
©Fel
ix

Zh
ou

CO351: Network Flow

Felix Zhou

Fall 2019, University of Waterloo
from Kazuhiro Nomoto’s Lectures

1

©Fel
ix

Zh
ou

Contents

1 Preface 6

1.1 Assignments . 6

1.2 Midterms . 6

1.3 Final Exam . 6

2 Graph Theory 7

2.1 Undirected Graphs . 7

2.2 Directed Graphs (Di-Graphs) . 8

2.3 Underlying Graph . 9

3 Transshipment Problem (TP) 11

3.1 LP Formulation of TS . 11

3.2 dual LP for TP . 11

3.3 Complementary Slackness Condition . 12

3.4 Simplex Applied to TP . 12

3.4.1 Linear Algebra . 12

3.4.2 Finding a Flow . 13

3.4.3 The Dual . 14

3.4.4 Tree Flow . 15

3.4.5 Selecting a Leaving Arc . 15

3.4.6 How Much Flow to Introduce . 15

3.4.7 Full Algorithm . 15

3.4.8 Economic Interpretation . 16

3.4.9 Unboundedness . 16

3.4.10 Finding an Initial BFS . 17

3.4.11 Feasibility Characterization . 18

2

©Fel
ix

Zh
ou

4 Minimum Cost Flow Problem (MCFP) 21

4.1 LP Formulation . 21

4.1.1 Dual of MCFP LP . 21

4.1.2 Rank of Matrix . 22

4.1.3 Summary . 23

4.2 Complementary Slackness Conditions . 23

4.2.1 Economic Interpretation . 24

4.3 Network Simplex for MCFP . 24

4.4 Feasibility Characterization . 25

4.5 Applications of TP and MCFP . 27

4.5.1 Minimum Bipartite Perfect Matching 27

4.5.2 Airline Scheduling . 28

4.5.3 Catering . 29

4.5.4 Matrix with Consecutive 1’s . 30

5 Shortest Dipaths 31

5.1 Problem . 31

5.2 LP Formulation . 31

5.2.1 Dual . 32

5.3 Integral Feasible Solutions . 32

5.3.1 Consequences . 33

5.4 Terminology . 34

5.5 Results on Rooted Trees . 35

5.6 Ford’s Algorithm . 35

5.6.1 The Algorithm . 35

5.6.2 Remarks . 36

5.6.3 Termination . 38

5.7 The Bellman-Ford Algorithm . 38

3

©Fel
ix

Zh
ou

5.7.1 The Algorithm . 38

5.7.2 Proof of Correctness . 39

5.8 Dijkstra’s Algorithm . 41

5.8.1 Motivation . 41

5.8.2 Details . 41

5.8.3 The Algorithm . 41

5.8.4 Proof of Correctness . 41

5.8.5 Running Time . 42

5.9 Applications of Shortest Path . 42

5.9.1 Network Reliability . 42

5.9.2 Currency Exchange . 42

6 Maximum Flow 44

6.1 LP Formulation . 44

6.2 Ford-Fulkerson Algorithm . 44

6.2.1 The Algorithm . 44

6.2.2 Termination . 45

6.2.3 Running Time . 45

6.3 Edmonds-Karp . 45

6.3.1 Running Time Analysis . 45

6.3.2 Proof of Correctness . 47

6.4 Maximum-Flow Minimum-Cut . 47

6.4.1 Combinatorial Applications of Max-Flow Min-Cut 48

6.5 Flows with Lower Bounds . 51

6.5.1 Modification of Ford-Fulkerson . 51

6.5.2 Feasibility Characterization . 52

6.5.3 Aside: Finding an Initial Solution . 53

6.6 Applications of Maximum Flow . 53

4

©Fel
ix

Zh
ou

6.6.1 Matrix Rounding . 53

6.6.2 Maximum Closure . 53

6.7 Preflow-Push Algorithm . 55

6.7.1 The Algorithm . 56

6.7.2 Correctness of Preflow-Push . 56

6.7.3 Termination & Running Time Analysis 58

7 Gobal Minimum Cuts 62

7.1 First Steps . 62

7.2 Hao-Orlin . 62

7.2.1 Generic Algorithm for Minimum s-Cut 63

7.2.2 Proof of Correctness . 63

7.2.3 Preparation for Hao-Orlin . 63

7.2.4 The Algorithm . 65

7.2.5 Proof of Correctness . 66

7.2.6 Termination & Running Time Analysis 67

8 Global Minimum Cut in Undirected Graphs 69

8.1 Karger’s Algorithm . 69

8.1.1 The Algorithm . 69

8.1.2 Proof of Correctness . 69

5

©Fel
ix

Zh
ou

1 Preface

1.1 Assignments

10, with the lowest 2 dropped.

1.2 Midterms

2 each worth potentially 15% each potentially in EV3

1.3 Final Exam

worth either 55% or 70%

6

©Fel
ix

Zh
ou

2 Graph Theory

2.1 Undirected Graphs

Definition 2.1.1 (Graph)
G = (V,E) set of vertices and unordered pair of elements of V called edges.

Definition 2.1.2
• degree

• walk

• path

• cycle

• connected

Definition 2.1.3 (Cut)
Let G = (V,E) be a graph, S ⊆ V .
The cut δ(S) induced by S is the set of all edges with exactly one vertex in S

If s, t ∈ V and s ∈ S, t /∈ S then δ(S) is an st-cut.

Theorem 2.1.1
There is an st-path if and only if every st-cut is non-empty.

Definition 2.1.4
• tree

• forest

• spanning-tree

7

©Fel
ix

Zh
ou

Proposition 2.1.2
• a tree with n vertices has exactly n− 1 edges.

