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Introduction

1.1 Graphs

Recall that a (simple) graph is a pair X = (V,E) consisting of a vertex set and an edge set.

Definition 1.1.1 (Isomorphism)
An isomorphism between graphs X,Y is a function f : V (X) → V (Y ) such that
uv ∈ E(X) ⇐⇒ f(u)f(v) ∈ E(Y ).

If an isomorphism exists between X and Y , we say X and Y are isomorphic and write

X ∼= Y.

Some important classes of graphs are complete graphs, bipartite graphs, empty graphs (E =
∅), the null graph (V = ∅), multigraphs, simple graphs, directed graphs, finite graphs, and
infinite graphs.

We will focus mainly on finite simple graphs, with some exploration of finite multigraphs.

1.2 Subgraphs

Recall that a subgraph Y of the graph X is a graph such that V (Y ) ⊆ V (X), E(Y ) ⊆ E(X).
Some important classes of subgraphs are spannning subgraphs and induced subgraphs. Some
other examples of graphs are cliques, independent sets, paths, cycles, and spanning trees.
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1.3 Automorphisms

Definition 1.3.1 (Automorphism)
An automorphism of the graph X is an isomorphism f : X → X.

We write Aut(X) to denote the set of all automorphisms of X.

If Sym(V (X)) is the permutation group of the vertices of X, then it is clear that Aut(X) ⊆
Sym(V (X)). We will sometimes write Sym(n) to denote Sym(V (X)) as we can label the
vertices using [n].

Proposition 1.3.1
Aut(X) is a subgroup of Sym(V (X)).

Proof
It is a group and a subset.

For h ∈ Sym(V (X)) and v ∈ V (X), we let vg := g(v) denote the image of v under g.
Similarly, for S ⊆ V (X), we let Sg := {vg : v ∈ S}.

Suppose Y is a subgraph of X. We let Y g be the graph where

V (Y g) := V (Y )g

E(Y g) := {ugvg : uv ∈ E(Y )}

It is not hard to see that Y g is another subgraph of X that is in fact isomorphic to Y .

Lemma 1.3.2
For g ∈ Aut(X) and v ∈ V (X),

degX(v) = degXg(vg).

Hence automorphisms permute the vertices of equivalent degrees.

Proof
Let Y be the subgraph induced by N(v) + v. The result follows as Y g ∼= Y .

Let d(u, v) denote the length of the shortest path between u, v.

8
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Lemma 1.3.3
For g ∈ Aut(X) and u, v ∈ V (X),

dX(u, v) = dXg(ug, vg).

Hence automorphisms preserve distances.

Proof
Using g, g−1, it is not hard to see that there is a uv-path of length ` in X if and only if
there is a ugvg-path of length ` in Xg.

1.4 Homomorphisms

Definition 1.4.1 (Homomorphism)
A homomorphism between graphs X,Y is a function f : V (X) → V (Y ) such that

xy ∈ E(X) =⇒ f(x)f(y) ∈ E(Y ).

If such a homomorphism exists, we say X is homomorphic to Y .

This is a much more relaxed condition than an isomorphism.

Example 1.4.1
Given any bipartite graph X with bipartition A ∪ B, X is homomorphic to the graph
consisting of a single edge. Indeed, simply map A to one endpoint and B to another.

Example 1.4.2
Any subgraph is homomorphic to its supergraph through the identity map.

Recall the definition of a valid graph colouring. Let χ(X) denote the chromatic number of
X.

Lemma 1.4.3
χ(X) is equal to the minimum integer r such that there exists a homomorphism from
X to Kr.

9
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Proof
First we claim that χ(X) ≥ r. Indeed, let c : V (X) → [χ(X)] be a χ(X)-colouring of X.
If we take [χ(X)] to be the vertices of Kχ(X), then c is a homomorphism from X → Kχ(X)!
Hence χ(X) ≥ r.

Conversely, suppose f : X → Kr is a homomorphism. Then f−1({i}) induces an in-
dependent set for all i ∈ [r]. Thus X necessarily has an r-colouring. It follows that
χ(X) ≤ r.

Remark that we have in fact proven that the set of homomorphisms X → Kr is in fact the
set of r-colorings of X with colours [r]!

Definition 1.4.2 (Retraction)
A retraction is a homomorphism from X to a subgraph Y of X such that the restriction
f
∣∣
Y

is the identity map.

If such a retraction exists, we say that Y is a retract of X.

Example 1.4.4
Any clique Y of X that is the size of χ(X) is a retract of X.

1.5 Examples of Graphs

1.5.1 Circulant Graphs

Consider the cycle Cn. Its automorphism group is exactly the dihedral group on n elements.

We can view circulant graphs as a generalization of cycles.

Definition 1.5.1 (Circulant Graph)
Let the vertex set be Zn. Choose a subset C ⊆ Zn − 0 that is closed under inverses.
Define

E(X) := {ij : i− j ∈ C}.

We write X = X(Zn, C) to denote the circulant graph parametrized by Zn, C.

Let g ∈ Aut(X) be the cyclic shift and h ∈ Aut(X) be the map sending i 7→ −i. Furthermore,
put R as the cyclic subgraph generated by g. It follows that R, hR are different cosets of

10
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Aut(X) and

|Aut(X)| ≥ 2n.

1.5.2 Johnson Graphs

Definition 1.5.2 (Johnson Graph)
Let v ≥ k ≥ i be integers. The Johnson graph J = J(n, k, i) is the graph with vertex
set

V (J) := {S ⊆ [v] : |S| = k}

and edge set
E(J) := {ST : |S ∩ T | = i}.

Proposition 1.5.1
J(v, k, i) is d-regular for

d =

(
k

i

)(
v − k

k − i

)
.

Proof
regularity is clear. It remains only to compute the common degree of all vertices.

Fix a vertex S. Fix a subset of S ′ ⊆ S with size k. There are
(
v−k
k−i

)
vertices T such that

S ∩ T = S ′.

The result follows by letting S ′ range over all S-subsets of size k.

Lemma 1.5.2
J(v, k, i) ∼= J(v, v − k, v − 2k + i).

Proof
The map f(S) := S̄ yields an isomorphism.

The special case of J(v, k, 0) are the Kneser Graphs and J(5, 2, 0) is the Peterson Graph.

11
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Lemma 1.5.3
Aut(J(v, k, i)) contains a subgroup isomorphic to Sym(v).

Proof
Let g ∈ Sym(v). Define the map σg : V (J(v, k, i)) → V (J(v, k, i)) by

S 7→ Sg.

It is easy to see that |S ∩ T | = |Sg ∩ T g|, so σg ∈ Aut(J(v, k, i)). But then

{σg : g ∈ Sym(v)} ⊆ Aut(J(v, k, i))

and {σg : g ∈ Sym(v)} ∼= Sym(v) as required.

Remark that we typically have Aut(J(v, k, i)) ∼= Sym(v) but it is NOT always true.

1.5.3 Line Graphs

Definition 1.5.3 (Line Graph)
The line graph of X is the graph L(X) with vertex set

V (L(X)) := E(X)

and edge set
E(L(X)) := {ef : e, f share an endpoint}.

In general, if X ∼= Y , then L(X) ∼= L(Y ). But the converse need not hold! Indeed,
L(C3) = L(K1,3) but C3 6= K1,3.

The converse is true however, if the minimum degrees of X,Y are at least 4.

It is also interesting to observe that not all graphs are line graphs. For example, K1,3 is not a
line graph since no matter how we distribute the outside vertices according to the endpoints
of the central vertex, there are not enough edges for K1,3 to be a line graph.

12
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Group Actions

2.1 Group Actions on Graphs

Recall the definition of a group.

Definition 2.1.1 (Homomorphism)
Let G,H be groups. A map f : G → H is a homomorphism if

f(xy) = f(x)f(y)

for all x, y ∈ G.

The kernel of a homomorphism is

ker f := f−1(1).

Definition 2.1.2 (Group Action)
Let G be a group and V a set. A homomorphism f : G → Sym(V ) is an action of G
on V .

We say G acts on V .

If in addition, f−1(1) = 1, then we say f is faithful.

Suppose G acts on V . Let g ∈ G. We write xg to denote the image of x under f(g). Similarly,
for S ⊆ V , we write

Sg := {xg : x ∈ S}.

13
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Definition 2.1.3 (Invariant)
Let G act on V . S ⊆ V is G-invariant if

Sg = S

for all g ∈ G.

Definition 2.1.4 (Orbit)
Let G act on V . The orbit of x ∈ V is

xG := {xg : g ∈ G}.

It is well-known that B is partitioned into disjoint orbits and each such orbit is G-invariant.

2.1.1 Orbits & Stabilizers

Definition 2.1.5
Let G be a permutation group acting on V . Fix x ∈ V .
The stabilizer of x is

Gx := {g ∈ G : xg = x}.

It is not hard to see that Gx is a subgroup of G.

Lemma 2.1.1
Let G be a permutation group acting on V and S an orbit of G.
Suppose x, y ∈ S. Then H := {h ∈ G : xh = y} is a left coset of Gx.
Conversely, if H is a left coset of Gx, then xh = xh′ for all h, h′ ∈ H.

Proof
Since G is transitive on S, there is some g ∈ G such that

xg = y.

14
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But then for any h ∈ H such that xh = y = xg,

xh = xg

xg−1h = x

g−1h ∈ Gx

h ∈ gGx.

Hence H is indeed a left coset of Gx.

Now, consider the left coset gGx for some g ∈ G. Pick gσ, gσ′ ∈ gGx for some σ, σ′ ∈ Gx.
We have

xh = xgσ

= xg

= xgσ′

= xh′

as desired.

Lemma 2.1.2 (Orbit-Stabilizer)
Let G be a permutation group acting on V and x ∈ V . Then

|Gx| · |xG| = |G|.

Proof
Let H be the collection of left cosets of Gx and f : xG → H be the map

f(y) := {g ∈ G : xg = y}

for all y ∈ xG. By the previous lemma, f is bijective.

It follows that |xG| = |H|. Since the left cosets of Gx partition G, we must have

|G| = |Gx| · |H| = |Gx| · |xG|.

2.2 Burnside’s Lemma

What is the relationship between Gx, Gy for y ∈ xG?

15
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Definition 2.2.1 (Conjugate)
Let g, h ∈ G. g is conjugate to h if there is some σ ∈ G where

g = σ−1hσ.

Conjugacy is an equivalence relation so G is partitioned into conjugacy classes.

For g ∈ G, let τg : G → G be the map sending

h 7→ ghg−1

for all permutations h ∈ G. The conjugacy classes of G are the orbits of G under {τg : g ∈ G}.

Let H be a subgroup of G. Then gHg−1 is a subgroup of G. Moreover, it is possible to show
that gHg−1 ∼= H and we say gHg−1 is conjugate to H.

Lemma 2.2.1
Let G be a permutation group acting on V and x ∈ V . Then for all g ∈ G,

gGxg
−1 = Gxg .

Thus if y ∈ xG, then Gx, Gy are conjugate.

Proof
gGxg

−1 ⊆ Gxg Let y = xg so that yg
−1

= x. For any ghg−1 ∈ gGxg
−1, we have

yghg
−1

= xgh

= xg

= y.

Hence gGxg
−1 ⊆ Gxg .

Gxg ⊆ gGxg
−1 For any h ∈ Gy, we have

xg−1hg = yg
−1h

= yg
−1

= x.

