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Minimum Spanning Trees

We strive towards a minimum cost spanning tree (MST). The first goal is to characterize
MSTs and use characterizations to derive algorithms. Finally, we employ linear programming
to provide an alternative proof of correctness.

1.1 Spanning Trees

Definition 1.1.1
A subgraph T of G = (V,E) is a spanning tree if

(i) V (T ) = V (G)

(ii) T is connected
(iii) T is acyclic

11
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Theorem 1.1.1
Let G be connected and a subgraph T where V (T ) = V (G). The following are
equivalent (TFAE).

(a) T is a spanning tree of G
(b) T is minimally connected
(c) T is maximally acyclic
(d) T is connected and has n− 1 edges
(e) T is acyclic and has n− 1 edges
(f) for all u, v ∈ V , there is a unique uv-path in T (Tu,v)

Theorem 1.1.2
G is connected if and only if for all A ⊆ V with ∅ 6= A 6= V , we have

δ(A) 6= ∅.

1.2 Minimum Spanning Trees

Problem 1 (Minimum Spanning Tree)
Given a connected graph G and costs c : E → R, find a spanning tree T of G
minimizing

c(T ) :=
∑

e∈E(T )

ce.

Theorem 1.2.1
Let G be connected, c : E → R, and T a spanning tree of G. TFAE

(a) T is a MST
(b) for all uv ∈ E \ E(T ), all edges e on the subpath Tu,v of T have ce ≤ cuv

(c) for all e ∈ E(T ), let T1, T2 be the two connected components of T − e. Then e
is a minimum cost edge in δ(T1) = δ(T2)

Proof
¬(b) =⇒ ¬(a) Suppose there is some uv ∈ E \ E(T ) and e ∈ Tu,v such that

ce > cuv.

12



©Fel
ix

Zh
ou

Then T + uv − e is a spanning tree of strictly smaller cost.

¬(c) =⇒ ¬(b) Suppose there is some e ∈ T where T1, T2 are the connected components
of T − e, such that there is uv ∈ δ(T1) such that

ce > cuv.

Then e is on the subpath Tu,v but has strictly greater cost than uv.

(c) =⇒ (a) Suppose T satisfies the (c) and T ∗ is a MST maximizing

k := |E(T ) ∩ E(T ∗)|.

If k = n− 1, then T = T ∗ and we are done. Otherwise, there is some

uv ∈ E(T ) \ E(T∗).

Let T1, T2 be the connected components of T − uv. There is some e∗ ∈ E(T ∗
u,v) ∩ δ(T1).

Remark that T ′ := T ∗ − e∗ + uv is a spanning tree with cuv ≤ ce∗ by assumption and so
k was not maximal.

1.3 Kruskal’s Algorithm

1.3.1 Pseudocode & Correctness

def Kruskal(G):
H := (V, {})
while H is not spanning tree:

e := min cost edge for e if endpoints not in same components of H
H.add(e)

return H

To see that the above algorithm terminates, first observe that H is always acyclic. Thus
while it is not a spanning tree, it necessarily has multiple components, of which the cut in G
is not empty. Moreover, the number of components reduces by 1 every iteration. Thus the
algorithm terminates in O(n) iterations with a connected, acyclic graph, which is precisely
a spanning tree.

An equivalent implementation is the following. We provide it to show that the outputted

13
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spanning tree is a MST.

def Kruskal(G):
H := (V, {})
E.sort(lambda e: c(e))

for uv in E:
if component(u) != component(v):
H.add(uv)

return H

Now, suppose the algorithm above does not return an MST. Since we showed it returns a
spanning tree,

∃uv ∈ E \ E(H),∃e ∈ Hu,v, cuv < ce.

But then uv would have been processed before e and added to H instead of e. By contra-
diction, Kruskal’s algorithm returns a MST.

1.3.2 Running Time

A naive implementation records the component of each vertex through an array. Checking
equality is O(1) time but updates take O(n) time. The total running time is

O(m logm) +O(mn) ⊆ O(mn).

Checking equality can be implemented in amortized O(m log∗(n)) total time with union-find
data structures. The log∗ function can be thought of as the inverse of the tower exponential
function. Specifically, it is sub-logarithmic.

In fact, the analysis can be improved to O(mα(m,n)) time where α is the inverse Ackermann
function. For all practical inputs, α is essentially a constant.

Thus if we can sort the edges in near linear time, then we can actually find an MST in near
linear time.

1.4 Linear Programming Relaxation

The goal of this section to prove the correctness of Kruskal’s algorithm through complemen-
tary slackness.

14
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We formulate an LP (PST ) for the MST problem by using the characterization of spanning
trees being acyclic subgraphs with n− 1 edges.

min cTx

x(E) = n− 1 = n− κ(E)

x(F ) ≤ n− κ(F ) ∀F ⊂ E

x ≥ 0

Here κ : E → N denotes the number of connected components of induced by an edge subset.

Recall that since we assume the input is connected and the feasibility region is bounded, the
Fundamental Theorem of LPs tells us that there is always an optimal solution.

Proposition 1.4.1
The characteristic vector of the spanning tree produced by Kruskal’s algorithm is an
optimal solution to the MST LP.

First, let us consider the dual (DST ).

max
∑
F⊆E

(n− κ(F ))yF∑
F :e∈F

yF ≤ ce ∀e ∈ E

yF ≤ 0 ∀F ⊂ E

Proof (Proposition)
Let us order the edges based on their costs

E = {e1, e2, . . . , em}

with cei ≤ cei+1
for all 1 ≤ i < m.

Consider the following dual variables

ȳEi
:= cei − cei+1

≤ 0 ∀1 ≤ i < m

ȳE := cem
ȳF := 0 else

Here
Ei := {e1, . . . , ei}.

It is not hard to see that ȳ is feasible for (DST ). In fact, a telescoping sum argument
shows us that the dual edge constraints are tight!

15
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Let x̄ be the characteristic vector of the spanning tree outputted by Kruskal’s algorithm.
We claim that

Ti := (V,Ei ∩ E(T ))

is a maximally acyclic subgraph of Hi = (V,Ei). Indeed, this is because we add ei to
Ti−1 if and only if the endpoints are in different components. But if the endpoints are in
different components, adding ei preserves acyclicness. On the other hand, if the endpoints
do reside in the same component, the addition of ei necessarily introduce a cycle since
Hi−1 was maximally acyclic.

This yields that
x̄(Ei) = n− κ(Ei)

for each 1 ≤ i ≤ m.

It follows that (x̄, ȳ) satisfy complementary slackness, since the dual variables excluding
the yEi

’s are set to 0. Therefore, the pair are optimal solutions in their respective LPs.

1.5 Greedy Algorithms

Roughly speaking, a greedy algorithm makes decisions based on only local structures. This
does not always work for example for the maximum independent set problem.

1.5.1 Maximum Forest

Problem 2 (Maximum Forest)
For an undirected graph G with edge weights c : E → R, compute an acyclic subgraph
F maximizing ∑

e∈E(F )

c(e).

Minimum Spanning Tree Reduction

Consider the following algorithm

1) If G is not connected, minimally connect the components with edges of cost −1

2) Compute a MST T with respect to costs c′e := −ce (of the original edges)
3) Delete from T all edges with c′e ≥ 0

16



©Fel
ix

Zh
ou

Proposition 1.5.1
The proposed algorithm outputs a maximum forest.

Proof
Remark that the MST T from 2) is acyclic and thus is a forest. Moreover, deleting edges
cannot introduce cycles. Thus the algorithm outputs SOME forest.

We claim that it indeed obtains the weight of a maximum forest. Suppose otherwise and
let F ∗ be any maximum forest.

For each component C of F ∗, there is at least one edge of T in δG(C). Repeatedly
connected the components of F ∗ with edges of T . In other words, obtain a spanning
tree T ∗ from the edges of F ∗, T . Notice that any edges of E(T ∗) \ E(F ∗) are necessarily
non-negatively weighted with respect to c′e, or else F is not maximal.

Without loss of generality, let us suppose that among all spanning trees obtained from a
maximum forest, T ∗ maximizes

|E(T ∗) ∩ E(T )|.

If T ∗ = T , then we are done, since deleting the non-negative edges of T achieves at most
the weight of F .

Otherwise, there is some uv ∈ E(T ∗) \ E(T ). Notice that we actually have uv ∈ E(F ∗)
so c′uv < 0.

By our characterization of MSTs, all edges e on Tu,v satisfy

c′e ≤ c′uv.

In particular, if T ∗
1 , T

∗
2 are the components of T ∗ − uv, then we can pick some

f ∈ Tu,v ∩ δG(T
∗
1 )

so that
T ′ := T ∗ − uv + f

is a spanning tree with weight at most that of T ′.

Clearly T ′ attains a higher cardinality edge intersection with T . We need only show that
it can be obtained from some maximum forest F ′ to arrive at the desired contradiction.

To see this, take
F ′ := F ∗ − uv + f.

17
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It is clearly acyclic since the supergraph T ′ is acyclic. Moreover, it has weight at most
that of F ∗ and thus is necessarily a maximum forest.

Now, we need only check that the reduction from disconnected graph to a connected
graph is valid. It is clear that any maximum forest does not contain positive edges with
respect to c′. Thus any maximum forest in a disconnected input has weight at most that
of the returned solution in the augmented graph. Conversely, any returned forest in the
augmented graph is a forest of the disconnected input and thus has weight at most that
of an optimal solution in the disconnected input.

Direct Approach

def Kruskal(G):
H := (V, {})
E.sort(lambda e: c(e))

for uv in E:
if c(uv) <= 0:
break

elif component(u) != component(v):
H.add(uv)

return H

1.5.2 Minimum Spanning Tree Reduction to Maximum Forest

1) Take c′e := −(ce −M) > 0 for all e ∈ E

2) Solve the maximum cost forest with respect to c′

Proposition 1.5.2
Assuming that the input is connected, the above algorithm returns a MST with respect
to c.

Proof
First remark that any MST with respect to −c′ is a MST with respect to c as all spanning
trees have n−1 edges and thus all spanning trees have their weights shifted by a constant
(n−1)M . Thus it suffices to argue that the proposed algorithm finds a maximum spanning
tree with respect to c′.

18
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Observe that any acyclic subgraph F of G with less than n − 1 edges is not optimal as
there is some spanning tree of G which contains F and has more weight since all edges
have positive weight c′. Thus all maximum forests are spanning trees with respect to c′

and the weight of a maximum forest is at most that of a maximum spanning tree.

But any spanning tree is also a forest, thus the maximum spanning tree has weight at
most that of a maximum forest.

Having considered both directions, we conclude the argument.
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Matroids
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Matroids

We wish to optimize over more abstract senses of acyclic (independence).

2.1 Matroids

2.1.1 Definitions

Let S be a ground set and I ⊆ 2S.

Definition 2.1.1 (Basis)
A basis of A ⊆ S is an inclusionwise maximal element of I contained in A.

Definition 2.1.2 (Matroid)
A matroid is a pair M = (S, I) satisfying
(M1) ∅ ∈ I
(M2) If F ∈ I then F ′ ⊆ F =⇒ F ′ ∈ I
(M3) For all A ⊆ S, every basis of A has the same cardinality

For our purposes, we will restrict ourselves to finite ground sets.

23
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Example 2.1.1 (Graphical/Forest Matroid)
For a graph G = (V,E), let I be the set of all forests of G. Then

M = (S = E, I)

is a matroid.

Example 2.1.2 (Uniform Matroid of Rank r)
Let S := [n] and 0 ≤ r ≤ n. Put I as the set of all subsets of S with at most r elements.

U r
n = (S, I)

is a matroid.

Example 2.1.3 (Linear Matroid)
Let N ∈ Fm×n for some field F and S := [n]. Put

I = {A ⊆ S : columns indexed by A are linearly independent}.

Then
M = (S, I)

is a matroid.

2.1.2 Independence Systems

Elements of I are called independent sets. Minimal dependent sets are circuits.

If the pair M = (S, I) satisfies (M1), (M2), it is an independence system.

Definition 2.1.3 (Rank)
Let (S, I) be an independence system.
The rank of A ⊆ S is

r(A) := max{|B| : B ⊆ A,B ∈ I}.

In the specific case, r(S) is the rank of M . Moreover, observe that

r(A) = |A| ⇐⇒ A ∈ I.

Put
ρ(A) := min{|B| : B is a basis of A}.

24
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Proposition 2.1.4
M is a matroid if and only if

ρ(A) = r(A)

for all A ⊆ S.

2.2 Independent Set

Problem 3 (Maximum Weight Independent Set)
Given an independence system M = (S, I) and c : E → R+, find A ∈ I maximizing

c(A) :=
∑
e∈A

ce.

Consider the following greedy algorthm:

1) F := ∅
2) While there is e : F ∪ {e} ∈ I and ce > 0:

a) Choose e with largest ce

b) F := F ∪ {e}

3) Return F

Theorem 2.2.1 (Rado, Edmonds)
Let M be a matroid and c ∈ RS

+. The greedy algorithm finds the maximum weight
independent set.

Proof
By Jenkins’ theorem to come.

Theorem 2.2.2
Let M = (S, I) be an independence system. The greedy algorithm finds an optimal
independent set for all c ∈ RS

+ if and only if M is a matroid.

Proof (Rado, Edmonds)
(¬ ⇐= ¬) Suppose that M is not a matroid. There is some A ⊆ S with bases A1, A2

25
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satisfying
|A1| < |A2|.

Define

c(e) :=


1, e ∈ A1

1− ε, e ∈ A2 \ A1

0, e /∈ A1 ∪ A2

If we choose ε > 0 such that
(1− ε)|A2| > |A1|,

then the greedy algorithm fails to output A2, which is the maximum weight independent
set.

( ⇐= ) By the previous theorem.

Fortunately, the greedy algorithm cannot perform arbitrarily badly.