• if T is a tree and u, v ∈ T are NOT adjacent in T

1. T + uv has exactly one cycle C

2. if xy ∈ C then T + uv + xy is a tree

2.2 Directed Graphs (Di-Graphs)

Definition 2.2.1 (Di-Graph)
D = (N,A) set of nodes and ordered pair of elements of N called arcs.

Definition 2.2.2
• tail

• head

• out-degree

• in-degree

• di-walk

• di-path

• di-cycle

Definition 2.2.3 (Cut)
Let D = (N,A) be a digraph and S ⊆ N .
The cut induced by S is

δ(S) := {uv ∈ A : u ∈ S, v /∈ S}

We can also define
δ(S̄) := {uv ∈ A : u /∈ S, v ∈ S}

Definition 2.2.4
If s ∈ S, t /∈ S then δ(S) is an s, t-cut.

8

©Fel
ix

Zh
ou

Theorem 2.2.1
Let D = (N,A) be a digraph and s, t ∈ N .
There is an s, t di-path if and only if every s, t-cut is non-empty.

Proof (=⇒)
Any s, t-cut intersects any s, t-path.

Proof (⇐=)
Consider S, the set of all nodes such that for every v ∈ S, there is an s, v di-path.

If t ∈ S, we are done.

Else δ(S) is an s, t-cut and must be non-empty. But then we can extend a path in S with
the arcs in δ(S) and it should belong in S in the first place.

This is the desired contradiction.

2.3 Underlying Graph

Definition 2.3.1 (Underlying Graph)
of D = (N,A) is the undirected graph G = (N,E) where E is the set of arcs of D
but with directions removed.

Definition 2.3.2 (Cycle in Digraph)
A cycle in the underlying graph.

By fixing an orientation of the cycle, arcs in the direction of the orientation are

Definition 2.3.3 (Forward Arcs)

and otherwise

Definition 2.3.4 (Backward Arcs)

Definition 2.3.5 (Connected)
A digraph is connected if the underlying graph is connected.

9

©Fel
ix

Zh
ou

Definition 2.3.6 (Strongly Connected)
Let D = (N,A) be a digraph. It is strongly connected if for all s, t ∈ N there is both
a s, t di-path and a t, s di-path.

Definition 2.3.7 (Spanning Tree)
of a directed graph is a spanning tree of the underlying graph.

10

©Fel
ix

Zh
ou

3 Transshipment Problem (TP)

Let D = (N,A), node demand b ∈ RN , and arc costs w ∈ RA.

We generally assume
∑

bi = 0, and that D is connected.

A solution is a flow x ∈ RA.

We wish to minimize wTx such that∑
iv∈A

xiv −
∑
vj∈A

xvj = bv

In other words, the in-flow less the out-flow is the demand of the node.

Given a a vector (flow) x, and A′ ⊆ A define

x(A′) =
∑
e∈A′

x(e)

3.1 LP Formulation of TS

minwTx such that x ≥ 0 and
x(δ(v̄))− x(δ(v)) = bv

for all v ∈ N

We can write the constraints in matrix form with a |N | × |A| matrix such that

Definition 3.1.1 (Incidence Matrix)

av,ij =


−1, i = v

1, j = v

0, else

Note that each arc “appears” twice, once as head and once as tail in the matrix.

3.2 dual LP for TP

There is one constraint in the LP for every node. So we have one dual variable for each node
y ∈ RN .

11

©Fel
ix

Zh
ou

The dual is a maximization problem so the objective function is

max yT b

the constraints are such that for each arc uv ∈ A

yv − yu ≤ wuv

note that y is free since the original LP is an equivalence LP.

3.3 Complementary Slackness Condition

Theorem 3.3.1
x, y are optimal solutions for the primal and dual if and only if

xuv = 0 ∨ yv − yu = wuv

for each uv ∈ A.

Note that since we have equality constraints in the primal, there are no complementary
slackness conditions in the dual.

If a flow is optimal, then the Complementary Slackness Conditions say that there must be
a y such that xuv = 0 or

yv − yu = wuv

for each uv ∈ A.

If the y is then feasible (for all other non-active conditions, the constaints still holds), then
we have verified optimality of the solution for the primal.

3.4 Simplex Applied to TP

3.4.1 Linear Algebra

What is a basis?

Consider an incidence matrix, we have |N | rows. If we add all the rows of the incidence
matrix, we get the zero vector, meaning that the rows are linearly dependant.

So the rank of the incidence matrix is at most |N | − 1. We need to choose at most |N | − 1
linearly independent columns.

12

©Fel
ix

Zh
ou

We now show that if D = (N,A) is connected, the rank is precisely |N | − 1.

From now on, we will assume D is connected.

Proposition 3.4.1
The columns of the incidence matrix corresponding to a cycle are linearly dependent.

Recall for an (undirected) cycle v0, v1, . . . , vk−1 in a digraph D = (N,A), an arc of the form
vivi+1 are forward arcs and vi+1vi are backward arcs.

Proof
Let C be a cycle and let M be its incidence matrix.

Let F,B be the forward, backward arcs of C respectively.

Now, suppose M ′ is obtained by multiplying columns of arcs in B by −1.

For each node v, d(v) = d(v̄) = 1. So for each row, representing v ∈ M ′, there is only one
entry with 1, only one with −1.

So the sum of the entries of each row is 0. Hence, the sum of the columns of M ′ is 0.

This shows that the sum is a linear combination of columns of M . So M is linearly
dependent.

Proposition 3.4.2
A set of linearly dependent columns of the incidence matrix must include a cycle.

Proof
Assignment 3.

Note that a basis consists of a spanning tree.

Theorem 3.4.3
Let M be the incidence matrix of a digraph D = (N,A).
Then a set of |N | − 1 columns of M is a basis if and only if the corresponding arcs
form a spanning tree of D.