It follows that g−1hg ∈ Gx and h ∈ gGxg
−1.

16
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Let G be a permutation group acting on V and g ∈ G. We write
fix(g) := {v ∈ V : vg = v}.

Lemma 2.2.2 (“Burnside”)
Let G be a permutation group acting on V , then the number of orbits of G is given
by

1

|G|
∑
g∈G

|fix(g)|.

Proof
Let Λ := {(g, x) : g ∈ G, x ∈ fix(g)}. We will apply a double counting argument.

∑
g∈G

|fix(g)| = |Λ|

=
∑
x∈V

|Gx|

=
∑
x∈V

|G|
|xG|

Orbit-Stabilizer Lemma

= |G| · (number of orbits).

2.3 Asymmetric Graphs

Definition 2.3.1 (Asymmetric)
A graph X is asymmetric if its automorphism group Aut(X) = {1} is trivial.

Let Gn denote the set of graphs with vertex set [n]. Then we write
Iso(X) := {Y ∈ Gn : Y ∼= X}

to denote the isomorphism class of X.

Lemma 2.3.1
For all X ∈ Gn,

|Iso(X)| = n!

Aut(X)
.

17
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Proof
Let G = Sym(n). For g ∈ G, let τg : Gn → Gn be the map sending

X 7→ Xg.

The group H := {τg : g ∈ G} acts on Gn and is isomorphic to G. By the Orbit-Stabilizer
Lemma

n! = |G|
= |H|
= |XH | · |HX |
= |Iso(X)| · |Aut(X)|.

Lemma 2.3.2
The set H of all isomorphism classes of Gn satisfies

|H| = (1 + o(1))
2(

n
2
)

n!
.

Proof
Consider the group

P := {τg : g ∈ Sym(n)}

acting on Gn where τg(X) = Xg. The set of orbits is precisely H. By Burnside’s lemma,

|H| = 1

n!

∑
τg∈P

|fix(τg)|.

Consider some g ∈ Sym(n). fix(τg) is the set of graphs in Gn fixed by τg. Note that g
induces a permutation σg on E(Kn). Let C be an orbit of the permutation σg and suppose
X is fixed by τg. Either X contains all edges in C or has none of the edges in C, otherwise,
some edge will be mapped to a none-edge. Hence |fix(τg)| = 2orb2(g) where orb2(g) is the
number of orbits in σg.

Among all permutations g ∈ Sym(n) whose support is size 2r, the maximum value of
orb2(g) is realized by some permutation with r cycles of length 2. Suppose g is such a
maximizer. Since g2 = id, its action on E(Kv) has orbits of size at most 2. There are two
ways in which an edge xy ∈ E(Kv) is NOT fixed by g. Either x, y are in the support of
g, but in different orbits, or x is in the support of g and y is not. Hence the number of

18
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orbits of length 2 in its action on E(Kv) is

r(r − 1)− r(n− 2r) = r(n− r − 1)

and
orb2(g) =

(
n

2

)
− r(n− r − 1).

We now argue that the main contribution of Burnside’s average comes from the identity
permutation. Indeed, orb2(id) =

(
n
2

)
, thus

∑
τg∈P |fix(τg)| ≥ 2(

n
2
).

Fix an even integer m ≤ n − 2. Consider the nonidentity permutations with support of
size at most m. There are at most

(
n
m

)
m! < nm permutations of this form. Let g be such

an element. Then orb2(g) is maximized if it has a single 2-cycle. If follows that

orb2(g) ≤
(
n

2

)
− (n− 2).

Of the rest of the permutations, there are at most n! < nn of them. Let g be such a
permutation. orb2(g) is maximized at some permutation with m

2
2-cycles, so

orb2(g) ≤
(
n

2

)
− m

2

(
n− m

2
− 1
)
≤
(
n

2

)
− nm

4

by our work above.

Therefore, ∑
τg∈P

|fix(τg)| ≤ 2(
n
2
) + nm2(

n
2
)−(n−2) + nn2(

n
2
)−nm

4

= 2(
n
2
) (1 + nm2−(n−2) + nn2−

nm
4

)
.

By taking m = bc log nc for c > 4, we have

nm2−(n−2) + nn2−
nm
4 = 2m logn−n+2 + 2n logn−nm

4

= 2c log
2 n−n+2 + 2n logn− cn logn

4

= o(1).

19



©Fel
ix

Zh
ou

Theorem 2.3.3
Asymptotically, almost all graphs are asymmetric.
That is, if we uniformly pick a graph in Gn at random, the probability that the chosen
graph is asymmetric tends to 1 as n → ∞.

Proof
Let H be the set of isomorphism classes of graphs on [n]. Pick C ∈ H. If graphs in C are
asymmetric, then |C| = n! Otherwise, |C| ≤ n!

2
.

Let ρ be the proportion of all classes in H such that |C| = n! Now,

2(
n
2
) = |Gn|

=
∑
C∈H

|C|

≤ ρ|H| · n! + (1− ρ)|H| · n!
2

By the previous lemma,

2(
n
2
) ≤ (1 + o(1))

2(
n
2
)

n!
· n!
(
ρ+

1− ρ

2

)
= (1 + o(1))2(

n
2
) · 1 + ρ

2
.

It follows that ρ → 1 as n → ∞ and the proportion of asymmetric graphs in Gn is

size of isomorphism class · number of asymmetric isomorphism classes
|Gn|

=
n! · ρ|H|
2(

n
2
)

= (1 + o(1))ρ previous lemma
→ 1.

20



©Fel
ix

Zh
ou

2.4 Primitivity

Definition 2.4.1 (Block of Imprimitivity)
Let G be a group acting transitively on V and S ⊆ V . S is called a block of imprim-
itivity for G if ∀g ∈ G, either Sg = S or Sg ∩ S = ∅.

Example 2.4.1 (Trivial Blocks of Imprimitivity)
S = {u} for some u ∈ V and S = V are trivial blocks of imprimitivity.

Definition 2.4.2 (Primitive)
G is primitive if there is no non-trivial blocks of imprimitivity.

If G is not primitive, we say it is imprimitive.

Example 2.4.2
Aut(Kn) has no non-trivial blocks of imprimitivity.

Example 2.4.3
Consider Q3, the 3-cube. Take any pair of vertices on S = {a, b} on oppositive corners of
a diagonal. Since automorphisms preserve distances, S is a block of imprimitivity.

Consider Aut(Cn) for composite n. Suppose n = xy for 2 ≤ x ≤ y ∈ Z+. Consider S =
{0, x, 2x, . . . , (y−1)x} ⊆ V . Since Aut(Cn) is precisely the dihedral group, any g ∈ Aut(Cn)
is uniquely determined by its action on 0, x. Thus S is a block of imprimitivity.

For n prime, we claim Cn is primitive. Let S ( V, |S| ≥ 2 and fix v 6= w ∈ S minimizing
dG(v, w) for all distinct pairs in S. Let r ∈ Aut(Cn) be the rotation mapping v 7→ w (along
the shortest vw path in G). Clearly vr = w. We claim that Sg 6= S. Otherwise, walking
from w in the opposite direction to of v, the first vertex of S we see is of distance dC(v, w).
Following this argument, we see that S consists of consecutively equidistance vertices. But
then n could not have been prime.

For groups H,K, we write H ≤ k if H is a subgroup of K and H < K if H is a proper
subgroup of K.

Definition 2.4.3 (Maximal Subgroup)
H < G is a maximal subgroup if there is no subgroup K such that H < K.

21
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Lemma 2.4.4
Let G be a transitive permutation group on V and x ∈ V . G is primitive if and only
if Gx is a maximal subgroup of G.

Proof
We prove the contrapositives.

(¬ =⇒ ¬) Let B be a block of imprimitivity where 2 ≤ |B| < |V |. By transitivity, there
is some g ∈ G such that x ∈ Bg. Thus by taking Bg if necessary, we may assume without
loss of generality that x ∈ B.

We wish to show that there is a subgroup H where Gx < H < G. Suppose GB is the
subgroup of all g ∈ G such that Bg = B. We argue that Gx < GB < G.

Let g ∈ Gx. Then x ∈ B ∩ Bg, hence B = Bg and Gx ≤ GB. But the fact that |B| ≥ 2
implies there is some y 6= x such that y ∈ B.

Let h ∈ G be such that xh = g. This shows that h /∈ Gx. Then y ∈ B ∩Bh and B = Bh.
Thus h ∈ GB. This shows that Gx < GB.

The fact that GB < G is obvious since B ( V and G is transitive.

(¬ ⇐= ¬) Suppose H is a subgroup of G such that Gx < H < G. Let B be the orbit of
H containing x. We argue that B is a block of imprimitivity.

Now, Gx < H so there is some g ∈ H such that xg 6= x. But xg ∈ Bg then implies |B| ≥ 2.
On the other hand, the orbit-stabilizer formula states that

|B| = |H|
|Hx|

<
|G|
|Hx|

· |Hx|
|Gx|

H < G,Hx ⊆ Gx

=
|G|
|Gx|

= |xG|
= |V |. transitivity

Fix g ∈ G. We claim that B ∩ Bg 6= ∅ implies g ∈ H. Observe that B is H-invariant by
the definition of an orbit. Thus the claim would show that B ∩ Bg 6= ∅ =⇒ B = Bg,
concluding the proof.

Suppose y ∈ B ∩ Bg. There is some h ∈ H such that xh = y. Moreover, there is some
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h′ ∈ H such that y = xgh′ . It follows that x = xh−1gh′ . But then h−1gh′ ∈ Gx < H and
g ∈ H as required.
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Transitive Graphs

3.1 Vertex-Transitive Graphs

Definition 3.1.1 (Vertex Transitive)
A graph X is vertex transitive if Aut(X) acts transitively on V (X).

Let H(·, ·) denote the Hamming distance between two strings in Zk
2.

Definition 3.1.2 (k-Cube)
The k-cube is the graph with vertex set

V (Qk) := Zk
2

and edge set
E(Qk) := {αβ : H(α, β) = 1}.

We write Qk to denote the k-cube.

Lemma 3.1.1
Qk is vertex transitive for all k ≥ 1.

Proof
Fix v ∈ Qk. For each x ∈ V (Qk), let Pv : V (Qk) → V (Qk) be given by

x 7→ x+ v.
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Observe that H(x, y) = 1 ⇐⇒ H(x+ v, y + v) = 1. Write P to denote the subgroup of
automorphisms of the form Pv.

It follows that Aut(X) ≥ P acts transitively on V (Qk) by definition since the map Pw−v

maps v 7→ w for any v, w ∈ V (Qk).

As a corollary to this lemma, the |Aut(Qk)| ≥ 2k. We improve upon this lowerbound.

Proposition 3.1.2
|Aut(Qk)| ≥ 2kk!.

Proof
Pick g ∈ Sym(k) and consider τg : V (Qk) → V (Qk) which permutes the entries of
x ∈ V (Qk) according to g.

We claim that
P ′ := {τg : g ∈ Sym(k)} ≤ Aut(Qk).

To see this, observe that H(x, y) = 1 ⇐⇒ H(τg(x), τg(y)) = 1 for all x, y ∈ Zk
2.

Moreover, we claim that P ′∩P = {id}. This is because the ratio of 0-1 entries of a binary
string x always remains the same under P ′, but for all Pv ∈ P , we can find some string x
for which the 0-1 ratio of xPv differs from x.