Theorem 2.2.3 (Jenkins)
Let (S, I) be an independence system. Let g(S, I) be the weight of the independent
set found by the greedy algorithm. Then

g(S, I) ≥ q(S, I)OPT(S, I).

Here
q(S, I) := min

A⊆S:r(A)6=0

ρ(A)

r(A)

is the rank quotient.

Proof
Order the ground set by weight

S = {e1, . . . , en}, c(e1) ≥ · · · ≥ c(en)

and define
Sj := {e1, . . . , ej}.

Let G ∈ I be a solution obtained by the greedy algorithm, and σ ∈ I an optimal solution.

Put
Gj := G ∩ Sj, σj := σ ∩ Sj.
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We can express

c(G) =
n∑

j=1

c(ej)(|Gj| − |Gj−1|)

=
n∑

j=1

|Gj|(c(ej)− c(ej+1)) c(en+1) := 0

=
n∑

j=1

|Gj|∆j.

Recall that the greedy algorithm computes a maximal independent subset of Sj. Thus Gj

is a basis of Sj and

|Gj| ≥ ρ(Sj)

=⇒

c(G) ≥
n∑

j=1

ρ(Sj)∆j

≥
n∑

j=1

q(S, I)r(Sj)∆j

≥
n∑

j=1

q(S, I)|σj|∆j

= q(S, I)c(σ).

It is easy to see that the greedy algorithm terminates in polynomial time assuming that we
can test indepence efficiently.

2.3 Alternative Characterizations

2.3.1 Matroids

Theorem 2.3.1
Let M = (S, I) be an independence system. Then M is a matroid if and only if it
satisfies

(M3′) : ∀X,Y ∈ I, |X| > |Y | =⇒ ∃x ∈ X \ Y, Y ∪ {x} ∈ I.
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Proof
(M3′ =⇒ M3) Fix a basis B of A. If any other basis B′ is smaller, we can add an
element to it from B ⊆ A and remain independent. If any other basis is bigger, then our
original basis could have been augmented with element of B′ ⊆ A. Both contradict the
definition of bases.

(M3 =⇒ M3′) Let X,Y ∈ I such that |X| > |Y |. Consider

A := X ∪ Y.

Y is clearly not a basis of A since X is an independent subset of A with greater cardinality.
Thus Y is not inclusion-wise maximal and we can choose some element of A to augment
it. But our only choice is from X \ Y , yielding the desired result.

Example 2.3.2
For a graph G, let W ⊆ V be a stable set. Put k : V → Z+ and consider the following
independence system

S = E, I = {F ⊆ E : |δ(v) ∩ F | ≤ kv, ∀v ∈ W}.

It is easy to show that (X, I) is a matroid through (M3’).

2.3.2 Circuits & Bases

We can implicitly describe a matroid by indicating the set of circuits of M , denoted C. Then

A ∈ I ⇐⇒ @C ∈ C : C ⊆ A.

This begs the question of which subsets of S can form C for some matroid?

Theorem 2.3.3
Let M = (S, I) be a matroid. Then for all A ∈ I and e ∈ S

A ∪ {e}

contains at most 1 circuit.

Proof
Let A be a minimal counterexample with respect to cardinality. There is some e such
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that A ∪ {e} has two distinct circuits C1, C2.

We must have e ∈ C1 ∩ C2, or else A already contains a circuit.

By the minimality of A,
A ∪ {e} = C1 ∪ C2.

Moreover, neither C1, C2 can be a subset of the other and we can choose

e1 ∈ C1 \ C2, e2 ∈ C2 \ C1.

Consider A′ := (C1 ∪ C2) \ {e1, e2}. If A′ has a circuit C, then C 6= C1, C2 as we deleted
an element from both those circuits. On the other hand

A′ + e1 = (A− e2) + e

contains C1 and C since e2 /∈ C1. Thus A was not a minimal counterexample and we
could have take

A− e2.

By contradiction, A′ ∈ I. In addition, A is a basis of C1 ∪ C2 as it is maximally inde-
pendent. But so is A′, as adding either e1, e2 results in a circuit. Thus A,A′ are bases
with

|A′| < |A|,

contradicting the definition of a matroid.

Theorem 2.3.4
Let C ⊆ 2S. Then C is the set of circuits of a matroid if and only if
(C1) ∅ /∈ C
(C2) If C1, C2 ∈ C are such that C1 ⊆ C2, then C1 = C2

(C3) If C1 6= C2 ∈ C and e ∈ C1∩C2, then there is a circuit C with C ⊆ (C1∪C2)\{e})

Proof
( =⇒ ) (C1), (C2) are clear. Suppose (C3) is violated. Thus

A := (C1 ∪ C2) \ {e} ∈ I.

In particular, A ∪ {e} has 2 distinct circuits, contradicting the previous theorem.

( ⇐= ) Define
I := {A ⊆ S : @C ∈ C, C ⊆ A}.
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(M1), (M2) follows directly by definition. Suppose (M3) is false. We can choose A1, A2,
bases of A ⊆ S such that |A1| < |A2|, maximizing

|A1 ∩ A2|.

Since A1 is a basis, we can pick e ∈ A1 \A2. Thus A2 ∪{e} contains a circuit C. Suppose
A2 ∪ {e} contains a another circuit C ′. Observe that e ∈ C ′ or else C ′ ⊆ A2 ∈ I. But
then (C3) implies that there is a circuit in C ∪ C ′ \ {e} ⊆ A2. Hence C is the unique
circuit of A2 ∪ {e}.

Since A1 ∈ I, we may choose some f ∈ C \ A1. Then

A3 := (A2 ∪ {e}) \ {f} ∈ I

since we removed an element from the unique circuit.

But then, by greedily augmenting A3 to a basis if neceesary, we may assume without loss
of generality that A3 is a basis of A with

|A3| > |A1|.

However, observe that
|A3 ∩ A1| > |A2 ∩ A1|,

which contradicts the choice of A2, A1.

Alternatively, we can characterize the independent sets of a matroid by listing its bases. The
independent sets are the subsets of bases.

Theorem 2.3.5
Let B ⊆ 2S. B is the set of bases of a matroid (S, I) if and only if
(B1) B 6= ∅
(B2) For any B1, B2 ∈ B with x ∈ B1 \B2, there is some y ∈ B2 \B1 such that

(B1 \ {x}) ∪ {y} ∈ B.

(basis exchange property)
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Theorem 2.3.6
B is the set of bases of a matroid (S, I) if and only if (B1) and (B2’) below holds:
For any B1, B2 ∈ B, where y ∈ B2 \B1, there is some x ∈ B1 \B2 such that

(B1 \ {x}) ∪ {y} ∈ B.
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Polymatroids

Let us study some polyhedrals which are related matroids.

3.1 Motivation

Let M = (S, I), c ∈ RS
+. Let x ∈ RS be decision variables. Put (PM) as the LP

max cTx

x(A) ≤ r(A) ∀A ⊆ S

x ≥ 0

Observe that any independent J ∈ I implies xJ is feasible for (PM).

Theorem 3.1.1
Let M = (S, I) be a matroid and G the solution returned by the greedy algorithm.
Then xG is optimal for (PM).

Proof
To come later.
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3.2 Submodular Functions

Definition 3.2.1
f : 2S → R is submodular if for all A,B ⊆ S,

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

Example 3.2.1
For a graph G, let the ground set be V .

Then
f(A) = |δ(A)|

is a submodular function.

Proposition 3.2.2
Let M = (S, I) be a matroid. Then r(A) is submodular.

Proof
Let J∩ be a basis of A ∩ B. Extend J∩ to a basis JB of B. Extend JB to a basis J∪ of
A ∪B.

Put
J ′ := J∪ \ (JB \ J∩)

and remark that J ′ ∈ I and J ′ ⊆ A.

It follows that

r(A) + r(B) ≥ |J ′|+ |JB|
= |J∪| − (|JB| − |J∩|) + |JB|
= r(A ∪B) + r(A ∩B).
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3.3 Polymatroids

Definition 3.3.1 (Polymatroid)
Let f : 2S → R be submodular. Then

{x ∈ RS : x(A) ≤ f(A),∀A ⊆ S, x ≥ 0}

is a polymatroid.

Proposition 3.3.1
We may assume for that the submodular function corresponding to a polymatroid sat-
isfies f(∅) = 0 and monotonicity.

3.4 Optimizing over Polymatroids

Let (Pf ) be the primal LP

max cTx

x(A) ≤ f(A) ∀A ⊆ S

x ≥ 0

where f is submodular and monotone with f(∅) = 0.

The dual (Df ) is then

min
∑
A⊆S

f(A)yA∑
A:e∈A

yA ≥ c(e) ∀e ∈ S

y ≥ 0

3.4.1 Greedy Algorithm

Let the ground set by
S = {e1, . . . , en}

such that
ce1 ≥ · · · ≥ cek > 0 ≥ cek+1

≥ · · · ≥ cen .
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Moreover, put
Sj := {e1, . . . , ej}.

The primal greedy algorithm will pick the solution

x(ej) =

{
f(Sj)− f(Sj−1), j = 1, . . . , k

0, j > k

where f(S0) := 0.

The dual greedy algorithm will choose

y(A) =


c(ej)− c(ej+1) ≥ 0, A = Sj, j = 1, . . . , k − 1

c(ek) A = Sk

0, else

Theorem 3.4.1
x, y produced by the primal / dual greedy algorithm are optimal for (Pf ) / (Df )
respectively.

Proof
We argue using complementary slackness conditions. First we show that x is feasible in
the primal LP.

Take A ⊆ S. We will show for 0 ≤ j ≤ k inductively that

x(A ∩ Sj) ≤ f(A ∩ Sj).

The base case where j = 0 and Sj := ∅ by convention holds.

0 = x(∅) ≤ f(∅) = 0.

Otherwise, suppose the statement holds for some j ≥ 0. If ej /∈ A, then

x(A ∩ Sj+1) = x(A ∩ Sj) ≤ f(A ∩ Sj) = f(A ∩ Sj+1)

so the inequality holds. On the other hand, if ej ∈ A, then

x(A ∩ Sj+1) = x(A ∩ Sj) + f(Sj+1)− f(Sj)

≤ f(A ∩ Sj) + f(Sj+1)− f(Sj)

≤ f(A ∩ Sj+1). (∗)
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(∗) To see this inequality, notice that

f(A ∩ Sj+1) + f(Sj) ≥ f(A ∩ Sj+1 ∩ Sj) + f(A ∩ Sj+1 ∪ Sj)

= f(A ∩ Sj) + f(Sj+1).

By construction x(A) = x(A∩Sk) ≤ f(A∩Sk) ≤ f(A) by monotonicity. Thus x is indeed
feasible in the primal LP.

Now consider the dual LP. Fix any ej ∈ S for 1 ≤ j ≤ k. Those are the only possibly
violated constraints since y ≥ 0. Then

∑
A:ej∈A

y(A) = c(ek) +
k−1∑
i=j

c(ei)− c(ei+1) = c(ej).

Thus the dual constaint for e ∈ S is tight if and only if c(e) > 0.

Finally, we argue that x, y satisfies the complementary slackness conditions. Observe
x(e) > 0 can only happen for e = ej, 1 ≤ j ≤ k. But for those elements, we showed the
dual contraints are tight.

Suppose now that the dual variable yA > 0 for some A ⊆ S is non-zero. This can only
happend when A = Sj, 1 ≤ j ≤ k. We claim that x(Sj) = f(Sj) for 1 ≤ j ≤ k. To see
this simply compute

x(Sj) =

j∑
i=1

x(ei)

=

j∑
i=1

f(Si)− f(Si−1)

= f(Sj).

Thus x, y are feasible and satisfy complementary slackness conditions, implying that they
are optimal in their respective LPs.

Corollary 3.4.1.1
Let M = (S, I), c ∈ RS and J ∈ I. Then J is an inclusionwise minimal, maximum
weight independent set if and only if

a) e ∈ J implies ce > 0

b) e /∈ J, J ∪ {e} ∈ I implies ce ≤ 0

c) e /∈ J, f ∈ J, and (J ∪ {e}) \ {f} ∈ I implies ce ≤ cf
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Proof
( =⇒ ) This direction is clear.

( ⇐= ) Consider (Pr), the polymatroid with respect to the rank function of M . Define y
to be a solution from greedy dual algorithm. Put xJ as the characteristic vector of J .

First, we argue that the three conditions imply that xJ , y satisfy the complementary
slackness conditions. It would follow that xJ has maximum weight.

The definition of the dual yields that∑
A:ej∈A

yA = c(ej)

for all j ≤ k. a) implies that xJ(ej) = 0 for all j > k. Thus for all j = 1, . . . , n

x(ej) = 0 ∨
∑

A:ej∈A

yA = c(ej).

Pick yA > 0. By construction, A = Sj for some j ≤ k. Consider

xJ(Sj) = |J ∩ Sj| = |Jj|.

Suppose that |Jj| < r(Sj). In other words, Jj is NOT a basis of Sj. This implies that
there is some e ∈ Sj \ J such that

Jj ∪ {e} ∈ I.

Case I: J ∪ {e} ∈ I: b) implies that ce ≤ 0. But then e ∈ Sj, j ≤ k implies ce > 0. This
is impossible.

Case II: J ∪ {e} /∈ I: Extend Jj ∪ {e} to a basis J ′ of J ∪ {e}. Notice that J is a basis of
J ∪ {e}. In particular, |J ′| = |J | and both are subsets of J ∪ {e}.

There is some f ∈ J \ J ′ ⊆ J \ Sj such that

J ′ = (J ∪ {e}) \ {f} ∈ I.

By c), ce ≤ cf . But y(Sj) = c(ej)− c(ej+1) > 0 and f /∈ Sj implies that c(ej) > c(ej+1) ≥
c(f). This is a contradiction.

We have thus shown that xJ(Jj) = r(Sj). Thus for all A ⊆ S,

yA = 0 ∨ xJ(Sj) = |Jj|.

xJ certainly then has maximum weight.