Note that the above shows that rankM = |N | − 1.

3.4.2 Finding a Flow

We can find flow based on a tree T by

(1) Solving ATx = bT

13

©Fel
ix

Zh
ou

(2) work in an iterative way starting at a leaf

Note that it is entirely possible that a tree does not give a feasible flow. So how do we find
an initial BFS?

For now, let us assume we have a feasible BFS. How do we pick an entering variable?

At each step of the Simplex Method, we are finding y such that

AT
By = wB

where B is basis.

We have an “optimal” solution if
wN − AT

Ny ≥ 0

If not, there is uv ∈ N such that

wuv − (yv − yu) < 0

so it is not optimal.

If such an arc exists, have uv enter the basis.

3.4.3 The Dual

Definition 3.4.1 (Node Potential)
A vector y ∈ RN is called a node potential.

Definition 3.4.2 (Reduced Cost)
Given potential y, the reduced cost of arc uv is

w̄uv = wuv + yu − yv

Definition 3.4.3 (Feasible)
We say a node potential is feasible if

w̄uv ≥ 0

for all uv ∈ A.

14

©Fel
ix

Zh
ou

3.4.4 Tree Flow

Definition 3.4.4 (Tree Flow)
A BFS in a TP is a spanning tree with a feasible flow called the tree flow

For a given basis B, we calculate AT
By = wB (or yu + wuv − yv = 0).

If wN − AT
Ny ≥ 0, then we are done.

If not, there is uv ∈ B such that w̄uv = yu + wuv − yv < 0. Put uv in my basis.

3.4.5 Selecting a Leaving Arc

If we add arc uv into the tree T , then this creates exactly one cycle C.

To ensure that the leaving arc gives a spanning tree, the leaving arc needs to be on C.

We want to add a flow of t to the arc uv. To make sure that the feasibility conditions are
met, any forward arcs in C with respect to uv must have additional flow of t. Any backward
arc must substract a flow of t.

3.4.6 How Much Flow to Introduce

Look at all the backward arcs, find the minimum flow and set t to be this value.

3.4.7 Full Algorithm

Given D = (N,A) connected, with arc costs w, and node demands b.

1) Start with a spanning tree T which has a feasible tree flow x.
2) Calculate potentials y such that w̄uv = 0 when uv ∈ T .
3) Calculate w̄uv for any uv not in T .
4) While there exists an arc uv with w̄uv < 0

(a) T + uv has a cycle. Consider the direction of C such that uv is a forward arc.
(b) Pick pq such that xpq = min{ij : ij is a backward arc of C}. Let t = xpq.
(c) For any forward arc in C, add a flow of t.
(d) For any backward arc in C, substract a flow of t.
(e) Replace T with T + uv − pq.

15

©Fel
ix

Zh
ou

(f) Go back to 2)

3.4.8 Economic Interpretation

Interpretation for dual potentials.

Imagine transporting a set of commodities. The dual potentials represent the prices of these
commodities at the nodes. We buy units at the source node, send them over, and sell at sink
node.

The reduced cost on an arc uv is such that if it is greater than 0, we do not wish to transport
commodities through uv as we are at a deficit. On the other hand, if less than 0, we wish to
increase flow as we can make a profit.

3.4.9 Unboundedness

In network simplex, unboundedness occurs when no leaving arc can be found, so that you
can increase the parameters (entering variable) indefinitely.

Consider a dicycle C = y1 . . . yky1

yv2 = yv1 + wv2v2

. . .

yk = yv1 + wv1v2 + · · ·+ wvkv1

So the reduced cost wuv is such that

w̄′
vkv1

= yvk + wvkv1 − yv1

= (yv1 + . . .) + wvkv1 − yv1

= wvkv1 +
k−1∑
i=1

wvivi+1

So the sum costs on C < 0. Because vkv1 was chosen as an entering arc since w̄uv < 0.

We call C a negative dicycle

Theorem 3.4.4
A feasible TP is unbounded if and only if there is a negative dicycle.

16

©Fel
ix

Zh
ou

Proof (=⇒)
Assignment.

Proof (⇐=)
Let C be a negative dicycle so w(C) < 0.

Let x∗ be a feasible flow and define a flow

xC :=

{
t, e ∈ C

0, e /∈ C

So xC(δ(v̄))− xC(δ(v)) = 0 for each v ∈ N .

As x∗ does not change the net flow on any node

x∗ + xC

is a feasible flow

(x∗+xC)(δ(v̄))−(x∗+xC)(δ(v̄)) = [x∗(δ(v̄))− x∗(δ(v̄))]+[xc(δ(v̄))− xc(δ(v))] = bv−0 = bv

The objective value however, is

wT (x∗ + xC) = wTx∗ + wTxC = wTx∗ + t · w(C) → ∞

as w(C) < 0.

3.4.10 Finding an Initial BFS

We can apply the same trick and augment D = (N,A) so that there is an extra node with
zero b-value and arcs of cost 1 with tails in the demand nodes and heads in the supply nodes.
All other arc costs are zeroed out.

17

©Fel
ix

Zh
ou

Definition 3.4.5
Given a digraph D = (N,A) and node demands b ∈ RN , the auxiliary is given by
D′ = (N ′, A′) with b ∈ RN ′ and arc costs w′ ∈ RA′ .

N ′ = N ∪ {z} new node
A′ = A ∪ {vz : v ∈ N, b(v) < 0} ∪ {zv : v ∈ N, b(v) < 0}

b′(z) = 0,∀v ∈ N, b′(v) = b(v)

w′(e) =

{
0, e ∈ A

1, e ∈ A′ \ A

Note that the auxiliary TP has a natural feasible flow (everything through z).