It follows by elementary group theory that

|PP ′| = |P | · |P ′|
|P ∩ P ′|

= 2kk!

as desired.

Applying a similar proof, we can show that circulant graphs are also vertex transitive by the
rotation subgroup to its automorphism group.

Definition 3.1.3 (Cayley Graphs)
Let G be a group and C ⊆ G which is closed under inverses and does NOT contain
id.
The Cayley graph X = X(G,C) is defined by

V (X) := G

E(X) := {gh : g−1h ∈ C}.

Since id /∈ C, Cayley graphs are loopless. If g−1h ∈ C, then h−1g = (g−1h)−1 ∈ C as well.
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Thus Cayley graphs are undirected.

Theorem 3.1.3
X = X(G,C) is vertex transitive.

Proof
For each g ∈ G, let τg : V (X) → V (X) be given by

x 7→ gx.

Observe that τg ∈ Aut(X) as

xy ∈ E(X) ⇐⇒ y−1x ∈ C

⇐⇒ (y−1g−1)gx ∈ C

⇐⇒ τg(y)
−1τg(x) ∈ C

⇐⇒ τg(x)τg(y) ∈ E(X).

It follows that the set {τg : g ∈ G} acts transitively on V (X).

A special case of this is the k-cube where Qk = X(Zk
2, {ei : i ∈ [k]}).

A circulant graph X(Zn, C) is a Cayley graph under the same parameters.

Proposition 3.1.4
For v ≥ k ≥ i, the Johnson graph J(v, k, i) is vertex transitive.

Proof
For each g ∈ Sym(v), let σg : V (J(v, k, i)) → V (J(v, k, i)) be given by

S 7→ Sg.

Consider the subgroup

{σg : g ∈ Sym(v)} ≤ Aut(J(v, k, i)).

By observation, the subgroup acts transitively on V (J(v, k, i)).

In general, J(v, k, i) are NOT Cayley graphs.
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Lemma 3.1.5
The Peterson graph J(5, 2, 0) is NOT a Cayley graph.

Proof
There are only two groups of order 10, the cyclic group Z10 and the dihedral group D10.

Neither of the cubic Cayley graphs on these groups are isomorphic to J(5, 2, 0).

Hence Cayley graphs are a strict subset of vertex transitive graphs.

3.2 Edge-Transitive Graphs

Recall that if G acts on V (X), this induces an action on E(X).

Definition 3.2.1 (Edge Transitive)
A graph X is edge transitive if Aut(X) acts transitively on E(X).

If G acts on V (X), this also induces an action on V (X)2!

Definition 3.2.2 (Arc Transitive)
A graph X is arc transitive if Aut(X) acts transitively on {(x, y) : xy ∈ E(X)}.

Note that arc transitivity implies both vertex and edge transitivity.

In general, there is no relationship between vertex and edge transitive graphs.

Example 3.2.1
The triangular prism is vertex transitive but not edge transitive.

Example 3.2.2
For n 6= m, Kn,m is edge transitive but not vertex transitive.

There are also examples of regular edge transitive graphs that are not vertex transitive.
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Lemma 3.2.3
Suppose X is edge transitive and has no isolated vertices. If X is NOT vertex tran-
sitive, Aut(X) has exactly 2 orbits and they form a bipartition of X.

Proof
Aut(X) has exactly 2 orbits: First observe that Aut(X) has at least 2 orbits since it is
not vertex transitive.

Fix xy ∈ E(X). For any w ∈ V (X), there is some wz ∈ E(X) since w is not isolated.
Hence there is some σ ∈ Aut(X) such that

{σ(x), σ(y)} = {w, z}.

It follows that X ⊆ xG ∪ yG by the choice of w and so X has at most 2 orbits.

The orbits yield a bipartition: We argue that there are no edges between vertices of xG

nor yG. Suppose towards a contradiction that there is some wz ∈ E(X) where either
w, z ∈ xG or w, z ∈ yG.

By the definition of orbits, there is no element of Aut(X) which maps wz 7→ xy, as the
latter has elements from both orbits. This is a contradiction since we assumed that X is
edge transitive.

By contradiction, (xG, yG) forms a bipartition of X.

In general, edge transitivity and vertex transitivity does not imply arc transitivity.

Definition 3.2.3 (Oriented Graph)
An oriented graph is a directed graph X where xy ∈ A(X) =⇒ yx /∈ A(X).

The definition of automorphisms of undirected graphs naturally generalises to automor-
phisms of directed and therefore oriented graphs.

Lemma 3.2.4
If X is both vertex and edge transitive but not arc transitive, then the degrees of X
are even.

Proof
For an undirected graph X, let D(X) be the directed graph obtained from X by replacing
each uv ∈ E(X) with the two arcs (u, v), (v, u) ∈ A(D(X)).
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Fix x ∈ V (X) and y ∈ NX(x). Put

Ω1 := (x, y)G,Ω2 := (y, x)G

where G = Aut(X). Since X is edge transitive, then for any uv ∈ E(X), either (u, v) ∈ Ω1

or (v, u) ∈ Ω2. Hence Ω1 ∪ Ω2 = A(D(X)).

But X is not arc transitive, thus Ω1∩Ω2 = ∅. It follows that (y, x) /∈ Ω1. By the arbitrary
choice of xy ∈ E(X),

(x, y) ∈ Ω1 ⇐⇒ (y, x) ∈ Ω2.

Thus Ω1,Ω2 are oriented graphs.

By construction, Aut(X) ≤ Aut(Ω1) since every automorphism of X yields an automor-
phism of Ω1. Moreover, Aut(X) acts transitively on V (Ω1) = V (X) by assumption.

By transitivity, Ω1 is necessarily a regular oriented graph. Thus for a vertex u ∈ V (X).

degX(u) = d+Ω1
(u) + d−Ω1

= 2d+Ω1
(u)

≡ 0 mod 2.

Corollary 3.2.4.1
If X is vertex and edge transitive and the degrees of X are odd, then X is arc transitive.

3.3 Edge & Vertex Connectivity

Definition 3.3.1 (Edge Connectivity)
The edge connectivity of a graph X, denoted κ1(X), is the minimum cardinality of
an edge subset whose deletion increases the number of components in X.

Let A ⊆ V (X). Write
∂A = δ(A)

to be the set of edges leaving A.

Definition 3.3.2 (Edge Atom)
An edge atom of X is a minimum cardinality subset S ⊆ V (X) such that |∂(S)| =
κ1(X).
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Lemma 3.3.1
Let X be connected and vertex transitive. Any two distinct edge atoms are vertex
disjoint.

Proof
Let κ = κ1(X). Suppose A 6= B are edge atoms. By minimality, |A|, |B| ≤ |V (X)|

2
or else

taking Ā or B̄ contradicits minimality.

Case I: A ∪B = V (X) Then |A| = |B| = |V (X)|
2

and we necessarily have A ∩B = ∅.

Case II: A ∪B ( V (X) Since A ( A ∪ B, it must be that |∂(A ∪ B)| ≥ κ. On the other
hand, A ∩B ( A implies |∂(A ∩B)| > κ.

By the submodularity of the |∂(·)| function

2κ < |∂(A ∪B)|+ |∂(A ∩B)| ≤ |∂a|+ |∂B| = 2κ,

which is a contradiction.

Lemma 3.3.2
Let X be connected and vertex transitive. Suppose S is a block of imprimitivity for
Aut(X). Then X[S] is regular.

Proof
Let u 6= v ∈ S and set Y := X[S]. Since X is vertex transitive, we can choose some
g ∈ Aut(X) for which ug = v so that S ∩ Sg = ∅.

By the choice of S, S = Sg. Hence NY (v) = NY (u)
g and degY (u) = degY (v) as required.

Theorem 3.3.3
If X is connected and vertex-transitive, then κ1(X) is equal to the degree of vertices
in X.

Proof
Let k be the degrees of vertices in X. We must have κ1(X) ≤ k. We wish to argue that
κ1(X) ≥ k. Let A be an edge atom. It is sufficient to show that κ1(X) = |∂A| ≥ k.

Let g ∈ Aut(X) and B := Ag. We have shown that either A = B or A ∩ B = ∅ since B
is also an edge atom. It follows that A is a block of imprimitivity.
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But then X[A] is `-regular for some 0 ≤ ` ≤ k − 1. We know that ` < k since X is
connected. Hence |A| ≥ `+ 1 and ` ≤ |A| − 1. Thus

|∂A| = |A|(k − `) ` neighbours within A

≥ |A|(k + 1− |A|)
≥ 1

and k ≥ |A|.

Now then,

|∂A| − k ≥ |A|k + |A| − |A|2 − k

= k(|A| − 1)− |A|(|A| − 1)

= (|A| − 1)(k − |A|)
≥ 0 · 0
= 0.

Notice we have equality if |A| = k or |A| = 1.

We conclude that κ1(X) = k as required.

Theorem 3.3.4
A k-regular vertex-transitive graph has vertex connectivity at least

2

3
(k + 1).

We can find graphs for which this bound is tight.

3.4 Matchings

We say a vertex is critical if it is saturated in every maximum matching.

Lemma 3.4.1
Let z1, z2 ∈ V (X) be vertices such that no maximum matching misses both of them.
Suppose Mz1 ,Mz2 are maximum matchings missing z1, z2 respectively. Then
Mz1∆Mz2 has an even alternating z1z2-path.
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Proof
Let Mz1 ,Mz2 be maximum matchings. Thus z1, z2 are each on SOME even alternating
path in Mz1∆Mz2 .

Let P be the path containing z1. If it does not contain z2, then Mz2∆P is a maximum
matching missing both z1, z2. which is a contradiction.

Lemma 3.4.2
Let u, v ∈ V (X) be vertices in a connected graph X with no critical vertices. Then
X contains a matching missing at most 1 vertex.

Proof
To see this we show that for every u, v ∈ V (X), there is no maximum matching missing
both u, v. Then any matching misses at most 1 vertex.

Let P be a uv-path. We argue by induction on the length |P |. The case where |P | = 1 is
trivial.

Suppose |P | ≥ 2. Let x /∈ {u, v} be a vertex on P . By the induction hypothesis, no
maximum matching misses both u, x nor does a maximum matching miss both v, x.

Since x is not critical, there is a maximum matching Mx missing x. This matching must
then saturate u, v.

Suppose now towards a contradiction that some maximum matching M misses both u, v.
By the previous lemma, Mx∆M has an even alternating path ux-path. Similarly, Mx∆M
has an even alternating xv-path.

By the parity of the paths and the fact that u, v are not M saturated, this can only
happen if u = v, which contradicts our assumptions.

By induction, we conclude the result.

Proposition 3.4.3
Let X be connected and vertex transitive. Then X has a matching missing at most 1
vertex.

Proof
Case I: X has a critical vertex Let u be a critical vertex and any maximum matching M .
Fix any other vertex v. Since X is vertex transitive, there is some g ∈ Aut(X) for which
vg = u.
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M g is a maximum matching and thus saturates u. But then M saturates v.

Thus every vertex is critical and X has a perfect matching.

Case II: X has no critical vertices By our previous lemma, X contains a matching missing
at most 1 vertex.

Lemma 3.4.4
Let X be connected and vertex transitive. Then every edge lies in some maximum
matching.

Proof
We argue by induction on the number of vertices and the number of edges in a connected
vertex-transitive graph. The base case of a single isolated vertex is trivial.

Inductively, suppose that some e ∈ E(X) is not contained in any maximum matching. It
follows that X is cannot be edge transitive. Let Y be the subgraph induced by the orbit
of e under Aut(X). Then Y must be a proper subgraph of X and we claim Y is vertex
as well as edge transitive.

First, Aut(X) ≤ Aut(Y ). Indeed, for all uv ∈ E(Y ) and g ∈ Aut(X),

ugvg ∈ eAut(X) =⇒ ugvg ∈ E(Y ).

But then Y is edge transitive by construction. Moreover, the vertex transitivity is due to
the vertex transitivity of X.

Case I: Y is connected Y has a maximum matching missing at most 1 vertex. But then
by the edge transitivity of Y , there is a maximum matching missing at most 1 vertex of
V (Y ) = V (X) that includes e. This is necessarily a maximum matching of X covering e,
which is a contradiction.

Case II: Y has components C1, C2, . . . , Cm We claim that each Ci is a block of imprimi-
tivity of Aut(X). Moreover, the components are pairwise isomorphic and are vertex plus
edge transitive.

The fact that each component is a block of imprimitivity follows from the fact that
automorphisms preserve distances. Hence if a vertex within a component is sent to the
some component, all vertices of that component are sent there as well.

The vertex and edge transitivity follows from the each component being blocks of imprim-
itivity as well as the fact that Y is vertex and edge transitive. Finally, vertex transitivity
and the assumption that each component is a block of imprimitivity yields the pairwise
isomorphisms.
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If each component has an even number of vertices, then each Ci has a perfect matching.
But then by edge transitivity, Y and thus X has a perfect matching containing e.

Suppose now that each component is odd. Define

V (Z) = {C1, . . . , Cm}
E(Z) = {CiCj : ∃f ∈ ∂X(Ci) ∩ ∂X(Cj)}

Z must be connected since X is connected. We claim that Z is vertex transitive.

To see this claim recall how Aut(X) permutes the components. Thus f ∈ ∂X(Ci)∩∂X(Cj),
implies f g ∈ ∂X(C

g
i ) ∩ ∂X(C

g
i ) for all g ∈ Aut(X). Hence Aut(X) induces a subgroup of

Aut(Z) which acts transitively on the vertices.

Now, Z has a matching missing at most 1 Ci. By vertex transitivity, we may assume
this is the component C containing the edge e. By the edge transitivity of C, there is a
maximum matching containing e and missing at most 1 vertex.

For each CiCj in the matching, let us pick an edge in ∂X(Ci)∩∂X(Cj). This is a matching
M in X. Using the fact that each Ci is vertex transitive with a maximum matching
missing 1 vertex, we can thus using M to “connect” the maximum matchings within Ci.
This yields a maximum matching of X missing exactly 1 vertex and containing e.

By induction, we conclude that every edge is contained in some maximum matching.

Theorem 3.4.5
Let X be connected and vertex transitive. Then X has a matching missing at most
1 vertex and each edge is contained in some maximum matching.

3.5 More on Cayley Graphs

Definition 3.5.1 (Semiregular)
A permutation group G acting on V is semiregular if Gx = 1 for all x ∈ V .

Proposition 3.5.1
If G is semiregular, then

|G| = |xG|

for all x ∈ V .
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Proof
Orbit-Stabilizer lemma.

Definition 3.5.2 (Regular)
If G is semiregular and transitive, then G is regular.

Proposition 3.5.2
If G acting on V is regular, then |G| = |V |.

Proof
|G| = |xG| = |V |.

Lemma 3.5.3
Let G be a group and C ⊆ G \ {1} be inverse-closed. Then Aut(X(G,C)) contains a
regular subgroup isomorphic to G.

Proof
Let X = X(G,C). For g ∈ G, define τg : V (X) → V (X) given by

x 7→ gx.

Write T := {τg : g ∈ G}. By our initial work with Cayley graphs, we know that T ≤
Aut(X). Moreover, T acts transitively on X. In addition T ∼= G by the map τg 7→ g.
Finally, T is semiregular, as any non-identity element does not fix any vertices.

Thus by definition, T is a regular subgroup of Aut(X).

Lemma 3.5.4
If G ≤ Aut(X) acts regularly on V (X), then X = X(G,C) for some inverse-closed
C ⊆ G \ {1}.

Proof
Since G is regular, then |G| = |V (X)|. We aim to construct C so that X ∼= X(G,C).

Fix u ∈ V (X). Since G is regular, there is a unique gv ∈ G such that ugv = v. Define

C := {gv : v ∼ u}
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as the subset of G sending u to a neighbour of u.

It is clear that 1 /∈ C, as X does not have loops. It suffices to show that

xy ∈ E(X) ⇐⇒ g−1
x gy ∈ C ⇐⇒ g−1

y yx ∈ C.

xy ∈ E(X) ⇐⇒ g−1
x gy ∈ C Recall that gx ∈ G ≤ Aut(X). Hence g−1

x ∈ Aut(X). Thus

xg−1
x yg

−1
x ∈ E(X) ⇐⇒ xy ∈ E(X).

Since ugx = x, we have xg−1
x = u. Similarly, ugy = y so yg

−1
x = ug−1

x gy . So

xy ∈ E(X) ⇐⇒ uug−1
x gy ∈ E(X) ⇐⇒ g−1

x gy ∈ C

as desired.

xy ∈ E(X) ⇐⇒ g−1
y gx ∈ C This is identical except we consider gy instead of gx.

Hence C is inverse closed and X ∼= X(G,C) with an isomorphism given by x 7→ gx.

We are now concerned with Cayley graphs on the same group.

Definition 3.5.3 (Group Automorphism)
Let G be a group. θ : G → G is an automorphism if θ is bijective and θ(gh)θ(g)θ(h)
for all g, h ∈ G.

Lemma 3.5.5
Let θ be an automorphism of G. Then X(G,C) ∼= X(G, θ(C)).

Proof
We claim that θ is an isomorphism X(G,C) → X(G, θ(C)).

We have

g−1h ∈ C ⇐⇒ θ(g−1h) ∈ θ(C)

⇐⇒ θ(g−1)θ(h) ∈ θ(C)

⇐⇒ θ(g)−1θ(h) ∈ θ(C)

as desired.
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We will note that if X(G,C) ∼= X(G, ϑ(C)), then it is not necessary that ϑ is an automor-
phism.

Definition 3.5.4 (Generating Set)
Let G be a group. C ⊆ G is a generating set if every g ∈ G is a product of elements
in C.

Lemma 3.5.6
X = X(G,C) is connected if and only if C is a generating set for G.

Proof
( =⇒ ) If X is connected, there is a eg-path for all g ∈ G. Fix g ∈ G. Enumerate some
eg-path

e = h0, h1, h2, . . . , hk, g.

Observe that h−1
i−1hi ∈ C for i ∈ [k], and h−1

k g ∈ C.

But then

g =

(
k∏

i=1

h−1
i−1hi

)
h−1
k g

is a product of elements of C.

( ⇐= ) Suppose C generates G. We argue there is a eh-path for all h ∈ G.

Write h as a product of gi’s from C:

h = c1c2 . . . ck.

Notice that

e ∼ c1 ec1 = c1 ∈ C

c1 ∼ c1c2 c−1
1 c1c2 = ce ∈ C∏̀

i=1

ci ∼
`+1∏
i=1

ci

(∏̀
i=1

ci

)−1 `+1∏
i=1

ci = c`+1 ∈ C

This e is indeed connected to
∏k

i=1 ci = h and we are done.
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3.6 Retracts

Definition 3.6.1 (Retract)
A subgraph Y of X is a retract if there is some homomorphism f : X → Y such that

f

∣∣∣∣
Y

= 1Y .

Theorem 3.6.1
Every connected vertex-transitive graph is isomorphic to a retract of a Cayley graph.

Proof
Let X be connected and vertex transitive. Fix x ∈ V (X) and

C := {g ∈ Aut(X) : x ∼ xg}.

Let G ≤ Aut(X) as the subgroup generated by C. We claim that G acts transitively on
V (X).

It suffices to show that there is an element sending x 7→ y for all y ∈ V (X). We argue by
induction on d(x, y) that y ∈ xG. The case where d(x, y) = 1 is trivial.

Suppose d(x, y) ≥ 2. There is some neighbour of y, say z 6= x, y, on the shortest xy-path
in X. By induction, there is some g ∈ G sending x 7→ z. Since X is vertex transitive, we
can find some h ∈ Aut(X) sending z 7→ y.

We have z ∼ zh. Since automorphisms preserve edges, zg−1 ∼ zg
−1h and g−1h ∈ C ⊆ G

by definition. But then h = g · g−1h ∈ G as both are elements of G.

Let Y := X(G,C). We argue that X is isomorphic to a retract of Y .

Recall from our work with group actions on graphs that H := {h ∈ G : xh = y} is a left
coset of the stabilizer Gx. Thus for every y ∈ V (X),

Cy := {g ∈ G : xg = y}

is a left coset of Gx. Hence C =
⋃

y∼x Cy by definition is a union of left cosets of Gx.
Moreover, C ∩Gx = ∅ as x 6∼ x.

Observe that for any a, b ∈ Aut(X),

xa ∼ xb ⇐⇒ x ∼ xa−1b ⇐⇒ a−1b ∈ C.

39



©Fel
ix

Zh
ou

Let A1, . . . , Ak be the left cosets of Gx. Pick a representative ai ∈ Ai for each i ∈ [k].
We claim that Y [a1, . . . , ak] ∼= X and that Y [a1, . . . , ak] is a retract of Y . This would
terminate the proof.

First, we show that C = GxCGx. Indeed, it is clear that C ⊆ GxCGx. Pick h, h′ ∈ Gx

and g ∈ C. We have

x ∼ xg

x = xh ∼ (xh)g = xgh

x = xh′ ∼ xh′gh.

Then h′gh ∈ C and GxCGx ⊆ C as required.

Next, we claim that in Y = X(G,C), E(Ai) = ∅ for all i. Moreover, for all 1 ≤ i < j ≤ k,
either ∂Ai ∩ ∂Aj = 0 or Ai, Aj induces a complete bipartite graph.

For any g′ ∈ G, there is some j for which g′ ∈ Aj. Thus we can write g′ = ajg for some
g ∈ Gx. Suppose g, h ∈ Gx. Then

aig ∼ ajh ⇐⇒ (aig)
−1ajh ∈ C

⇐⇒ g−1a−1
i ajh ∈ C

⇐⇒ a−1
i aj ∈ gCh−1 ∈ GxCGx = C.

This shows that the adjacency between any vertices in different cosets depend on the
cosets and not the specific vertices. Moreover, since 1 /∈ C, we know that a−1

i ai /∈ C and
hence aig 6∼ aih for any g, h ∈ Gx.

We now claim that Y [a1, . . . , ak] ∼ X. By the previous claim, aiaj ∈ E(Y [a1, . . . , ak]) if
and only if a−1

i aj ∈ C. Consider the map ρ : V (X) → {ai, . . . , ai} given by

y 7→ aj ∈ Cy.

Select u, v ∈ V (X). Since G acts transitively, there are g, h ∈ G such that xg = u, vh = v.

u ∼ v ⇐⇒ xg ∼ xh

⇐⇒ x ∼ xg−1h

⇐⇒ g−1h ∈ C.