Lastly, a) says that J is inclusionwise minimal.
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Matroid Construction

Given a particular matroid, we would like to determine valid operations which result in other
matroids.

4.1 Matroid Construction

4.1.1 Deletion

For a matroid M = (S, I), fix B ⊆ S. Then

M \B := (S ′, I ′)

given by S ′ := S ′ \B and I ′ := {A ⊆ S \B : A ∈ I} is a matroid.

The reason for this is that bases which do not include elements of B are preserved.

4.1.2 Truncation

Let k ∈ Z+. Define
I ′ := {A ∈ I, |A| ≤ k}.

Then M ′ = (S, I ′) is a matroid.

The reason for this is that non-basis augmentation still holds (M3’).

39



©Fel
ix

Zh
ou

4.1.3 Disjoint Union

Suppose Mi = (Si, Ii) are matroids for 1 ≤ i ≤ k such that

Si ∩ Sj = ∅.

Then
M1 ⊕ · · · ⊕Mk := (S, I)

with S =
⋃k

i=1 Si and
I := {A ⊆ S : A ∩ Si ∈ Ii}

is a matroid.

To see this note that if A ⊆ S, then all bases of A have the same cardinality due to all bases
of A ∩ Si having the same size.

4.1.4 Contraction

For B ⊆ S, let J be a basis of B. Then

M/B := (S ′, I ′)

where S ′ = S \B, and
I ′ := {A ⊆ S ′ : A ∪ J ∈ I}

is a matroid.

Proposition 4.1.1
Let M be the forest matroid of G = (V,E). Fix B ⊆ E, then M/B is the forest matroid
of G/B.

Theorem 4.1.2
M/B is a matroid which is independent of the choice of J . Moreover

rM/B(A) = rM(A ∪B)− rM(B).

Proof
(M1), (M2) are clear.
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(M3) Let A ⊆ S ′ := S \B. Let J ′ to be an M/B basis of A. Thus

J ∪ J ′ ∈ I.

We claim that J ∪ J ′ is an M basis of A ∪ B. Suppose not, there is element e ∈ A ∪ B
such that

J ∪ J ′ ∪ {e} ∈ I.

But e /∈ B since J is maximally independent in B. Nor can we have e ∈ A or else J ′ is
not maximally independent in M/B.

It follows that
|J ∪ J ′| = rM(A ∪B)

This in turn implies

|J ′| = rM(A ∪B)− |J | = rM(A ∪B)− rM(B).

4.1.5 Duality

Consider
M∗ := (S, I∗)

where
I∗ := {A ⊆ S : S \ A has a basis of M} = {A ⊆ S : r(S \ A) = r(S)}.

Theorem 4.1.3
M∗ is a matroid with rank function

r∗(A) = |A|+ rM(S \ A)− rM(S).

Proof
(M1), (M2) are clear.

(M3) Let A ⊆ S and J∗ be an M∗-basis of A. Put J as a M -basis of S \ A. We can
extend J to an M -basis J ′ of S \ J∗.

We claim that J ′ is an M -basis of S. Indeed J∗ ∈ I∗ implies that r(S \ J∗) = r(S). Thus
|J ′| = r(S \ J∗) = r(S) as required.

Next, we claim that A \ J∗ ⊆ J ′. Suppose otherwise that there is some
e ∈ (A \ J∗) \ J ′.
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Notice that J ′ ⊆ S \ (J∗ ∪ {e}). Since J ′ is an M -basis of S,

J∗ ∪ {e} ∈ I∗.

This is the desired contradiction since J∗ was a M∗-basis of A.

It follows by our previous claim that

|J ′| = |A \ J∗|+ |J |
= |A| − |J∗|+ |J |
⇐⇒

|J∗| = |A| − |J ′|+ |J |
= |A| − rM(S) + rM(S \ A).

Example 4.1.4
Consider the forest matroid M of a planar graph G. Let M∗ be the dual matroid.

A ∈ I∗ ⇐⇒ r(E \ A) = r(E)

⇐⇒ G[E \ A] has a spanning tree
⇐⇒ V (E \ A) is connected.

Cycles in G∗ correspond to edge sets δ(S) in G. Thus minimal dependent sets in M∗ are
cycles and M∗ is the forest matroid of G∗.
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Matroid Intersection

5.1 Matroid Intersection

Problem 4 (Weighted Matroid Intersection)
Let M1 = (S, I1),M2 = (S, I2) be matroids over the same ground set and c : S → R+.
Find A ∈ I1 ∩ I2 maximizing

c(A).

The unweighted matroid intersection problem consists of uniform weights of 1.

Example 5.1.1
Let G = (V,E) with bipartition V1, V2. Let

Ii := {A ⊆ E : |A ∩ δ(v)| ≤ 1,∀v ∈ Vi}

for i = 1, 2.

This is then exactly the maximum cardinality bipartite matching problem!

Let J ∈ I1 ∩ I2 and A ⊆ S. Let us try to account for the size of J by splitting it into a M1

component and M2-component.

|J | = |J ∩ A|+ |J ∩ Ā|.
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Theorem 5.1.2 (Matroid Intersection, Edmonds)
Suppose Mi = (S, Ii), i = 1, 2 are matroids. Then

max{|J | : J ∈ I1 ∩ I2} = min{r1(A) + r2(Ā) : A ⊆ S}.

Consider the previous example of the bipartite matching matroid intersection problem. Let
M be a maximum matching of G. By the matroid intersection theorem, there is some A ⊆ E
such that

|M | = r1(A) + r2(E \ A).

Let B1 be a M1-basis of A, and B2 and M2-basis of E \ A. Put

Ui := Bi ∩ Vi, i = 1, 2.

as the vertices from Vi incident to an edge of Bi.

Proposition 5.1.3
(i) |U1| = r1(A).
(ii) |U2| = r2(E \ A).
(iii) U1 ∪ U2 is a vertex cover of G.

Proof
Observe that by definition, every vertex of A ∩ V1 is incident to at most one vertex of
B1. But every vertex of A∩ V1 is incident to at least one edge by maximal independence.
Thus

|U1| = |B1| = r1(A).

The proof of (ii) is similar.

Every edge e either lives in A or E \A. In the case of the former, a vertex in U1 is incident
it. In the case of the latter, a vertex in U2 is incident to it. In either case,

U1 ∪ U2

is a vertex cover.

Theorem 5.1.4 (König)
For a bipartite graph G,

ν(G) = τ(G).
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5.2 Matroid Intersection Algorithm

5.2.1 Motivation

In the setting of bipartite matching, we are essentially looking for augmenting paths.

Specifically, we wish to find some

P : e1, f1, . . . , em, fm, em+1

such that

ei /∈ J 1 ≤ i ≤ m

fi ∈ J 1 ≤ i ≤ m

J ∪ {e1} ∈ I2

J ∪ {em+1} ∈ I1

J ∪ {ei} \ {fi} ∈ I1 1 ≤ i ≤ m

J ∪ {ei+1} \ {fi} ∈ I2 1 ≤ i ≤ m

We refer to the condition above as (?).

Given such a P , we can define

J ′ := J∆P = J ∪ {e1, . . . , em+1} \ {f1, . . . , fm}.

Lemma 5.2.1
If P is an inclusion wise minimal subset of S satisfying (?), then

J ′ ∈ I1 ∩ I2.

Proof
First observe that J ∪ {ei} /∈ I1 for all 1 ≤ i ≤ m. Otherwise, we can take

P : e1, f1, . . . , ei−1, fi−1, ei

as a strict subset satisfying (?).

Put
A := J ∪ {e1, . . . , em+1}

and
Ai := A \ {fm, . . . , fi}.
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Let Ci be the (unique) M1-circuit in J ∪ {ei} for 1 ≤ i ≤ m.

We claim that Ci ⊆ Ai+1. Otherwise, there is some k > i such that

J ∪ {ei} \ {fk} ∈ I1.

So
e1, f1, . . . , ei, fk, ek+1, . . . , fm, em+1

would also satisfy (?).

Now,
Ci ⊆ Ai+1 = Ai ∪ {fi} =⇒ Ci \ {fi} ⊆ Ai.

From (?), Ci \ {fi} ∈ I1 means that we can extend it to an M1-basis of Ai, say Bi. But
Bi ∪ {fi} ⊇ Ci and

Bi ⊆ Ai ⊆ Ai+1 = Ai ∪ {fi}.

It follows that Bi is a M1-basis of Ai+1. So r1(Ai) = r1(Ai+1) for every i and

r1(J
′) = r1(A).

Now, J ∪ {em+1} ∈ I1 from (?) means that

r1(J
′) = r1(A) ≥ |J |+ 1 = |J ′|.

Therefore, J ′ ∈ I1.

A symmetric argument shows that
J ′ ∈ I2.

5.2.2 Augmenting Paths

We create a graph to model the algorithm.

Suppose we have as input
S = {e1, . . . , em}, J ∈ I1 ∩ I2.

Let the node set be
S ∪ {r, s}.

This is the ground set with a source node r and sink node s.
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We define the arc set as follows. For each ei such that

ei /∈ J, J ∪ {ei} ∈ I2,

add an arc rei.

For each ej such that
ej /∈ J, J ∪ {ej} ∈ I1,

add an arc ejs.

Moreover, for e, f ∈ S, we add the arc ef if either

e /∈ J, f ∈ J, J ∪ {e} /∈ I1, J ∪ {e} \ {f} ∈ I1

or alternatively the arc fe if

e /∈ J, f ∈ J, J ∪ {e} /∈ I2, J ∪ {e} \ {f} ∈ I2.

It is not hard to see that a rs-alternating dipath corresponds precisely to a path satisfying
(?). In addition, we can simply find the shortest such path to get an inclusion-wise minimal
path.

Lemma 5.2.2
If there is not path satisfying (?). then J is a maximum cardinality element of I1∩I2.

Proof
Let U be the elements of S reachable from r by a dipath.

If U = ∅, then J is an inclusion wise maximal element of I2 and thus maximum cardinality
element in I1 ∩ I2.

Otherwise, there is some e ∈ U \ J . Indeed, by definition there is an arc rei for which
ei /∈ J, J ∪ {ei} ∈ I2.

Since es is not an arc, then J ∪ {e} /∈ I1.

Let C be the M1-circuit of J ∪ {e}. Since there is no ef with f ∈ S \ U , we must have
C ⊆ U =⇒ C ⊆ (J ∩ U) ∪ {e}.

Note that J ∩ U ∈ I1 so J ∩ U is an M1-basis of U .

Apply the same argument to show that J ∩ Ū is a M2-basis of J . Thus
|J | = |J ∩ U |+ |J ∩ Ū | = r1(U) + r2(Ū)
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and J attains the upper bound.

This indeed leads to a polynomial time algorithm for solving the matroid intersection prob-
lem, assuming that we have a polynomial time independence oracle.

In fact, the weighted version can also be tackled in a similar way within polynomial time.

We can also solve this using the LP

max cTx

x(A) ≤ r1(A) ∀A ⊆ S

x(A) ≤ r1(A) ∀A ⊆ S

x ≥ 0

5.3 Generalizations

5.3.1 3-Way Intersection

It is worthy to note that the 3-way matroid intersection problem is NP-hard.

max|A| : A ∈ I1 ∩ I2 ∩ I3.

5.3.2 Matroid Partitioning

Definition 5.3.1 (Partitionable)
Let Mi = (S, Ii), 1 ≤ i ≤ k be matroids. We say J ⊆ S is partitionable if

J = J1∪̇ . . . ∪̇Jk

with Ji ∈ Ii, 1 ≤ i ≤ k.

Theorem 5.3.1 (Matroid Partitioning; Edmonds, Fulkerson)
We have

max{|J | : J is partitionable} = min
A⊆S

{
|Ā|+

k∑
i=1

ri(A)

}
.
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Proof
Let S = {e1, . . . , en}. Put Si as a copy of S for each 1 ≤ i ≤ k.

For J ⊆
⋃k

i=1 S
i, let J0 be the corresponding set of elements in S

J0 = {e ∈ S : ∃i ∈ [k], ei ∈ J}.

For each i, let
M ′

i := (Si, {J ⊆ Si : J0 ∈ Ii}).
Let

Na := M ′
1 ⊕ · · · ⊕M ′

k.

Put S ′ :=
⋃k

i=1 Si and

Ib := {A ⊆ S ′ : ∀e ∈ S,A has at most one copy of e}.

Finally, let Nb = (S ′, Ib).

Observe that J is independent in both Na, Nb if and only if J0 is partitionable. Moreover,
in such case,

|J | = |J0|.
It follows by the matroid intersection theorem that

max{|J0| : J0 is partitionable} = min
B⊆S′

{ra(B) + rb(S
′ \B)}.

We claim that there is a minimizer B of the form⋃
e∈B0

{e1, . . . , ek}.

Suppose there is some ej ∈ B and let ek ∈ S ′ \B. Consider

B′ := B \ {ej}.

Let D be a Mb-basis of S ′ \B, and notice that D ⊆ S ′ \B′. If D ∪ {ej} ∈ Ib, then

D ∪ {ek} ∈ Ib

as well, which contradicts the maximality of D within S ′ \B.

It follows that D is also a basis of S ′ \B′ and

rb(S
′ \B′) = rb(S

′ \B).
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Moreover, ra(B′) ≤ ra(B) so B′ is also a minimizer.

But then

ra(B) =
k∑

i=1

ri(B
0)

and
rb(S

′ \B) = |S \B0|.
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Part III

Matchings
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Matchings

6.1 Matchings

Definition 6.1.1
For a graph G, a subset M ⊆ E is a matching if

∀v ∈ V, |δ(v) ∩M | ≤ 1.

We say a vertex v is M -covered if it is incident with an edge of M . Otherwise, v is M-exposed.

6.1.1 Augmenting Paths

Definition 6.1.2 (Alternating Path)
For a graph G and a matching M ⊆ E, a path

P : v1, . . . , vk

is M -alternating if
vi−1vi ∈ M ⇐⇒ vivi+1 /∈ M.