It is bounded below by 0, and so has an optimal solution.

Theorem 3.4.5
A TP is feasible if and only if its auxiliary TP has optimal value 0.

3.4.11 Feasibility Characterization

Let us assume that our TP is not feasible. This means that the auxiliary TP has an optimal
solution with positive objective value. Let x∗ be an optimal solution that is a tree.

Let us set yz := 0. For our tree flow, all demand nodes have potential 1, and supply nodes
potential −1.

This is because any nodes with arcs going into z or out of z are forced to have potential
−1, 1 respectively. But all other nodes are connected to at least one of these nodes but every
non-augmented arc has cost 0, so the node potentials just spread to each other.

Let the sets of such nodes be denoted S+, S−.

Suppose there is an arc e from S− to S+. But then the reduced cost is strictly negative
which contradicts optimality so no such arcs exist.

ē = 0− (1− (−1)) = −2 < 0

If e is an arc from S+ to S− but then the reduced cost is 2 and so it is a non basic arc. In
other words

xe = 0

So the only arcs in our tree are ones from S− to z, and z to S+.

18

©Fel
ix

Zh
ou

Restricting our solution to non-zero arcs, we get

b(S−) =
∑
v∈S−

bv < 0

is the net flow of S−.

Theorem 3.4.6
A TP with digraph D = (N,A) and node demands b ∈ Rn is infeasible if and only if
there are a set of nodes S ⊆ N such that

b(S) < 0

and
δ(S) = ∅

Essentially, there is more supply than demand in this subgraph and no arcs for the supply
to leave.

Proof (=⇒)
Assume our TP is infeasible. Using the theorem, the auxiliary TP has an optimal solution
with positive optimal value.

So there is a tree flow x.

Let y be the corresponding feasible potential with yz = 0.

Then we can partition other nodes by whether the feasible potential is 1,−1. This is
possible since we are essentially setting potentials from a tree with root z.

We claim that δ(S−) = ∅.

If not, then there is an arc uv so that u ∈ S−, v ∈ S+. But then

w̄uv = wuv − yv + yu = −2 < 0

which means x is not optimal!

We also claim that xδ(S+) = xδ(S̄−) = 0. Indeed, if there is an arc from S+ → S− in our
tree, the reduced cost is 2 6= 0, meaning it is non-basic.

By definition

xδ(S̄−)− xδ(S−) =
∑
v∈S−

[xδ(v̄)− xδ(v)]
by feasibility︷︸︸︷

=
∑
v∈S−

b(v) = b(S−) < 0

19

©Fel
ix

Zh
ou

Proof (⇐=)
Suppose that there is S ⊆ N where b(S) < 0 and δ(S) 6= ∅.

Suppose for a contradiction that there is a feasible solution.

0 > b(S) =
∑
v∈S

b(v)

=
∑
v∈S

xδ(v̄) + xδ(v) by feasibility

= xδ(S̄)− xδ(S)

= xδ(S̄)

But x ≥ 0 so xδ(S̄) ≥ 0 which is a contradiction.

20

©Fel
ix

Zh
ou

4 Minimum Cost Flow Problem (MCFP)

Given digraph D = (N,A), node demands b ∈ RN , arc costs w ∈ RA, and arc capacities
x ∈ RA

+, our goal is to find a feasible flow satisfying node demands and capacities while
minimizing total cost.

4.1 LP Formulation

minwTx such that

Mx = b

−Ix ≥ −c

x ≥ 0

xδ(v̄)− xδ(v) = bv v ∈ N

xe ≤ ce e ∈ A

x ≥ 0

minwTx such that [
M 0
IA IA

] [
x
s

]
=

[
b
c

]
x, s ≥ 0

xδ(v̄)− xδ(v) = bv v ∈ N

xe + se = ce e ∈ A

x, s ≥ 0

4.1.1 Dual of MCFP LP

max bTy − cT z such that

[
MT −I

] [y
z

]
≤ w

−yu + yv − zuv ≤ wuv uv ∈ A

z ≥ 0

21

©Fel
ix

Zh
ou

4.1.2 Rank of Matrix

Consider the incidence matrix which is a part of the matrix of constraints and has rank
|N | − 1.

We extended this by essentially adding the identity corresponding to the upper bound of
constraints into the set so the rank of this matrix is

|N | − 1 + |A|

This means a basis has |N |+ |A| − 1 variables. All non-basic variables are set at 0.

We will assume that ce > 0 for all e ∈ A. Otherwise, we can remove that arc.

For each e ∈ A at least one of xe, se is in the basis. If not, xe, se are non-basic, so they are
set to zero. But

0 = xe + xe = ce > 0

which violats feasibility.

For each arc e ∈ A, we have the following three possibilities

(1) only xe is in the basis (se is not)
(2) only se is in the basis (xe is not)
(3) both xe, se are in the basis

Now let us try to count how many arcs are in case (3).

Let k denote this number. Remark that each arc of this case “takes up” two elements in our
basis.

Then |A| − k arcs are in (1), (2), each taking only one element in our basis.

The size of the basis is |N |+ |A| − 1 so

2k + |A| − k = |N |+ |A| − 1

as there are 2k variables in case (3) (generate two elements each) and |A| − k variables in
(1), (2).

Hence
k = |N | − 1

Can the case (3) arcs include a cycle?

No. To see the reason, first notice that x takes a linear combination of the contraint matrix,
so each basis element correponds to one column (not injective). We can column reduce the
columns of case (3) arcs to an “incidence matrix” with 0s on the bottom rows.

22

©Fel
ix

Zh
ou

Then there is a cycle if and only if the columns are linearly dependent. But we already know
that the incidence matrix has rank |N | − 1. Therefore, the |N | − 1 arcs in (3) correspond to
a spanning tree of D = (N,A).