On the other hand, ρ(u)ρ(v) ∈ E(Y [a1, . . . , ak]) if and only if ρ(u)−1ρ(v) ∈ C. Since u =
xg, v = xh, we know that g, h are representatives of the cosets to which ρ(u), ρ(v) belong,
respectively. Thus we may assume without loss of generality that h = ρ(u), h = ρ(v). So
ρ(u) ∼ ρ(v) ⇐⇒ g−1h ∈ C and ρ preserves adjacencies.
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Finally, we show that Y [a1, . . . , ak] is a retract of Y . This is given by the homomorphism
τ : V (Y ) → {a1, . . . , ak} given by

g 7→ gj, g ∈ Aj.

Clearly then this is a homomorphism by our work above and acts as the identity on
{a1, . . . , ak}.
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Generalized Polygons

4.1 Incidence Graphs

Definition 4.1.1 (Incidence Structure)
Let P be a set of points, L a set of lines, and I ⊆ P × L an incidence relation.
The triple I = (P ,L, I) defines an incidence structure.

If (p, L) ∈ I, then we say point p and line L are incident.

The triple I∗ = (L,P , I∗) where

I∗ = {(L, p) : (p, L) ∈ I}

is the dual of I.

Definition 4.1.2 (Incidence Graph)
Given an incidence structure I = (P ,L, I), the incidence graph X(I) is defined as
the bipartite graph (P ,L, E) where

pL ∈ E ⇐⇒ (p, L) ∈ I.

Remark that X(I) ∼= X(I∗).
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Definition 4.1.3 (Automorphism)
An automorphism of (P ,L, I) is a permutation of P ,L such that Pσ = P and Lσ = L
with

(pσ, Lσ) ∈ I ⇐⇒ (p, L) ∈ I.

4.1.1 Partial Linear Space

Definition 4.1.4 (Partial Linear Space)
I = (P ,L, I) is a partial linear space if for all x, y ∈ P , there exists at most one
L ∈ L such that (x, L) ∈ I, (y, L) ∈ I.

Lemma 4.1.1
If I is a partial linear space, then any two lines are incident with at most 1 point.

If lines L1, L2 are incident with p, then we say these two lines are concurrent and meet at p.

Lemma 4.1.2
If I is a partial linear space, then X(I) has girth at least 6.

Proof
X(I) has no 4-cycle as otherwise, there are two points incident with two lines.

4.2 Projective Planes

Definition 4.2.1 (Projective Plane)
A projective plane is a partial linear space satisfying
(C1) Every two lines meet in a unique point
(C2) Every two points lie in a unique line
(C3) There exists 3 noncollinear points (they form a triangle)
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Theorem 4.2.1
Let I be a partial linear space containing a triangle. Then I is a projective plane if
and only if X(I) has diameter 3 and girth 6.

Proof
( =⇒ ) Let I = (P ,L, I) be a projective plane with a triangle. Then every x, y ∈ P are
at distance 2 and every L1, L2 ∈ L are at distance 2.

Pick x ∈ P,L ∈ L. Either (x, L) ∈ I, or there is some L′ 6= L such that (x, L′) ∈ I. In
the latter case, there is y ∈ P such that L,L′ meet at y. So d(x, L) ≤ 3 and the diameter
is at most 3. But since I has a triangle, X(I) is NOT a complete bipartite graph. Thus
X(I) has diameter at least 3.

Now, I is a partial linear space. Hence we know the girth is at least 6.

Let {x, y, z} be a triangle. Suppose x, y meet at L1, x, z meet at L2, and y, z meet at L3.
Since x, y, z are not collinear, L1, L2, L3 are distinct. Hence the girth is at most 6.

( ⇐= ) Conversely, suppose I is a partial linear space and X(I) has diameter 3 as well
as girth 6.

To see (C2), note that for any x 6= y ∈ P , the distance is even and at most 3. Hence they
are distance 2 apart. It follows that there is L ∈ L such that (x, L), (y, L) ∈ I. Moreover,
the girth being 6 (strictly more than 4) implies that such L is unique.

(C1) is satisfied with an identical argument.

(C3) is given by the assumption of girth being 6.

4.3 A Family of Projective Planes

Consider Fq, the finite field of order q. Let V := F3
q. Define

PG(2, q) := (P ,L, I)

where P are the 1-dimensional subspaces of V , L are the 2-dimensional subspaces of V , and
(p,L) ∈ I if p is a subspace of L.

Alternatively, L can be represented by the orthogonal complement of L+, which is span{a}.
Here aTp1, a

Tp2 = 0.

Now, V has q3 − 1 non-zero vectors. There are q− 1 non-zero vectors in each 1-dimensional
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subspace. Thus

|P| = q3 − 1

q − 1
= 1 + q + q2.

By the bijection between 1-dimensional subspaces and 2-dimensional subspaces,

|L| = 1 + q + q2.

Each line has q2 − 1 non-zero vectors. Hence each line is incident with q2−1
q−1

= 1 + q points.
Moreover, for (p, L) ∈ I to hold, we have p ⊆ L. There are q2 − 1 linearly independent
vectors to p, each spanning q − 1 non-zero points. Hence each point has 1 + q lines passing
through it.

Observe that X(PG(2, q)) has 2(q2 + q + 1) vertices and is (q + 1)-regular.

Remark that PG(2, 2) is the Fano plane.

Lemma 4.3.1
PG(2, q) is a projective plane.

Proof
Let L1 := span{u, v} and L2 := span{u′, v′} such that L1 6= L2. We have dim(L1∩L2) ≥ 1
since dimV = 3. But dim(L1 ∩ L2) < 2 since L1 6= L2. It follows that dim(L1 ∩ L2) = 1.
Thus there is a unique point where L1, L2 meet. This verifies (C1).

Let p1 = span{u} and p2 = span{v}, where v /∈ p1. Suppose L is a line incident with both
points. Then span{u, v} ⊆ L and the fact that dimL = 2 implies that L = span{u, v}.
This shows (C2).

Let u, v, w be 3 linearly independent vectors. Then span{u, v, w} = V and so u, v, w are
not contained in a 2-dimensonal subspace. Hence the spans of each vector form a triangle.
This demonstrates (C3).

4.3.1 Automorphisms

Consider GL(3, q), the set of invertible 3× 3 matrices over Fq. Note that GL(3, q) is a group
which acts on vectors of F3

q through multiplication.

Lemma 4.3.2
Let A ∈ GL(3, q) and X = X(PG(2, q)). Then A induces a permutation on V (X).
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Lemma 4.3.3
GL(3, q) ≤ Aut(PG(2, q)).

Proof
Let A ∈ GL(3, q). Assume that p ∼ L, ie p ⊆ L. Suppose that p = span{u} and
L = span{u, v}. Thus

pA = span{Au}
LA = span{Au,Av}
pA ∼ LA.

Finally, PA = P and LA = L.

Lemma 4.3.4
X(PG(2, q)) is arc-transitive.

Note this implies the incidence graph is both vertex and edge-transitive.

Proof
Suppose p1 ∼ L and p2 ∼ L2. Write

p1 = span{u1}
L1 = span{u1, v1}
p2 = span{u2}
L2 = span{u2, v2}.

By elementary linear algebra, there is some invertible A for which Au1 = u2, Av1 = v2.
Then (p1, L2)

A = (p2, L2). Hence GL(3, q) acts transitively on P ,L.

It suffices to show that there is some π ∈ Aut(X) such that π(P) = L. This is given by

π span{u} := span{u}⊥.

Suppose (p, L) ∈ I so p = span{u}, L = span{u, v}. We have

pπ = span{u}⊥, Lπ = span{u, v}⊥.

But then Lπ ⊆ pπ hence Lπ ∼ pπ and π ∈ Aut(X).
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Homomorphisms

5.1 Definitions & Basic Results

We write X → Y to denote the existence of a homomorphism from X to Y .

Lemma 5.1.1
The relation → is reflexive and transitive.
But neither symmetric nor antisymmetric. Thus X → Y does not in general imply
Y → X and it is possible for X 6∼= Y to satisfy X → Y, Y → X.

Since → is not symmetric, it is NOT a equivalence relation. Since → is not antisymmetric,
it is not a partial order, unless we restrict to a specific family of graphs.

Definition 5.1.1 (Homomorphically Equivalent)
We say X,Y are homomorphically equivalent if X → Y, Y → X.

This clearly an equivalence relation.

A homomorphism is surjective if V (Y ) = f(V (X)).

Lemma 5.1.2
If surjective homomorphisms exist from X to Y and Y to X, then X ∼= Y .
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Definition 5.1.2 (Odd Girth)
The odd girth of X is the length of the shortest odd cycle in X. If X is bipartite,
then its odd girth is ∞.

Lemma 5.1.3
Suppose X → Y . Then

(a) χ(X) ≤ χ(Y )

(b) the odd girth of X is at least the odd girth of Y

Corollary 5.1.3.1
(a) There is no homomorphism from C2n+1 to K2

(b) There is no homomorphism from the Peterson graph to C4

(c) There is no homomorphism from the Peterson graph to any of its proper subgraph

5.2 Cores

Definition 5.2.1 (Core)
A graph X is a core if any automorphism from X to itself is an automorphism.

Definition 5.2.2 (Core Of)
A subgraph Y of X is a core of X if Y is a core and X → Y .

Thus the cores of X are minimal subgraphs that are homomorphic images of X.

Example 5.2.1
Kn is a core.

Example 5.2.2
A graph is critical if any of its proper subgraphs has strictly smaller chromatic number.

Then χ(X) > χ(Y ) for every proper subgraph Y and X 6→ Y . Thus every critical graph
is a core.
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Lemma 5.2.3
If Y is a core of X, then Y is a retract of X.

Proof
Let f : X → Y be a homomorphism. Since Y is a core, g := f

∣∣
Y

is an automorphism of
Y .

Then g−1 ◦ f : X → Y is a retraction.

Lemma 5.2.4
Let Y1, Y2 be cores. Then Y1, Y2 are homomorphically equivalent if and only if they
are isomorphisms.

Proof
Let f : Y1 → Y2 and g : Y2 → Y1 be homomorphisms. Then both f ◦ g, g ◦ f are
homomorphisms. But Y1, Y2 are cores. So f ◦ g and g ◦ f are both bijective. Hence f, g
must both be surjective.

Lemma 5.2.5
Every graph X has a core which is an induced subgraph and unique up to isomor-
phism.

Due to this result, we may refer to THE core X• of X.

Proof
Existence: Let F be the set of subgraphs of X that are homomorphic images of X. F 6= ∅
since X is a homomorphic image of X.

Let Y be a minimal graph in F with respect to the subgraph relation. By the minimality,
any homomorphism from Y to itself must be an automorphism of Y . Hence Y is a core
of X.

Since Y is a retract of X, Y must be induced.

Uniqueness: Let Y1, Y2 be cores of X. Let fi : X → Yi be a homomorphism from X to Yi

for i = 1, 2.

Consider f1
∣∣
Y2

: V (Y2) → V (Y1). This is a homomorphism from Y2 to Y1. Similarly,

51



©Fel
ix

Zh
ou

f2
∣∣
Y1

is a homomorphism from Y1 to Y2. Hence Y1 → Y2 and Y2 → Y1 and they are
homomorphically equivalent.

Since Y1, Y2 are cores, they are homomorphically equivalent if and only if they are iso-
morphic.

Lemma 5.2.6
Two graphs X,Y are homomorphically equivalent if and only if their cores are iso-
morphic.

Proof
Suppose X → Y, Y → X. Then

X• → X → Y → Y •

Y • → Y → X → X•

By the a lemma, X• ∼= Y •.

Suppose now that X• ∼= Y •. Then X• → Y • and Y • → X•.

It follows by a previous lemma that

X• → X → Y → Y •

Y • → Y → X → X•

Corollary 5.2.6.1
→ is a partial order on the set of isomorphism classes of cores.

Proof
We know → is reflexive and transitive. It is antisymmetric on the set of isomorphism
classes of cores since if X,Y are cores that are homomorphically equivalent, then X ∼= Y .

Lemma 5.2.7
Let X be connected. If every path of length 2 lies in a shortest odd cycle of X, then
X is a core.

Proof
Suppose towards a contradiction that X• 6= X and f : X → X• is a retraction. Then by
connectedness, there are u, v ∈ V (X) such that u ∼ v, v ∈ V (X•), and u /∈ V (X•).
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Let w := f(u) ∈ V (X•). Then w ∼ v and w 6∼ u. By assumption uvw is contained in a
shortest odd cycle C. The homomorphic image of C under f is an odd closed walk where
f(u) = f(w) = w.

Hence f(X) has a strictly shorter odd cycle, which is a contradiction by earlier lemma.
By contradiction, X• = X.

Corollary 5.2.7.1
The Peterson graph is a core.

5.3 Products

Definition 5.3.1 (Product Graph)
For graphs Y, Z, the (direct) product Y ×Z is defined by V (Y ×Z) = V (Y )× V (Z)
where

(y, z) ∼ (y′, z′) ⇐⇒ y ∼ y′ ∧ z ∼ z′.

Lemma 5.3.1
(a) If Y, Z are both connected. Then Y × Z are disconnected if and only if both

Y, Z are bipartite.
(b) Let Y1 + Y2 denote the disjoint union of Y1, Y2. Then (Y1 + Y2)×Z = Y1 ×Z +

Y2 × Z.
(c) Y × Z ∼= Z × Y (commutative). (Y1 × Y2)× Y3

∼= Y1 × (Y2 × Y3) (associative).
However, Y × Z1

∼= Y × Z2 does not imply Z1
∼= Z2 [ie K1 × (K3 + K3) ∼=

K2 × C6
∼= C6 + C6].

(d) pX : V (X × Y ) → V (X) and pY : V (X × Y ) → V (Y ) given by (x, y) 7→
x, (x, y) 7→ y, respectively, are homomorphisms from X × Y to X,Y .

Theorem 5.3.2
Let X,Y, Z be graphs. If f : Z → X and g : Z → Y are homomorphisms, there is a
unique homomorphism φ : Z → X × Y such that

f = pX ◦ φ
g = pY ◦ φ.
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Proof
Define φ(z) := (f(z), g(z)) for all z ∈ Z. If u ∼ v ∈ Z, then f(u) ∼ f(v) in X and
g(u)× g(v) in Y . Hence

(f(u), g(u)) ∼ (f(v), g(v))

in X × Y by construction. By definition, φ is a homomorphism such that f = pX ◦ φ, g =
pY ◦ φ.

Suppose now that φ(z) = (φX(z), φY (z)) is a function such that pX ◦φ(z) = φx(z) = f(z)
and pY ◦ φ(z) = φY (z) = g(z) for all z ∈ Z. But then φ = φX × φY is determined by f, g.

We write

Hom(X,Y )

to denote the set of homomorphisms from X to Y .

Corollary 5.3.2.1
|Hom(Z,X × Y )| = |Hom(Z,X)| · |Hom(Z, Y )|.

Proof
By the previous lemma, there is an injective map

Hom(Z,X)× Hom(Z, Y ) → Hom(Z,X × Y ).

Thus |Hom(Z,X × Y )| ≤ |Hom(Z,X)| · |Hom(Z, Y )|.

For each φ ∈ Hom(Z,X × Y ) pX ◦ φ ∈ Hom(Z,X) and pY ◦ φ ∈ Hom(Z, Y ). Thus we
have an injective map

Hom(Z,X × Y ) → Hom(Z,X)× Hom(Z, Y ).

Thus |Hom(Z,X × Y )| ≥ |Hom(Z,X)| · |Hom(Z, Y )|.

Definition 5.3.2 (Lattice)
A partially ordered set Λ is a lattice, if for each x, y ∈ Λ, there is a least upper bound
x ∨ y, as well as a greatest lower bound x ∧ y.

Lemma 5.3.3
The set of isomorphism classes of cores with partial order → is a lattice.
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Proof
Least Upper Bound: Let X,Y be cores. We claim that X ∨ Y = (X + Y )•.

It is clear that X → X + Y → (X + Y )• as well as Y → X + Y → (X + Y )•. Thus
(X + Y )• is an upper bound of X × Y .

Suppose now that Z is a core such that X → Z, Y → Z. Then X + Y → Z.

Naturally, (X + Y )• → Z through the identity map and hence X ∨ Y = (X + Y )•.

Greatest Lower Bound: We show that X ∧ Y = (X × Y )•.

Indeed, (X × Y )• → X × Y → X and (X × Y )• → X × Y → Y .

Suppose Z is a core such that Z → X,Z → Y . Then Z → (X × Y ) → (X × Y )•. Hence
X ∧ Y = (X × Y )• as desired.
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Matrix Theory

6.1 Spectral Graph Theory

6.1.1 The Adjacency Matrix

Definition 6.1.1 (Adjacency Matrix)
Let X be an undirected graph. Its adjacency matrix A = A(X) ∈ {0, 1}V×V is the
square matrix such that

Au,v = 1{u ∼ v}.

Note that A(X) is symmetric.

Definition 6.1.2 (Graph Characteristic Polynomial)
The characteristic polynomial of X is

φ(A, x) := det(xI − A(X)).

Note that characteristic polynomials do not uniquely determine X.

Definition 6.1.3 (Graph Spectrum)
The spectrum of X is the list of eigenvalues of A(X) together with their algebraic
multiplicities.

If X ∼= Y , then X,Y have the same spectrum.
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Lemma 6.1.1
Let A = A(X). Then (Ar)u,v is the number of walks from u to v in X of length r.

Corollary 6.1.1.1
Suppose X has m edges and t triangles. Let A = A(X). Then

trA = 0

trA2 = 2m

trA3 = 6t.

Let n := |V (X)|. Remark that the number of closed v-walks is

trAr =
n∑

i=1

λr
i .

6.1.2 Incidence Matrix

Definition 6.1.4 (Incidence Matrix)
The incidence matrix B = B(X) ∈ {0, 1}V×E of X defined by

(B)ue = 1{u ∈ e}.

Theorem 6.1.2
Let X be a graph on n vertices and c bipartite components. Let B = B(X). Then
rankB = n− c.

Proof
Remark that

rankB = rankBT = n− nullBT .

Hence it suffices to show that nullBT = c.

Let z ∈ Rn such that BT z = 0. By the definition of B,

zu + zv = 0

for all u, v such that u ∼ v. In particular,

zu = (−1)rzv
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if u, v are joined by a path of length r.

If follows that zu = 0 if u is in a non-bipartite component and z takes inverse values on
vertices from opposite classes in a bipartite component.

Thus null(BT ) = c as desired.

Lemma 6.1.3
Let B = B(X) and L the line graph of X. Then

BTB = 2I + A(L).

Definition 6.1.5 (Degree Matrix)
The degree matrix of X, D = D(X) ∈ ZV×V

+ , is the diagonal matrix where

(D)uu = deg(u).

for each u ∈ V (X).

Lemma 6.1.4
Let B = B(X), D = D(X), and A = A(X). Then

BBT = D(X) + A(X).
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6.2 Symmetric Matrices

Proposition 6.2.1
Let A be a real symmetric n× n matrix.

(a) If u, v are eigenvectors of different eigenvalues, then u⊥v.
(b) All eigenvalues are real.
(c) If U is a subspace of Rn, then U is A-invariant implies U⊥ is A-invariant.
(d) U is a non-zero A-invariant subspace of Rn implies that U contains a real eigen-

vector of A.
(e) Rn has an orthonormal basis consisting of eigenvectors of A.
(f) A = PDP T , where P is orthogonal, and columns of P are orthonoral eigenvectors

of A.
(g) A =

∑n
i=1 λiviv

T
i where λi is the eigenvalue corresponding to the orthonormal

eigenvector vi.

6.3 Eigenvectors of the Adjacency Matrix

We wish to find the eigenvalues of A = A(X). Suppose there is some f : V (X) → R such
that Af = λf . By the definition of A,

(Af)(u) =
∑
v

Auvf(v)

=
∑
v∼u

f(v).

Hence if we can find (a vector/function) f such that∑
v∼u

= λf(u)

for all u ∈ V (X), Then λ is by definition an eigenvalue of A(X).

Example 6.3.1 (Regular Graphs)
For a r-regular graph X, by setting f = 1n,∑

v∼u

f(v) = r

Hence 1n is an eigenvector of X.
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Note that the converse is also true. 1n is an eigenvector if and only if X is regular.

Example 6.3.2 (Cycles)
Let τ be an n-th root of unity. Then let f(u) := τu.∑

v∼u

f(v) = (τ−1 + τ)τu

so τ−1 + τ is a real eigenvalue of X.

Lemma 6.3.3
Let X be k-regular with n vertices and eigenvalues

k, θ2, . . . , θn.

Then X, X̄ have the same eigenvectors and the eigenvalues of X̄ are

n− k − 1,−θ2 − 1, . . . ,−θn − 1.

Proof
Let J be the all 1’ matrix. By observation,

A(X̄) = J − I − A(X).

Recall that 1n is the eigenvector of A(X) corresponding to eigenvalue k. Hence 1n is the
eigenvalue of A(X̄) corresponding to the eigenvalue n− 1− k.

Let {1n, v2, . . . , vn} be the orthogonal eigenvectors of A. For each 2 ≤ j ≤ n,

A(X)vj = θjvj

1Tvj = 0.

It follows that

A(X̄)vj = (J − I − A(X))vj

= −vj − θjvj

= (−1− θj)vj.
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6.4 Positive Semidefinite Matrices

Definition 6.4.1 (Positive Semidefinite Matrix)
A real symmetric matrix A is positive semidefinite (PSD) if for all u ∈ Rn,

uTAu ≥ 0.

If in addition, uTAu = 0 ⇐⇒ u = 0, then A is positive definite.

Proposition 6.4.1
Let A ∈ Rn×n. The following are equivalent:

(a) A is PSD
(b) All eigenvalues of A are non-negative
(c) A = BTB for some B

Lemma 6.4.2
If L is a line graph, then λmin(L) ≥ −2.

Proof
Suppose L is the line graph of X. Let B = B(X). We know that BTB = A(L)+ 2I. But
BTB is PSD. Hence A(L) + 2I has minimum eigenvalue 0 and λmin(L) ≥ −2.

Lemma 6.4.3
Let Y be an induced subgraph of X. Then

λmin(X) ≤ λmin(Y ) ≤ λmax(Y ) ≤ λmax(X).

Proof
Let A = A(X) and Ã = A(Y ). Put λ = λmax(X). Thus λI − A is PSD.