Furthermore, we say a M -alternating path is M-augmenting if v1, vk are M -exposed.

Recall that the symmetric difference between two sets A,B is

A∆B := (A ∪B) \ (A ∩B).
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Theorem 6.1.1 (Berge)
Let M be a matching of G. Then M is a maximum cardinality matching if and only
if there does not exist a M -alternating path.

Proof
( =⇒ ) If P is a M -augmenting path, then

M ′ := M∆E(P )

is a strictly larger matching.

( ⇐= ) Suppose there is a larger matching M ′. Consider

G[M∆M ′].

Every vertex has degree at most 2 and thus G′ is a disjoint union of alternating paths and
cycles, with respect to both M,M ′.

Since |M ′| > |M |, at least one of the components of G′ has more edges from M ′. This
can only happen in one of the paths, say P . The first and last edge of P must come from
M ′, thus P is the desired augmenting path.

6.1.2 Alternating Trees

The idea is to continually augment matchings to find a maximum matching. Start at a
M -exposed vertex r and compute a breadth-first search tree where odd distanced vertices
(A) were “discovered” through non-matching edges and vice versa for even distanced vertices
(B).

If we discover a matched vertex, then we can extend the tree by two vertices. Otherwise, if
we discover an unmatched vertex, then we can augment our matching and initialize our tree
from another exposed vertex.

This idea “almost” works.

6.2 Bipartite Graphs

Let us first consider an algorithm for bipartite graphs.
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def Bipartite_Matching(G):
M := {}
r in V
T := ({r}, {})
A := {} # odd distanced vertices
B := {r} # even distanced vertices

while there is vw in E: v in B(T) and w not in V(T):
if w is M-covered by wx:

use vw to extend T
A.add(w)
B.add(x)

else:
use vw to augment M
if there is another M-exposed vertex r in V:

T := ({r}, {})
A := {}
B := {r}

else:
return M

return "no perfect matching"

6.2.1 Hall’s Theorem

Theorem 6.2.1 (Hall)
Let G be a graph with bipartition A ∪ B. There is a matching satisfying A if and
only if

∀X ⊆ A, |N(S)| ≥ |X|.

Proof
(¬ ⇐= ¬) If there is X ⊆ A such that

|X| > |N(X)|,

then not all vertices of X can be covered.

( ⇐= ) Let us argue by induction on |A|. If |A| ≤ 1, the result holds trivially.

Suppose that for every non-trivial subset X ⊆ A,

|N(X)| > |X|.
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Pick uv ∈ E with u ∈ A, v ∈ B. Consider

G′ := G− {u, v}.

This has a bipartition A′ := A− u,B′ := B − v.

Now, for all X ⊆ A′,
|N ′

G(X)| ≥ |NG(X)| − 1 ≥ |X|

and so Hall’s conditions holds. By induction, there is a matching M ′ covering A′. It
follows that

M ′ + uv

covers A.

Otherwise, there is some non-trivial X ⊆ A such that

|N(X)| = |X|.

We know by induction that there is a matching M∗ in G[X ∪ N(X)] covering X, since
Halls conditions holds for that subgraph. Now, consider

G′ := G[A \X ∪N \N(X)].

We wish to argue that Hall’s condition still holds.

Indeed,

|NG′(Y )| = |NG(X ∪ Y )| − |NG(X)|
= |NG(X ∪ Y )| − |X|
≥ |X ∪ Y | − |X|
= |Y |.

Hence by induction, there is a matching satisfying A − X in G′. Taken with the X-
saturating matching in G[X ∪N(X)], this yields the desired result.

Corollary 6.2.1.1
Let G be a graph with bipartition A ∪B. There is a perfect matching if and only if

|A| = |B| ∧ ∀X ⊆ A, |X| ≤ |N(X)|.
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6.2.2 Correctness

Proposition 6.2.2
The bipartite matching algorithm correctly detects there is no perfect matching.

Proof
Let T,B,A be the state of the algorithm just before termination. We claim that

N(B(T )) = A(T )

as well as
|B(T )| > |A(T )|.

This shows that G has no perfect matching by the corollary to Hall’s theorem.

The first claim follows by the loop condition of our algorithm. Moreover, notice that every
non-root vertex in T is matched to a vertex of T of the opposite distance parity. Thus
there is exactly one more element in B(T ) than A(T ).

It is clear that the bipartite matching algorithm runs in polynomial time. We can augment
the matching at most n

2
times, with each augmentation requiring linear time to compute the

alternating tree.

6.3 Vertex Covers

Definition 6.3.1 (Vertex Cover)
U ⊆ V is a vertex cover if for each e ∈ E

|e ∩ U | ≥ 1.

Let τ be the size of a minimum vertex cover and ν the size of a maximum matching. It is
clear that

ν(G) ≤ τ(G).

Theorem 6.3.1 (König)
If G is bipartite, then

ν(G) = τ(G).
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6.4 General Graphs

Let us now consider the scenario where odd cycles might exist.

Fix A ⊆ V and consider G− A. Put

H1, . . . , Hk

as the odd components of G− A.

Suppose k = odd(G− A). Then

ν(G) ≤ 1

2
(|V | − k + |A|) .

Notice that if A is a vertex cover, then

1

2
(|V | − k + |A|) = 1

2
(|V | − |V |+ |A|+ |A|) = |A|.

Thus our bound is AT LEAST as good as the vertex cover bound.

In fact, the following theorem holds.

Theorem 6.4.1 (Tutte-Berge Formula)
Let G be a graph.

ν(G) =
1

2
min{|V | − odd(G− A) + |A| : A ⊆ V }.

There is a slightly weaker statement.

Theorem 6.4.2
G has a perfect matching if and only if

odd(G− A) ≤ |A|

for all A ⊆ V .

Proof
First observe for A = ∅, the statement becomes

odd(G) = 0
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which is necessary for G to have a perfect matching.

Now, by the Tutte-Berge formula, G has a perfect matching if and only if

ν(G) =
n

2
⇐⇒ n = min

A⊆V
{n− odd(G− A) + |A|}

if and only if
min
A⊆V

{|A| − odd(G− A)} = 0.

But for A = ∅,
|A| − odd(G− A) = 0.

The statement follows since we have deduced the minimum is at most 0. Thus the
minimum is 0 if and only if the statement holds.

6.4.1 Tutte-Berge Formula

We now seek to prove the Tutte-Berge formula.

Definition 6.4.1 (Essential)
We say u ∈ V is essential if u is M -covered in EVERY maximum cardinality matching
M .

Otherwise, u ∈ V is inessential.

Odd Cycles

Let V be an odd cycle and G′ := G/C. Put C as the identified vertex. We will allow parallel
edges but remove loops.

The idea is that a matching in G′ can be extended to a matching in G with the same number
of exposed vertices.

Proposition 6.4.3
Let G = (V,E), C an odd cycle, and G′ := G/C. Let M ′ be a matching in G′.
There exists a matching M of G such that the number of M -exposed vertices in G is
equal to the number of M ′-exposed vertices of G′.

It follows that
ν(G) ≥ ν(G′) +

|C| − 1

2
.

59



©Fel
ix

Zh
ou

Unfortunately, equality does not always hold.

Definition 6.4.2 (Tight)
We say an odd cycle C is tight if

ν(G) = ν(G′) +
|C| − 1

2
.

Tutte-Berge Formula

Lemma 6.4.4
If uv ∈ E is such that u, v are both not essential, there is a tight odd cycle C
containing uv.
Moreover, C is an inessential vertex of G′.

Proof
Observe no maximum matching exposes both u, v. Let M1 be a maximum matching
exposing u and M2 a maximum matching exposing v. Consider

G[M1 ∪M2].

v is the endpoint of some path P . Walk from v until the other endpoint, say u′. If u′ is
M2 exposed, P is a M2-augmenting path. But if u′ is a M1-exposed vertex other than u,
we can produce a M1-augmenting path by appending uv to the beginning of P .

Thus u′ = u and C := P + uv is a tight odd cycle containing uv.

To see that C is inessential in G′, observe that M2 −E(C) is a maximum matching of G′

not covering C. This is because the inequality above yields

|M2 − E(C)| = ν(G)− |E(C)| − 1

2
≥ ν(G′).

We are now ready to prove the Tutte-Berge Formula.

Proof (Tutte-Berge Formula)
Our goal is to produce a matching M and A ⊆ V with exactly

odd(G− A)− |A|
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M -exposed vertices. Then since the Tutte-Berge formula trivially provides an upper
bound, we will have shown that we obtain the upper bound so equality must follow.

We argue by induction on m = |E|. The case where m = 0 is trivial.

Choose some uv ∈ E arbitrarily. Suppose that one of the endpoints are essential, say v.

v is Essential: Let G′ := G− v. Then by definition, ν(G′) < ν(G).

By induction, there is a matching M ′ in G′ and A′ ⊆ V − v with

|M ′| = 1

2
(n− 1− odd(G′ − A′) + |A′|).

Let M be a matching of G with
|M | = ν(G).

Choose e ∈ δ(v) ∩M . There must be such an edge since v is essential.

Then M̄ := M − e is a matching in G′. It follows that

|M̄ | = |M | − 1 ≤ |M ′|.

But |M ′| ≤ |M | − 1 since v is essential. Thus

|M ′| = |M | − 1.

Define
A := A′ + v.

Notice that odd(G− A) = odd(G′ − A′) by definition. It follows that

|M | − 1 =
1

2
(n− 1− odd(G′ − A′) + |A′|)

|M | = 1

2
(n− 1− odd(G− A) + |A| − 1) + 1

=
1

2
(n− odd(G− A) + |A|).

as required.

u, v are Both Not Essential: Choose a tight odd cycle C containing uv where C is inessen-
tial in G′ = G/C. There is a matching M ′ of G′ and A′ ⊆ V (G′) where

|M ′| = 1

2
(|V (G′)| − odd(G′ − A′) + |A′|).
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Moreover, we may assume C is M ′-exposed since C is inessential.

We claim that C /∈ A′. Indeed, since

|M ′| = odd(G′ − A′) = |A′|,

it must be that every vertex of A′ is matched to a vertex in an odd component of G′−A′.
But C is inessential and therefore cannot be in A′.

We now know that C /∈ A′, thus any component of G′−A′ containing C will be a component
of G− A′ of the same parity. Hence

odd(G′ − A′) = odd(G− A′).

Extend M ′ to M with |C|−1
2

edges from C. But this does not change the number of
exposed vertices since C contributed 1 in M ′ and the odd cycle C also contributes exactly
1 exposed vertex. Then

odd(G′ − A′)− |A′| = odd(G− A′)− |A′|

M -exposed vertices. This concludes the proof.
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Matching Algorithms

7.1 The Blossom Algorithm

Definition 7.1.1 (Frustrated)
We say an M -alternating tree T is frustrated if for all uv ∈ E such that u ∈ B(T ),
we have v ∈ A(T ).

Proposition 7.1.1
If T is frustrated, then G has no perfect matching.

Proof
Since all neighbors of B(T ) are in A(T ), G− A(T ) has at least |B(T )| odd components.

Thus
odd(G− A(T )) ≥ |B(T )| > |A(T )|

and the result follows from Tutte’s Matching Theorem.

Unfortunately, it is possible that some vertices of B(T ) are adjacent to each other. Thus we
cannot always find a frustrated M -alternating tree.

Let u, v ∈ B(T ) such that uv ∈ E. Then T +uv has a unique odd cycle C (Blossom). Shrink
the Blossom and let G′ := G/C.

Informally, we can then continue our algorithm to extend our M -alternating tree in G′.
Given a matching in G′, we can extend it to one in G.
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7.1.1 Repeated Shrinking

Definition 7.1.2 (Derived Graph)
We say the graph obtained after (repeatedly) shrinking Blossoms a derived graph.

We will write S(v) as the set of vertices which have been shrunk to form v ∈ V (G). Recur-
sively,

S(v) =

{
v, v ∈ V (G)⋃

w∈C S(w), v = vC for some blossom C

Notice that |S(v)| is always odd since we delete/add odd number of vertices for every shrink
operation.

Proposition 7.1.2
Let G′ be a derived graph from G and M ′ a matching of G′.
If T ′ is a M ′-alternating frustrated tree of G′ such that all pseudonodes are in B(T ′),
then G has no perfect matching.

Proof
Observe that

odd(G′ − A(T ′)) ≥ |B(T ′)| > |A(T ′)|

as before. As a reminder, this is because every neighbor of a vertex in B(T ′) resides in
A(T ′).

But now, upon uncontraction of the Blossoms of B(T ′), each odd component of G′−A(T ′)
remains an odd component of G− A(T ′). Thus

odd(G− A(T ′)) ≥ |B(T ′)| > |A(T ′)|

and the result follows once again by Tutte’s Matching Theorem.

Proposition 7.1.3
Let G′ be a derived graph from G, M ′ a matching of G′, T ′ an M ′-alternating tree, and
uv ∈ E(G′) with u, v ∈ B(T ′).
Put C ′ as the unique Blossom in T ′ + uv. Then M ′′ := M ′ \ E(C ′) is a matching for
G′′ = G′/C ′ and

T ′′ = (V (T ′) \ V (C ′) ∪ {vC′}, E(T ′) \ E(C ′))

is an M ′′-alternating tree in G′′ with vC′ ∈ B(T ′′).
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7.1.2 Perfect Matching Algorithm

def Pefect_Matching(G: Graph, M: Matching):
M_prime := M
G_prime := G
r := M-exposed node
T := ({r}, {})
A := {} # odd distanced vertices
B := {r} # even distanced vertices

while there is vw in E such that v in B(T) and w not in A(T):
if w not in V(T) and is M_prime-exposed:

use vw to augment M_prime
extend M_prime to a matching M of G
M_prime := M
G_prime := G

if no M_prime-exposed node in G_prime:
return perfect matching M_prime

else:
r := M_prime exposed node
T := ({r}, {})

elif w not in V(T) and is M_prime-covered by wx:
use vw to extend T
A.add(w)
B.add(x)

else: # w in B(T)
use vw to shrink unique Blossom and update M_prime, T

return G_prime, M_prime and "no perfect matching"

Theorem 7.1.4
The Blossom algorithm performs O(n) augmentations, O(n2) shrinks, and O(m) tree
extensions.
Furthermore, it correctly determines if G has a perfect matching.