4.1.3 Summary

A tree flow in MCFP consists of a spanning tree T and a feasible flow where all arcs not in
T satisfies

xe ∈ {0, ce}

4.2 Complementary Slackness Conditions

Recall the LP formulation: minwTx such that

xδ(v̄)− xδ(v) = bv, xe ≤ ce, x ≥ 0

Dual: max bTy − cT z such that

−yu + yv − zuv ≤ wuv, zuv ≥ 0

(1) zuv > 0 =⇒ xuv = cuv

(2) −yu + yv − zuv < wuv =⇒ xuv = 0

The second condition is annoying to check. As before, the reduced cost w̄uv for arc uv is

w̄uv = yu + wuv − yv

The dual constraints become
zuv ≥ −w̄uv, zuv ≥ 0

The objective function contains −cT z where c > 0, so maximizing this is the same as mini-
mizing z.

In other words, any partial optimal solution z of the dual must satisfy

zuv = max{0,−w̄uv}

Le us rewrite (1)
zuv > 0 =⇒ xuv = cuv

But
zuv > 0 ⇐⇒ w̄uv < 0

23

©Fel
ix

Zh
ou

So we can write
w̄uv < 0 =⇒ xuv = cuv

Now consider (2)
−yu + yv − zuv < wuv =⇒ xuv = 0

But
−yu + yv − zuv < wuv ⇐⇒ zuv > −w̄uv ⇐⇒ w̄uv > 0

We end up with

(1) w̄uv < 0 =⇒ xuv = cuv

(2) w̄uv > 0 =⇒ xuv = 0

(3) 0 < xuv < cuv =⇒ w̄uv = 0 [contrapositive of (1), (2)]

4.2.1 Economic Interpretation

Consider the dual potentials as the prices of goods.

The reduced costs are the cost of buying at u, transporting through uv, and selling at v.

Then w̄uv < 0 means we make a profit thorugh uv and send as much flow as possible.

If w̄uv > 0, then we lose money through uv and do not send anything.

4.3 Network Simplex for MCFP

Same as TP except in selecting entering and leaving arcs.

Look for an arc e with either

(i) w̄e < 0, xe = 0

(ii) w̄e > 0, xe = ce

Then T + e has a cycle so

(1) orient C such that e is a forward arc.
(2) orient C such that e is a backward arc.

Find t that is the minimum of

{cf − xf : f is a forward arc}

and
{xf : f is a backward arc of C}

24

©Fel
ix

Zh
ou

Pick f to be an arc in C that is used to pick t.

Update flow: add t to forward arcs and subtract t from backward arcs.

Replace T with T + e− f .

4.4 Feasibility Characterization

To solve the feasibility problem, we use the same auxiliary digraph as before.

The cap for the auxiliary arcs is removed (∞), or we can choose a constant larger than the
sum of all supply.

Theorem 4.4.1
A MCFP is feasible if and only if its corresponding auxiliary MCFP has optimal value
0.

Theorem 4.4.2
A MCFP is infeasible if and only if there exists S ⊆ N such that

b(S) > c(δ(S̄))

or
b(S) < −c(δ(S))

This means that there is some subset of the nodes with too much demand, more than the
sum of the upperbounds for the in arcs.

Proof (=⇒)
Suppose our MCFP is infeasible.

Then the auxiliary MCFP has optimal value greater than 0.

Take x to be a corresponding optimal solution.

Set potentials y so that yz = 0.

All other potentials are either 1,−1.

Define S+, S− as before.

Consider e from S− → S+ and f from S+ → S−.

w̄e = 0− 1− 1 = −2 < 0 =⇒ xe = ce

25

©Fel
ix

Zh
ou

and
w̄f = 2 > 0 =⇒ xf = 0

Consider S+. Its net flow is just the inflow coming into S+ as there are no arcs leaving
S+. Conversely, the out flow from S− are all at capacity, with no in flow.

The optimal solution x to the auxiliary MCFP is feasible, and so satisfies

b(S+) = x(δ(S̄+))− x(δ(S+))︸ ︷︷ ︸
=0

=
∑

u∈S−,v∈S+

cuv +
∑
w∈S+

xzw︸ ︷︷ ︸
positive by assumption

> c(δ(S̄+))

with the optimal value of AUX-P being positive so there is an active arc flowing from z.

This means
b(S+) > c(δ(S̄+))

Proof (⇐=)
Suppose there exists S ⊆ N such that

b(S) > c(δ(S̄))

Suppose for a contradiction that there is a feasible flow x.

c(δ(S̄)) < b(S)

= x(δ(S̄))− x(δ(S))

≤ c(δ(S̄))− 0

= c(δ(S̄))

which is a contradiction.

26

©Fel
ix

Zh
ou

4.5 Applications of TP and MCFP

4.5.1 Minimum Bipartite Perfect Matching

Definition 4.5.1 (Bipartite)
Undirected graph G(V,E) is bipartite if V = A ∪B disjoint and δ(A) = E.

Definition 4.5.2 (Matching)
A subset of edges with no common endpoints.

Definition 4.5.3 (Perfect Matching)
A matching is perfect if it uses all vertices.

1 2 3

a b c

We wish to find a perfect matching in G of minimum total cost. Assume V = A∪B disjoint
with |A| = |B|.

Let us formulate this as a MCFP.

(1) direct each edge from A → B.
(2) set the capacity for each arc to be 1.
(3) set

bv =

{
−1, v ∈ A

1, v ∈ B

(4) arc costs stay the same.

We wish to show a correspondance between optimal solutions to MCFP and MBPM.

Theorem 4.5.1
If a MCFP has an optimal solution, and all capacities and node demands are integers,
then there exists an integral optimal solution.

27

©Fel
ix

Zh
ou

Proof
Check the network simplex.

Since the node demands are integers, we have an integral basic feasible solution.

But the capacities are also integers, so at each iteration, we remain integral.

For a MCFP formulation, there exists an integer-valued optimal solution x. So xe = 0 or
xe = 1 for each arc e.

M = {e : xe = 1}
is a perfect matching becuase each node is incident with at most one edge.

Also, any PM corresponds to an integral flow.

4.5.2 Airline Scheduling

A plane visits cities 1, . . . , n in this order:

• There are bi,j passengers from city i to city j (i < j)

• The ticket costs are fi,j (i < j)

• The plane has capacity P

We wish to maximize ticket costs subject to plane capacity (minimize negative costs).

min
n−1∑
i=1

n∑
j=2

−fijxij,i

1 2 3 4

12 13 14 23 24 34

0 b12 b13 + b32 b14 + b24 + b34

−b12

(0, p)

(−f12,∞)

(0, p)

(0,∞)

(0, p)

28

©Fel
ix

Zh
ou

We have nodes and arcs that represent the path of the plane, capacity p, costs 0.

Each node i, j takes passengers from i to j either through the plane, or by other means. If
the passenger takes the plane, we gain f12, the price of the plane ticket (negative so its a
minimization problem). Elsewise, the customer does not take our flight, and there is no gain
whatsoever.

Notice that the negative plane costs “push” passengers to take the plane whenever possible,
certainly not the most intuitive assumptions.

4.5.3 Catering

A caterer requires bi clean napkins for each day 1, . . . , n.

They can buy new ones from the store for a cost of α.

Used napkins can be treated in 3 different ways.

• 1-day service for a cost of β

• 2-day service for cost γ

• kept in storage at no cost

Suppose that clean napkins become dirty at the end of the day. We wish to minimize the
total cost of napkins.

α α
α

α α

0

β
γ

0

β
γ

0

β
γ

0

β

0

s∑5
i=1−bi

1’

b1

2’

b2

3’

b3

4’

b4

5’

b5

c ∑5
i=1 bi

1
−b1

2
−b2

3
−b3

4
−b4

5
−b5

0

the i’s are the dirty napkins generated everyday and the i′’s are the required number of
napkins each day.

29

©Fel
ix

Zh
ou

4.5.4 Matrix with Consecutive 1’s

Minimize wTx subject to
Ax ≥ b, x ≥ 0

where the each column of A has one block of consecutive 1’s and only 0’s otherwise.

b =


5
12
10
6

 , A =


0 1 0 1 1
1 1 0 0 1
1 1 1 0 0
1 1 1 0 0


Say A has p rows. We add p slack variables of −1’s. Add also a redundant row of 0’s.

A =


0 1 0 1 1 −1 0 0 0
1 1 0 0 1 0 −1 0 0
1 1 1 0 0 0 0 −1 0
1 1 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0


In the order of i = p, p − 1, p − 2, . . . , 1, substract the i-th constraint from the (i + 1)-th
constraint. This produces the incidence matrix of a directed graph!

A′ =


0 1 0 1 1 −1 0 0 0
1 0 0 −1 0 1 −1 0 0
0 0 0 0 −1 0 1 −1 0
0 0 0 0 0 0 0 1 −1
−1 −1 −1 0 0 0 0 0 1

 , b′ =


5
7
−2
−4
−6


Note that the new demands actually add to 0! This is due to the telescoping sum∑

b′i = (0− bp) + (bp − bp−1) + · · ·+ (b2 − b1) + b1 = 0

Example 4.5.2
A manufacturing comapny must contract for d(i) units of storage.

For the time periods i = 1, . . . , n.

wij denotes the cost of 1 unit of storage at the beginning of period i, through the period

[i, j)

We wish to know how much capacity to acquire, at what times, and for how many period.

30

©Fel
ix

Zh
ou

5 Shortest Dipaths

Although Network Simplex is powerful, it is not polynomial time. We will show some more
specialized algorithms which are more efficient.

5.1 Problem

Given a digraph D = (N,A), arc costs w ∈ RA, two distinct nodes s, t ∈ N , we wish to find
a minimum cost st-dipath.

s

a b

t

Example 5.1.1

5.2 LP Formulation

Definition 5.2.1 (Characteristic Vector)
Let P be a st-dipath.
The characteristic vector of P is xP ∈ RA such that

xp
e =

{
1, e ∈ A(P)

0, e /∈ A(P)

we want: minwTx such that

x(δ(v̄))− x(δ(v)) =


−1, v = s

1, v = t

0, else

and x ≥ 0 for all v ∈ N .

31

©Fel
ix

Zh
ou

Note that the characteristic vector of any st-dipath is an integral feasible solution. NOte
that also this is a TP.

5.2.1 Dual

max yt − ys subject to
yv − yu ≤ wuv, uv ∈ A

where we write
w̄uv := wuv − yv + yu

5.3 Integral Feasible Solutions

to the LP might not be an st-dipath.

a

s

b

c

t

Example 5.3.1

However, it will contain a st-dipath. We can subtract xP from this flow and get a set of
dicycles.

Theorem 5.3.2
If x̄ is an integral feasible solution to LP, then x̄ is a sum of the characteristic vector
of an st-dipath and a collection of dicycles.

Proof
Let F = {e ∈ A : x̄e > 0}.

We first show the existence of a dipath. Let δ(S) be an st-cut. The net flow of S is −1,
so there must be at least one arc in δ(S) with non-zero flow (ie it is in F).

So there is an st-dipath P using arcs of F .

32

©Fel
ix

Zh
ou

Let x′ = x̄− x′P . Since x̄, xP satisfy the flow constraints, it is a feasible solution ie

∀v ∈ N, x′(δ(v̄))− x′(δ(v)) = 0

Let
F ′ = {e ∈ A : x′

e > 0}

If F ′ = ∅, we are done. Else suppose F ′ 6= ∅.

Take a longest dipath
v1, ,̇vk

such that vivi+1 ∈ F ′.

Since
x′(δ(v̄k))− x′(δ(vk)) = 0

there is an arc vkvi for some i < k (cannot be outside path since we took longest di-path).

This form s dicycle C
vi, vi+1, . . . , vk, vi

Then
x(2) = x′ − xC

satisflies flow contraints and the sum of all flows has decreased by at least 1. By induction,
we are done.

5.3.1 Consequences

Theorem 5.3.3
If there are no negative dicycles, then our LP formulation has an optimal solution
that is the characteristic vector of an st-dipath.

Proof
Suppose x̄ is an optimal integral solutionto our LP.

If x̄ is the characteristic vector of an st-dipath, then we are done.

Else
x̄ = xP + xC1 + · · ·+ xCk

where P is an st-dipath and Ci’s are all dicycles.

If there are no negative dicycles, then
wT x̄ ≥ wTxp

33

©Fel
ix

Zh
ou

So P is an optimal solution in the form of an st-path.

If there are negative dicycles, then the LP is unbounded.

In the original problem, the minimum must exist as there are finitely many st-dipaths.

So the LP formulation (techniques to solve LP) will not help.

5.4 Terminology

Definition 5.4.1 (Equality Arc)
Given a node potential y, if an arc uv satisfies

w̄uv = wuv − yv + yu = 0

Then we call uv an equality arc.

So finding a shortest st-dipath gives us in a sense, more information than solving an LP.

Theorem 5.4.1
Let D = (N,A) be a digraph with arc costs w ∈ RA and no negative dicycles.
If

v1, v2, . . . , vk

is a shortest v1, vk-dipath, then
v1, v2, . . . , vi

is a shortest v1, vi-dipath.

Proof
Since there are no negative dicycles, our LP has an optimal solution which is the charac-
teristic vector of an v1, vk-dipath.

Then there is a corresponding optimal dual solution y where all arcs of P are equality
arcs (CS Conditions).

Let
P ′ = v1, . . . , vi

Then y is still feasible for the dual LP of the shortest v1, vi-dipath problem.

Any arc in P ′ is in P , so all arcs of P ′ are equality arcs.

It follows that the CS Conditions are satisfied for v1, vi-dipath problem.

34

©Fel
ix

Zh
ou

Definition 5.4.2 (Rooted)
A tree T is rooted at s if for all t ∈ N(T), the unique s, t-dipath in T is an s, t-dipath.

Can we find all shortest s, v-dipath for all v ∈ N in one go?

Yes! As long as there are no negative dicycles.

Ford’s Algorithm, Bellman-Ford Algorithm.

5.5 Results on Rooted Trees

Let D = (N,A), x ∈ N , then there is an st-dipath in D for all t ∈ N if and only if there is
a spanning tree in D rooted at s.

Proposition 5.5.1
Let T be a spanning tree in D.
Then T is rooted ats if and only if the in-degree of s is 0, and the in-degree of all other
nodes is 1 in T .

Proof
Assignment.

Definition 5.5.1 (Predecessor)
For a spanning tree T , rooted at s, for each node v other than S, its predecessor is
the unique node u such that

uv ∈ A(T)

We will assume that every node can be reached from s via a dipath.

5.6 Ford’s Algorithm

This produces a feasible potential (∀e, w̄e ≥ 0) and a rooted spanning tree at s, so that the
arcs of this tree are equality arcs.

At each step of the algorithm, we maintain a potential, and the predecessor of each node.

5.6.1 The Algorithm

1) Set ys = 0 and yv = ∞ for v ∈ N \ {s}. Set predecessor, pv = ∅,∀v ∈ N

2) While y is not feasible

35

©Fel
ix

Zh
ou

(a) Find an arc uv ∈ A, where w̄uv < 0

(b) Set yv = yu + wuv. Set pv = u

-1

2

5

-4
2

s

a

b

t

5.6.2 Remarks

Observe that yv never increases since by setting yv = yu +wuv where yv > yu +wuv to begin
with, we decrease yv.

Definition 5.6.1 (Predecessor Digraph)
At any point in the algorithm, the precessor digraph, denote Dp is one where

N(Dp) = N

and
A(Dp) = {pvv : v ∈ N \ {s}}

Proposition 5.6.1
Throughout the algorithm, w̄e ≤ 0 for all arcs in Dp.

Proof
Focus on an arbitrary node v and its unique predecessor pv.

When, a correction takes place with an arc whose head is in v, then w̄pvv = 0 until the
predecessor of v is changed again.

The reduced costs stays non-positive, as only ypv can change (due to correcting other
arcs), and by observation, ypv decreases so

w̄pvv = wpvv − yv + ypv

also decreases.

36

©Fel
ix

Zh
ou

Proposition 5.6.2
If Dp contains a dicycle (at any point in the algorithm), then D contains a negative
dicycle, and the algorithm does not terminate.

Proof
Suppose we produce a dicyle C in Dp by connecting the arc uv.

Say
C = v = v1, v2, . . . , vk = u, v1

Since we connected uv, it must be true that in the previous iteration

yu + wuv − yv < 0

which means
yvk + wvkv1 − yv1 < 0

From our previous work w̄e ≤ 0 for all e ∈ A(Dp) so

yvi + wvivi+1
− yvi+1

≤ 0, 1 ≤ i < k

Since C is a dicycle, when adding all these inequalities, the y’s cancel. We get

k−1∑
i=1

wvivi+1
+ wvkv1 < 0

which shows that C is a negative dicycle.

But if there is a negative dicycle, there cannot be a feasible potential (exercise), so the
algorithm never terminates.

Proposition 5.6.3
If s has a predecessor, then D contains a negative dicycle, and the algorithm does not
terminate.

Proof
Exercise.

37

©Fel
ix

Zh
ou

5.6.3 Termination

Proposition 5.6.4
Suppose the algorithm terminates. Then Dp is a spanning tree of shortest dipaths rooted
at s.
Furthermore, yv will bete cost of a shortest s, v-dipath.

Proof
Since the algorithm terminates, Dp cannot contain a dicycle, and s does not have a
predecessor.

So Dp is a rooted spanning tree.

Since all nodes other than s has a predecessor, the in-degree is 1, and Dp is rooted at s.

Now, all arcs in Dp are equality arcs, since we know w̄e ≤ 0 for all e ∈ A(Dp), and w̄e < 0
is impossible since y is feasible, by termination.

For v ∈ N , let P be the s, v-dipath in Dp. Consider the LP formulation of the shortest
s, v-dipath problem.

Then xP is feasible for the primal and y is feasible for the dual.

The CS Conditions hold since all arcs in P are equality arcs. So xP is an optimal and the
objective of the dual is

yv − ys = yv − 0 = yv

So yv is the cost of a shortest s, v-dipath.

5.7 The Bellman-Ford Algorithm

The idea is to go through ars in “passes”.

5.7.1 The Algorithm

1) Initialisation is the same as Ford, with an additional variable i = 0

2) While i < |N | − 1

a) for each uv ∈ A, if w̄uv < 0, then set yv = yu + wuv, pv = u.
b) increment i

Notice that if a feasible potential is found, then everything from Ford’s Algorithm applies,
and we have an optimal rooted tree.

38

©Fel
ix

Zh
ou

Else, if we have an infeasible potential after |N | − 1 steps, we show that we have a negative
dicycle.

5.7.2 Proof of Correctness

Let us write dv for the cost of a shortest s, v-dipath yv = dv.

Theorem 5.7.1
Suppose no negative dicycles exist.
After the i-th iteration, if there is a shortest s, v-dipath using at most i arcs, then
yv = dv.

Proposition 5.7.2
Suppose there are no negative dicycles.
Then at any point in the algorithm, yv ≥ dv.

Proof
This is true at initialisation.

If yv 6= ∞, then we can trace v bac to s using Dp.

For each of the arcs e, w̄e ≤ 0. Adding all these inequalities w̄e ≤ 0 for all arcs in this
s, v-dipath.

We obtain w(P)− yv ≤ 0. So
dv ≤ w(P) ≤ yv

as desired.

Proof (theorem)
We argue by induction on i.

When i = 0, this is trivial.

Assume that this is true after the i-th iteration. We wish to show this for the (i + 1)-th
iteration.

Pick v which has a shortest s, v-dipath that uses at most i+ 1 arcs. If there is a shortest
s, v-dipath that uses at most i arcs, by induction, yv = dv so that by the proposition, yv
will not change.

Suppose there is a shortest s, v-dipath that uses exactly i+ 1 arcs, say

s = v0, v1, . . . , vi+1 = v

39

©Fel
ix

Zh
ou

Since no negative dicycles exist, v1, . . . , vi is a shortest s, vi-dipath which uses i arcs.

By induction, yvi = dvi after the i-th iteration, and this does not change after the i-th
iteration.

Consider w̄vivi+1
, if it is 0, this means

yvi+1
= yvi + wvivi+1

= dvi + wvivi+1

= w(P)

= dvi+1

Elsewise, if w̄vivi+1
> 0, this means

yvi+1
< yvi + wvivi+1

= dvi + wvivi+1

= w(P)

= dvi+1

which is a contradiction.

Finally, if w̄vivi+1
< 0, this means the algorithm must correct the arc.

yvi+1
= yvi + wvivi+1

. . .

= dvi+1

so we are done.

Corollary 5.7.2.1
At the end of Bellman-Ford, if y is feasible, the yv = dv for all v ∈ N .
Otherwise, we can conclude that there is a negative dicycle.

Proof
Bellman-Ford runs in |N | − 1 iterations.

Any shortest s, v-dipath uses at most |N | − 1 arcs.

If y is feasible, then there are no negative dicycles, so by the theorem, yv = dv for all
v ∈ N .

If not, there is a negative dicycle.

40

©Fel
ix

Zh
ou

5.8 Dijkstra’s Algorithm

Consider the case when there are no negative costs. We can apply a greedy algorithm!

This will be faster than the Bellman-Ford Algorithm.

5.8.1 Motivation

If there are no negative arcs, y = 0 is a feasible potential for the dual.

We wish to raise potentials by t for non-tree nodes while maintaining feasibility.

5.8.2 Details

Case I: Consider u, v /∈ N(T), T is our current tree. Then both yu, yv increases by t, so
w̄uv = wuv − yv + yu does not change.

Case II: If u, v ∈ N(T), then we do not change the potentials and w̄uv does not change.

Case III: If u /∈ N(T)v ∈ N(T), then w̄uv increases and that does not introduce infeasibility
of the potentials.

Case IV: Otherwise, if u ∈ N(T), v /∈ N(T), then w̄uv decreases by t. We can choose t to be
the minimum among all such arcs.

Now, the arc which determined the minimum becomes an equality arc and we can add it to
the tree.

5.8.3 The Algorithm

1) Initialize yv = 0, and T to be the single node tree s

2) While T is not a spanning tree
3) (a) Pick uv ∈ δ(N(T)) such that w̄uv = min{w̄e : e ∈ δ(N(T))}

(b) yw := yw + w̄uv for all w ∈ N(D − T)

(c) