, α) : f(x) ≤ α} ⊆ Rn × R.

Definition 2.1.2 (Domain)
For f : Rn → [−∞,∞],

dom f := {x ∈ Rn : f(x) <∞}.

Definition 2.1.3 (Proper Function)
We say that f is proper if dom f 6= ∅ and f(Rn) > −∞.

Definition 2.1.4 (Indicator Function)
Let C ⊆ Rn. The indicator function of C is given by

δC(x) :=

{
0, x ∈ C

∞, x /∈ C
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Definition 2.1.5 (Lower Semicontinuous)
f is lower semicontinuous (l.s.c.) if epi(f) is closed.

Definition 2.1.6 (Convex Function)
f is convex if epi f is convex.

Proposition 2.1.1
Let f : Rn → [−∞,∞] be convex. Then dom f is convex.

Recall that linear transformations A : Rn → Rm preserve set convexity (C ⊆ Rn convex
implies that A(C) is convex).

Proof
Consider the linear transformation L : Rn+1 → Rn given by

(x, α) 7→ x.

Then dom f = L(epi f) is convex.

Theorem 2.1.2
Let f : Rm → [−∞,∞]. Then f is convex if and only if for all x, y ∈ dom f and
λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Proof
If f = ∞ ⇐⇒ epi f = ∅ ⇐⇒ dom f = ∅, then result is trivial. Hence let us suppose
that f 6= ∞ ⇐⇒ dom f 6= ∅.

( =⇒ ) Pick x, y ∈ dom f and λ ∈ (0, 1). Observe that (x, f(x)), (y, f(y)) ∈ epi f . By
convexity,

λ(x, f(x)) + (1− λ)(y, f(y)) = (λx+ (1− λ)y, λf(x)− (1− λ)f(y)) ∈ epi(f)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

( ⇐= ) Conversely, suppose the function inequality holds. Pick (x, α), (y, β) ∈ epi f as
well as λ ∈ (0, 1). Now,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

≤ λα + (1− λ)β
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and
(λx+ (1− λ)y, λα, (1− λ)β) ∈ epi f

as desired.

It follows that epi f is convex and so is f .

2.2 Lower Semicontinuity

Definition 2.2.1 (Lower Semicontinuity; Alternative)
Let f : Rn → [−∞,∞] and x ∈ Rn. f is lower semicontinuous (l.s.c) at x if for every
sequence (xn)n≥1 ∈ Rn such that xn → x,

f(x) ≤ lim inf f(xn).

We say f is l.s.c. if f is l.s.c. at every point in Rn.

Remark that continuity implies lower semicontinuity. One can show that the two definitions
of l.s.c. are equivalent, but we omit the proof.

Theorem 2.2.1
Let C ⊆ Rm. Then the following hold:

(i) C 6= ∅ if and only if δC is proper
(ii) C is convex if and only if δC is convex
(iii) C is closed if and only if δC is l.s.c.

We prove (i) and (ii) in A2.

Proof ((iii))
Observe that C = ∅ ⇐⇒ epi δC = ∅, which is certainly closed. Thus we proceed
assuming C 6= ∅.

( =⇒ ) Suppose C is closed. We want to show that epi δC is closed.

Pick a converging sequence sequence (xn, αn) → (x, α) with every element in epi δC .
Observe that xn is a sequence in C, hence x ∈ C. Moreover, αn ∈ [0,∞) and α ≥ 0.

It follows that (x, α) ∈ epi δC as required.

( ⇐= ) Conversely, suppose that δC is l.s.c. Let (xn)n≥1 be a sequence in C with xn → x.
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By the definition of δC , it suffices to show that δC(x) = 0.

By lower semicontinuity,

0 ≤ δC(x)

≤ lim inf δC(xn)

= 0

and we have equality throughout.

Proposition 2.2.2
Let I be an indexing set and let (fi)i∈I be a family of l.s.c. convex functions on Rn.
Then

F := sup
i∈I

fi

is convex and l.s.c.

Proof
We claim that epiF =

⋂
i∈I epi f . Indeed,

(x, α) ∈ epiF ⇐⇒ sup
i∈I

fi(x) ≤ α

⇐⇒ ∀i ∈ I, fi(x) ≤ α

⇐⇒ ∀i ∈ I, (x, α) ∈ epi fi

⇐⇒ ∀i ∈ I(x, α) ∈ epi fi.

The result follows by the definition of convex functions and lower semicontinuity as inter-
sections preserve both set convexity and closedness.

2.3 The Support Function

Definition 2.3.1 (Support Function)
Let C ⊆ Rm. The support function σC : Rm → [−∞,∞] of C is

u 7→ sup
c∈C

〈c, u〉.
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Proposition 2.3.1
Let ∅ 6= C ⊆ Rn. Then σC is convex, l.s.c., and proper.

Proof
For each c ∈ C, define

fC(x) := 〈x, c〉.

Then fc is linear and hence proper, l.s.c., and convex. Moreover,

σC = sup
c∈C

fc.

Combined with our previous proposition, we learn that σC is convex and l.s.c.

Observe that since C 6= ∅,

σC(0) = sup
c∈C

〈0, c〉 = 0 <∞.

Hence domσC 6= ∅. In addition, fix c̄ ∈ C. Then for all u ∈ Rm,

σC(u) = sup
c∈C

〈u, c〉

≥ 〈u, c̄〉
> −∞.

Hence σC is proper as well.

2.4 Further Notions of Convexity

Let f : Rm → [−∞,∞] be proper. Then f is strictly convex if for every x 6= y ∈ dom f and
λ ∈ (0, 1),

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

Moreover, f is strongly convex with constant β > 0 if for every x, y ∈ dom f, λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− β

2
λ(1− λ)‖x− y‖2.

Clearly, strong convexity implies strict convexity, which in turn implies convexity.
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2.5 Operations Preserving Convexity

Proposition 2.5.1
Let I be a finite indexing set and (fi)i∈I a family of convex functions Rm → [−∞,∞].
Then ∑

i∈I

fi

is convex.

Proposition 2.5.2
Let f be convex and l.s.c. and pick λ > 0. Then

λf

is convex and l.s.c.

2.6 Minimizers

Definition 2.6.1 (Global Minimizer)
Let f : Rm → (−∞,∞] be proper and x ∈ Rm. Then x is a (global) minimizer of f if

f(x) = min f(Rm).

We will use argmin f to denote the set of minimizers of f .

Definition 2.6.2 (Local Minimum)
Let f : Rm →]−∞,∞] be be proper and x̄ ∈ Rm. Then x̄ is a local minimum of f if
there is δ > 0 such that

‖x− x̄‖ < δ =⇒ f(x̄) ≤ f(x).

We way that x̄ is a global minimum of f if for all x ∈ dom f ,

f(x̄) ≤ f(x).

Analogously, we define the local maximum and global maximum.

Why are convex functions so special?
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Proposition 2.6.1
Let f : Rm → (−∞,∞] be proper and convex. Then every local minimizer of f is a
global minimizer.

Proof
Let x be a local minimizer of f . There is some ρ > 0 such that

f(x) = min f(B(x; ρ)).

Pick some y ∈ dom f \B(x; ρ). Notice that

λ := 1− ρ

‖x− y‖
∈ (0, 1).

Set
z := λx+ (1− λ)y ∈ dom f.

We know this is in the domain as dom f is convex by our prior work.

We have

z − x = (1− λ)y − (1− λ)x

= (1− λ)(y − x)

‖z − x‖ = ‖(1− λ)(y − x)‖

=
ρ

‖y − x‖
‖y − x‖

= ρ.

This shows that z ∈ B(x; ρ).

By the convexity of f ,

f(x) ≤ f(z)

≤ λf(x) + (1− λ)f(y)

(1− λ)f(x) ≤ (1− λ)f(y)

f(x) ≤ f(y).

Proposition 2.6.2
Let f : Rm → (−∞,∞] be proper and convex. Let C ⊆ Rm. Suppose that x is a
minimizer of f over C such that x ∈ intC. Then x is a minimizer of f .
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Proof
There is some ε > 0 such that x minimizes f over B(x; ε) ⊆ intC. Since x is a local
minimizer, it is a global minimizer as well.

2.7 Conjugates

Definition 2.7.1 (Fenchel-Legendre/Convex Conjugate)
Let f : Rm → [−∞,∞]. Then Fenchel-Legendre/Convex Conjugate of f , denoted
f ∗ : Rm → [−∞,∞] is given by

u 7→ sup
x∈Rm

〈x, u〉 − f(x).

Recall that a closed convex set is the intersection of all supporting hyperplanes. The idea is
that the epigraph of a convex, l.s.c. function f can be recovered by the supremum of affine
functions majorized by f .

Given a slope x ∈ Rm, we want the best translation α which supports f .

f(x) ≥ 〈u, x〉 − α ∀x ∈ Rn

α ≥ 〈u, x〉 − f(x) ∀x ∈ Rn.

Thus f ∗(u) := supx∈Rn〈u, x〉−f(x) is the best translation such that 〈u, x〉−f ∗(u) is majorized
by f .

Proposition 2.7.1
Let f : Rm → [−∞,∞]. Then f ∗ is convex and l.s.c.

Proof
Observe that f ≡ ∞ ⇐⇒ dom f = ∅. Hence if f ≡ ∞, for all u ∈ Rm

f ∗(u) = sup
x∈Rm

〈x, u〉 − f(x)

= sup
x∈dom f

〈x, u〉 − f(x)

= −∞.

This is trivially convex and l.s.c.

Now suppose that f 6≡ ∞. We claim that f ∗(u) = sup(x,α)∈epi f〈x, u〉 − α. Observe that
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f(x,α) := 〈x, ·〉 − α is an affine function. By definition,

sup
x∈dom f

〈x, u〉 − f(x) ≥ sup
(x,α)∈epi f

〈x, u〉 − α

as f(x) ≤ α by the definition of the epigraph. On the other hand,

sup
(x,f(x)):x∈dom f

〈x, u〉 − f(x) ≤ sup
(x,α)∈epi f

〈x, u〉 − α

as each (x, f(x)) ∈ epi f .

But then
f ∗(u) = sup

(x,α)∈epi f
f(x,α)(u)

is a supremum of convex and l.s.c. (affine) functions which is convex and l.s.c. by our
earlier work.

Example 2.7.2
Let 1 < p, q such that

1

p
+

1

q
= 1.

Then for f(x) := |x|p
p

,

f ∗ (x) = |u|q

q
.

This can be shown by differentiating to find maximums.

Example 2.7.3
Let f(x) := ex. Then

f ∗(u) =


u lnu− u, u > 0

0, u = 0

∞, u < 0

Example 2.7.4
Let C ⊆ Rm, then

δ∗C = σC .
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By definition,

δ∗C(y) := sup
y∈dom δC

〈x, y〉 − δC(y)

= sup
y∈C

〈x, y〉.

2.8 The Subdifferential Operator

Definition 2.8.1 (Subdifferential)
Let f : Rm → (−∞,∞] be proper. The subdifferential of f is the set-valued operator
∂f : Rm ⇒ Rm given by

x 7→ {u ∈ Rm : ∀y ∈ Rm, f(y) ≥ f(x) + 〈u, y − x〉}.

We say f is subdifferentiable at x if ∂f(x) 6= ∅.

The elements of ∂f(x) are called the subgradient of f at x.

The idea is that for a differentiable convex function, the derivative at x ∈ Rn is the slope
for a line tangent to x which lies strictly below f . If f is not differentiable at x, we can still
ask for slopes of line segments tangent to x which lie below x.

Theorem 2.8.1 (Fermat)
Let f : Rm → (−∞,∞] be proper. Then

argmin f = {x ∈ Rm : 0 ∈ ∂f(x)} =: zer ∂f.

Proof
Let x ∈ Rm.

x ∈ argmin f ⇐⇒ ∀y ∈ Rm, f(x) ≤ f(y)

⇐⇒ ∀y ∈ Rm, 〈0, y − x〉+ f(x) ≤ f(y)

⇐⇒ 0 ∈ ∂f(x).
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Example 2.8.2
Consider f(x) = |x|. Then

∂f(x) =


{−1}, x < 0

[−1, 1], x = 0

{1}, x > 0

Lemma 2.8.3
Let f : Rm → (−∞,∞] be proper. Then

dom ∂f ⊆ dom f.

Proof
We argue by the contrapositive, suppose x /∈ dom f . Then f(x) = ∞ and ∂f(x) = ∅.

Proposition 2.8.4
Let ∅ 6= C ⊆ Rm be closed and convex. Then

∂δC(x) = NC(x).

Proof
Let u ∈ Rm and x ∈ C = dom δC . Then

u ∈ ∂δC(x) ⇐⇒ ∀y ∈ Rm, δC(y) ≥ δC(x) + 〈u, y − x〉
⇐⇒ ∀y ∈ C, δC(y) ≥ δC(x) + 〈u, y − x〉
⇐⇒ ∀y ∈ C, 0 ≥ 〈u, y − x〉
⇐⇒ u ∈ NC(x).

Consider the constrained optimization problem min f(x), x ∈ C, where f is proper, convex,
l.s.c. and C 6= ∅ is closed and convex. We can rephrase this as min f(x) + δC(x).

In some cases, ∂(f + δC) = ∂f + ∂δC = ∂f +NC(x). Thus by Fermat’s theorem, we look for
some x where

0 ∈ ∂f(x) +NC(x).

2.9 Calculus of Subdifferentials

The main question we are concerned with is whether the subdifferential operator is additive.
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Proposition 2.9.1
Let f : Rm → (−∞,∞] be convex, l.s.c., and proper. Then

∅ 6= ri dom f ⊆ dom ∂f.

In particular,

ri dom f = ri dom ∂f

dom f = dom ∂f.

Definition 2.9.1 (Properly Separated)
Let ∅ 6= C1, C2 ⊆ Rm. Then C1, C2 are properly separated if there is some b 6= 0 such
that

sup
c1∈C

〈b, c1〉 ≤ inf
c2∈C

〈b, c2〉

(separated) AND such that

inf
c1∈C2

〈b, c1〉 < sup
c2∈C2

〈b, c2〉.

A problem with the definition of separated is that a set can be separated from itself. Indeed,
the x-axis is separated from itself with itself as a separating hyperplane. To be properly
separated, there must be some c1 ∈ C1, c2 ∈ C2 such that

〈b, c1〉 < 〈b, c2〉.

In otherwords, C1 ∪ C2 is not fully contained in the hyperplane.

Proposition 2.9.2
Let ∅ 6= C1, C2 ⊆ Rm be convex. Then C1, C2 are properly separated if and only if

riC1 ∩ riC2 = ∅.

Proposition 2.9.3
Let C1, C2 ⊆ Rm be convex. Then

ri(C1 + C2) = riC1 + riC2.

Moreover,
ri(λC) = λ(riC)

for all λ ∈ R.
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Proposition 2.9.4
Let C1 ⊆ Rm and C2 ⊆ Rp be convex. Then

ri(C1 ⊕ C2) = riC1 ⊕ riC2.