Proof
The correctness follows from our previous propositions about frustrated trees, as that is
exactly what our algorithm returns if no perfect matching is found.

Each augmentation increases |M ′| by 1, thus there are at most O(n) augmentations.
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Between augmentation steps, shrinking reduces the size of G′ by at least 2 vertices. Thus
there are O(n · n) total shrinks.

Finally, each edge is added to the tree at most once, hence there are O(m) tree extensions.

7.1.3 Maximum Cardinality Matching Algorithm

def Maximum_Cardinality_Matching(G: Graph, M: Matching):
M_prime := M
G_prime := G
T_prime := ({}, {})

while there is an M_prime exposed node r of G_prime:
T := ({r}, {})
A := {} # odd distanced vertices
B := {r} # even distanced vertices

while there is vw in E such that v in B(T) and w not in A(T):
if w not in V(T) and is M_prime-exposed:

use vw to augment M_prime
extend M_prime to a matching M of G
M_prime := M
G_prime := G

if no M_prime-exposed node in G_prime:
return perfect matching M_prime

else:
r := M_prime exposed node
T := ({r}, {})

elif w not in V(T) and is M_prime-covered by wx:
use vw to extend T
A.add(w)
B.add(x)

else: # w in B(T)
use vw to shrink unique Blossom and update M_prime, T

T_prime.add(T)
G_prime.remove(V(T))
M_prime.remove(E(T))

return M_prime
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Proposition 7.1.5
The Blossom algorithm correctly computes a maximum cardinality matching.

Proof
Let T1, . . . , Tk be the trees in T and M the final matching.

For each Ti, there is only one M -exposed vertex in Ti, namely, its root ri. Thus there are
k M -exposed vertices.

Put

A :=
k⋃

i=1

A(Ti).

By the inner while loop, N(B(Ti)) ⊆ A(Ti) for each i. Thus each vertex in B(Ti) is an
odd component of G− A.

It follows that

odd(G− A) ≥
k∑

i=1

|B(Ti)| ≥
k∑

i=1

1 + |A(Ti)| = |A|+ k.

But
|M | = n− k

2
≥ 1

2
(n− odd(G− A) + |A|) .

Recall that the reverse inequality always holds for any matching and we are done.

Observe that this is an algorithmic proof of the Tutte-Berge formula.

7.2 Gallai-Edmonds Partition

Definition 7.2.1 (Gallai-Edmonds Partition)
Let G = (V,E).
Put B as the set of inessential vertices. Let C be the neighbors of B in V \B. Finally,
set D as the rest of the vertices.
(B,C,D) is the Gallai-Edmonds Partition/Decomposition of G.

We should think of C as the minimizer of the Tutte-Berge formula. G[B] only has odd
components and in a maximum matching M , M ∩ E(D) is a perfect matching of G[D].
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Proposition 7.2.1
Let T1, . . . , Tk be the frustrated trees found in the maximum cardinality Blossom algo-
rithm.
Then

C =
k⋃

i=1

A(Ti)

B =
k⋃

i=1

 ⋃
v∈B(Ti)

S(v)


D = V \ (B ∪ C)

yields a Gallai-Edmonds Partition.

Observe that this implies all components of G[B] are odd since they are isolated vertices
or (repeatedly) expanded blossoms. In addition, C is the minimizer of the Tutte-Berge
formula. It also means that G[D] only has even components since all odd components of
G − A are precisely G[B]. Moreover, this implies that the Gallai-Edmonds decomposition
can be computed in polynomial time.

Proof
We saw all vertices in

⋃k
i=1A(Ti) are essential. This is because the Blossom algorithm

finds a minimizer of the Tutte-Berge formula, of which all vertices are essential.

For all vertices in
⋃k

i=1

(⋃
v∈B(Ti)

S(v)
)

, there is an even M -alternating path from an
M -exposed vertex r to it (a root of some frustrated tree). Take such an even path P and
observe that

M ′ := M∆E(P )

is a matching with |M ′| = |M | exposing v. It follows that v is inessential.

Finally, we know that G[D] only has even components. Put v ∈ D. We claim that

ν(G− v) < ν(G).

Indeed, we have already shown that A is a minimizer to the Tutte-Berge formula. Thus
there are exactly k exposed vertices in a maximum matching. But there are at least k
exposed vertices of B, thus no vertex of D can be exposed in a maximum matching. Thus
shows that G[D] contains a perfect matching as required.

Notice that v ∈ D is NOT adjacent to a vertex of B while v ∈ C is always matched (adjacent)
to a vertex in B.

68



©Fel
ix

Zh
ouChapter 8

Weighted Matchings

8.1 Minimum Weight Perfect Matching

Problem 5 (Minimum Weight Perfect Matching)
Given G = (V,E) and e : E → R, find a perfect matching M minimizing

c(M) =
∑
e∈M

c(e).

Consider the following LP

min
∑
e∈E

cexe

x(δ(v)) = 1 ∀v ∈ V

x ≥ 0

It dual is given by

max
∑
v∈V

yv

yu + yv ≤ cuv ∀uv ∈ E

Unfortunately the LP relaxation is not integral due to the possible existence of odd cycles.
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8.1.1 Bipartite Graphs

Theorem 8.1.1 (Birkhoff)
Let G be bipartite and c ∈ RE.
Then G has a perfect matching if and only if the primal LP is feasible.
Moreover, if the primal LP is feasible, then for all minimum cost perfect matchings
M∗,

OPT = c(M∗).

Proof
( =⇒ ) This direction is trivial.

( ⇐= ) We omit the proof that feasibility implies perfect matching and leave is as an
exercise in the assignment.

It remains to show that the optimal solution is the cost of a minimum cost perfect match-
ing. We will do so using complementary slackness.

Let ȳ be feasible for the dual. Pick

E= := {uv ∈ E : ȳu + ȳv = cuv}.

If G= := (V,E=) has a perfect matching M , then χM , ȳ satisfy complementary slackness
and we are done.

Otherwise, update ȳ as below.

Suppose the perfect matching algorithm terminated with a M -frustrated tree in G=.
Define

ε = min{cuv − ȳu − ȳv : u ∈ B(T ), v /∈ V (T )}.
Update ȳ as

ȳu :=


ȳu + ε, u ∈ B(T )

ȳu − ε, u ∈ A(T )

ȳu, u /∈ V (T )

This ensures that ȳ is still feasible for the dual. Moreover, M ⊆ E= for the new E=

by construction. In fact, E(T ) ⊆ E= since we increased/decreased the vertex potentials
based on parity of distance from the root. We also ensure that at least one edge in δ(V (T ))
is added to E=.

If there are any vertices u /∈ V (T ), then this ensures at least one M -exposed vertex is
found and we can augment our matching.
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Otherwise, by the termination condition of the Blossom algorithm, every vw ∈ E with
v ∈ B(T ) satisfies w ∈ A(T ) and G has no perfect matching.

def Min_Weight_Bipartite_Perfect_Matching(G: Graph, M: Matching, y:
FeasibleDual):

r := M-exposed node
T := ({r}, {})
A := {} # odd distanced vertices
B := {r} # even distanced vertices

while True:
# find a perfect matching
while there is vw in E_= such that v in B(T) and w not in V(T):

if w is M_prime-exposed:
use vw to augment M_prime
if no M-exposed node in G:

return M
else:

r := M_prime exposed node
T := ({r}, {})
A.clear()
B.clear()

else:
use vw to extend T
A.add(w)
B.add(x)

# update dual solution
if all uv in E with v in B(T) is w in A(T):

return "no perfect matching"
else:

eps := min(c(uv) for v in V(B) and w not in V(T))
for v in B(T):

y(v) += eps
for v in A(T):

y(v) -= eps

The correctness of the algorithm follows from Birkhoff’s theorem. Observe that inner while
loop is the bipartite matching algorithm and terminates in polynomial time.

On the other hand, if the outer loop does not terminate, then it is guaranteed we have a
M -augmenting path in G= in the next iteration. Thus the outer loop runs for at most n
iterations.

All in all, the algorithm correctly finds a minimum weight perfect matching in a bipartite
graph within polynomial time.
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8.1.2 General Graphs

Observe that the issue is the existence of odd cycles. We add additional constraints to the
primal LP that all odd vertex sets must have an outgoing edge.

min
∑
e∈E

cexe

x(δ(v)) = 1 ∀v ∈ V

x(δ(S)) ≥ 1 ∀S ⊆ V, |S| ≡ 1 mod 2, |S| ≥ 3︸ ︷︷ ︸
=:θ

x ≥ 0

It dual is given by

max
∑
v∈V

yv +
∑
S∈θ

yS

yu + yv +
∑

S∈θ:uv∈δ(S)

yS ≤ cuv ∀uv ∈ E

yS ≥ 0 ∀S ∈ θ

The complementary slackness conditions are given by

x(δ(S)) = 1 ∨ yS = 0

xuv = 0 ∨ c̄uv = 0

The idea is to construct a perfect matching M with

M ⊆ E= = {e ∈ E : c̄e = 0}

AND
∀S ∈ θ, yS > 0 =⇒ |M ∩ δ(S)| = 1.

Notice that E= is implicitly dependent on some dual solution.

The updates to our dual solution is more complicated. Let

ε1 := min{c̄uv : u ∈ B(T ), v /∈ V (T )}

and
ε2 := min

{
1

2
c̄uv : u, v ∈ B(T )

}
.
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We take ε := min(ε1, ε2).

Then set

ȳu =


ȳu + ε, u ∈ B(T )

ȳu − ε, u ∈ A(T )

ȳu, u /∈ V (T )

as before.

This brings up the issue of how to shrink a Blossom C in our subroutine to find a perfect
matching in G=.

We now need to keep parallel edges. The identified vertex vC is essentially some odd cycle
with vertex set V (C) = S ∈ θ. Thus we set yS = 0 and change the cost of an edge vCv as

c′vCv := cuv − yu

where u ∈ S, v /∈ S.

Proposition 8.1.2
Let ȳ be feasible in the dual, with ȳS = 0 for all S ∈ θ. Put G′, c′ be derived from G, c
by shrinking the blossom C with

E(C) ⊆ E=.

Let M ′ be a perfect matching of G′ and y′ feasible for the derived dual, where M ′, y′

satisfy the complementary slackness conditions with yvC ≥ 0.
Extend M ′ to a perfect matching M̂ of G and define ŷ as

ŷv :=

{
ȳv v ∈ V (C)

y′v v ∈ V (G′) \ vC

and

ŷS :=


y′vC S = S(vC)

y′D S = S(D), D ∈ θ(G′)

0, else

Then ŷ is feasible for the original dual and M̂, ŷ satisfy the complementary slackness
conditions.

We do not wish to track all the yS > 0 for S ∈ θ so we do not expand all pseudonodes
upon augmenting our matching / failing to find a perfect matching in some derived graph.
Instead, we proceed with algorithm in the derived graph and update potentials.

While working in the derived graph, we must choose our ε even more carefully. It is possible
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there is some pseudonode vC ∈ A(T ) for which we must maintain

yC ≥ 0.

Thus we have a third parameter

ε3 := min{yvC : vC is a pseudonode}.

We take

ε := min(ε1, ε2, ε3).

Now, it is possible if ε = ε3 that E= stays the same upon updating the dual. Thus in this
case, we expand only the vC ’s satisfying yvC = 0. Notice we are still able to avoid tracking
many yS, S ∈ θ, since we only expand if the odd dual variable is set to 0.

By expanding a pseudonode, we mean replacing some vC with the vertices of C and re-
attaching edges to their previous endpoints. We need to readjust edge weights for uv ∈ δ(C)
by adding back the previously subtracted yu where u ∈ V (C). Let ux, vy be the edges of T
incident with vC where u, v ∈ V (C). Extend M ′ in the only way possible such that every
cycle vertex is saturated. Finally, let P be the even uv-path in C and update T with edges

E(T ) ∪ E(P ).
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def Min_Weight_Perfect_Matching(G: Graph, M: Matching, y: FeasibleDual):
r := M-exposed node
T := ({r}, {})
A := {} # odd distanced vertices
B := {r} # even distanced vertices

while True:
# find a perfect matching
if there is vw in E_= such that v in B(T) and w not in V(T):

if w is M_prime-exposed:
use vw to augment M_prime
if no M_prime-exposed node in G:

extend to perfect matching M in original graph
return M

else:
r := M_prime exposed node
T := ({r}, {})
A.clear()
B.clear()

else:
use vw to extend T
A.add(w)
B.add(x)

elif there is vw in E_= where u, v in B(T):
use vw to shrink G
update M_prime
update T
update c # costs

elif there is pseudonode v in A(T) with y(v) = 0:
expand v
update M_prime
update T
update c # costs

elif all uv in E with v in B(T) is w in A(T) and no pseudonode in A(T):
# frustrated tree
return "no perfect matching"

else: # update dual solution
eps1 := min(c(uv) for v in V(B) and w not in V(T))
eps2 := min(c(uv)/2 for uv in E_= where u, v in B(T))
eps3 := min(y_v for pseudonode y_v in A(T))
eps = min(eps1, eps2, eps3)
# update dual solution
for v in B(T):

y(v) += eps
for v in A(T):

y(v) -= eps
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The correctness of this algorithm has been covered by the build-up. We essentially argue that
each step preserves that the partial matching is always a subset of E=. To see polynomial
time termination, the steps are similar to that of the cardinality matching algorithm. One
slightly tricky observation is that unshrinking only happens if there is some pseudonode in
A(T ), which came as a result of some matching augmentation in a derived graph.

There are at most O(n) matching augmentations. We bound the running time of the algo-
rithm between augmentations. We extend an alternating tree at most O(m) times. Between
tree extensions, there may be a series of shrinking/expansion operations. Any shrunken
Blossom is not expanded until the next augmentation. Thus at worst, we expand all previ-
ously contracted cycles and shrink the graph for a total of O(n) operations. Finally, the dual
updates cannot happen in succession thus it is at most the total number of other operations,
which does not affect asymptotic complexity. The total runtime is thus

O(mn2).

8.2 Maximum Weight Matching

There are direct Blossom algorithm variations which solve this problem. Instead, we show
an elegant reduction from the maximum weight perfect matching problem.

8.2.1 Maximum Weight Perfect Matching Reduction

Let G = (V,E), c : E → R be an instance of the maximum weight matching problem. Let G′

be a copy of G with the exact same edge costs. Put Ḡ as the graph on vertices V (G)∪V (G′)
and edges

E(G) ∪ E(G′) ∪ {vv′ : v ∈ V (G)}.

The new edges vv′ all have cost 0.

It is clear that Ḡ has a perfect matching.

Proposition 8.2.1
Let M̄ be a maximum weight perfect matching in Ḡ. Then

M := M̄ ∩ E(G)

is a maximum weight matching in G.
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Proof
It is clear that M is a matching.

Indeed, let M∗ be a maximum weight matching in G. We can copy M∗ and take the edges
vv′ for M∗-exposed vertices to construct a perfect matching in Ḡ with cost

2c(M∗).

Since the edges in δ(V (G)) have weight 0, the edges within E(G), E(G′) contribute to
all the weights. In particular, we must have c(M) ≥ c(M̄ ∩ E(G′)) or else M̄ was not
maximal (take a copy of M ∩ E(G′) in G instead).

It follows that
2c(M) ≥ c(M̄) ≥ 2c(M∗) =⇒ c(M) ≥ c(M∗)

as desired.

8.2.2 Linear Programming Formulation

We conclude this section by noting the existence of a primal dual algorithm originating from
the following LP.

max
∑
e∈E

cexe

x(δ(v)) ≤ 1 ∀v ∈ V

x(E(S)) ≤ |S| − 1 ∀S ⊆ V : |S| odd, |S| ≥ 3

x ≥ 0
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Part IV

T-Joins
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T-Joins

9.1 T-Joins

Definition 9.1.1 (Euler Tour)
Given a connected graph G (potentially with parallel edges), an Euler tour is a closed
walk visiting every edge exactly once.

Theorem 9.1.1
A connected graph G has an Euler tour if and only if every vertex has even degree.

Problem 6 (Postman Tour)
A postman tour is a closed walk traversing every edge at least once.
Given c : E → R≥0, find a minimum cost postman tour.

Observe that if G has an Euler tour, it is optimal!

Consider the following logic: Let xe ∈ Z≥0 for all e ∈ E. Put Gx as the graph obtained by
making 1 + xe copies of e.
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The idea is to find x such that Gx has an Eulerian tour. This translates to the following:

min
∑
e∈E

cexe∑
e∈δ(v)

(1 + xe) = 0 mod 2 v ∈ V (∗)

xe ≥ 0

x ∈ ZE

(∗) We alternatively write this as

x(δ(v)) ≡ |δ(v)| mod 2

for all v ∈ V .

Notice that when written this way, it becomes clear that we can restrict xe ∈ {0, 1}, since
xe − 2 does not change the parity and can only decrease the cost.

Definition 9.1.2 (Postman Set)
J ⊆ E such that

|J ∩ δ(v)| ≡ |δ(v)| mod 2

for all v ∈ V .

By our remark above, we reduced the problem to finding a postman set.

Definition 9.1.3 (T -Join)
Let T ⊆ V be such that |T | is even.
J ⊆ E is a T-join if it is a postman set with respect to T .

|J ∩ δ(v)| ≡ |T ∩ {v}| mod 2

for all v ∈ V .

In other words, the vertices of (V, J) with odd degree are precisely T .

Problem 7 (Minimum Cost T -Join)
Given c : E → R and G = (V,E) with an even vertex subset T ⊆ V .
Find a T -join of G minimizing c(J).
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9.2 Non-Negative Edge Weights

Observe that the definition does not required connectedness or c ≥ 0.

What do minimal T -joins look like?

Proposition 9.2.1
Let J ′ be a T ′-join of G. Then J is a T -join of G if and only if

J∆J ′

is a (T∆T ′)-join of G.

Proof
( =⇒ ) Let J̄ = J∆J ′ and fix v ∈ V .

Case I: v ∈ T \ T ′ Then |J ∩ δ(v)| is odd and |J ′ ∩ δ(v)| is even. Hence their sum is odd!

But J∆J ′ removes an even number of those since we double count them in the sum and

|J̄ ∩ δ(v)|

is odd.

Case II: v ∈ T ′ \ T This is identical to Case I.

Case III: v ∈ T ∩ T ′ Both |J ∩δ(v)|, |J ′∩δ(v)| is odd. Hence their symmetric sum is even.

Case IV: v ∈ T ∪ T ′ Both |J ∩ δ(v)|, |J ′ ∩ δ(v)| is even. Hence their symmetric sum is
even.

Thus by definition, J∆J ′ is a T∆T ′-join.

( ⇐= ) We utilize the associativity and commutativity of the symmetric difference. Specif-
ically, let us apply the forward direction with

J ′ = J ′,J = J∆J ′

T ′ = T ′, T = T∆T ′

Then J ′∆J∆J ′ = J is a T ′∆T∆T ′ = T -join.
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Proposition 9.2.2
J is a minimal T -join if and only if it is the union of edges of |T |

2
edge-disjoint paths

joining disjoint pairs of vertices in T .

Proof
Let |T | = 2k. We argue by induction on k.

The base case of k = 0 trivially holds as the only minimal T -join is ∅. Now suppose
k ≥ 1.

( =⇒ ) We argue that J contains such an edge set. Then the result follows by minimality.

Let u ∈ T , and K be the connected component of (V, J) containing u. There is necessarily
some v ∈ T \ u such that v ∈ K, otherwise the sum of degrees is not even.

Let P be a uv-path in (V, J). Consider J ′ = J \ E(P ). Observe that J ′∆J = E(P ) is a
{u, v}-join, as the only odd degree vertices of (V,E(P )) are the endpoints u, v. Thus an
application of the previous proposition yields that J ′ is a T \ {u, v}-join.

But |J ′| < 2k. Hence by induction, J ′ must be a union of edges of edge-disjoint paths.
Thus J = J ′∪̇E(P ) is a union of edges of edge-disjoint paths as required.

( ⇐= ) This is clear, since no subset of J can be a T -join.

Proposition 9.2.3
Suppose c ≥ 0. There exists a minimum cost T -join that is the union of

|T |
2

edge-disjoint shortest c-paths joining vertices of T in (distinct) pairs.

Proof
Let J be a minimal minimum cost T -join. Put P as a uv-path with E(P ) ⊆ J and
u, v ∈ T .

Suppose towards a contradiction that P ′ is a uv-path with

c(P ′) < c(P ).

Notice that E(P ), E(P ′) are {u, v}-joins.
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It follows that
J ′ := J∆E(P )∆E(P ′)

is a T∆{u, v}∆{u, v} = T -join.

By our previous characterization of minimal T -joins,

c(J ′) = c(J \ E(P )) + c(E(P ′))− 2c((J \ E(P )) ∩ E(P ′))

≤ c(J)− c(E(P )) + c(E(P ′))

< c(J)

which is a contradiction.

Let w : T 2 → R≥0 be the shortest path metric in G. Put G′ as the complete weighted graph
with vertex set T .

Proposition 9.2.4
The minimum cost T -join when c ≥ 0 can be computed by computing a minimum cost
perfect matching in G′.

Proof
Let M be the minimum weight perfect matching in G′. Let

{ui, vi}
|T |
2

i=1

be the edges in M .

Put Pi as the shortest path in G for 1 ≤ i ≤ |T |
2

. Thus

E(P1)∆ . . .∆E(P |T |
2

)

is a T -join of cost at most
|T |
2∑

i=1

w(ui, vi).

By the previous proposition, any minimum T -join corresponds to a perfect matching in
G′ and has cost at least that sum. Optimality follows.

9.3 General Edge Weights

We seek to reduce this to the non-negative T -join problem.

85



©Fel
ix

Zh
ou

Put

N := {e ∈ E : ce < 0}
T ′ = {v ∈ V : v has odd degree in (V,N)}.

Then N is a T ′-join by definition.

But J is a T -join if and only if J∆N is a (T∆T ′)-join. Moreover,

c(J) = c(J \N) + c(J ∩N)

= c(J \N)− c(N \ J) + c(N \ J) + c(J ∩N)

= c(J \N)− c(N \ J) + c(N)

=
∑

e∈J∆N

|ce|+ c(N)

Thus to minimize c(J), it suffices to find a minimum cost (T∆T ′)-join with respect to costs
|c|.

9.4 Linear Programming Formulations

A subset S ⊆ V is T -odd if |S ∩ T | is odd. Moreover, if S is T -odd, we say δ(S) is a T -cut.

Let S ⊆ V be T -odd and J a T -join. If J ∩ δ(S) = ∅, then the subgraph of (V, J) induced
by S has an odd number of odd degree vertices which is impossible. Thus any T -join must
cross this cut at least once.

min
∑
e∈E

cexe (P )

x(δ(S)) ≥ 1 ∀S ∈ θ := {T -odd sets S}
x ≥ 0

Theorem 9.4.1
Let G be a graph and T ⊆ V with even cardinality. Suppose c : E → R≥0.
Then the minimum cost of a T -join is equal to the optimal value of (P).
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The dual of the above LP is

max
∑
S∈θ

αS (D)∑
S∈θ:e∈δ(S)

αS ≤ ce ∀e ∈ E

α ≥ 0

Recall the perfect matching LP is

min
∑

u,v∈E′

d(u, v)wuv (PM)

w(δ(v)) = 1 ∀v ∈ V

w(δ(A)) ≥ 1 ∀A ∈ θM := {A ⊆ V : |A| ≥ 3, |A| odd}
w ≥ 0

Its dual is

max
∑
v∈V

βv +
∑
A∈θM

γA (DM)

βu + βv +
∑

A∈θM :uv∈δ(A)

γA ≤ d(u, v) ∀u, v ∈ E ′

γA ≥ 0

Proof
Let J∗ be an optimal T -join. We have seen that

c(J∗) ≥ ζ∗

where ζ∗ is the optimal value of (P).

Case I: T = V Let G′ be the graph used to solve the minimum cost T -join with costs d
used to solve the minimum cost T -join problem.

We have previously shown that c(J∗) is the optimal value to (PM). But it is also the
optimal value to (PD). We need only show that it is also optimal for (P) and we would
be done.

The idea is as follows. Note E ⊆ E ′ and d(u, v) ≤ cuv for all uv ∈ E. From an optimal
solution to (DM), we can build a solution to (D) of the same cost and vice versa.
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The only caveat is that some of the β variables can be negative. However, it can be shown
that they are in fact non-negative but we omit the proof.

Case II: T ⊆ V Build Ĝ with a copy v̂ of v for all v ∈ V \ T . Add vv̂ edges with cost 0.

Set T̂ := V̂ and find a minimum cost T̂ -join of Ĝ, say Ĵ . We argue there is a minimum
cost T -join developed from T̂ .

Observe that
J0 := {vv̂ : v ∈ V \ T}

is a minimum cost V̂ \ T -join. But recall this implies that
J := Ĵ∆J0

is a T̂∆V̂ \ T = T -join. Moreover, it has cost
c(J) = c(Ĵ \ J0) + c(J0 \ J) = c(Ĵ).

Vice versa, given a T -join J , we can take
J∆J0

to be a T̂ -join with cost
c(J \ J0) + c(J0 \ J) = c(J).

It follows that J is a minimum cost T -join.

This shows that
OPT(D(Ĝ)) = c(Ĵ) = c(J) ≥ OPT(P (G)) = OPT(D(G)).

If we construct a dual solution for G from a dual solution to Ĝ of the same cost. This
would show that

OPT(D(G)) ≥ OPT(D(Ĝ))

and the previous inequality would become an equality.

First observe that if S is T -odd, then the set Ŝ := (S ∩ T ) ∪ {v, v̂ : v ∈ S \ T} satisfies
|T̂ ∩ Ŝ| ≡ |T ∩ S| ≡ 1 mod 2.

In addition, if there is an edge vv̂ ∈ δ(S) for any S ∈ θ̂,

0 ≤ αS ≤
∑

S∈θ̂:e∈δ(S)

αS ≤ 0

so αS = 0.

It follows that there is a correspondence between non-zero variables for T and T̂ -odd sets.
{αS : S ∈ θ} 
 {αS : S ∈ θ, S ⊆ T ∨ S = (S ∩ T ) ∪ {v, v̂ : v ∈ S \ T}}.

The corresponding dual claim follows.
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We conclude this section by remarking the existence of an LP formulation when the costs
are not necessarily non-negative but it is more involved.
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Part V

Flows & Cuts
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Flows & Cuts

10.1 Maximum Flow

Consider a directed graph D = (V,A) and x ∈ RA as well as r, s ∈ V .

Definition 10.1.1 (Flow)
x is an rs-flow if

fx(v) := x(δ−(v))− x(δ+(v)) = 0

for all v ∈ V \ {r, s}. Here + indicates outgoing arcs and − indicates incoming arcs.

Given capacities ` ≤ µ ∈ RA, we say an rs-flow is feasible if

`a ≤ xa ≤ µa

for all a ∈ A.

The value of a feasible rs-flow is fx(s).

Problem 8 (Maximum Flow)
Find a rs-flow of maximum value.

We will assume ` = 0 and

δ−(r) = δ+(r) = ∅.
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Proposition 10.1.1
If x is a feasible rs-flow and δ+(R) is an rs-cut, then

x(δ+(R))− x(δ−(R)) = fx(s).

Proof
x is feasible thus fx(v) = 0 for all v ∈ V − r − s.

By computation,

x(δ+(R))− x(δ−(R)) =
∑
v∈R

x(δ+(v))− x(δ−(v))

= fx(s) +
∑

v∈R−s

x(δ+(v))− x(δ−(v))

= fx(s).

Corollary 10.1.1.1
Let x be a feasible rs-flow and δ+(R) an rs-cut. Then

fx(s) ≤ µ(δ+(R)).

Proof
By computation,

fx(s) = x(δ+(R))− x(δ−(R))

≤ x(δ+(R))

≤ µ(δ+(R)).

Definition 10.1.2 (Incrementing Path)
Suppose P is a path using some arcs in the “forward” as well as “backward” direction.
We say that P is x-incrementing if

xa < µa

for all forward arcs and
xa > 0

for all backward arcs.

If in addition, P is a rs-path, then we say P is a x-augmenting path.
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Proposition 10.1.2
If there is a x-augmenting path, then x is NOT a maximum flow.

10.2 Minimum Cut

Theorem 10.2.1 (Maximum-Flow Minimum-Cut)
If there is a maximum flow x, then

max{fx(s) : x is a feasible rs-flow} = min{µ(δ+(R)) : δ+(R) is an rs-cut}.

Proof
Let x be a maximum flow. Pick R to be the set of vertices reachable by a rv x-incrementing
path.

Remark that r ∈ R but s /∈ R by maximality. Furthermore, for all vw ∈ δ+(R),

xvw = µvw

or else w ∈ R. Similarly, if vw ∈ δ−(R), then xvw = 0 or else v ∈ R.

With this, we have
fx(s) = x(δ+(R)) = µ(δ+(R)).

Notice that we can also show this with strong LP duality.

Theorem 10.2.2
A feasible rs-flow x is maximum if and only if there is no x-augmenting path.

Proof
Forward direction is done. The reverse direction is by remarking the existence of a mini-
mum capacity rs-cut.

Theorem 10.2.3
If µ ∈ ZA

+ and there is a maximum flow, then there is a maximum flow that is integral.
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Proof
First remark that there is a cut with finite capacity, namely δ(s). Thus there is a finite
upper bound all flows and a maximum integral flow exists.

Put x as a maximum integral flow and assume it is not a maximum flow. There is a
x-augmenting rs-path. But the residual capacities are integral and thus at least 1. This
contradicts the assumption that x was a maximum integral flow.

10.3 Ford-Fulkerson Algorithm

The idea is to construct a residual digraph Dx := (V,Ax) with capacity cx.

Here vw ∈ Ax if vw ∈ A and xvw < µvw. We set cx(vw) = µvw − xvw.

In addition, vw ∈ Ax if wv ∈ A and xwv > 0. We set cx(vw) = xwv.

Observe that there is a x-augmenting rs-path if and only if there is a rs-dipath in Dx.
Moreover, we can increment flow along such a path by the minimum of residual capacities
along the path.

We can find a rs-dipath in Dx in O(m) time. Unfortunately, if M is the value of the
maximum flow, we may need M augmentations to arrive at a maximum flow.

Theorem 10.3.1 (Dinits ’70; Edmonds & Karp ’72)
If P is chosen to be the shortest rs-dipath in Dx, then there are at most

nm

augmentations.

Let dx(v, w) be the length of the shortest vw-dipath in Dx. Put

P : v0, . . . , vk

as the shortest rs-dipath in Dx and x′ be a feasible rs-flow obtained after augmenting x
using P .
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Lemma 10.3.2
For all v ∈ V ,

dx′(r, v) ≥ dx(r, v)

and
dx′(v, w) ≥ dx(v, s).

Notice the distances are by convention ∞ if no such path exists.

Proof
Suppose towards a contradiction that there is some v ∈ V ,

dx′(r, v) < dx(r, v).

Choose such a v with minimal dx′(r, v). Notice that v 6= r or else both distances are 0.

Put P ′ as the rv-dipath in Dx′ with length d′x(r, v). Let w be the vertex immediately
before v in P ′. It follows that (?)

dx(r, v) > dx′(r, v) = dx′(r, w) + 1 ≥ dx(r, w) + 1.

If wv ∈ Ax, then
dx(r, v) ≤ dx(r, w) + 1 < dx(r, v)

which is a contradiction.

Thus wv /∈ Ax but wv ∈ Ax′ . Hence wv or vw is an arc in P . It must be that vw ∈ E(P ).

It follows that v = vi−1, w = vi for some i ∈ [k] and by (?),

dx(r, vi−1) ≥ dx(r, vi) + 1.

But this is not possible since we chose P to be the shortest path. Specifically, since P
visits v, w,

dx(r, v) = dx(r, w)− 1.
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Lemma 10.3.3
If dx′(r, s) = dx(r, s),

Ãx′ ( Ãx.

Here

Ãx := {uv ∈ A : either vw or wv are in a shortest x-augmenting rs-path}.

Proof
Containment Let k := dx(r, s) and pick vw ∈ Ãx′ .

If vw is in a shortest rs-dipath within Dx′ ,

dx′(r, v) = i− 1, dx′(w, s) = k − i

and hence
dx′(r, v) + dx′(w, s) = k − 1.

By the previous claim,
dx(r, v) + dx(w, s) ≤ k − 1.

If vw /∈ Ãx, then xvw = x′
vw as flow did not change implies vw ∈ Ax. But then there is a

rs-dipath of length k including vw, which is a contradiction. Thus vw ∈ Ãx.

A symmetric argument for the case wv is in a shortest rs-dipath within Dx′ completes
the containment proof.

Strict Containment To see that the containment is strict, let P be a path used to change
x → x′. There is some vw ∈ A such that

vw ∈ P, x′
vw = µvw ∨ wv ∈ P, x′

vw = 0.

Suppose x′
vw = µvw. We have

dx(r, v) = i− 1, dx(w, s) = k − i, vw ∈ Ãx, vw /∈ Dx′ .

An x′-augmenting path cannot use vw. Hence if vw ∈ Ãx′ , there is an x′-augmenting path
using wv.

But

dx′(r, w) + dx′(v, s) ≥ dx(r, w) + dx(v, s)

= (i− 1 + 1) + (k − i+ 1)

= k + 1
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and the length of the shortest rs-dipath in Dx′ using wv is not a shortest rs-dipath. Thus
vw /∈ Ãx′ as desired.

The second case is similar.

Proof (Theorem 10.3.1)
The first claim shows that the the algorithm terminates in at most n− 1 stages, where in
each stage, dx(r, s) remains constant.

The second claim shows that each stage has at most m iterations.

This completes the argument.

10.4 Applications

10.4.1 Bipartite Matching

Consider the reduction from bipartite matching to maximum flow. Let G = (V,E) be
bipartite with bipartition V = A ∪ B. Create new vertices r, s and add edges rA,Bs.
Finally, direct all edges from r → s, A → B.

Put capacities in the original graph as ∞ and capacities in the new arcs as 1. It is easy to
see that the arcs with non-zero flow within a maximum flow form a maximum matching.

With some more work, we can show that a minimum cut corresponds to a minimum vertex
cover. This provides an alternative proof to König’s theorem.

10.4.2 Flow Feasibility

Given D = (V,A), µ ∈ RA
+ and b ∈ RV such that b(V ) = 0.
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Problem 9 (Flow Feasibility)
Does there exist x ∈ RE such that

fx(v) = bv

for all v ∈ V such that
0 ≤ xa ≤ µa

for all a ∈ A.

Create new vertices r, s. For each v where b(v) < 0, add the arc rv with capacity −b(v). For
each v where b(v) > 0, add the arc vs with capacity b(v).

There is a feasible flow if and only if the maximum flow in the auxiliary graph attains∑
v:b(v)>0

b(v).

By the max-flow min-cut theorem, this happens if and only if for all S ⊆ V

µ(δ+(S ∪ {r})) ≥
∑

v:b(v)>0

b(v).

Observe that
µ(δ+(S ∪ {r})) =

∑
v∈S:bv>0

bv +
∑

v/∈S:bv<0

(−bv) + µ(δ+D(S)).

In other words, ∑
v/∈S:bv>0

bv +
∑

v/∈S:bv<0

bv ≤ µ(δ+D(S)).

Reworded once more,
∀S ⊆ V, b(S) ≤ µ(δ+D(S̄)).

Intuitively, all this says is that the total demand for all subsets of nodes does not exceed the
maximum capacity of incoming arcs.

10.5 Undirected Minimum Cut

Problem 10 (Undirected Minimum Cut)
Given an undirected graph G = (V,E) and µ ∈ RE

≥0, find S ⊆ V such that ∅ 6= S ( V
minimizing

µ(δ(S)).
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Write
λ(G)

to be the weight of the minimum cut. Put

λ(G, v, w)

to be the weight of the minimum vw-cut.

We can replace each undirected edge with a forward and backward arc of the same capacity,
and compute

λ(G) = min
v,w∈V (G)

λ(G, v, w).

This requires O(n2) maximum flow computations.

10.5.1 Gomory-Hu Trees

Construction

Pick r, s arbitrarily and compute a minimum rs-cut. Put R,S as its shores, ie

λ(G, v, w) = µ(δ(R)), S := V \R.

Let us store the results in a tree.

T = ({R,S}, {RS})

where RS has edge label λ(G, v, w).

In general, suppose our current Gomory-Hu tree T has vertices corresponding only to sin-
gletons. We are then done. Otherwise, there is a vertex A ∈ V (T ) corresponding to at least
2 a1, a2 ∈ A.

Let GA be the graph obtained from G by contracting each of the connected components of
T − A. To be accurate, we take the union of vertices of G represented by each component
of T − A and contract them in G.

Compute
λ(GA, a1, a2) = µ(δ(X))

and let
A1 := X ∩ A,A2 := X̄ ∩ A.
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Split A into A1, A2 within T , and label the edge A1A2 with

λ(GA, a1, a2).

As for the connected components of T \A, the corresponding contracted super-vertex belongs
either to X or X̄ in GA. Connect each component to either A1 or A2 accordingly.

Retrieving Minimum Cut

To retrieve λ(G, c, d), simply take the minimum weight edge in Tc,d!

Thus with n−1 maximum flow computations, we can compute a nice data structure to store
all vw-cuts!

Correctness

Proposition 10.5.1
The function µ(δ(A)) is submodular. That is,

µ(δ(A)) + µ(δ(B)) ≥ µ(δ(A ∪B)) + µ(δ(A ∩B))

For all A,B ⊆ V .

Proof
Fix A,B ⊆ V . Let us carefully decompose edge sets in consideration.

Consider the following disjoint edge-sets.

EAB := {ab ∈ E : a ∈ A \B, b ∈ B \ A}
EAX := {ax ∈ E : a ∈ A \B, x ∈ V \ (A ∪B)}
EBX := {bx ∈ E : b ∈ B \ A, x ∈ V \ (A ∪B)}
EY X := {yx ∈ E : y ∈ A ∩B, x ∈ V \ (A ∪B)}
EY B := {yb ∈ E : y ∈ A ∩B, b ∈ B \ A}
EY A := {ya ∈ E : y ∈ A ∩B, a ∈ A \B}

They are all pairwise disjoint since V \ (A ∪B), B \A,A \B,A ∩B are disjoint sets and
we consider the six edge sets grouped by endpoints in the disjoint sets.
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We can write

δ(A) = EAX ∪ EY X ∪ EY B ∪ EAB

δ(B) = EBX ∪ EY X ∪ EY A ∪ EAB

δ(A ∪B) = EAX ∪ EBX ∪ EY X

δ(A ∩B) = EY A ∪ EY B ∪ EY X

Thus
µ(δ(A)) + µ(δ(B))− µ(δ(A ∪B))− µ(δ(A ∩B)) = 2µ(EAB) ≥ 0

as desired.

Lemma 10.5.2
Let δG(S) be a minimum rs-cut and let v, w ∈ S.
Then there exists a minimum vw-cut δG(T ) such that T ⊆ S.

Proof
Let δ(X) be a minimum vw-cut. Without loss of generality, by relabeling if necessary, we
may assume that

s ∈ S ∩X.

Case I: r ∈ X In this case, we have

s ∈ S ∩X, r ∈ S̄ ∩X.

By submodularity, we have

µ(δ(S)) + µ(δ(X̄)) ≥ µ(δ(S ∩ X̄)) + µ(δ(S ∪ X̄))

≥ µ(δ(S ∩ X̄)) + µ(δ(S)). δ(S ∪ X̄) is rs-cut

Thus δ(S ∩ X̄) is the desired minimum vw-cut with S ∩ X̄ ⊆ S.

Case II: r ∈ X̄ This case is similar, except we have

s ∈ S ∩X, r ∈ S̄ ∩ X̄.

We can similarly apply submodularity with S,X.
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Lemma 10.5.3
Let G = (V,E), µ ∈ RE

+ and s, t /∈ B.
If there exists a minimum st-cut δ(X) with X ∩B = ∅, then

λ(G, s, t) = λ(G/B, s, t).

Proof
Since X ∩B = ∅, we also have X ⊆ V (G/B). Thus

λ(G, s, t) = µ(δG(X))

= µ(δG/B(X))

≥ λ(G/B, s, t).

Let Y ⊆ V (G/B) define a minimum st-cut in G/B with vB /∈ Y . Hence Y is an st-cut in
G. Thus

λ(G/B, s, t) = µ(δG/B(Y ))

= µ(δG(Y ))

≥ λ(G, s, t).

Suppose T is a GH tree at any point during the construction algorithm. Let fe be its labels
and RS any edge in T . We say RS has a representative if

∃r ∈ R, s ∈ S : λ(G, r, s) = fRS

AND the two connected component of T −RS induce the cut of weight λ(G, r, s).

Lemma 10.5.4
Let G = (V,E), µ ∈ RE

+ and p, q, r ∈ V .
Then

λ(G, p, q) ≥ min{λ(G, q, r), λ(G, p, r)}.

Equivalently, the two smallest among

λ(G, p, q), λ(G, q, r), λ(G, p, r)

are equal.

Proof
To see this let P ⊆ V with p ∈ P, q /∈ P induce a minimum pq-cut. If r ∈ P , then δ(P )
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is also a rq-cut. Otherwise, if r /∈ P , then δ(P ) is also a pr-cut.

Thus the inequality follows.

Lemma 10.5.5
Every edge in E(T ) has a representative at all times.

Proof
We argue by induction that each edge has a representative.

This is clearly true when initially there are no edges in the tree. It is also true when we
build the initial edge.

Now let x, y ∈ R be a node which represented more than one vertex and X,Y define a
cut in GR with

Y := V (GR) \X, x ∈ X, y ∈ Y, µ(δGR
(X)) = λ(GR, x, y).

This is the result of our computation for the next step.

It suffices to show that
λ(GR, x, y) = λ(G, x, y).

Indeed, this immediately shows the first part of the definition of being represented. More-
over, the definition of how the algorithm re-distributes edges in δT (R) yields the second
part of the definition.

Consider some other component B of T − R. Since the unique edge in δT (B) had a
representative b1, b2, its label was

λ(G, b1, b2) = µ(δG(B)).

Apply our first lemma with S = B̄ to see that there is a minimum xy-cut δG(U) with
U ⊆ B̄. In other words, there is a minimum xy-cut U in G with U ∩B = ∅.

The second lemma yields that

λ(G, x, y) = λ(G/B, x, y).

We can repeat this argument for each component and realize that

λ(G, x, y) = λ(GR, x, y).

So the new edge XY has a representative.
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Now, any edge not in δT (R) still has a representative as their endpoints have not changed.
It remains to consider some redistributed edge in δT (R) with label

λ(G, b, g)

such that b /∈ R, g ∈ R. Without loss of generality, suppose the edge was distributed with
new endpoint X. If g ∈ X, then the edge still has a representative. Let us consider the
case when g ∈ Y .

We claim in this other case that

λ(G, b, g) = λ(G, b, x).

Hence the redistributed edge still has a representative. We have proven that λ(G, x, y) =
µ(δG(S)) where S is the component of T −XY containing x.

By the first lemma, there is a minimum bx-cut δG(W ) satisfying W ⊆ S. Specifically,
S ∩ Y = ∅. Apply the second lemma and let G′ := G/Y . We have

λ(G, b, x) = λ(G′, b, x).

Now, g ∈ Y implies that any vY b-cut in G′ is a bg-cut in G. Hence

λ(G′, vY , b) ≥ λ(G, b, g).

Moreover, any xvY -cut in G′ is a xy-cut in G. Thus

λ(G′, vY , x) ≥ λ(G, x, y).

Finally, the minimum xy-cut in G is also a bg-cut in G. So

λ(G, x, y) ≥ λ(G, b, g).

Putting everything together,

λ(G, b, x) = λ(G′, b, x)

≥ min{λ(G′, vY , b), λ(G
′, vY , x)}

≥ min{λ(G, b, g), λ(G, x, y)}
= λ(G, b, g).

Note that since b ∈ B, x /∈ B,

µ(δG(B)) = λ(G, b, g) ≥ λ(G, b, x).

Thus we have equality.
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Theorem 10.5.6
Let T be the final Gomory-Hu tree. Then for all r, s ∈ V , λ(G, r, s) is equal to the
smallest label of an edge in Tr,s.
Also, if e∗ is such an edge, then

λ(G, r, s) = µ(δ(H)),

where H is one of the two components of T − e∗.

Proof
Let

Tr,s = v0, e1, v1, e2, . . . , ek, vk.

and write fe to be the labels of edges in T .

By the previous lemma,
λ(G, vi−1, vi) = fei

for all i ∈ [k].

We claim that
λ(G, r, s) ≥ min

i∈[k]
λ(G, vi−1, vi).

This shows both the first statement because the minimum vi−1vi-cut induced by compo-
nents of T − ei are also rs-cuts. as well as the second statement since each edge ei has a
representative in {vi−1}, {vi}.

We by induction on k. If k = 1, the result is trivial. Fix k ≥ 2. By induction,

λ(G, r, vk−1) ≥ min
i∈[k−1]

λ(G, vi−1, vi).

Furthermore, by the third lemma,

λ(G, r, s) ≥ min{λ(G, r, vk−1), λ(G, vk−1, s)} ≥ min
i∈[k]

λ(G, vi−1, vi)

as required.

By induction, we conclude the proof.
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Part VI

Other Topics
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Randomized Algorithms

The idea is to use randomization in a clever way to achieve better or more practical perfor-
mance, as well as simpler algorithms.

11.1 Global Minimum Cut

Karger’s algorithms solves this problem.

1) While G has more than 2 vertices:

(a) Choose e with probability µe

µ(E)

(b) G := G/e

2) Return cut separating 2 vertices

We remark here that µ(E) changes as the number of edges within G decreases.

It is clear this algorithm terminates in polynomial time.

Theorem 11.1.1
Karger’s algorithm returns a minimum cut with probability at least

2

n(n− 1)
.
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Proof
Let A ⊆ E be a minimum cut. The algorithm returns A if none of its edges are contracted.

Suppose i edges have been contracted so far. Let Gi be the graph with n− i vertices left.
Since A is a minimum cut,

µ(A) ≤ µ(δGi(v))

for all v ∈ V (Gi).

It follows that
µ(A) ≤

∑
v∈V (Gi)

µ(δGi(v))

n− i
=

2µ(E(Gi))

n− i
.

The probability of NOT picking an edge in A is

1− µ(A)

µ(E(Gi))
≥ 1− 2

n− i
=

n− i− 2

n− i
.

By a telescoping sum, the probability of success is at least

n−3∏
i=0

n− i− 2

n− i
=

n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · · · 1

3

=
2

n(n− 1)

as required.

11.1.1 Boosting

Although a single run of Karger’s algorithm has a high change of failure. Running the
algorithm q independent times yields a failure rate of at most(

1− 2

n(n− 1)

)q

≤
(
1− 2

n2

)q

≤ e−
2q

n2 1 + x ≤ ex

≤ e−k q ∈ Θ(kn2)
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Approximation Algorithms

There are many NP-hard problems. We want to find a “pretty” good solution in polynomial
time.

12.1 K-cuts

Problem 11 (K-cuts)
Given G = (V,E) and µ ∈ RE

+, k ∈ Z+, find A ⊆ E minimizing µ(A) such that
(V,E \ A) has at least k components.

Consider the following approximation algorithm leveraging Gomory-Hu trees.

1) Compute a Gomory-Hu tree T with edge labels fe

2) Order edges of T such that fe1 ≤ fe2 ≤ · · · ≤ fen−1

3) Remove e1, . . . , ek−1, giving k connected components of T : V1, . . . , Vk

Let A∗ ⊆ E be an optimal solution with connected components

V ∗
1 , . . . V

∗
k .

We may assume without loss of generality that there are precisely k components.

Theorem 12.1.1
The proposed algorithm yields a 2− 2

k
-approximation.
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Proof
Contract V ∗

i into v∗i in T . Now drop edges arbitrarily to get a tree T ′.

Each edge v∗i v
∗
j in T ′ corresponds to an edge ab in T with a ∈ V ∗

i , b ∈ V ∗
j . hence

fv∗i v∗j = fab ≤ µ(δG(V
∗
j )).

Consider T ′ as a tree rooted at some v∗r maximizing µ(δG(V
∗
r )). Apply the inequality

above to the child endpoint of every edge. Every node except the root is counted once.
Hence

∑
e∈E(T ′)

fe ≤
k∑

j=1

µ(δG(V
∗
j ))− µ(δG(V

∗
r ))

≤
k∑

j=1

µ(δG(V
∗
J ))−

k∑
j=1

µ(δG(V
∗
j ))

k

=

(
1− 1

k

)
2µ(A∗).

But we picked the cheapest k− 1 edges in T which is a lower bound for
∑

e∈E(T ′) fe. This
concludes the proof.

12.2 Set Cover

Problem 12 (Set Cover)
Given elements G = {1, . . . ,m} and a collection of subsets {S1, . . . , Sn} of G, each
with a cost cj ≥ 0. find ∆ ⊆ {1, . . . , n} minimizing c(∆) such that⋃

j∈∆

Sj = G.
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Consider the LP formulation

min
n∑

j=1

cjxj (P )∑
j:e∈Sj

xj ≥ 1 ∀i ∈ [m]

x ≥ 0

and notice that any optimal solution satisfies x∗ ∈ [0, 1]n.

12.2.1 Randomized Rounding

Define the following algorithm:

1) For each j ∈ [n], select Sj with probability x∗
j independently.

2) Return ∆ as the selected Sj’s

Lemma 12.2.1
The probability i is covered by ∆ is at least

1− 1

e
.

Proof
By independence, this probability that i is uncovered is at most∏

j:i∈Sj

(1− x∗
j) ≤

∏
j:i∈Sj

e−x∗
j

= e
−

∑
j:i∈Sj

x∗
j

≤ e−1

Let us run the algorithm 2 lnn times and output the UNION of all sets that were picked at
any given iteration. The probability that any i is not covered is at most

e−2 lnn =
1

n2
.

Thus by a union bound, the probability that there is an uncovered i is at most 1
n
.
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The expected cost of a single run of the algorithm is

E[c(∆)] =
n∑

j=1

cjP (Sj ∈ ∆)

=
n∑

j=1

cjx
∗
j

= OPT(P )

≤ OPT(Set Cover).

Hence the final solution has expected cost at most 2 lnn ·OPT!

12.2.2 Primal-Dual Approach

Consider the dual of (P)

max
m∑
i=1

yi (D)∑
i∈Sj

yi ≤ cj ∀j ∈ [n]

y ≥ 0

The idea is to find integral x∗ and any y∗ feasible to (P), (D) satisfying the relaxed CS
conditions

(i) ∀j, x∗
j > 0 =⇒

∑
i∈Sj

y∗i ≥ cj

(ii) ∀i, y∗i > 0 =⇒
∑

j:i∈Sj
x∗
j ≤ f

Here 1 < f .
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Then

n∑
j=1

cjx
∗
j =

n∑
j=1

x∗
j

∑
i∈Sj

y∗i


=

m∑
i=1

y∗i

 ∑
j:i∈Sj

x∗
j


≤ f

m∑
i=1

y∗i · 1

= f ·OPT

Consider the following algorithm:

1) Initialize x∗ := 0, y∗ = 0

2) While there is some i such that
∑

j:i∈Sj
x∗
j < 1

a) Pick an i and raise y∗i until
∑

i∈Sj
y∗i = cj for some j

b) Let x∗
j = 1 for all j where

∑
i∈Sj

y∗i = cj

3) Output x∗

The algorithm always progresses in each iteration since the only way an item is not covered
is if no previously chosen set covers it. Hence there is some unchosen set which covers it and
the corresponding set variable can be raised.

Theorem 12.2.2
The proposed algorithm is an f -approximation algorithm where f is the maximum
number of sets in which an element appears.
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Integer Programming

13.1 Minimum Bounded Degree Spanning Tree

Problem 13 (Minimum Bounded Degree Spanning Tree)
Given G = (V,E), costs c ∈ RE, and k ∈ Z+ for k ≥ 2, find a spanning tree T of
minimum cost where

δT (v) ≤ k

for all v ∈ V .

This problem is NP-hard as it is equivalent to the Hamiltonian Path problem for k = 2.

Fix k ≥ 2 and let OPT(k) be the value of a k-spanning tree. We wish to produce a spanning
tree T with

δT (v) ≤ kv + 2

for all v ∈ V and
c(T ) ≤ OPT(k).

Consider the bounded degree spanning tree polytope

min
∑
e∈E

cexe (LP )

x(E) = n− 1

x(E(S)) ≤ |S| − 1 ∀S ( V

x(δ(v)) ≤ k ∀v ∈ V

x ≥ 0
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Although this LP is exponential in size, we can actually an optimal solution x∗ in polynomial
time through integer programming techniques.

Let E∗ := {e ∈ E : x∗
e > 0} be the support of an optimal solution x∗. We may assume that

x∗ is an extreme point which yields the result that

|E∗(U)| ≤ 2|U | − 1

for all U ⊆ V .

By the homework, there is an orientation of the edges E∗ such that the indegree of every
vertex is at most 2.

With matroid intersection, we can find the desired T . Put A∗ as an orientation of E∗ such
that D∗ = (V,A∗) satisfies

|δ−D∗(v)| ≤ 2

for all v ∈ V .

For any B ⊆ A∗, let E(B) be the corresponding set of edges in E∗. Define M1 := (E∗, I∗)
where

I∗ := {F ⊆ E∗ : |F ∩ E(δ+D∗(v))| ≤ k, ∀v ∈ V }.

Lemma 13.1.1
If F ⊆ I∗, then

|F ∩ δG(v)| ≤ k + 2.

Proof
The degree of each vertex is the sum of out and in degrees, which is at most k + 2.

Let M2 be the graphic matroid of G∗. Let c̄ := −c+M > 0 and remark that T is a minimum
cost spanning tree for c if and only if T is a maximum cost spanning tree for c̄.

Thus compute the maximum weight independent set T in I1 ∩ I2 and return T .

Lemma 13.1.2
T is a spanning tree.

Proof
The weights are strictly positive.
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It only remains to argue that
c(T ) ≤ OPT(k).

By results in matroid intersection and polyhedral theory, xT is an optimal solution to

min cTx (LP ′)

x(E(S)) ≤ |S| − 1 ∀S ⊆ V

x(E) = n− 1

x(E(δ+D∗(v))) ≤ k ∀v ∈ V

x ≥ 0

But the optimal x∗ we found before is feasible for (LP ′) and hence

c(T ) ≤ cTx∗ ≤ OPT(k)

as desired.
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