For any f̃ : V (Y ) → R, extend it to a function f : V (X) → R such that f(u) = 0 for each
u ∈ V (X) \ V (Y ). Then

0 ≤ fT (λI − A)f

≤ f̃T (λI − Ã)f̃ .

Thus λI − Ã is PSD and λmax(Ã) ≤ λ.
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Similarly, working on the PSD matrix A(X)−λmin(X)·I, we cna show λmin(Ã) ≥ λmin(A).

Remark that this lemma follows from a more general interlacing theorem.

Definition 6.4.2 (Laplacian Matrix)
The Laplacian matrix of the graph X, is

L(X) := D(X)− A(X).

Proposition 6.4.4
L := L(X) is positive semidefinite.

Proof
Let n := |V (X)|. For any v ∈ Rn,

xTLx =
∑
u,v

xuLuvxv

=
∑
u

x2
u deg(u)−

∑
u

xu

∑
v∼u

xv

=
∑
uv∈E

(x2
u + x2

v)−
∑
uv∈E

2xuxv

=
∑
uv∈E

(xu − xv)
2

≥ 0.

Remark that xTLx measures the “smoothness” of x on X.

Since L(X) is PSD, its smallest eigenvalue is at least 0. Observe that

(L(X)1n)u = deg(u)− degu = 0.

Hence 1n is an eigenvector of L(X) with eigenvalue 0 and the minimum eigenvalue of L(X)
is 0.

Proposition 6.4.5
Let L = L(X) and

0 = µ1 ≤ µ2 ≤ · · · ≤ µn

be the eigenvalues of L. Then µ2 > 0 if and only if X is connected.
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Proof
( =⇒ ) Suppose X is the disjoint union of 2 graphs X1, X2 with n1, n2 vertices. Then

L =

[
L(X1) 0

0 L(X2)

]
.

Both
[
0n1

1n2

]
and

[
1n1

0n2

]
are eigenvectors with eigenvalue 0 and µ2 = 0.

( ⇐= ) Let f be an eigenvector with eigenvalue 0. But then

0 = fT (Lf)

=
∑

uv∈E(X)

(f(u)− f(v))2

⇐⇒ ∀uv ∈ E(X), f(u) = f(v).

Since X is connected, f is constant on V (X). The eigenspace corresponding to eigenvalue
0 has dimension 1. It follows that µ2 > 0.

Suppose X is k-regular. Let A = A(X). Then

L = L(X) = kI − A(X).

If k = λ1 ≥ · · · ≥ λn are the eigenvalues of A and 0 = µ1 ≤ · · · ≤ µn are the eigenvalues of
L, then µi = k − λi for each 1 ≤ i ≤ n.

6.5 Courant-Fisher Theorem

Definition 6.5.1 (Rayleigh Quotient)
The Rayleigh quotient of X ∈ Rn with respect to A ∈ Rn×n is

xTAx

xTx
.

Observe that if x is an eigenvector of A with respect to the eigenvalue λ,

xTAx

xTx
= λ.

The Courant-Fisher theorem gives a relation between the extreme values of the Rayleigh
quotients and the eigenvalues of A.
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Theorem 6.5.1 (Courant-Fisher)
Let A ∈ Rn×n be symmetric with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn.

Then for all k ∈ [n],

λk = max
S⊆Rn:dimS=k

min
x∈S:x 6=0

xTAx

xTx
= min

S⊆Rn:dimS=n−k+1
min

x∈T :x 6=x

xTAx

xTx
.

Proof
Let f1, . . . , fn be an orthonormal eigenvector basis of A where fi corresponds to λi. Con-
sider S := span{f1, . . . , fk}.

We first show that
max

S⊆Rn:dimS=k
min

x∈S:x 6=0

xTAx

xTx
≥ λk.

For any x =
∑k

i=1 cifi ∈ S,

xTAx =

(
k∑

i=1

cifi

)T

A

(
k∑

i=1

cifi

)

=

(
k∑

i=1

cifi

)T ( k∑
i=1

ciλifi

)

=
k∑

i=1

λic
2
i .

Moreover,

xTx =
k∑

i=1

c2i .

Thus the Rayleigh quotient of x is

xTAx

xTx
=

∑k
i=1 λic

2
i∑k

i=1 c
2
i

≥ λk

∑k
i=1 c

2
i∑k

i=1 c
2
i

= λk.
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We then show that
max

S⊆Rn:dimS=k
min

x∈S:x 6=0

xTAx

xTx
≤ λk.

Let S be a subspace of dimension k and T := span{fk, . . . , fn} be a subspace of dimension
n− k + 1.

But then by dimension, dim(S ∩ T ) ≥ 1.

min
x∈S:x 6=0

xTAx

xTx
≤ min

x∈S∩T :x 6=0

xTAx

xTx

≤ max
x∈S∩T :x 6=0

xTAx

xTx

≤ max
x∈T :x 6=0

xTAx

xTx

≤ λk.

The last inequality follows from an identical calculation to our work above.

The other equality is identical and we omit the proof.

Theorem 6.5.2
Let A ∈ Rn×n be symmetric and x 6= 0 a vector that maximizes or minimizes the
Rayleigh quotient. Then x is an eigenvector of λ1 or λn respectively.

6.6 Maximum Graph Eigenvalue

Theorem 6.6.1
Let d̄,∆, be the average and maximum degrees of x. Then

d̄ ≤ λ1 ≤ ∆.
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Proof
d̄ ≤ λ1: By the Courant-Fisher theorem,

λ1 = max
x∈Rn:x6=0

xTAx

xTx

≥ 1TA1

1T1

=

∑
u

∑
v∼u 1

n

=
2|E(X)|

n
= d̄.

λ1 ≤ ∆: Let f be the unit eigenvector corresponding to λ1. Let u := argmaxv∈V f(v).
Without loss of generality, by taking −f if necessary, we may assume that f(u) > 0.

Then

λ1 =
(Af)(u)

f(u)

=

∑
v∼u f(v)

f(u)

≤ deg(u) · f(u)
f(u)

≤ ∆

as desired.

Lemma 6.6.2
If X is connected with λ1 = ∆, then X is ∆-regular.

Proof
Let f be the unit eigenvector corresponding to λ1. Let u := argmaxv∈V f(v). Without
loss of generality, by taking −f if necessary, we may assume that f(u) > 0.
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Then

λ1 =
(Af)(u)

f(u)

=

∑
v∼u f(v)

f(u)

≤ deg(u) · f(u)
f(u)

≤ ∆

= λ1.

Now this holds with equality if and only if f(v) = f(u) for all v ∼ u and deg(u) = ∆.

By connectivity, we can apply the same argument in breadth-first search fashion to realize
that f is constant on V (X). It must then be that each v ∈ V satisfies deg(v) = ∆ as we
argued for u above.

Theorem 6.6.3 (Wilf ’67)
The chromatic number of a graph X satisfies

χ(X) ≤ bλ1c+ 1.

Proof
We argue by induction on n = |V (X)|. The base case of n = 1 is trivial as χ(X) = 1, λ1 =
0. So the theorem is true.

Suppose n ≥ 1 and the theorem holds for all graphs with n vertices. Let X be a graph on
n+1 vertices and λ1 := λ1(X). By a previous lemma, the average degree of X is at most
λ1. Hence there is at least one vertex u for which deg(u) ≤ bλ1c. Define S := V (X − u).

Let λ = λ1(X[S]). By our work earlier, λ ≤ λ1(X) = λ1 since X[S] is an induced subgraph
of X. By the induction hypothesis,

χ(X[S]) ≤ bλc+ 1 ≤ bλ1c+ 1.

Consider any (bλ1c+1)-colouring for X[S]. We can extend this to a colouring of X since
u has at most bλ1c neighbours. By induction, the theorem holds.
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6.7 Eigenvalue Interlacing

Definition 6.7.1 (Principal Submatrix)
A submatrix B of A ∈ Rn×n is principal if B is obtained by deleting the same set fo
rows and columns of A.

Theorem 6.7.1 (Cauchy)
Let A ∈ Rn×n be symmetric and B an (n − 1) × (n − 1) principal submatrix of A.
Let α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βn−1 be the spectra of A,B respectively.
Then

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ αn−1 ≥ βn−1 ≥ αn.

Proof
Without loss of generality, assume that B is obtained from A by deleting the first row
and column. By the Courant-Fisher theorem,

αk = max
S⊆Rn:dimS=k

min
x∈S:x 6=0

xTAx

xTx

βk = max
S⊆Rn−1:dimS=k

min
x∈S:x 6=0

xTBx

xTx

= max
S⊆Rn−1:dimS=k

min
x∈S:x 6=0

[
0
x

]T
A

[
0
x

]
[
0
x

]T [
0
x

]
= max

S⊆Rn−1:dimS=k,S⊥e1
min

x∈S:x 6=0

xTAx

xTx

≤ αk.

With an identical argument applied to −A,−B, we get that −βk ≤ −αk+1 and hence

βk ≥ αk+1.
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6.7.1 Perron-Frobenius Theorem

Theorem 6.7.2 (Perron-Frobenius; Undirected Graphs)
Let X be connected and A := A(X). Let λ1 ≥ · · · ≥ λn be the spectrum of A. Then

(a) λ1 has a strictly positive eigenvector
(b) λ1 > λ2

(c) λ1 ≥ −λn with equality if and only if X is bipartite.

Proof (a)
We first show that λ1 has a non-negative eigenvector. Let f be a unit eigenvector of λ1

and consider
f+ := |f |.

We have

λ1 = fTAf

=
∑

uv∈E(X)

2f(u)f(v)

≤
∑

uv∈E(X)

2f+(u)f+(v)

= (f+)TAf+.

But we must have equality since f is a maximizer of the Rayleigh quotient. Hence f+ is
also a maximizer. By a previous theorem, this implies that f+ is also an eigenvector of
λ1.

Now suppose there is some u for which f+(u) = 0. Since f 6≡ 0 and X is connected, there
is some vw ∈ E(X) for which f+(v) = 0 < f+(w). But then∑

w∼v

f+(w) > 0 = λ1f
+(v)

which is a contradiction.

Hence f+ is a strictly positive eigenvector of λ1.
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Proof (b)
Let g be a unit eigenvector of λ2 which is orthogonal to f+. Hence

λ1 = gTAg

=
∑

vw∈E(X)

g(v)g(w)

≤
∑

vw∈E(X)

|g|(v)|g|(w)

= |g|TA|g|
≤ max

g∈Rn:‖g‖=1
gTAg

= λ1.

If we have λ1 = λ1 then |g| is strictly positive by the same argument as in the proof of
(a). Moreover, for each uv ∈ E(X),

g(u)g(v) = |g(u)||g(v)|.

Now, f+ is strictly positive, gTf+ = 0, and g has non-zero entries. Hence there must
be two entries of g at which the signs differ. But since X is connected, there is an edge
uv ∈ E(X) at which g(u) < 0 < g(v). But then

g(u)g(v) 6= |g(u)||g(v)|

which contradicts our conclusion above.

It follows that λ2 < λ1.

Proof (c)
Let g be a unit eigenvector of λn. Then

|λn| = |gTAg|

= |
∑

uv∈E(X)

2g(u)g(v)|

≤
∑

uv∈E(X)

2|g(u)| · |g(v)|

= |g|TA|g|
≤ max

g∈Rn:‖g‖=1
gTAg

= λ1.
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X bipartite implies λn = −λ1. Let S, T be a bipartition of X. Suppose X has eigenvalue
λ with eigenvector f . Define

f̄ :=

{
f(u), u ∈ S

−f(u), u ∈ T

Then for u ∈ S,

(Af̄)(u) =
∑
v∼u

−f(v)

= −λf(u)

= −f̄(u).