Theorem 2.9.5
Let C1, C2 ⊆ Rm be convex such that riC1 ∩ riC2 6= ∅. For each x ∈ C1 ∩ C2,

NC1∩C2(x) = NC1(x) +NC2(x).

Proof
The reverse inclusion is not hard. Hence we check the inclusion only.

Let x ∈ C1 ∩ C2 and n ∈ NC1∩C2(x). Then for each u ∈ C1 ∩ C2,

〈n, y − x〉 ≤ 0.

Set E1 := epi δC1 = C1 × [0,∞) ⊆ Rm × R. Moreover, put

E2 := {(y, α) : y ∈ C2, α ≤ 〈n, y − x〉} ⊆ Rm × R.

By a previous fact,
riE1 = riC1 × (0,∞).

Similarly,
riE2 = {(y, α), α < 〈n, y − x〉}.

We claim that riE1 ∩ riE2 = ∅. Indeed, suppose towards a contradiction that there is
some (z, α) ∈ riE1 ∩ riE2. Then

0 < α < 〈n, z − x〉 ≤ 0

which is impossible.

It follows by a previous fact that E1, E2 are properly separated. Namely, there is (b, γ) ∈
Rm × R \ {0} such that

〈x, b〉+ αγ ≤ 〈y, b〉+ βγ ∀(x, α) ∈ E1, (y, β) ∈ E2

〈x̄, b〉+ ᾱγ < 〈ȳ, b〉+ β̄γ ∃(x̄, ᾱ) ∈ E1, (ȳ, β̄) ∈ E2

We claim that γ < 0. Indeed, (x, 1) ∈ E and (x, 0) ∈ E2. So

〈x, b〉+ γ ≤ 〈x, b〉 =⇒ γ ≤ 0.
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Next we claim that γ 6= 0. Suppose to the contrary that γ = 0. But then

〈x, b〉 ≤ 〈y, b〉 ∀(x, α) ∈ E1, (y, β) ∈ E2

〈x̄, b〉 < 〈ȳ, b〉 ∃(x̄, ᾱ) ∈ E1, (ȳ, β̄) ∈ E2

and C1, C2 are properly separated.

From our earlier fact, this contradicts the assumption that riC1 ∩ riC2 6= ∅. Altogether,
γ < 0.

Our goal is to show that
n = − b

γ︸︷︷︸
∈NC1

(x)

+ n+
b

γ︸ ︷︷ ︸
∈NC2

(x)

.

First, we claim that b ∈ NC1(x). This happens if and only if for all y ∈ C1,

〈y − x, b〉 ≤ 0 ⇐⇒ 〈b, y〉 ≤ 〈b, x〉.

Indeed, we know that (y, 0) ∈ E1. Moreover, (x, 0) ∈ E2 by construction. Hence

〈y, b〉+ 0 · γ ≤ 〈x, b〉+ 0 · γ.

Thus b ∈ NC1(x) =⇒ − 1
γ
b ∈ NC1(x).

Now, for all y ∈ C2, (y, 〈n, y − x〉) ∈ E2 by construction, Hence for all y ∈ C2,

〈b, x〉+ 0 · γ ≤ 〈b, y〉+ γ〈n, y − x〉.

Equivalently, 〈
b

γ
+ n, y − x

〉
≤ 0.

This shows that
b

γ
+ n ∈ NC2(x).

Thus n ∈ NC1(x) +NC2(x) and we are done.

Proposition 2.9.6
Let f : Rm → (−∞,∞) be convex, l.s.c. and proper. Let x, u ∈ Rm. Then

u ∈ ∂f(x) ⇐⇒ (u,−1) ∈ Nepi f (x, f(x)).
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Proof
Observe that epi f 6= ∅ and is convex since f is proper and convex. Now let u ∈ Rm.
Then

(u,−1) ∈ Nepi f (x, f(x))

⇐⇒ x ∈ dom f ∧ ∀(y, β) ∈ epi f, 〈(y, β)− (x, f(x)), (u,−1)〉 ≤ 0

⇐⇒ x ∈ dom f ∧ ∀(y, β) ∈ epi f, 〈(y − x), β − f(x), (u,−1)〉 ≤ 0

⇐⇒ ∀(y, β) ∈ epi f, 〈y − x, u〉+ f(x) ≤ β

⇐⇒ ∀y ∈ dom f, 〈y − x, u〉+ f(x) ≤ f(y)

⇐⇒ u ∈ ∂f(x).

Theorem 2.9.7
Let f, g : Rm → (−∞,∞] be convex, l.s.c., and proper. Suppose that ri dom f ∩
ri dom g 6= ∅. Then for all x ∈ Rm,

∂f(x) + ∂g(x) = ∂(f + g)(x).

Proof
Let x ∈ Rm. If x /∈ dom(f + g) = dom f ∩ dom g, then ∂f(x) + ∂g(x) = ∅. Also,
∂(f + g)(x) = ∅.

Suppose now that x ∈ dom f ∩ dom g = dom(f + g). It is easy to check that

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x).

We verify the reverse inclusion.

Pick any u ∈ ∂(f + g)(x). By definition, for all y ∈ Rm,

(f + g)(y) ≥ (f + g)(x) + 〈u, y − x〉.

Consider the closed convex sets

E1 = {(x, α, β) ∈ Rm × R× R : f(x) ≤ α} = epi f × R
E2 = {(x, α, β) ∈ Rm × R× R : g(x) ≤ β} ∼= epi g × R.

We claim that
(u,−1,−1) ∈ NE1∩E2(x, f(x), g(x)).

Indeed, let (y, α, β) ∈ E1, E2. We have by construction f(y)− α, g(y)− β ≤ 0.
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Now,

〈(u,−1,−1), (y, α, β)− (x, f(x), g(x))〉
= 〈u, y − x〉 − (α− f(x))− (β − g(x))

= 〈u, y − x〉+ (f + g)(x)− (α + β)

≤ (f + g)(y)− α− β u ∈ ∂(f + g)(x)

≤ 0.

Next, we claim that riEi ∩ riE2 6= ∅. Indeed, by a previous fact,

riE1 = ri(epi f × R)
= ri epi f × R.

Similarly,
riE2 = {(x, α, β) ∈ Rm × R× R : g(x) < β}.

Pick z ∈ ri dom f ∩ ri dom g. Then (z, f(z) + 1, g(z) + 1) ∈ riE1, riE2. Hence, (z, f(z) +
1, g(z) + 1) ∈ riE1 ∩ riE2 6= ∅.

All in all, E1, E2 6= ∅ are closed, convex, with riE1 ∩ riE2 6= ∅. Hence by the previous
theorem,

NE1∩E2(x, f(x), g(x)) = NE1(x, f(x), g(x)) +NE2(x, f(x), g(x)).

Now, it can be shown that Nepi f×R = Nepi f × NR and similarly for E2. Therefore, there
is some u1, u2 ∈ Rm, α, β ∈ R for which

(u,−1,−1) = (u1,−α, 0) + (u2, 0,−β).

Thus u = u1 + u2 and α = β = 1. It follows that

(u1,−1) ∈ Nepi f (x, f(x))

(u2,−1) ∈ Nepi g(x, g(x)).

From a previous proposition, we conclude that u1 ∈ ∂f(x) and u2 ∈ ∂g(x). Hence

u = u1 + u2 ∈ ∂f(x) + ∂g(x),

completing the proof.

Let f : Rm → (−∞,∞] be convex, l.s.c., and proper. Suppose φ 6= C ⊆ Rm is closed and
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convex. Furthermore, suppose riC ∩ ri dom f 6= ∅. Consider the problem

min f(x) (P )

x ∈ C

Then x̄ ∈ Rm solves (P) if and only if

(∂f(x̄)) ∩ (−NC(x̄)) 6= ∅.

Indeed, we convert this to the unconstrained minimization problem min f+δC . This function
is convex, l.s.c., and proper. By Fermat’s theorem, x̄ solves P if and only if

0 ∈ ∂(f + δC)(x̄).

Now, ri dom f ∩ ri dom δC 6= ∅. Hence by the previous theorem, x̄ solves (P) if and only if

0 ∈ ∂(f + δC)(x̄) = ∂f(x̄) +NC(x̄) ⇐⇒ ∃u ∈ ∂f(x̄),−u ∈ NC(x̄)

⇐⇒ ∂f(x̄) ∩ (−NC(x̄)) 6= ∅.

Example 2.9.8
Let d ∈ Rm and ∅ 6= C ⊆ Rm be convex and closed. Consider

min〈d, x〉 (P )

x ∈ C

Let x̄ ∈ Rm. Then x̄ solves (P) if and only if

−d ∈ NC(x̄).

2.10 Differentiability

Definition 2.10.1 (Directional Derivative)
Let f : Rm → (−∞,∞] be proper and x ∈ dom f . The directional derivative of f at
x in the direction of d is

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.
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Definition 2.10.2 (Differentiable)
Let f : Rm → (−∞,∞] be proper and x ∈ dom f . f is differentiable at x if there is
a linear operator ∇f(x) : Rm → Rm, called the derivative (gradient) of f at x, that
satisfies

lim
06=‖y‖→0

‖f(x+ y)− f(x)−∇f(x) · y‖
‖y‖

= 0.

If f is differentiable at x, then the directional derivative of f at x in the direction of d is

f ′(x; d) = 〈∇f(x), d〉.

Theorem 2.10.1
Let f : Rm → (−∞,∞] be convex. Suppose f(x) < ∞. For each y, the quotient in
the definition of f ′(x; y) is a non-decreasing function of λ > 0. So f ′(x; y) exists and

f ′(x; y) = inf
λ>0

f(x+ λy)− f(x)

λ
.

Theorem 2.10.2
Let f : Rm → (−∞,∞] be convex and proper. Let x ∈ dom f and u ∈ Rm. Then u
is a subgradient of f at x if and only if

∀y ∈ Rm, f ′(x; y) ≥ 〈u, y〉.

Proof
By definition,

u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm, λ > 0, f(x+ λy) ≥ f(x) + 〈u, λy〉

⇐⇒ ∀y ∈ Rm, λ > 0,
f(x+ λy)− f(x)

λ
≥ 〈u, y〉

⇐⇒ ∀y ∈ Rm, inf
λ>0

f(x+ λy)− f(x)

λ
≥ 〈u, y〉

⇐⇒ ∀y ∈ Rm, f ′(x; y) ≥ 〈u, y〉.

Theorem 2.10.3
Let f : Rm → (−∞,∞] be convex and proper. Suppose x ∈ dom f . If f is differen-
tiable at x, then ∇f(x) is the unique subgradient of f at x.
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Proof
Recall that for each y ∈ Rm,

f ′(x; y) = 〈∇f(x), y〉.

Let u ∈ Rm. By the previous theorem,

u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm, f ′(x; y) ≥ 〈u, y〉
⇐⇒ ∀y ∈ Rm, 〈∇f(x), y〉 ≥ 〈u, y〉.

It is clear that ∇f(x) ∈ ∂f(x). Conversely, by setting y := u−∇f(x). We see that

〈∇f(x), u−∇f(x)〉 ≥ 〈u, u−∇f(x)〉 ⇐⇒ 〈u−∇f(x), u−∇f(x)〉 ≤ 0

⇐⇒ u = ∇f(x).

Lemma 2.10.4
Let ϕ : R → (−∞,∞] be a proper function that is differentiable on an interval
∅ 6= I ⊆ domϕ. If ϕ′ is increasing on I, then ϕ is convex on I.

Proof
Fix x, y ∈ I and λ ∈ (0, 1). Let ψ : R → (−∞,∞] be given by

z 7→ λϕ(x) + (1− λ)ϕ(z)− ϕ(λx+ (1− λ)z).

Then
ψ′(z) = (1− λ)φ′(z)− (1− λ)φ′(λx+ (1− λ)z)

and ψ′(x) = 0 = ψ(x).

Since φ′ is increasing, ψ′(z) ≤ 0 when z < x and ψ′(z) > 0 whenever z > x. It follows
that ψ achieves its infimum on I at x.

That is, for all y ∈ I, ψ(y) ≥ ψ(x) = 0. But then

λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y)

as desired.

47



©Fel
ix

Zh
ou

Proposition 2.10.5
Let f : Rm → (−∞,∞] be proper. Suppose that dom f is open and convex, and that f
is differentiable on dom f . The following are equivalent.

(i) f is convex
(ii) ∀x, y ∈ dom f, 〈x− y,∇f(y)〉+ f(y) ≤ f(x)

(iii) ∀x, y ∈ dom f, 〈x− y,∇f(x)−∇f(y)〉 ≥ 0

Proof
(i) =⇒ (ii) ∇f(y) is the unique subgradient of f at y. Hence for all x ∈ Rm and y ∈ dom f ,

f(x) ≥ 〈x− y,∇f(y)〉+ f(y).

(ii) =⇒ (iii) We prove this in assignment 2.

(iii) =⇒ (i) Fix x, y ∈ dom f and z ∈ Rm. By assumption, dom f is open. Thus there is
some ε > 0 such that

y + (1 + ε)(x− y) = x+ ε(x− y) ∈ dom f

y − ε(x− y) = y + ε(y − x) ∈ dom f.

By the convexity of dom f , for every α ∈ (−ε, 1 + ε), y + α(x− y) ∈ dom f .

Set C = (−ε, 1 + ε) ⊆ R and φ : R → (−∞,∞] be given by

φ(α) := f(y + α(x− y)) + δC(α).

By construction, φ is differentiable on C and for each α ∈ C,

φ′(α) = 〈∇f(y + α(x− y)), x− y〉.

Now, take α < β ∈ C. Set

yα := y + α(x− y)

yβ := y + β(x− y)

yβ − yα = (β − α)(x− y).

Then by assumption,

ϕ′(β)− ϕ′(α) = 〈∇f(y + β(x− y)), x− y〉 − 〈∇f(y + α(x− y)), x− y〉
= 〈∇f(yβ)−∇f(yα), x− y〉

=
1

β − α
〈∇f(yβ)−∇f(yα), yβ − yα〉

≥ 0.
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That is, ϕ′ is increasing on C and ϕ is convex on C. But then

f(αx+ (1− α)y) = ϕ(α)

≤ αϕ(1) + (1− α)ϕ(0)

= αf(x) + (1− α)f(y).

Example 2.10.6
Let A be a m×m matrix, and set f : Rm → R be given by

f(x) = 〈x,Ax〉.

Then ∇f(x) = A+ AT and f is convex if and only if A+ AT is posiitve semidefinite.

2.11 Conjugacy

Proposition 2.11.1
Let f, g be functions from Rm → [−∞,∞]. Then

(1) f ∗∗ := (f ∗)∗ ≤ f

(2) f ≤ g =⇒ f ∗ ≥ g∗, f ∗∗ ≤ g∗∗

Proposition 2.11.2 (Fenchel-Young Inequality)
Let f : Rm → (−∞,∞] be proper. Then for all x, u ∈ Rm,

f(x) + f ∗(u) ≥ 〈x, u〉.

Proof
By definition, f ∗(x) = −∞ ⇐⇒ f ≡ ∞. Hence by assumption f ∗(Rm) > 0.

Now, let x, u ∈ Rm. If f(x) = ∞, the inequality trivially holds. Otherwise,

f ∗(u) := sup
y∈Rm

〈y, u〉 − f(u) ≥ 〈y, x〉 − f(x)

as desired.

Proposition 2.11.3
Let f : Rm → (−∞,∞] be convex and proper. For x, u ∈ Rm,

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(x) = 〈x, u〉.

49



©Fel
ix

Zh
ou

Proof
We have

u ∈ ∂f(x)

⇐⇒ ∀y ∈ dom f, 〈y − x, u〉+ f(x) ≤ f(y)

⇐⇒ ∀y ∈ dom f, 〈y, u〉 − f(y) ≤ 〈x, u〉 − f(x)

⇐⇒ f ∗(u) = sup
y∈Rm

〈y, u〉 − f(y) ≤ 〈x, u〉 − f(x)

⇐⇒ f ∗(u) = 〈x, u〉 − f(x). 〈x, u〉 − f(x) ≤ f ∗(u)

Proposition 2.11.4
Let f : Rm → (−∞,∞] be convex and proper. Pick x ∈ Rn such that ∂f(x) 6= ∅. Then

f ∗∗(x) = f(x).

Proof
Let u ∈ ∂f(x). By the previous proposition,

〈u, x〉 = f(x) + f ∗(u).

Consequently,

f ∗∗(x) := sup
y∈Rm

〈x, y〉 − f ∗(y)

≥ 〈x, u〉 − f ∗(u)

= f(x).

Conversely,

f ∗∗(x) = sup
y∈Rm

〈y, x〉 − f ∗(y)

= sup
y∈Rm

〈y, x〉 − sup
z∈Rm

(〈z, y〉 − f(z))

= sup
y∈Rm

〈y, x〉+ inf
z∈Rm

(f(z)− 〈y, z〉)

= sup
y∈Rm

inf
z∈Rm

(f(z) + 〈y, x− z〉)

≤ sup
y∈Rm

f(x) + 〈y, x− x〉

= sup
y∈Rm

f(x)

= f(x).
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Proposition 2.11.5
Let f : Rm → (−∞,∞] be proper. Then f is convex and l.s.c. if and only if

f = f ∗∗.

In this case, f ∗ is also proper.

Corollary 2.11.5.1
Let f : Rm → (−∞,∞] be convex, l.s.c. and proper. Then

(i) f ∗ is convex, l.s.c., and proper
(ii) f ∗∗ = f

Proof
To see (i), combine the previous proposition and the fact that f ∗ is always convex and
l.s.c.

(ii) follows from the previous proposition.

Proposition 2.11.6
Let f : Rm → (−∞,∞] be convex, l.s.c., and proper. Then

u ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(u).

Proof
Recall that

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = 〈x, u〉.

By a previous proposition, g := f ∗ satifies g∗ = f . Moreover, g is convex, l.s.c., and
proper.

Hence,

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = 〈x, u〉
⇐⇒ g∗(x) + g(u) = 〈x, u〉
⇐⇒ x ∈ ∂g(u) = ∂f ∗(u)

as desired.
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2.12 Coercive Functions

Theorem 2.12.1
Let f : Rm → R be proper, l.s.c. and compact C ⊆ Rm such that

C ∩ dom f 6= ∅.

Then the following hold:
(i) f is bounded below over C
(ii) f attains its minimal value over C

Proof
(i): Suppose towards a contradiction that f is not bounded below over C. There is a
sequence xn in C such that

lim
n
f(xn) = −∞.

Since C is (sequentially) compact, there there is a convergent subsequence xkn → x̄ ∈ C.
But f is l.s.c., hence

f(x̄) ≤ lim inf
n
f(xkn) = −∞

which contradicts the properness of f .

(ii): Since f is bounded below,
fmin := inf

x∈C
f(x)

exists. There is a sequence xn in C such that f(xn) → fmin.

Again, there is a convergent subsequence xkn → x̄ ∈ C. Then

f(x̄) ≤ lim inf
n
f(xkn) = fmin.

Thus x̄ is a minimizer of f over C.

Definition 2.12.1 (Coercive Function)
Let f : Rm → (−∞,∞]. Then f is coercive if

lim
‖x‖→∞

f(x) = ∞.
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Definition 2.12.2 (Super Coercive)
Let f : Rm → (−∞,∞]. Then f is super coercive if

lim
‖x‖→∞

f(x)

‖x‖
= ∞.

Theorem 2.12.2
Let f : Rm → (−∞,∞] be proper, l.s.c., and coercive. Let C ⊆ Rm be a closed subset
of Rm satisfying

C ∩ dom f 6= ∅.

Then f attains its minimal value over C.

Proof
Let x ∈ C ∩ dom f . Since f is coercive, there is some M such that

∀y, ‖y‖ > M =⇒ f(y) > f(x).

But then the set of minimizers of f over C is the same as the set of minimizers of f over
C ∩B(0;M). This set is compact. Hence by the previous theorem, f attains its minimal
value over C.

2.13 Strong Convexity

Definition 2.13.1 (Lipschitz Function)
Let T : Rm → Rm and L ≥ 0. Then T is L-Lipschitz if for all x, y ∈ Rm,

‖Tx− Ty‖ ≤ L‖x− y‖.

Example 2.13.1
Let f : Rm → R be given by

x 7→ 1

2
〈x,Ax〉+ 〈b, x〉+ x

where A � 0 is positive semi-definite, b ∈ Rn and c ∈ R.

Then
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(i) ∇f(x) = Ax for all x ∈ Rm

(ii) ∇f is Lipschitz with constant ‖A‖, the operator norm of A

Example 2.13.2
Let ∅ 6= C ⊆ Rm be closed and convex. Then PC is Lipschitz continuous with constant
1.

Lemma 2.13.3 (Descent)
Let f : Rm → (−∞,∞] be differentiable on ∅ 6= D ⊆ int dom f such that ∇f is
L-Lipschitz. Moreover, suppose that D is convex.
Then for all x, y ∈ D,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖x− y‖2.

Proof
Recall that the fundamental theorem of calculus implies that

f(y)− f(x) =

∫ 1

0

〈∇f(x+ t(y − x)), y − x〉dt

= 〈∇f(x), y − x〉+
∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉dt.

Hence

|f(y)− f(x)− 〈∇f(x), y − x〉|

=

∣∣∣∣∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉dt
∣∣∣∣

≤
∫ 1

0

|〈∇f(x+ t(y − x))−∇f(x), y − x〉|dt

≤
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖ · ‖y − x‖dt

≤
∫ 1

0

L‖x+ t(y − x)− x‖ · ‖y − x‖dt f is L-Lipschitz

=

∫ 1

0

tL‖x− y‖2dt

=
L

2
‖x− y‖2.
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It follows that
f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖x− y‖2.

Theorem 2.13.4
Let f : Rm → R be convex and differentiable and L > 0. The following are equivalent:

(i) ∇f is L-Lipschitz
(ii) for all x, y ∈ Rm, f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖x− y‖2

(iii) for all x, y ∈ Rm, f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2L
‖∇f(x)−∇f(y)‖2

(iv) for all x, y ∈ Rm, 〈∇f(x)−∇f(y), x− y〉 ≥ 1
L
‖∇f(x)−∇f(y)‖2

Proof
(i) =⇒ (ii): This is the descent lemma.

(ii) =⇒ (iii): If ∇f(x) = ∇f(y), the this follows immediately from the subgradient in-
equality and the fact that ∂f(x) = {∇f(x)}.

Fix x ∈ Rm and define

hx(y) := f(y)− f(x)− 〈∇f(x), y − x〉.

Observe that hx is convex, differentiable, with

∇hx(y) = ∇f(y)−∇f(x).

We claim that for all y, z ∈ Rm,

hx(z) ≤ hx(y) + 〈∇hx(y), z − y〉+ L

2
‖z − y‖2.

Indeed,

hx(z) = f(z)− f(x)− 〈∇f(x), z − x〉

≤ f(y) + 〈∇f(y), z − y〉+ L

2
‖z − y‖2 − f(x)− 〈∇f(x), z − x〉

= f(y)− f(x)− 〈∇f(x), y − x〉 − 〈∇f(x), z − y〉+ 〈∇f(y), z − y〉+ L

2
‖z − y‖2

= f(y)− f(x)− 〈∇f(x), y − x〉+ 〈∇f(y)−∇f(x), z − y〉+ L

2
‖z − y‖2

= hx(y) + 〈∇hx(y), z − y〉+ L

2
‖z − y‖2.

55



©Fel
ix

Zh
ou

By construction, ∇hx(x) = 0. But the convexity of hx then asserts that x is a global
minimizer of hx. That is, for all z ∈ Rn,

hx(x) ≤ hx(z).

Pick y, v ∈ Rm be such that ‖v‖ = 1 and 〈∇hx(y), v〉 = ‖∇hx(y)‖. Set

z = y − ‖∇hx(y)‖
L

v.

From the fact that x is a global minimizer, we have

0 = hx(x)

≤ hx

(
y − ‖∇hx(y)‖

L
v

)
.

On the other hand, the earlier inequality yields

0 = hx(x)

≤ hx(y)−
‖∇hx(y)‖

L
〈∇hx(y), v〉+

1

2L
‖∇hx(y)‖2‖v‖2

= hx(y)−
‖∇hx(y)‖2

L
+

1

2L
‖∇hx(y)‖2

= hx(y)−
1

2L
‖∇hx(y)‖2

= f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2L
‖∇f(x)−∇g(y)‖2.

(iii) =⇒ (iv): Using (iii),

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1

2L
‖∇f(x)−∇f(y)‖2

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ 1

2L
‖∇f(y)−∇f(x)‖2.

(iv) =⇒ (i): If ∇f(x) = ∇f(y), the implication is trivial. We proceed assuming otherwise.

We have

‖∇f(x)−∇f(y)‖2 ≤ L〈∇f(x)−∇f(y), x− y〉
≤ L‖∇f(x)−∇f(y)‖ · ‖x− y‖

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
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Example 2.13.5 (Firm Nonexpansiveness)
Let ∅ 6= C ⊆ Rm be closed and convex. Then for each x, y ∈ Rm,

‖PC(x)− Pc(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉.

Example 2.13.6
Let ∅ 6= C ⊆ Rm be closed and convex. Let f : Rm → R be given by

f(x) =
1

2
d2C(x).

Then the following holds

(i) f is differentiable over Rm with ∇f(x) = x− PC(x) for all x ∈ Rm

(ii) ∇f is 1-Lipschitz

Indeed, for x ∈ Rm, define

hx(y) := f(x+ y)− f(x)− 〈y, x− PC(x)〉.

It can be shown that
|hx(y)|
‖y‖

→ 0

as y → 0 by bounding |hx(y)| ≤ 1
2
‖y‖2.

To see the 1-Lipschitz continuity of ∇f , we would apply the non-expansiveness of projec-
tions onto closed convex sets.

Theorem 2.13.7 (Second Order Characterization)
Let f : Rm → R be twice continuously differentiable over Rm and let L ≥ 0. The
following are equivalent.

(i) ∇f is L-Lipschitz
(ii) for all x ∈ Rm, ‖∇2f(x)‖ ≤ L (operator norm)

Proof
(i) =⇒ (ii) Suppose that ∇f is L-Lipschitz continuous. For any y ∈ Rm and α > 0,

‖∇f(x+ αy)−∇f(x)‖ ≤ L‖x+ αy − x‖ = αL‖y‖.
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That is,

‖∇2f(x)(y)‖ = lim
α↓0

‖∇f(x+ αy)−∇f(x)‖
α

≤ lim
α↓0

L‖x+ αy − x‖
α

= lim
α↓0

L‖y‖

= L‖y‖.

Equivalently,
‖∇2f(x)‖ ≤ L

as desired. Note that we used the fact that ∇2f(x)(y) = (∇f)′(x; y).

(ii) =⇒ (i) Suppose that ‖∇2f(x)‖ ≤ L and fix x, y ∈ Rm. By the fundamental theorem
of calculus,

∇f(x) = ∇f(y) +

∫ 1

0

∇2f(y + α(x− y))(x− y)dα

= ∇f(y) +

[∫ 1

0

∇2f(y + α(x− y))dα

]
(x− y)

Hence

‖∇f(x)−∇f(y)‖ ≤
∥∥∥∥∫ 1

0

∇2f(x+ α(x− y))dα

∥∥∥∥ · ‖x− y‖

≤
∫ 1

0

‖∇2f(x+ α(x− y))‖dα‖x− y‖

≤ L‖x− y‖.

Proposition 2.13.8
For a symmetric A ∈ Rm×m,

sup
‖x‖=1

‖Ax‖ = max
1≤i≤m

|λi|

where λi are the eigenvalues of A.

Proof
Write x as a linear combination of some orthonormal eigenvector basis of A.
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Proposition 2.13.9
A twice continuously differentiable function f : Rm → R is convex if and only if ∇2f(x)
is positive semi-definite.

Proof
See A3.

Corollary 2.13.9.1
Let f : Rm → R be convex and twice continuously differentiable. Suppose L ≥ 0. Then
∇f is L-Lipschitz if and only if for all x ∈ Rm,

λmax(∇2f(x)) ≤ L.

Proof
Since f is convex and twice continuously differentiable, ∇2f(x) is positive semidefinite
everwhere. Combined with the earlier result,

L ≥ ‖∇2f(x)‖
= |λmax(∇2f(x))|
= λmax(∇2f(x)).

Example 2.13.10
Let f : Rm → R be given by

x 7→
√

1 + ‖x‖2.

Then

(i) f is convex
(ii) ∇f is 1-Lipschitz

Proposition 2.13.11
Let β > 0. f : Rm → (−∞,∞] is β-strongly convex if and only if

f − β

2
‖·‖2

is convex.
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Proof
See A3.

Proposition 2.13.12
Let f, g : Rm → (−∞,∞] and β > 0. Suppose that f is β-strongly convex and that g is
convex. Then f + g is β-strongly convex.

Proof
Define

h :=

(
f − β

2
‖·‖2

)
+ g.

Then h is convex as it is the sum of two convex functions. Thus applying the previous
proposition yields the result.

Proposition 2.13.13
Let f : Rm → (−∞,∞] be strongly convex, l.s.c., and proper. Then f has a unique
minimizer.

2.14 The Proximal Operator

Definition 2.14.1 (Proximal Point Mapping)
Let f : Rm → (−∞,∞]. The proximal point mapping of f is the operator Proxf :
Rm ⇒ Rm given by

Proxf (x) := argminu∈Rm{f(u) +
1

2
‖u− x‖2}.

Theorem 2.14.1
Let f : Rm → (−∞,∞] be convex, l.s.c., and proper. Then for every x ∈ Rm,
Proxf (x) is a singleton.

Proof
For a fixed x ∈ Rm,

hx :=
1

2
‖· − x‖2

is β-strongly convex for all β < 1. Therefore,
gx := f + hx
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is strongly convex for every x ∈ Rm.

We know that gx is l.s.c. as f, hx are l.s.c. Moreover, gx is proper as f, g is proper with
dom f ∩ dom gx = dom f . Thus from the previous proposition,

argminu∈Rm gx =: Proxf (x)

exists and is unique.

Example 2.14.2
For ∅ 6= C ⊆ Rm closed and convex,

ProxδC = PC .

Proposition 2.14.3
Let f : Rm → (−∞,∞] be convex, l.s.c., and proper. Let x, p ∈ Rm. Then p = Proxf (x)
if and only if for all y ∈ Rm,

〈y − p, x− p〉+ f(p) ≤ f(y).

Proof
( =⇒ ) Suppose that p = Proxf (x). For each λ ∈ (0, 1), set

pλ := λy + (1− λ)p.

Thus

f(p) ≤ f(pλ) +
1

2
‖x− pλ‖2 −

1

2
‖x− p‖2

≤ f(pλ) +
1

2
‖x− λy − (1− λ)p‖2 − 1

2
‖x− p‖2

= f(pλ) +
1

2
〈x− p− λ(y − p)− (x− p), x− p− λ(y − p) + (x− p)〉

= f(pλ) +
1

2
〈−λ(y − p), 2(x− p)− λ(y − p)〉

= f(pλ) +
λ

2
‖y − p‖2 − λ〈x− p, y − p〉

= f(λy + (1− λ)p) +
λ2

2
‖y − p‖2 − λ〈x− p, y − p〉

f(p) ≤ λf(y) + (1− λ)f(p) +
λ2

2
‖y − p‖2 − λ〈x− p, y − p〉

λ〈x− p, y − p〉+ λf(p) ≤ λf(y) +
λ2

2
‖y − p‖2.
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Division by λ and taking the limit as λ→ 0 yields the result.

( ⇐= ) Suppose that
〈y − p, x− p〉+ f(p) ≤ f(y).

Then
f(p) ≤ f(y)− 〈y − p, x− p〉 = f(y) + 〈x− p, p− y〉.

It follows that

f(p) +
1

2
‖x− p‖2 ≤ f(y) + 〈x− p, p− y〉+ 1

2
‖x− p‖2

≤ f(y) + 〈x− p, p− y〉+ 1

2
‖x− p‖2 + 1

2
‖p− y‖2

≤ f(y) + ‖x− p+ p− y‖2

= f(y) + ‖x− y‖2.

Example 2.14.4
Let f : Rm → R be given by

x 7→ |x|.

Then

Proxf (x) :=


x− 1, x > 1

0, x ∈ [−1, 1]

x+ 1, x < −1

We need only apply the previous proposition and consider 3 cases.

Proposition 2.14.5
Let f : Rm → R be convex, l.s.c., and proper. Then x minimizes f over Rm if and only
if

x = Proxf (x).

Proof
By the previous proposition,

x = Proxf (x) ⇐⇒ ∀y ∈ Rm, 〈y − x, x− x〉+ f(x) ≤ f(y)

⇐⇒ ∀y ∈ Rm, f(x) ≤ f(y).

Convexity is crucial for the proximal operator to be well-defined.
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Example 2.14.6
Let g, h : R → R be given by

g(x) :=

{
0, x 6= 0

λ, x = 0

h(x) :=

{
0, x 6= 0

−λ, x = 0

for some λ > 0.

Then

Proxh(x) =


{x}, |x| >

√
2λ

{0, x}, |x| =
√
2λ

{0}, |x| <
√
2λ

Proxh(x) =

{
{x}, x 6= 0

∅, x = 0

Example 2.14.7 (Soft Threshold)
Let f : R → R be given by

x 7→ λ|x|

for some λ ≥ 0.

For all x ∈ R,

Proxf (x) =


x− λ, x > λ

0, x ∈ [−λ, λ]
x+ λ, x < −λ

Note that the above formula can be written as

Proxf (x) = sign(x)(|x| − λ)+

where sign(y) is 1,−1 depending on the sign of y and [−1, 1] if y = 0. Moreover, (y)+ = y
if y ≥ 0 and is 0 otherwise.
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Theorem 2.14.8
Suppose f : Rm → (−∞,∞] is given by

f(x) :=
m∑
i=1

fi(xi)

for fiR → (−∞,∞] convex, l.s.c„ and proper.
Then for all x ∈ Rm,

Proxf (x) = (Proxfi(xi))
m
i=1.

Proof
From A2, f is convex, l.s.c., and proper. We know that

p = Proxf (x) ⇐⇒ ∀y ∈ Rm, f(y) ≥ f(p) + 〈y − p, x− p〉

⇐⇒ ∀y ∈ Rm,
m∑
i=1

fi(yi) ≥
m∑
i=1

fi(pi) +
m∑
i=1

(yi − pi)(xi − pi).

In particular, for some j ∈ [m], let yj ∈ R and yi = 0 for all i 6= j. Then

fi(yi) ≥ fi(pi) + (yi − pi)(xi − pi)

which happens if and only if pi = Proxfi(xi).

Conversely, if fi(yi) ≥ fi(pi)+(yi−pi)(xi−pi) for each i ∈ [m], then clearly p = Proxf (x).

Example 2.14.9
Let g : Rm → (−∞,∞] be given by

x 7→

{
−α
∑m

i=1 log xi, x > 0

∞, else

where α > 1.

Then

Proxg(x) =

(
xi +

√
x2i + 4α

2

)m

i=1

since

Proxgi(xi) =
xi +

√
x2i + 4α

2
.

This can be proven by differentiating to find the minimizer of hi(yi) := gi(yi)+
1
2
(yi−xi)2.
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Theorem 2.14.10
Let g : Rm → (−∞,∞] be proper and c > 0. Let a ∈ Rm, γ ∈ R. For each x ∈ Rm,
define

f(x) = g(x) +
c

2
‖x‖2 + 〈a, x〉+ γ.

Then for all x ∈ Rm,

Proxf (x) = Prox 1
c+1

g

(
x− a

c+ 1

)
.

Proof
Indeed, recall that

Proxf (x) := argminu∈Rm f(u) +
1

2
‖u− x‖2

= argminu∈Rm g(u) +
c

2
‖u‖2 + 〈a, u〉+ γ +

1

2
‖u− x‖2.

Now,
c

2
‖u‖2 + 〈a, u〉+ 1

2
‖u− x‖2 = c

2
‖u‖2 + 〈a, u〉+ 1

2
‖u‖2 − 〈u, x〉+ 1

2
‖x‖2

=
c+ 1

2
‖u‖2 − 〈u, x− a〉+ 1

2
‖x‖2

=
c+ 1

2

[
‖u‖2 − 2

〈
u,
x− a

c+ 1

〉
+

1

c+ 1
‖x‖2

]
=
c+ 1

2

[∥∥∥∥u− x− a

c+ 1

∥∥∥∥2 − ‖x− a‖2

c+ 1
+

1

c+ 1
‖x‖2

]

=
c+ 1

2

∥∥∥∥u− x− a

c+ 1

∥∥∥∥2 − ‖x− a‖2

2
+

1

2
‖x‖2.

Finally, since minimizers are preserved under positive scalar multiplication and transla-
tion,

Proxf (x) = argminu∈Rm g(u) +
c+ 1

2

∥∥∥∥u− x+ a

c+ 1

∥∥∥∥2 + γ − ‖x− a‖2

2
+

1

2
‖x‖2

= argminu∈Rm g(u) +
c+ 1

2

∥∥∥∥u− x+ a

c+ 1

∥∥∥∥2
= argminu∈Rm

1

c+ 1
g(u) +

1

2

∥∥∥∥u− x− a

c+ 1

∥∥∥∥2
=: Prox 1

c+1
g

(
x+ a

c+ 1

)
.
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Example 2.14.11
Let µ ∈ R and α ≥ 0. Consider f : R → (−∞,∞] given by

f(x) :=

{
µx, x ∈ [0, α]

∞, else

For each x ∈ R,
f(x) = µx+ δ[0,α](x).

Moreover,
Proxf (x) = min(max(x− µ, 0), α).

Indeed, apply the previous theorem with g = δ[0,α] and c = γ = 0. Then

Proxf (x) = Proxg(x− µ) = PC(x− µ).

Theorem 2.14.12
Let g : R → (−∞,∞] be convex, l.s.c. and proper such that dom g ⊆ [0,∞) and let
f : Rm → R be given by

f(x) = g(‖x‖).

Then

Proxf (x) =

{
Proxg(‖x‖) x

‖x‖ , x 6= 0

{u ∈ Rm : ‖u‖ = Proxg(x)}, x = 0

Proof
Case I: x = 0 By definition,

Proxf (x) = argminu∈Rm f(u) +
1

2
‖u‖2.

By the change of variable w = ‖u‖, then above set of minimizers is the same as

argminw∈Rm g(w) +
1

2
w2 =: Proxg(0).
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Case II: x 6= 0 By definition, Proxf (x) is the set of solutions to the minimization problem

min
u∈Rm

g(‖u‖) + 1

2
‖u− x‖2

= min
u∈Rm

g(‖u‖) + 1

2
‖u‖2 − 〈u, x〉+ 1

2
‖x‖2

= min
α≥0

min
u∈Rm:‖u‖=α

g(α) +
1

2
α2 − 〈u, x〉+ 1

2
‖x‖2

Now, 〈u, x〉 ≤ ‖u‖ · ‖x‖ by the Cauchy-Schwartz inequality with equality when u = λx
for some λ ≥ 0. Thus{

α
x

‖x‖

}
= min

u∈Rm:‖u‖=α
g(α) +

1

2
α2 − 〈u, x〉+ 1

2
‖x‖2.

The values of α which minimize α x
‖x‖ are then given by

min
α≥0

g(α) +
1

2
α2 − α‖x‖+ 1

2
‖x‖2

= min
α≥0

g(α) +
1

2
(α− ‖x‖)2.

This is precisely Proxg(‖x‖).

Hence
Proxf (x) = Proxg(‖x‖)

x

‖x‖
as desired.

Example 2.14.13
Let α > 0, λ ≥ 0, and f : R→(−∞,∞] be given by

f(x) =

{
λ|x|, |x| ≤ α

∞, |x| > α

Then f is convex, l.s.c. and proper (see A3).

Define

g(x) =

{
λx, x ∈ [0, α]

∞, x /∈ [0, α]
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so that f(x) = g(|x|). By the previous theorem,

Proxf (x) =

{
Proxg(|x|) sgn(x), x 6= 0

0, x = 0

= min(max(|x| − λ, 0), α) sgn(x).

Example 2.14.14
Let w, α ∈ Rm

+ and f : Rm → (−∞,∞] given by

f(x) =

{∑m
i=1wi|xi|, −α ≤ x ≤ α

∞, else

Then Proxf (x) = (min(max(|xi| − wi, 0), αi) sgn(xi))
m
i=1 (see A3).

Moreover, consider the problem

min
m∑
i=1

wi|xi| (P )

|xi| ≤ αi, ∀i ∈ [m]

Let the sequence (xn)n≥0 be recursively defined by x0 ∈ Rm and xn+1 = Proxf (xn). Then
xn → x̄ where x̄ is a minimizer of (P).

2.15 Nonexpansive & Averaged Operators

We use Id : Rm → Rm to denote the m×m identity matrix.

Definition 2.15.1 (Nonexpansive)
Let T : Rm → Rm. Then T is nonexpansive if for all x, y ∈ Rm,

‖Tx− Ty‖ ≤ ‖x− y‖

Definition 2.15.2 (Firmly Nonexpansive)
Let T : Rm → Rm. Then T is firmly nonexpansive (f.n.e.) if for all x, y ∈ Rm,

‖Tx− Ty‖2 + ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2
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Definition 2.15.3 (Averaged)
Let T : Rm → Rm and α ∈ (0, 1). Then T is α-averaged if there is some N : Rm → Rm

such that N is nonexpansive and

T = (1− α) Id+αN.

Proposition 2.15.1
T : Rm → Rm. The following are equivalent.

(i) T is f.n.e.
(ii) Id−T is f.n.e.
(iii) 2T − Id is nonexpansive
(iv) for all x, y ∈ Rm, ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉.
(v) for all x, y ∈ Rm, 〈Tx− Ty, (Id−T )x− (Id−T )y〉 ≥ 0

Proof
(i) ⇐⇒ (ii): This is clear from the definition.

(i) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v): See A3.

We can refine the previous result when T is linear.

Proposition 2.15.2
Let T : Rm → Rm be linear. Then the following are equivalent.

(i) T is f.n.e.
(ii) ‖2T − Id‖ ≤ 1

(iii) for all x ∈ Rm, ‖Tx‖2 ≤ 〈x, Tx〉
(iv) for all x ∈ Rm, 〈Tx, x− Tx〉 ≥ 0

Proof
(i) ⇐⇒ (ii) We know that T is f.n.e. if and only if 2T − Id is nonexpansive. This happens
if and only if for all x 6= y,

‖(2T − Id)(x− y)‖ = ‖(2T − Id)x− (2T − Id)y‖
≤ ‖x− y‖
⇐⇒

‖2T − Id‖ ≤ 1.
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(i) ⇐⇒ (iii) This is easily seen by the previous proposition and the fact that Tx− Ty =
T (x− y).

(i) ⇐⇒ (iv) This is seen by applying the previous proposition and observing that Tx −
Ty = T (x− y) as well as

(Id−T )x− (Id−T )y = x− y − T (x− y).

Observe that T is f.n.e. if and only if N := 2T−Id is nonexpansive if and only if 2T = Id+N
for N nonexpansive if and only if T = 1

2
Id+1

2
N for N nonexpansive if and only if T is 1

2
-

averaged.

Example 2.15.3
Let ∅ 6= C ⊆ Rm be convex and closed. Then PC(x) is f.n.e. Indeed, for all x, y ∈ Rm,

‖PC(x)− PC(y)‖ ≤ 〈PC(x)− PC(y), x− y〉.

Example 2.15.4
Suppose that T = −1

2
Id. Then T is averaged but NOT f.n.e.

We have
T =

1

4
Id+

3

4
(− Id)

and so T is 3
4
-averaged.

But T is not f.n.e. as for all 0 6= x ∈ Rm,

‖Tx‖2 + ‖x− Tx‖2 = 1

4
‖x‖2 + 9

4
‖x‖2

=
5

2
‖x‖2

> ‖x‖2.

Example 2.15.5
T := − Id is nonexpansive but NOT averaged. Indeed suppose there is some nonexpansive
N : Rm → Rm and α ∈ (0, 1) such that

T = (1− α) Id+αN ⇐⇒ − Id = (1− α) Id+αN

⇐⇒ (−1 + α) Id = αN

⇐⇒ N =
α− 2

α
Id .
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But then

‖N‖ =

∣∣∣∣α− 2

α

∣∣∣∣ ≤ 1

⇐⇒ 2− α

α
≤ 1

⇐⇒ 2− α ≤ α

⇐⇒ α ≥ 1

which is impossible by the definition of averaged.

Proposition 2.15.6
Let T : Rm → Rm be nonexpansive. Then T is continuous.

Proof
Suppose xn → x̄. Then

‖Txn − T x̄‖ ≤ ‖xn − x̄‖ → 0.

Definition 2.15.4 (Fixed Point)
Let T : Rm → Rm then

FixT := {x ∈ Rm : x = Tx}.

2.16 Féjer Monotonocity

Definition 2.16.1 (Féjer Monotone)
Let ∅ 6= C ⊆ Rm and (xn)n∈N a sequence in Rm. Then (xn) is a Féjer monotone with
respect to C if for all c ∈ C, n ∈ N,

‖xn+1 − c‖ ≤ ‖xn − c‖.

Example 2.16.1
Suppose FixT 6= ∅ for some nonexpansive T : Rm → Rm. For any x0 ∈ Rn, the sequence
defined recursively by

xn := T (xn−1)

is Féjer monotone with respect to FixT .
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Proposition 2.16.2
Let ∅ 6= C ⊆ Rm and (xn)n≥0 a Féjer monotone sequence in Rm with respect to C. The
following hold:

(i) (xn) is bounded
(ii) for every c ∈ C, (‖xn − c‖)n≥0 converges
(iii) (dC(xn))n≥0 is decreasing and converges

Proof
Fix c ∈ C. We have

‖xn‖ ≤ ‖c‖+ ‖xn − c‖
≤ ‖c‖+ ‖x0 − c‖.

Hence (xn) is a bounded sequence.

Now, ‖xn − c‖ is bounded below by 0 and monotonic, hence necessarily converges to the
infimum.

Observe that for each n ∈ N, c ∈ C,

‖xn+1 − c‖ ≤ ‖xn − c‖.

Taking infimums on both sides preserve this inequality.

Recall the following analysis fact.

Proposition 2.16.3
A bounded sequence (xn)n∈N in Rm converges if and only if it has a unique cluster point.

Proof
The forward direction is clear. Suppose now that (xn)n∈N has a unique cluster point x̄.

Suppose that xn 6→ x̄. Then there is some ε0 > 0 and subsequence xkn such that for all n,

‖xkn − x̄‖ ≥ ε0.

But then (xkn)n∈N is bounded and hence contains a convergent subsequence. This is still
a subsequence of (xn)n∈N but cannot converge to x̄.

It follows that (xn)n∈N has more than one cluster point. By contradiction, xn → x̄.
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Lemma 2.16.4
Let (xn)n∈N be a sequence in Rm and ∅ 6= C ⊆ Rm be such that for all c ∈ C,
(‖xn − c‖)n∈N converges and every cluster point of (xn)n∈N lies in C.
Then (xn)n∈N converges to a point in C.

Proof
(xn) is necessarily bounded since ‖xn‖ ≤ ‖c‖ + ‖xn − c‖ is bounded. It suffices by the
previous proposition to show that (xn)n∈N has a unique cluster point.

Let x, y be two cluster points of (xn)n∈N. That is, there are subsequences

xkn → x, x`n → y.

By assumption, x, y ∈ C. Hence ‖xn − x‖, ‖xn − y‖ converges.

Observe that

2〈xn, x− y〉
= ‖xn‖2 + ‖y‖2 − 2〈xn, y〉 − ‖xn‖2 − ‖x‖2 + 2〈xn, x〉+ ‖x‖2 − ‖y‖2

= ‖xn − y‖ − ‖xn − x‖2 + ‖x‖2 − ‖y‖2

→ L ∈ Rm.

But then taking the limit along kn, `n,

〈x, x− y〉 = 〈y, x− y〉
‖x− y‖2 = 0

x = y.

Theorem 2.16.5
Let ∅ 6= C ⊆ Rm and (xn)n∈N a sequence in Rm. Suppose that (xn)n∈N is Féjer
monotone with respect to C, and that every cluster point of (xn)n∈N lies in C. Then
(xn)n∈N converges to a point in C.

Proof
We know that for all c ∈ C,

‖xn − c‖

converges. Hence the result follows from the previous lemma.
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Let x, y ∈ Rm and α ∈ R. By computation,
‖αx+ (1− α)y‖2 + α(1− α)‖x− y‖2 = α‖x‖2 + (1− α)‖y‖2.

Theorem 2.16.6
Let α ∈ (0, 1] and T : Rm → Rm be α-averaged such that FixT 6= ∅. Let x0 ∈ Rm.
Define

xn+1 := Txn.

The following hold:
(i) (xn)n∈N is Fejér monotone with respect to FixT .
(ii) Txn − xn → 0.
(iii) (xn)n∈N converges to a point in FixT .

Proof
Now, T being averaged implies that it is nonexpansive. The example earlier shows that
(xn)n∈N is Féjer monotone.

By the definition of averaged, there is some nonexpansive N : Rm → Rm such that

T = (1− α) Id+αN.

Hence for each n ∈ N,
xn+1 = (1− α)xn + αN(xn).

Let f ∈ FixT .

‖xn+1 − f‖2 = ‖(1− α)(xn − f) + α(N(xn)− f)‖2

= (1− α)‖xn − f‖2 + α‖N(xn)−N(f)‖2 − α(1− α)‖N(xn)− xn‖2

≤ (1− α)‖xn − f‖2 + α‖xn − f‖2 − α(1− α)‖N(xn)− xn‖2

= ‖xn − f‖2 − α(1− α)‖N(xn)− xn‖2

α(1− α)‖N(xn)− xn‖2 ≤ ‖xn − f‖2 − ‖xn+1 − f‖2.

By a telescoping sum argument,

k∑
n=0

α(1− α)‖N(x0)− xn‖2 = ‖x0 − f‖2 − ‖xk+1 − f‖2

≤ ‖x0 − f‖2.

By our work with non-negative monotone series, it must be that ‖N(xn)− xn‖ → 0.
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In particular,

‖Txn − xn‖ = ‖(1− α)xn + αN(xn)− xn‖ = α‖N(xn)− xn‖
→ 0.

Now, (xn)n∈N is Féjer monotone with respect to FixT = FixN . Let x̄ be a cluster point of
(xn)n∈N, say xkn → x̄. Observe that N being nonexpansive implies that N is continuous.

Since Nxn − xn → 0, we must also have Nxkn − xkn → 0. Thus

Nxkn = (Nxkn − xkn) + xkn → 0 + x̄.

By continuity,
Nx̄ = lim

n
Nxkn = x̄.

That is, every cluster point of (xn)n∈N lies in FixN = FixT . Combined with a previous
theorem, this yield the proof.

Corollary 2.16.6.1
Let T : Rm → Rm be f.n.e. and suppose that FixT 6= ∅. Put x0 ∈ Rm. Recursively
define

xn+1 := Txn.

There is some x̄ ∈ FixT such that
xn → x̄.

Proof
Since T is f.n.e., T is also averaged. The result follows then by the previous theorem.

Proposition 2.16.7
Let f : Rm → (−∞,∞] be convex, l.s.c., and proper. Then Proxf is f.n.e.

Proof
Let x, y ∈ Rm. Set p := Proxf (x) and q := Proxf (y).

By our work with the proximal operator, p, q are characterized as ∀z ∈ Rm,

〈z − p, x− p〉+ f(p) ≤ f(z)

〈z − q, y − q〉+ f(q) ≤ f(z).
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By choosing z = p, q,

〈q − p, x− p〉+ f(p) ≤ f(q)

〈p− q, y − q〉+ f(q) ≤ f(p)

〈q − p, (x− p)− (y − q)〉 ≤ 0

〈p− q, (x− p)− (y − q)〉 ≥ 0.

But then by our characterization of f.n.e. operators, Proxf is f.n.e.

Corollary 2.16.7.1
Let f : Rm → (−∞,∞] be convex, l.s.c., and proper such that argmin f 6= ∅. Let
x0 ∈ Rm and updated via

xn+1 = Proxf (xn).

There is some x̄ ∈ argmin f such that xn → x̄.

Proof
Recall that

x ∈ argmin f ⇐⇒ x = Proxf (x) ⇐⇒ x ∈ FixProxf .

Thus argmin f = FixProxf 6= ∅.

By the previous proposition, Proxf is f.n.e. Thus the result follows from a previous
theorem.

2.17 Composition of Averaged Operators

Consider the following identity for all x, y ∈ Rm, α ∈ R \ {0}:

α2

(
‖x‖2 −

∥∥∥∥(1− 1

α

)
x+

1

α
y

∥∥∥∥2
)

= α

(
‖x‖2 − 1− α

α
‖x− y‖2 − ‖y‖2

)

Proposition 2.17.1
Let T : Rm → Rm be nonexpansive and α ∈ (0, 1). The following are equivalent:

1. T is α-averaged
2.
(
1− 1

α

)
Id+ 1

α
T is nonexpansive

3. For each x, y ∈ Rm, ‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1−α
α

‖(Id−T )x− (Id−T )y‖2
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Proof
(i) ⇐⇒ (ii): We have T is α-averaged if and only if there is some N : Rm → Rm nonex-
pansive such that

T = (1− α) Id+αN

⇐⇒ N =
1

α
(T − (1− α) Id)

⇐⇒ N =

(
1− 1

α

)
Id+

1

α
T

if and only if
(
1− 1

α

)
Id+ 1

α
T is nonexpansive.

(ii) ⇐⇒ (iii) By definition
(
1− 1

α

)
Id+ 1

α
T is nonexpansive if and only if for all x, y ∈ Rm,

‖x− y‖2

≥
∥∥∥∥(1− 1

α

)
x+

1

α
Tx−

(
1− 1

α

)
y − 1

α
Ty

∥∥∥∥2
=

∥∥∥∥(1− 1

α

)
(x− y) +

1

α
(Tx− Ty)

∥∥∥∥2
= ‖x− y‖2 − 1

α

(
‖x− y‖2 − 1− α

α
‖(x− Tx)− (y − Ty)‖2 − ‖Tx− Ty‖2

)
identity

0 ≥ − 1

α

(
‖x− y‖2 − 1− α

α
‖(x− Tx)− (y − Ty)‖2 − ‖Tx− Ty‖2

)
0 ≤ ‖x− y‖2 + 1− α

α
‖(x− Tx)− (y − Ty)‖2 − ‖Tx− Ty‖2 α > 0.

Theorem 2.17.2
Let α1, α2 ∈ (0, 1) and Ti : Rm → Rm be αi-averaged. Define

T := T1T2

α :=
α1 + α2 − 2α1α2

1− α1α2

.

Then T is α-averaged.

Proof
First observe that by computation,

α ∈ (0, 1) ⇐⇒ α1(1− α2) < 1− α2

which is a tautology.
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By the previous proposition, for each x, y ∈ Rm,

‖Tx− Ty‖2

= ‖T1T2x− T1T2y‖2

≤ ‖T2x− T2y‖2 −
1− α1

α1

‖(Id−T1)T2x− (Id−T1)T2y‖2

≤ ‖x− y‖2 − 1− α2

α2

‖(Id−T2)x− (Id−T2)y‖2 −
1− α1

α1

‖(Id−T1)T2x− (Id−T1)T2y‖2

= ‖x− y‖2 − V1 − V2.

Set
β :=

1− α1

α1

+
1− α2

α2

> 0.

By computation,

V1 + V2 ≥
(1− α1)(1− α2)

βα1α2

‖(Id−T )x− (Id−T )y‖2.

Consequently,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − (1− α1)(1− α2)

βα1α2

‖(Id−T )x− (Id−T )y‖2

= ‖x− y‖2 − 1− α

α
‖(Id−T )x− (Id−T )y‖2.

By the previous proposition, we are done.

78



©Fel
ix

Zh
ouChapter 3

Constrained Convex Optimization

We now consider the problem

min f(x) (P )

x ∈ C

where f : Rm → (−∞,∞] is convex, l.s.c., and proper with C 6= ∅ being convex and closed.

3.1 Optimality Conditions

Recall that if riC ∩ ri dom f 6= ∅, then x̄ ∈ Rm solves (P) if and only if

(∂f(x̄)) ∩ (−NC(x̄)) 6= ∅.

We now explore weaker results in the absence of convexity.
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Theorem 3.1.1
Let f : Rm → (−∞,∞] be proper and g : Rm → (−∞,∞] convex, l.s.c., proper with
dom g ⊆ int(dom f). Consider the problem

min f(x) + g(x). (P )

x ∈ Rm

(i) If f is differentiable at x∗ ∈ dom g and x∗ is a local minima of (P), then
−∇f(x∗) ∈ ∂g(x∗)

(ii) If f is convex and differentiable at x∗ ∈ dom g then x∗ is a global minimizer of
(P) if and only if −∇f(x∗) ∈ ∂g(x∗)

Proof (i)
Let y ∈ dom g. Since g is convex, we know that dom g is convex. Hence for any λ ∈ (0, 1),

x∗ + λ(y − x∗) = (1− λ)x∗ + λy

=: xλ

∈ dom g.

Hence for sufficiently small λ,

f(xλ) + g(xλ) ≥ f(x∗) + g(x∗)

f(xλ) + (1− λ)g(x∗) + λg(y) ≥ f(x∗) + g(x∗)

λg(x∗)− λg(y) ≤ f(xλ)− f(x∗)

g(x∗)− g(y) ≤ f(xλ)− f(x∗)

λ
→ f ′(x∗; y − x∗) λ→ 0+

= 〈∇f(x∗), y − x∗〉.

In other words, for all y ∈ dom g,

g(y) ≥ g(x∗) + 〈∇f(x∗), y − x∗〉
=⇒

−∇f(x∗) ∈ ∂g(x∗)

Proof (ii)
Suppose that f is convex and observe that (i) proves the forward direction.
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Now suppose −∇f(x∗) ∈ ∂g(x∗). By definition, for each y ∈ dom g,

g(y) ≥ g(x∗) + 〈−∇f(x∗), y − x〉.

Moreover, since f is differentiable at x∗ one of our characterizations of the convexity of f
is that for any y ∈ dom g ⊆ int dom f ,

f(y) ≥ f(x∗) + 〈∇f(x∗), y − x∗〉.

Adding the inequalities yield that for all y ∈ dom g,

f(y) + g(y) ≥ f(x∗) + g(x∗)

and x∗ solves (P).

3.1.1 The Karush-Kuhn-Tucker Conditions

In the following, we assume that

f, g1, . . . , gn : Rm → R

are of full domain.

Consider the problem

min f(x) (P )

gi(x) ≤ ∀i ∈ [n]

We assume that (P) has at least one solution and that

µ := min{f(x) : ∀i ∈ I, f(x) ≤ 0} ∈ R

is the optimal value. Put

F (x) := max{f(x)− µ︸ ︷︷ ︸
=:g0(x)

, g1(x), . . . , gn(x)}.

Lemma 3.1.2
For all x ∈ Rm, F (x) ≥ 0. Moreover, the solution of (P) are precisely the minimizers
of

F := {x : F (x) = 0}.

81



©Fel
ix

Zh
ou

Proof
Let x ∈ Rn.

Case Ia: x is infeasible Then there is some j ∈ [n] such that gj(x) > 0. Hence F (x) ≥
gi(x) > 0.

Case Ib: x is not optimal Then gi(x) ≤ 0 but f(x) > µ. Thus F (x) ≥ g0(x) > 0.

Case II: x solves (P) Then x is feasible and f(x) = µ. Hence F (x) = 0.

Proposition 3.1.3 (Max Rule for Subdifferential Calculus)
Let g1, . . . , gn : Rm → (−∞,∞] be convex, l.s.c., and proper. Define

g(x) = max{gi(x), . . . , gn(x)}
A(x) = {i ∈ [n] : gi(x) = g(x)}.

Now, let

x ∈
n⋂

n=1

int dom gi.

We have

∂g(x) = conv

 ⋃
i∈A(x)

∂gi(x)

 .

Theorem 3.1.4 (Fritz-John Optimality Conditions)
Suppose that f, g1, . . . , gn are convex and x∗ solves (P). There exists

α0, . . . , α ≥ 0

not all 0 for which

0 ∈ α0∂f(x
∗) +

n∑
i=1

αi∂gi(x
∗)

αigi(x
∗) = 0 ∀i ∈ [n]

(complementary slackness)

Proof
Recall that F (x) := max{f(x)− µ, gi(x), . . . , gn(x)}. By the previous lemma,

F (x∗) = 0 = minF (Rn).
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Hence
0 ∈ ∂F (x∗) = convi∈A(x∗) ∂gi(x

∗).

where A(x∗) := {0 ≤ i ≤ n : gi(x
∗) = 0}.

Note that 0 ∈ ∂f(x∗) since f0(x∗) = f(x∗)− µ = 0. So

0 ∈ ∂g0 = ∂f.

By our work with convex hulls, there is some α0, . . . , αn such that
∑

i∈A(x∗) αi = 1 (so
αj = 0 if j /∈ A(x∗)) and that

0 ∈
∑

i∈A(x∗)

αi∂gi(x
∗)

= α0∂g0(x
∗) +

∑
i∈A(x∗)\{0}

αi∂gi(x
∗)

= α0∂g0(x
∗) +

n∑
i=1

αi∂gi(x
∗).

Now to see complementary slackness: If i ∈ A(x∗) ∩ [n], then gi(x
∗) = 0. Else if i ∈

[n] \ A∗(x), then αi = 0. In all cases,

αigi(x
∗) = 0

for all i ∈ [n].

Theorem 3.1.5 (Karush-Kuhn-Tucker; Necessary Conditions)
Suppose f, g1, . . . , gn are convex, and x∗ solves (P). Suppose that Slater’s condition
holds, ie there is some s ∈ Rm such that for all i ∈ [n],

gi(s) < 0.

Then there exists λ1, . . . , λm ≥ 0 such that the KKT conditions hold: (stationarity
condition)

0 ∈ ∂f(x∗) +
∑
i∈I

λi∂gi(x
∗)

and (complementary slackness condition) for each i ∈ [n],

λigi(x
∗) = 0.
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Proof
By the Fritz-John necessary conditions, there are α0, α1, . . . , αn ≥ 0 not all 0 such that

0 ∈ α0∂f(x
∗) +

n∑
i=1

αi∂gi(x
∗).

and for all i ∈ [n],
αigi(x

∗) = 0.

We claim that α0 6= 0. Then it is necessary that

0 ∈ ∂f(x∗) +
n∑

i=1

αi

α0

∂gi(x
∗).

Suppose towards a contradiction that α0 = 0. There exist yi ∈ ∂gi(x
∗) such that

n∑
i=1

αiyi = 0.

By the definition of the subgradient, for all y ∈ Rm,

gi(x
∗) + 〈yi, y − x∗〉 ≤ gi(y).

Thus for each i ∈ [n],
gi(x

∗) + 〈yi, s− x∗〉 ≤ gi(s).

Multiplying each inequality by αi and adding them yields

0 =
n∑

i=1

αigi(x
∗) +

〈
n∑

i=1

αiyi, s− x∗

〉

≤
n∑

i=1

αigi(s)

< 0

which is absurd.

By contradiction, α0 > 0 and we are done.
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Theorem 3.1.6 (Karush-Kuhn-Tucker; Sufficient Conditions)
Suppose f, g1, . . . , gn are convex and x∗ ∈ Rm satisfies

∀i ∈ [n], gi(x
∗) ≤ 0 primal feasibility

∀i ∈ [n], λi ≥ 0 dual feasibility

∂f(x∗) +
n∑

i=1

λi∂gi(x
∗) 3 0 stationarity

∀i ∈ [n], λigi(x
∗) = 0 complementary slackness

Then x∗ solves (P).

Proof
Define

h(x) := f(x) +
n∑

i=1

λigi(x).

Then h is convex since non-negative multiplication preserves convexity.

Apply the sum rule to obtain that

∂g(x) = ∂f(x) +
n∑

i=1

λi∂gi(x).

By assumption,

0 ∈ ∂h(x∗) = ∂f(x∗) +
n∑

i=1

λi∂gi(x
∗).

Thus by Fermat’s theorem, x∗ is a global minimizer of H.

Let x be feasible for (P). Then

f(x∗) = f(x∗) +
n∑

i=1

λigi(x
∗)

= h(x∗)

≤ h(x)

= f(x) +
n∑

i=1

λigi(x)

≤ f(x).
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3.2 Gradient Descent

Consider the problem

min f(x) (P )

x ∈ Rm

Definition 3.2.1 (Descent Direction)
Let f : Rm → (−∞,∞] be proper and let x ∈ int dom f . d ∈ Rm \ {0} is a descent
direction of f at x if the directional derivative satisfies

f ′(x; d) < 0.

Remark that if 0 6= ∇f(x) exists, then ∇f(x) is a descent direction. Indeed,

f ′(x;−∇f(x)) = −‖∇f(x)‖2 < 0.

Also remark that for convex f and x ∈ dom f ,

f ′(x, d) = lim
λ→0+

f(x+ λd)− f(x)

λ
.

Thus f(x, d) < 0 implies that there is some ε such that λ ∈ (0, ε) implies that

f(x+ λd)− f(x)

λ
< 0 ⇐⇒ f(x+ λd) < f(x).

The gradient/steepest descent method consists of the following:

1. Initialize x0 ∈ Rm.
2. For each n ∈ N:

(a) Pick tn ∈ argmint≥0 f(xn − t∇f(xn)).
(b) Update xn+1 := xn − tn∇f(xn)

Theorem 3.2.1 (Peressini, Sullivan, Uhl)
If f is strictly convex and coercive, then xn converges to the unique minimizer of f .

In the lack of smoothness, a lot of pathologies happen.
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Example 3.2.2 (L. Vandenberghe)
Negative subgradients are NOT necessarily descent directions. Consider f : R2 → R+

given by
(x1, x2) 7→ |x1|+ 2|x2|.

Then f is convex as it is a direct sum of convex functions.

Since f has full domain and is continuous,

∂f(1, 0) = {1} × [−2, 2].

Take d := (−1,−2) ∈ −∂f(1, 0).

d is NOT a descent direction. Moreover,

f(1, 0) = 1 < f [(1, 0) + t(−1,−2)]

for all t > 0.

Example 3.2.3 (Wolfe)
Let γ > 1. Consider the function f : R2 → R given by

(x1, x2) 7→

{√
x21 + γx22, |x2| ≤ x1

x1+γ|x2|√
1+γ

, else

Observe that argminx∈Rm f = ∅. One can show that f = σCwhere

C =

{
x ∈ R2 : x22 +

x22
γ

≤ 1, x2 ≥
1√
1 + γ

}
.

Thus f is convex. Moreover, f is differentiable on

D := R2 \ ((−∞, 0]× {0})).

Let x0 := (γ, 1) ∈ D.

The steepest descent method will generate a equence

xn :=

(
γ

(
γ − 1

γ + 1

)n

,

(
−γ − 1

γ + 1

)n)
→ (0, 0)

which is not a minimizer of f !
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3.3 Projected Subgradient Method

Consider

min f(x) (P )

x ∈ C

where f : Rm → (−∞,∞] is convex, l.s.c., and proper, ∅ 6= C ⊆ int dom f is convex and
closed.

Suppose

S := argminx∈C f(x) 6= ∅
µ := min

x∈C
f(x).

Moreover, there is some L > 0 such that

sup‖∂f(C)‖ ≤ L <∞.

In other words, for all c ∈ C and u ∈ ∂f(c), ‖u‖ ≤ L.

1) Get x0 ∈ C.
2) Given xn, pick a stepsize tn > 0 and f ′(xn) ∈ ∂f(xn)

3) Update xn+1 := PC(xn − tnf
′(xn)).

Recall that C ⊆ int dom f , hence each xn ∈ int dom f and ∂f(xn) 6= ∅. Thus the algorithm
is well-defined.

Lemma 3.3.1
Let s ∈ S := argminx∈C f(x). Then

‖xn+1 − s‖2 ≤ ‖xn − s‖2 − 2tn(f(xn)− µ) + t2n‖f ′(xn)‖2.

Observe that S ⊆ C.

Proof
We have

‖xn+1 − s‖2 = ‖PC(xn − tnf
′(xn))− PC(s)‖2

≤ ‖xn − tnf
′(xn)− s‖2

= ‖xn − s‖2 + t2n‖f ′(xn)‖2 − 2tn〈xn − s, f ′(xn)〉.
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It suffices to show that

2tn〈xn − s, f ′(xn)〉 ≤ −2tn(f(xn)− µ)

〈xn − s, f ′(xn)〉 ≥ f(xn)− µ

〈xn − s, f ′(xn)〉 ≥ f(xn)− f(x)

which holds by the subgradient inequality.

What is a good step size? We wish to minimize the upper bound derived in the previous
lemma.

0 =
d

dtn
(−2tn(f(xn)− µ) + t2n‖f ′(xn)‖2)

= −2(f(xn)− µ) + 2tn‖f ′(xn)‖2.

If xn is not a global minimizer, then 0 /∈ ∂f(xn) and f ′(xn) 6= 0. Hence we can take

tn :=
f(xn)− µ

‖f ′(xn)‖2
.

Definition 3.3.1 (Polyak’s Rule)
The projected subgradient method with step size

tn :=
f(xn)− µ

‖f ′(xn)‖2
.

Theorem 3.3.2
We have

(i) For all s ∈ S, n ∈ N, ‖xn+1 − s‖ ≤ ‖xn − s‖, ie (xn)n∈N is Fejér monotone with
respect to S

(ii) f(xn) → µ

(iii) µn − µ ≤ L·dS(x0)√
n+1

∈ O
(

1√
n

)
, where µn := min0≤k≤n f(xk)

(iv) For each ε > 0, if n ≥ L2d2S(x0)

ε2
− 1, then µn ≤ µ+ ε
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Proof (i)
Let s ∈ S, n ∈ N By computation�

‖xn+1 − s‖2 ≤ ‖xn − s‖2 − 2tn(f(xn)− µ) + t2n‖f ′(xn)‖2

= ‖xn − s‖2 − 2
f(xn)− µ

‖f ′(xn)‖2
(f(xn)− µ) +

(
f(xn)− µ

‖f ′(xn)‖2

)2

‖f ′(xn)‖2

= ‖xn − s‖2 − (f(xn)− µ)2

‖f ′(xn)‖2

≤ ‖xn − s‖2 − (f(xn)− µ)2

L2

≤ ‖xn − s‖2.

Proof (ii)
From our work in (i): for all k ∈ N,

(f(xk)− µ)2

L2
≤ ‖xk − s‖2 − ‖xk+1 − s‖.

Summing the above inequalities over k = 0, . . . , n yields

1

L2

n∑
k=0

(f(xk)− µ2) ≤ ‖x0 − s‖2 − ‖xn+1 − s‖2

≤ ‖x0 − s‖2.

Letting n→ ∞,

0 ≤
∞∑
k=0

(f(xk)− µ)2 ≤ L2‖x0 − s‖2 <∞

and it must be that f(xk) → µ.

Proof (iii)
Recall that

µn := min
0≤k≤n

f(xk).
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Let n ≥ 0. For each 0 ≤ k ≤ n,

(µn − µ)2 ≤ (f(xk)− µ)2

(n+ 1)
(µn − µ)2

L2
≤ 1

L2

n∑
k=0

(f(xk)− µ)2

≤ ‖x0 − s‖2.

Minimizing over s ∈ S, we get that

(n+ 1)
(µn − µ)2

L2
≤ d2S(x0).

Proof (iv)
Suppose that

n ≥ L2d2S(x0)

ε2
− 1

⇐⇒
d2S(x0)L

2

n+ 1
≤ ε2.

Apply (iii) yields

(µn − µ)2 ≤ d2S(x0)L
2

n+ 1

≤ ε2

µn − µ ≤ ε.

Recall that if (xn)n∈N is Fejér monotone with respect to some ∅ 6= C ⊆ Rm, and every
cluster point lies in C, then xn → c ∈ C.

Theorem 3.3.3 (Convergence of Projected Subgradient)
Suppose xn is generated as in the projected subgradient method with Polyak’s rule.
Then xn → s ∈ S.

Proof
We have already shown that (xn) is Fejér monotone with respect to S. Thus the sequence
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is also bounded. Also, by the previous theorem,

f(xn) → µ = min
x∈C

f(x).

By Bolzano-Weirestrass, there is some subsequence xkn → x̄ ∈ C. Now,

µ = min
x∈C

f(x)

≤ f(x̄)

≤ lim inf
n
f(xkn)

= µ f(xn) → µ.

Hence x̄ ∈ S. That is, all cluster points of (xn)n∈N lie in S.

It follows that xn → x̄ ∈ S by the Fejér monotonicity theorem.

Example 3.3.4
Let C ⊆ Rm be convex, closed, and non-empty. Fix x ∈ Rm.

∂dC(x) =

{
x−PC(x)
dC(x)

, x /∈ C

NC(x) ∩B(0; 1), x ∈ C

Moreover, sup‖∂dC(x)‖ ≤ 1.

Lemma 3.3.5
Let f be convex, l.s.c., and proper. Fix λ > 0. Then

∂(λf) = λ∂f.
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3.3.1 The Convex Feasibility Problem

Problem 1
Given k closed convex subsets Si ⊆ Rm such that

S :=
k⋂

i=1

Si 6= ∅,

find x ∈ S.

We take
f(x) := max{dSi

(x) : i ∈ [k]}.
The domain is C := Rm. Observe that f ≥ 0 with

f(x) = 0 ⇐⇒ ∀i, dSi
(x) = 0

⇐⇒ ∀i, x ∈ Si

⇐⇒ x ∈ S.

Recall that the max rule for subdifferentials implies that for all x /∈ S,

∂f(x) = conv{∂dSi
(x) : dSi

(x) = f(x) > 0}

Thus ‖∂f(x)‖ ≤ 1 as a convex combination preserves the norm bound.

Given xn, pick an index ī such that dSī
(xn) = f(xn) > 0. Set

f ′(xn) :=
xn − PSī

(xn)

dSī
(xn)

.

Since this is a unit vector, Polyak’s step size simplifies to

tn = dSī
(xn).

The sequence converging to a member of S is thus

xn+1 := PC(xn − tnf
′(xn))

= xn − tnf
′(xn)

= xn − dSī
(xn)

xn − PSī
(xn)

dSī
(xn)

= xn − (xn − PSī
(xn))

= PSī
(xn).
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By the convergence of the projected subgradient method, xn → S.

Note that in practice, it is possible that µ := minx∈C f(x) is NOT known to us. In this case,
replace Polyak’s stepsize by a sequence (tn)n∈N such that∑n

k=0 t
2
k∑n

k=0 tk
→ 0, n→ ∞.

For example, tk := 1
k+1

. One can show that

µn :=
n

min
k=0

f(xk) → µ

as n→ ∞.

3.4 Proximal Gradient Method

Consider the problem

minF (x) := f(x) + g(x) (P )

x ∈ Rm

We shall assume that S := argminx∈Rm F (x) 6= ∅ and define

µ := min
x∈Rm

F (x).

f is “nice” in that it is convex, l.s.c., proper, and differentiable on int dom f 6= ∅. Moreover,
∇f is L-Lipschitz on int dom f .

g is convex, l.s.c., and proper with dom g ⊆ int dom f . In particular,

∅ 6= ri dom g

⊆ dom g

⊆ ri dom f

= int dom f

=⇒
ri dom g ∩ ri dom f = ri dom g

6= ∅.
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Example 3.4.1
We can model contrained optimization functions as

min f(x) + δC(x)

x ∈ Rm

where ∅ 6= C ⊆ Rm is convex and closed.

Let x ∈ int dom f ⊇ dom g. Update via

x+ := Prox 1
L
g(x−

1

L
∇f(x))

= argminy∈Rm

1

L
g(y) +

1

2

∥∥∥∥y − ( 1

L
∇f(x)

)∥∥∥∥2
∈ dom g

⊆ int dom f

= dom∇f.

Let the update operator be denoted

T := Prox 1
L
g(Id−

1

L
∇f).

Theorem 3.4.2
Let x ∈ Rm. Then

x ∈ S

= argminx∈Rm F

= argminx∈Rm(f + g)

⇐⇒
x = Tx

⇐⇒
x ∈ FixT.
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Proof
By Fermat’s theorem,

x ∈ S ⇐⇒ 0 ∈ ∂(f + g)(x) = ∇f(x) + ∂g(x)

⇐⇒ −∇f(x) ∈ ∂g(x)

⇐⇒ x− 1

L
∇f(x) ∈ x+

1

L
∂g(x) =

(
Id+∂

(
1

L
g

))
(x)

⇐⇒ x ∈
(
Id+∂

(
1

L
g

))−1(
x− 1

L
∇f(x)

)
⇐⇒ x = Prox 1

L
g

(
Id− 1

L
∇f

)
(x) = Tx.

Proposition 3.4.3
Let f : Rm → (−∞,∞] be convex, l.s.c., and proper. Fix β > 0. Then f is β-strongly
convex if and only if for all x ∈ dom ∂f, u ∈ ∂f(x),

f(y) ≥ f(x) + 〈u, y − x〉+ β

2
‖y − x‖2.

3.4.1 Proximal-Gradient Inequality

Proposition 3.4.4
Let x ∈ Rm, y+ ∈ int dom f , and

y+ := Prox 1
L
g(y −∇f(y)) = Ty.

Then
F (x)− F (y+) ≥

L

2
‖x− y+‖2 −

L

2
‖x− y‖2 +Df (x, y).

where
Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉.

Df is known as the Bregman distance.

Proof
Define

h(z) := f(y) + 〈∇f(y), z − y〉+ g(z) +
L

2
‖z − y‖2.

Then h is L-strongly convex.
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We claim that y+ is the unique minimizer of h. Indeed, for z ∈ Rm,

z ∈ argminh ⇐⇒ 0 ∈ ∂

(
f(y) + 〈∇f(y), z − y〉+ g(z) +

L

2
‖z − y‖2

)
⇐⇒ 0 ∈ ∂

(
〈∇f(y), z − y〉+ g(z) +

L

2
‖z − y‖2

)
⇐⇒ 0 ∈ ∇f(y) + ∂g(z) + L(z − y)

⇐⇒ 0 ∈ 1

L
∇f(y) + ∂

(
1

L
g

)
(z) + (z − y)

⇐⇒ y − 1

L
∇f(y) ∈ z + ∂

(
1

L
g

)
(z)

⇐⇒ y − 1

L
∇f(y) ∈

(
Id+∂

(
1

L
g

))
(z)

⇐⇒ z ∈
(
Id+∂

(
1

L
g

))−1(
y − 1

L
∇f(y)

)
⇐⇒ z = Prox 1

L
g

(
y − 1

L
∇f(y)

)
⇐⇒ z = Ty = y+.

Applying the previous proposition yields that

h(x) ≥ h(y+) + 〈0, x− y+〉+
L

2
‖x− y+‖2

= h(y+) +
L

2
‖x− y+‖2

h(x)− h(y+) ≥
L

2
‖x− y+‖2.

Moreover, by the descent lemma,

f(y+) ≤ f(y) + 〈∇f(y), y+ − y〉+ L

2
‖y+ − y‖2.

Hence

h(y+) := f(y) + 〈∇f(y), y+ − y〉+ g(y+) +
L

2
‖y+ − y‖2

≥ f(y+) + g(y+)

= F (y+).

.
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Combining with our work above,

h(x)− F (y+) ≥ h(x)− h(y+)

≥ L

2
‖x− y+‖2

f(y) + 〈∇f(y), x− y〉+ g(x) +
L

2
‖x− y‖2 − F (y+) ≥

L

2
‖x− y+‖2

f(x) + g(x)− F (y+) ≥
L

2
‖x− y+‖2 −

L

2
‖x− y‖2 +Df (x, y).

Lemma 3.4.5 (Sufficient Decrease)
We have

F (y+) ≤ F (y)− L

2
‖y − y+‖2.

Proof
Recall that

F (y)− F (y+) ≥
L

2
‖y − y+‖2 −

L

2
‖y − y‖2 +Df (y, y)

F (y)− F (y+) ≥
L

2
‖y − y+‖2 f is convex

F (y+) ≤ F (y)− L

2
‖y − y+‖2.

3.4.2 The Algorithm

Given x0 ∈ int dom f , update via

xn+1 := Txn = Prox 1
L
g

(
xn −

1

L
∇f(xn)

)
.

Theorem 3.4.6 (Rate of Convergence)
The following hold:

(i) For all s ∈ S, n ∈ N, ‖xn+1 − s‖ ≤ ‖xn − s‖ (ie xn is Fejér monotone with
respect to S).

(ii) (F (xn))n∈N satisfies 0 ≤ F (xn)− µ ≤ Ld2S(x0)

2n
∈ O

(
1
n

)
. Hence F (xn) → µ.
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Proof
(i): Recall the previous proposition that

0 ≥ F (s)− F (xk+1) F (x) = µ

≥ L

2
‖s− xk+1‖2 −

L

2
‖s− xk‖2.

Thus (xn) is Fejér monotone with respect to S.

(ii): Multiplying this inequality by 2
L

and adding the resulting inequalities from k =
0, . . . , n− 1 and telescoping yields

2

L

(
n−1∑
k=0

(µ− F (xk+1))

)
≥ ‖s− xk‖2 − ‖s− x0‖2

≥ −‖s− x0‖2.

In particular, by setting s := PS(x0) ∈ S, we obtain

d2S(x0) = ‖PS(x0)− x0‖2

≥ 2

L

n−1∑
k=0

(F (xk+1)− µ)

≥ 2

L

n−1∑
k=0

(F (xn)− µ)

=
2

L
n(F (xn)− µ).

Equivalently,

0 ≤ F (xn)− µ

≤ Ld2S(x0)

2n

and F (xn) → µ.

Theorem 3.4.7 (Convergence of Proximal Gradient Method)
xn converges to some solution in

S := argminx∈Rm F (x).
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Proof
By the previous theorem we know that (xn) is Fejér monotone with respect to S. Thus it
suffices to show that every cluster point of (xn) lies in S.

Suppose x̄ is a cluster point of (xn), say xkn → x̄. We argue that F (x̄) = µ. Indeed,

µ ≤ F (x̄)

≤ lim inf
n
F (xkn)

= µ

Hence F (x̄) = µ and x̄ ∈ S.

Proposition 3.4.8
The following hold:

(i) 1
L
∇f is f.n.e.

(ii) Id− 1
L
∇f is f.n.e.

(iii) T = Prox 1
L
g(Id−∇f) is 2

3
-averaged.

Proof
(i), (ii): Recall for real-valued, convex, differentiable functions with L-Lipschitz gradient,

〈∇f(x)−∇f(y), x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2〈

1

L
∇f(x)− 1

L
∇f(y), x− y

〉
≥
∥∥∥∥ 1L∇f(x)− 1

L
∇f(y)

∥∥∥∥2.
The result follows then from the two equivalent characterizations of f.n.e.: Id−T is non-
expansive and

〈Tx− Ty, Tx− Ty〉 ≥ ‖Tx− Ty‖2.

(iii): Recall that Prox 1
L
g is f.n.e. Hence, Prox 1

L
g and Id− 1

L
∇f are both 1

2
-averaged.

Consequently, the composition

Prox 1
L
g

(
Id− 1

L
∇f

)
is averaged with constant 2

3
.
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Theorem 3.4.9
The PGM iteration satisifes

‖xn+1 − xn‖ ≤
√
2dS(x0)√

n
∈ O

(
1√
n

)
.

Proof
Using the previous remark, we have that for all x, y,

1

2
‖(Id−T )x− (Id−T )y‖2 < ‖x− y‖2 − ‖Tx− Ty‖2.

Let x ∈ S and observe that s ∈ Fix s by a previous theorem. Applying the above
inequality with x = xk, y = s yields

1

2
‖(Id−T )xk − (Id−T )s‖ ≤ ‖xk − s‖2 − ‖Txk − Ts‖2

1

2
‖xk − xk+1‖2 ≤ ‖xk − s‖2 − ‖xk+1 − s‖2.

Now, T is 2
3

averaged and thus nonexpansive. Therefore,

‖xk − xk+1‖ = ‖Txk−1 − Txk‖ ≤ ‖xk−1 − xk‖
≤ . . .

≤ ‖x0 − x1‖.

Summing over k = 0 . . . , n− 1 yields

‖x0 − s‖2 − ‖xn − s‖2 ≥ 1

2

n−1∑
k=0

‖xk − xk+1‖2

≥ 1

2
n‖xn−1 − xn‖2.

Specifically, for x := PS(x0),

1

2
n‖xn−1 − xn‖2 ≤ d2S(x0)

‖xn−1 − xn‖ ≤
√
2√
n
dS(x0).
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Corollary 3.4.9.1 (Classical Proximal Point Algorithm)
Let g : Rm → (−∞,∞] be convex, l.s.c., and proper. Fix c > 0. Consider the problem

min g(x) (P )

x ∈ Rm

Assume that S := argminx∈Rm g(x) ≤ ∅.
Let x0 ∈ Rm and update via

xn+1 := Proxcg xn.

Then
(i) g(xn) ↓ µ := min g(Rm)

(ii) 0 ≤ g(xn)− µ ≤ d2S(x0)

2cn

(iii) xn converges to a point within S

(iv) ‖xn−1 − xn‖ ≤
√
2dS(x0)√

n

Proof
Set f ≡ 0 and observe that ∇f ≡ 0 and ∇f is L-Lipchitz for any L > 0. Specifically, for
L := 1

c
> 0.

We can thus write (P) as

min f(x) + g(x) (P )

x ∈ Rm

Now, S = argmin f + g = argmin g. Moreover, ∇f ≡ 0 =⇒ Id− 1
L
∇f = Id.

Hence

T := Prox 1
L
g(Id−

1

L
∇f)

= Proxcg

and we are done by the previous results.
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3.5 Fast Iterative Shrinkage Thresholding

Consider the following problem

minF (x) := f(x) + g(x) (P )

x ∈ Rm

We assume (P) has solutions so that

S := argminx∈Rm F (x) 6= ∅

and write µ := minx∈Rm F (x).

We assume f is convex, l.s.c., and proper, as well as being differnentiable on Rm. Moreover,
∇f is L-Lipschitz on Rm.

We also assume that g is convex, l.s.c., and proper.

3.5.1 The Algorithm

Initially, set x0 ∈ Rm, t0 = 1, y0 = x0. We update via

tn+1 =
1 +

√
1 + 4t2n
2

xn+1 = Prox 1
L
g

(
Id− 1

L
∇f

)
(yn) = Tyn

yn+1 = xn+1 +
tn − 1

tn+1

(xn+1 − xn)

=

(
1− 1− tn

tn+1

)
xn+1 +

1− tn
tn+1

xn

∈ aff{xn, xn+1}

Observe that

t2n+1 − tn+1 = t2n.
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3.5.2 Correctness

Proposition 3.5.1
The sequence (tn)n∈N satisfies

tn ≥ n+ 2

2
≥ 1.

Proof
Induction.

Theorem 3.5.2 (Quadratic Converge for FISTA)
The sequence (xn) satisfies

0 ≤ F (xn)− µ

≤ 2Ld2S(x0)

(n+ 1)2

∈ O

(
1

n2

)
.

Notice that this converges significantly faster than O
(
1
n

)
for PGM.

Proof
Set s := PS(x0). By the convexity of F ,

F

(
1

tn
s+

(
1− 1

tn

)
xn

)
≤ 1

tn
F (s) +

(
1− 1

tn

)
F (xn)

For each n ∈ N, set
sn := F (xn)− µ ≥ 0.

By computation,(
1− 1

tn

)
sn − sn+1 ≥ F

(
1

tn
s+

(
1− 1

tn

)
xn

)
− F (xn+1).

Now, applying the proximal gradient inequality with

x =
1

xn
s+

(
1− 1

tn

)
xn

y = yn

y+ = Tyn = xn+1
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yields

F

(
1

tn
s+

(
1− 1

tn
xn

))
− F (xn+1)

≥ L

2t2n
‖tnxn+1 − (s+ (tn − 1)xn)‖2 −

L

2t2n
‖tnyn − (s+ (tn − 1)xn)‖2

Simplying yields that

‖tnyn − (s+ (tn − 1)xn)‖2 = ‖tn−1xn − (s+ (tn−1 − 1))xn−1‖2.

Combined with the fact that t2n+1 − tn+1 = t2n, we get that

t2n−1sn − t2nsn+1 ≥ t2n

(
F

(
1

tn
s =

(
1− 1

tn

))
xn

)
− F (xn+1)

≥ L

2
‖tnxn+1 − (s+ (tn − 1))xn‖2 −

L

2
‖tnyn − (s+ (tn − 1))xn‖2

=
L

2
‖tnxn+1 − (s+ (tn − 1))xn‖2 −

L

2
‖tn−1xn − (s+ (tn−1 − 1))xn−1‖2

Set un := tn−1xn − (s + (tn−1 − 1)xn−1). Multiplying the inequality above by 2
L

and
rearranging yields

‖un+1‖2 +
2

L
t2nsn+1 ≤ ‖un‖2 +

2

L
t2n−1sn.

It follows that
2

L
t2n−1sn ≤ ‖un‖2 +

2

L
t2nsn+1

≤ ‖u1‖2 +
2

L
t20s1

= ‖x1 − s‖2 + 2

L
(F (x1)− µ)

≤ ‖x0 − s‖2

where the last inequality follows from the proximal gradient inequality.

In other words,

F (xn)− µ = sn

≤ L

2
‖x0 − s‖2 1

t2n−1

≤ L

2
‖x0 − s‖2 4

(n+ 1)2
tn ≥ n+ 2

2

=
2Ld2S(x0)

(n+ 1)2
.
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3.6 Iterative Shrinkage Thresholding Algorithm

This is a special case of PGM with g(x) = λ‖x‖, λ > 0. Hence

1

L
g(x) =

λ

L
‖x‖1

and

Prox 1
L
g(x) =

(
Prox λ

L
‖·‖1(x)

)n
i=1

=

(
sign(xi)max{0, |xi| −

λ

L
}
)n

i=1

FISTA is the accelerated version of ISTA.

3.6.1 Norm Comparison

Consider the problems

min‖x‖2 (P1)

Ax = b

min‖x‖1 (P2)

Ax = b

Example 3.6.1
Consider the problem

min
1

2
‖Ax− b‖22 + λ‖x‖1 (P )

x ∈ Rm

where λ > 0 and A ∈ Rn×m.

g is convex, l.s.c., and proper, with f being smooth and

∇f(x) = AT (Ax− b).

Recall that ∇f is L-Lipschitz if and only if the spectral norm of the Hessian is bounded
by L. Thus ∇f is L-Lipschitz for

L := λmax(A
TA).
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To see the necessarily assumption that S := argminx∈Rm F (x) holds, observe that f(x) is
continuous, convex, and coercive, with domF = Rm.

Using the fact that if F is convex, l.s.c., proper, and coercive and ∅ 6= C is closed and
convex with domF ∩ C 6= ∅, then F has a minimizer over C.

Now, m can be very large and λmax(A
TA) may be difficult to compute. It suffices to use

some upper bound on eigenvalues such as the Frobenius norm

‖A‖2F =
m∑
j=1

n∑
i=1

a2ij

= tr
(
ATA

)
=

m∑
i=1

λi(A
TA)

3.7 Douglas-Rachford Algorithm

Consider the problem

minF (x) := f(x) + g(x) (P )

x ∈ Rm

where f, g are convex, l.s.c., and proper with

S := argminx∈Rm F (x) 6= ∅.

Suppose there exists some s ∈ S such that

0 ∈ ∂f(s) + ∂g(s) ⊆ ∂(f + g)(s).

This happens for example when ri dom f ∩ ri dom g 6= ∅.

Define

Rf := 2Proxf − Id

Rg := 2Proxg − Id .

Definition 3.7.1 (Douglas-Rachford Operator)
Define

T := Id−Proxf +Proxg Rf .
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Lemma 3.7.1
The following hold:

(i) Rf , Rg are nonexpansive
(ii) T = 1

2
(Id+RgRf )

(iii) T is firmly nonexpansive

Proof
Since Proxf ,Proxg are f.n.e., 2Proxf − Id, 2Proxg − Id are nonexpansive as shown in the
assignments.

Expanding the definitions of Rg, Rf shows the equivalent expression

T =
1

2
(Id+RgRg).

The above shows that T is 1
2
-averaged, which is equivalent to firm nonexpansiveness.

Proposition 3.7.2
FixT = FixRgRf .

Proof
Let x ∈ Rm. Then

x ∈ FixT ⇐⇒ x =
1

2
(x+RgRfx)

⇐⇒ x = RgRfx

⇐⇒ x ∈ FixRgRf .

Proposition 3.7.3
Proxf (FixT ) ⊆ S.

Proof
Let x ∈ Rm and set s = Proxf (x) = (Id+∂f)−1(x). Then

x ∈ (Id+∂f)(s) = s+ ∂f(s) ⇐⇒ 2s− (2s− x) ∈ s+ ∂f(s)

⇐⇒ 2s−Rf (x)− s ∈ ∂f(s)

⇐⇒ s−Rf (x) ∈ ∂f(s).
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Moreover,

x ∈ FixT ⇐⇒ x = x− Proxf (x) + Proxg Rf (x)

⇐⇒ s = Proxg Rf (x) = (Id+∂g)−1(Rf (x))

⇐⇒ Rf (x) ∈ s+ ∂g(s)

⇐⇒ Rf (x)− s ∈ ∂g(s)

It follows that

0 = s−Rf (x) +Rf (x)− s

∈ ∂f(s) + ∂g(s)

⊆ ∂(f + g)(s)

and s ∈ S as required for all x ∈ FixT .

Recall that (firmly) nonexpansive operators are continuous and iterating a f.n.e. operator
tends to a fixed point.

Theorem 3.7.4
Let x0 ∈ Rm. Update via

xn+1 := xn − Proxg xn + Proxg(2 Proxf xn − xn).

Then Proxf (xn) tends to a minimizer of f + g.

Proof
Remark that xn+1 = Txn = T n+1x0. Since T is f.n.e., we know that xn → x̄ ∈ FixT .

But since Proxf is continuous,

Proxf xn → Proxf x̄ ∈ Proxf (FixT ) ⊆ S.

3.8 Stochastic Projected Subgradient Method

Consider the problem

min f(x) (P )

x ∈ C

f is convex, l.s.c., and proper, ∅ 6= C ⊆ int dom f is closed and convex, and S :=
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argminx∈C f(x) 6= ∅.

Set
µ := min f(C).

Given x0 ∈ C, update via
xn+1 := PC(xn − tngn).

We assume that tn > 0 and

∞∑
n=0

tn → ∞∑n
k=0 t

2
k∑n

k=0 tk
→ 0 k → ∞

for example tn = α
n+1

for some α > 0.

We choose gn to be a random vector satisfying the following assumptions

(A1) For each n ∈ N, E[gn | xn] ∈ ∂f(xn) (unbiased subgradient)
(A2) For each n ∈ N, there is some L > 0, E[‖gn‖2 | xn] ≤ L2

Let us write
µk := min{f(xi) : 0 ≤ i ≤ k}.

Theorem 3.8.1
Assuming the previous assumptions hold, then E[µk] → µ as k → ∞.

Proof
Pick s ∈ S and let n ∈ N. Then

0 ≤ ‖xn+1 − s‖2

= ‖PC(xn − tngn)− PCs‖2

≤ ‖(xn − tngn)− s‖2

= ‖(xn − s)− tngn‖2

= ‖xn − s‖2 − 2tn〈gn, xn − s〉+ t2n‖gn‖2
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Taking the conditional expectation given xn yields

E[‖xn+1 − s‖2 | xn] ≤ ‖xn − s‖2 + 2tn〈E[gn | xn], s− xn〉+ t2nE[‖gn‖2 | xn]
≤ ‖xn − s‖2 + 2tn(f(x)− f(xn)) + t2nL

2 (A1), (A2)

= ‖xn − s‖2 + 2tn(µ− f(xn)) + t2nL
2.

Now, taking the expection with respect to xn yields

E[‖xn+1 − s‖2] ≤ E[‖xn − s‖2] + 2tn(µ− E[f(xn)]) + t2nL
2.

Let k ∈ N. Summing the inequality from n = 0 to k yields

0 ≤ E[‖xn+1 − s‖2]

≤ ‖x0 − s‖2 − 2
k∑

n=0

tn(E[f(xn)]− µ) + L2

k∑
n=0

t2n.

Rearranging yields

0 ≤ E[µk]− µ

≤ ‖x0 − s‖2 + L2
∑k

n=0 t
2
n

2
∑k

n=0 tn

→ 0 k → ∞

3.8.1 Minimizing a Sum of Functions

Consider the problem

min f(x) :=
∑
i∈[r]

fi(x) (P )

x ∈ C

Suppose f1, . . . , fr : Rm → (−∞,∞] are convex, l.s.c., and proper.

Set I := [r] and assume that for each i ∈ I,

∅ 6= C ⊆ int dom fi.

for some closed convex C.
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We also assuem that for each i ∈ I, there is some Li ≥ 0 for which
‖∂fi(C)‖ ≤ Li.

Proposition 3.8.2
sup‖∂fi(C)‖ ≤ Li if and only if fi

∣∣
C

is Li-Lipchistz.

For example, this holds if C is bounded.

Let us assume that (P) has a solution. We verify (A1), (A2) to justify solving the problem
with SPSM.

By the triangle inequality,
sup‖∂f(C)‖ ≤

∑
i∈I

Li.

Let x0 ∈ C. Given xn ∈ C, we pick an index in ∈ I uniformly randomly and set
gn := rf ′

in(xn) ∈ ∂fin(xn).

Observe that

E[gn | xn] =
r∑

i=1

1

r
rf ′

i(xn)

=
r∑

i=1

f ′
i(xn)

∈ ∂f1(xn) + · · ·+ ∂fr(xn)

= ∂(f1 + · · ·+ fr)(xn) Sum Rule
= ∂f(xn)

hence (A1) holds.

Next,

E[‖gn‖2 | xn] =
r∑

i=1

1

r
‖rf ′

i(xn)‖2

=
r∑

i=1

r‖f ′
i(xn)‖2

≤ r
r∑

i=1

L2
i .

Thus (A2) holds with L :=
√
r
∑r

i=1 L
2
i .

Having verified the assumptions, we may apply SPSM.
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3.9 Duality

3.9.1 Fenchel Duality

Consider the problem

min f(x) + g(x) (P )

x ∈ Rm

f, g : Rm → (−∞,∞] are convex, l.s.c., and proper.

We can rewrite the problem as

min
x,z∈Rm

{f(x) + g(z) : x = z}.

Construct the Lagrangian

L(x, z; y) := f(x) + g(z) + 〈y, z − x〉.

The dual objective function is obtained by minimizing the Lagrangian with respect to x, z.

d(u) := inf
x,z
L(x, z;u)

= inf
x,z

{f(x)− 〈u, x〉+ g(z) + 〈u, z〉}

= − sup
x
(〈u, x〉 − f(x))− sup

z
(〈−u, z〉 − g(z))

= −f ∗(u)− g∗(−u).

Let

p := inf
x∈Rm

f(x) + g(x)

d := inf
u∈Rm

f ∗(u) + g∗(−u)

and recall that p ≥ −d from assignments.

3.9.2 Fenchel-Rockafellar Duality

Consider the problem

min f(x) + g(Ax) (P )

x ∈ Rm
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where f : Rm,→ (−∞,∞] is convex, l.s.c., and proper, g : Rn,→ (−∞,∞] is convex, l.s.c.,
and proper, and A ∈ Rn×m.

The Fenchel-Rockafellar dual is given by

min f ∗(−ATy) + g∗(y) (D)

y ∈ Rn

As before, let

p := inf
x∈Rm

f(x) + g(Ax)

d := inf
y∈Rn

f ∗(−ATy) + g∗(y)

and recall that p ≥ −d from assignments.

Lemma 3.9.1
Let h : Rm → (−∞,∞] be convex, l.s.c., and proper. For each x ∈ Rm,

hv(x) := h(−x).

The following hold:
(i) hv is convex, l.s.c., and proper
(ii) ∂hv = −∂h ◦ (− Id)

Proof
The convexity, l.s.c., and properness is verified by definition.

Let u ∈ Rm and x ∈ dom ∂h ◦ (− Id). Then

u ∈ −∂h ◦ (− Id)(x) = −∂f(−x) ⇐⇒ −u ∈ ∂h(−x)
⇐⇒ h(y) ≥ h(−x) + 〈−u, y − (−x)〉 ∀y ∈ Rm

⇐⇒ h(−y) ≥ h(−x) + 〈−u,−y + x〉 ∀y ∈ Rm

⇐⇒ hv(y) ≥ hv(x) + 〈u, y − x〉 ∀y ∈ Rm

⇐⇒ u ∈ ∂hv(x).

3.9.3 Self-Duality of Douglas-Rachford

Recal that the DR operator to solve (P) is given by

Tp :=
1

2
(Id+RgRf )
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where Rf := 2Proxf − Id and similarly for Rg.

Similarly, the DR operator to solve (D) is defined as

Td :=
1

2
(Id+R(g∗)vRf∗).

Lemma 3.9.2
Let h : Rm → (−∞,∞] be convex, l.s.c., and proper. The following hold:

(i) Proxhv = −Proxh ◦(Id)
(ii) Rh∗ = −Rh

(iii) R(h∗)v = Rh ◦ (− Id)

Proof
(i): This is shown using the relation Proxf = (Id+∂f)−1 as well as the lemma ∂hv =
−∂h ◦ (− Id).

(ii): This can be proven by expanding the definition of Rh∗ as well as the relation Proxh∗ =
(Id−Proxh) proven in A4.

(iii): First, we can shown by definition that

Prox(h∗)v = −Proxh∗ ◦(− Id).

The proof is completed using this fact as well as the relation Proxh∗ = (Id−Proxh)

Theorem 3.9.3
Tp = Td.

Proof
From our previous lemma,

Td :=
1

2
(Id+R(g∗)vRf∗)

=
1

2
(Id+[Rg ◦ (− Id)] ◦ (−Rf ))

=
1

2
(Id+RgRf )

= Tp.
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Theorem 3.9.4
Let x0 ∈ Rm. Update via

xn+1 := xn − Proxf (xn) + Proxg(2 Proxf xn − xn) = Tpxn.

Then Proxf (xn) converges to a minimizer of f + g and xn − Proxf (xn) converges to
a minimizer of f ∗ + (g∗)v.

Proof
We already know that Proxf (xn) converges to a minimizer of f + g. Since Tp = Td,
Proxf∗(xn) converges to a minimizer of f ∗+(g∗)v. Using the fact that Proxf∗ = Id−Proxf ,
we conclude the proof.
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