For u ∈ T ,

(Af̄)(u) =
∑
v∼u

f(v)

= −λf̄(u).

Thus −λ is an eigenvalue of X as well. It follows that the spectrum of X is symmetric
around 0. In particular, λ1 = λn.

λ1 = λn implies X is bipartite If |λn| = λ1, then |g| is a strictly positive eigenvector of
λ1. Moreover, for equality to hold in the initial inequality above, every edge uv ∈ E(X)
satisfies

g(u)g(v) = −|g(u)||g(v)| < 0.

Let S be the vertices v for which g(v) > 0 and T the vertices v for which g(v) < 0. Both
are non-empty by our work above.

It follows that all edges in X joins S and T so it forms a bipartition of X as desired.
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Strongly Regular Graphs

7.1 Parameters

Definition 7.1.1 (Strongly Regular)
X is strongly regular with parameters (n, k, a, c) if

(i) |V (X)| = n

(ii) X is k-regular
(iii) Every pair of adjacent vertices has a common neighbours
(iv) Every pair of non-adjacent vertices has c common neighbours

Example 7.1.1
C5 is a (5, 2, 0, 1)-strongly regular graph.

Proposition 7.1.2
Suppose X is (n, k, a, c) strongly regular. Then X̄ is (n, k̄, ā, c̄) strongly regular for

k̄ = n− 1− k

ā = n− 2− 2k + c

c̄ = n− 2k + a

Definition 7.1.2 (Primitive)
A strongly regular graph X is primitive if both X, X̄ are connected.
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If X is not primitive, then it is imprimitive.

Lemma 7.1.3
Let X be (n, k, a, c) strongly regular. Then the following are equivalent:

(a) X is disconnected
(b) c = 0

(c) a = k − 1

(d) X ∼= mKk−1. That is, it is isomorphic to m copies of Kk−1 for some m

Proof
(a) =⇒ (b) Suppose u, v are in different components. Then N(u) ∩ N(v) = ∅ implies
c = 0.

(b) =⇒ (c) Fix any u ∈ V (X). We claim that all neighbours of u must be pairwise
adjacent Let v, w ∈ N(u). Then u ∈ N(v) ∩N(w). Since c = 0, it must be that v ∼ w.

Thus a = k − 1.

(c) =⇒ (d), (d) =⇒ (a) Obvious.

Example 7.1.4
The line graph of Kn is ((

n

2

)
, 2n− 4, n− 2, 4

)
strongly regular.

The line graph of Kn,n is
(n2, 2n− 2, n− 2, 2)

strongly regular.

7.1.1 Parameter Relation

Proposition 7.1.5
A (n, k, a, c) strongly regular graph X satisfies

c(n− k − 1) = k(k − a− 1).

74



©Fel
ix

Zh
ou

Proof
Fix u ∈ V (X). Let U denote the neighbours of u and V the non-neighbours of u.

Clearly, |U | = k, |V | = n− k − 1.

Now, for each v ∈ V , v 6∼ u so they must share exactly c neighbours. But all neighbours
of u are in U and

E(U, V ) = c(n− k − 1).

Similarly, for all x ∈ U , x ∼ u hence they share a common neighbours. Since all neighbours
of u are in U , x shares a neighbours with u in U . Then x has k − 1− a other neighbours
in V . Hence

E(U, V ) = k(k − 1− a).

7.2 Eigenvalues

Lemma 7.2.1
Suppose X is (n, k, a, c) strongly regular and X is not complete. Put A := A(X).
Then A has 3 distinct eigenvalues k, θ, τ , where

θ =
a− c+

√
∆

2

τ =
a− c−

√
∆

2
∆ := (a− c)2 + 4(k − c).

These are the roots of the quadratic polynomial

λ2 − (a− c)λ− (k − c).

Moreover, the algebraic multiplicities of θ, τ are

mθ =
1

2

(
(n− 1)− 2k + (n− 1)(a− c)√

∆

)
mθ =

1

2

(
(n− 1) +

2k + (n− 1)(a− c)√
∆

)
.

Proof
Consider the entries of A2. There are k closed 2-walks at each vertex. If u ∼ v, there are
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precisely a 2-walks from u to v. If u 6∼ v, there are exactly c 2-walks from u to v.

It follows that

A2 = kI + aA+ c(J − I − A)

A2 − (a− c)A− (k − c)I = cJ.

We know that k is an eigenvalue of A with the all-1s vector 1n being an eigenvector. Thus
if λ 6= k is an eigenvalue with eigenvector v, then v⊥1n.

Moreover,

A2v − (a− c)Av − (k − c)Iv = cJv

λ2v − (a− c)λv − (k − c)v = 0

λ2 − (a− c)λ− (k − c) = 0.

Clearly λ ∈ θ, τ .

It remains to verify mθ,mτ as well as mθ,mτ > 0 with θ, τ 6= k and θ 6= τ .

θ 6= τ We have ∆ := (a− c)2 +4(k− c) = 0 if and only if a = k = c. But since a ≤ k− 1,
this is impossible.

By the definitions of θ, τ , they must differ.

θ, τ 6= k This follows directly from the Perron-Frobenius theorem.

mθ,mτ There are n eigenvalues, hence

mθ +mτ = n− 1.

Moreover, trA = 0 implies that

k +mθθ +mττ = 0.

Solving these linear equations yield

mθ = −(n− 1)τ + k

θ − τ

mτ =
(n− 1)θ + k

θ − τ

mθ,mτ > 0 We leave this as an exercise.
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Lemma 7.2.2
A connected regular graph with exactly 3 distinct eigenvalues is strongly regular.

Proof
Suppose X is k-regular, connected, and has eigenvalues k, θ, τ . Put A := A(X) and

M := (k − θ)−1(k − τ)−1(A− θI)(A− τI).

Then M has eigenvalue 1 with multiplicity 1 by the Perron-Frobenius theorem with cor-
responding eigenvector 1n. Moreover, we can also show that M has eigenvalue 0 with
multiplicity n− 1.

Now, rankM = 1. Moreover, M is symmetric and M1n = 1n. Thus we must have

M =
1

n
J.

By computation,

(A− θI)(A− τI) = (k − θ)(k − τ)
1

n
J

A2 − (θ + τ)A+ θτI = (k − θ)(k − τ)
1

n
J

A2 = (θ + τ)A− θτI + (k − θ)(k − τ)
1

n
J.

It follows taht the number of 2-walks from u to v in X depends only on whether u =
v, u ∼ v, or u 6= v, u 6∼ v. Hence X is strongly regular.

Theorem 7.2.3
Suppose X is connected and regular and is NOT complete. Then X has 3 distinct
eigenvalues if and only if X is strongly regular.

Recall that ∆ := (a− c)2 + 4(k − c) and

mθ =
1

2

(
(n− 1)− 2k + (n− 1)(a− c)√

∆

)
mθ =

1

2

(
(n− 1) +

2k + (n− 1)(a− c)√
∆

)
.

But mθ,mτ are integers. Hence this is a condition on the parameters n, k, a, c.
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7.3 Payley Graphs

Definition 7.3.1 (Payley Graphs)
Suppose q is a prime power and q ≡ 1 mod 4. Then P (q) is the graph with

V (P (q)) = GF(q)

E(P (q)) = {uv : u− v is a nonzero square}.

Proposition 7.3.1
P (q) is well-defined.

Proof
It suffices to show that u− v is a non-zero square if and only if v−u is a non-zero square.

It is not hard to see that exactly half of elements in GF(q) \ {0} are squares. In particular,
P (q) is q−1

2
-regular.

Lemma 7.3.2
P (q) is arc transitive.

Proof
Let φa,b : V (P (q)) → V (P (q)) be given by

x 7→ ax+ b.

Then φa,b ∈ Aut(P (q)) if a is a non-zero square (exercise).

For any two arcs (x, y), (x′, y′), let a = (x′ − y′)(x− y)−1 and b = x′ − ax. It follows that

(x′, y′) = (x, y)φa,b

and P (q) is arc transitive.

Theorem 7.3.3
P (q) is self-complementary.
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Proof
Define σ : x 7→ ax where a 6= 0 is NOT a square. This is an isomorphism to its comple-
ment.

Theorem 7.3.4
P (q) is

(
q, q−1

2
, q−5

4
, q−1

4

)
strongly regular.

Proof
Exercise.

7.4 More Strongly Regular Graphs

We have seen that Cn, P (q) are strongly regular.

Definition 7.4.1 (Lattice Graph)
Let Ln denote the graph where

V (Ln) = [n]× [n]

E(Ln) = {(a, b)(a′, b′) : a = a′, b = b′}

Observe that Ln is (n2, 2(n− 1), n− 2, 2) strongly regular.

Definition 7.4.2 (Latin Square)
An n × n Latin square is an n × n matrix such that each row and column is a
permutation of [n].

Definition 7.4.3 (Latin Square Graph)
Let A be an n× n latin square. The Latin square graph X(A) associated with An is
defined by

V (X(A)) = [n]× [n]

E(X(A)) = {(a, b)(a′, b′) : a = a′ ∨ b = b′ ∨ Aab = Aa′b′}

The latin graph X(A) for an n × n Latin square is (n2, 3(n − 1), n, 6) strongly regular
(exercise).
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7.5 The Second Eigenvalue

Let λ2 denote the second largest eigenvalue of A(X) and µ2 denote the second smallest
eigenvalue of L(X). They are closely related. Indeed, if X is k-regular, then µ2 = k − λ2.

While λ1 gives information about the degrees of X, λ2, µ2 measure the expansion property
of X (how well connected X is). We know that µ2 = 0 if and only if X is disconnected. If
X has a small λ2, or large µ2, then X is a good expander.

Definition 7.5.1 (Isoperimetric Ratio)
Let S ⊆ V (X). The isoperimetric ratio of S is

θ(S) :=
e(S, S̄)

|S|
.

The isoperimetric ratio of X is

θ(X) := min
S:|S|≤V (X)

2

θ(S).

Definition 7.5.2 (α-Expander)
X is an α-expander if θ(X) ≥ α.

Theorem 7.5.1
θ(X) ≥ µ2

2
.

Proof
We argue that for every S ⊆ V (X), |S| ≤ n

2
, the isoperimetric ratio satisfies

θ(S) ≥ µ2

(
1− |S|

n

)
.

The result then follows.

Recall that L = L(X) has µ1 = 0 with eigenvector 1n. Hence µ2 is the smallest eigenvalue
of L− 1

n
J . Moreover, the Rayleigh quotient is minimized at an eigenvector v of µ2 where

v⊥1n.
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That is,

µ2 = min
x⊥1n

xT
(
L− 1

n
J
)
x

xTx

= min
x⊥1n

xTLx

xTx
.

Let α := |S|
n

and x := χS − α1n. Then x⊥1n and

‖x‖22 = αn(1− α).

Moreover,

µ2 ≤
xTLx

xTx

=
1

αn(1− α)

∑
uv∈E

(xu − xv)
2

=
1

αn(1− α)
e(S, S̄)

=
θ(S)

1− α
.
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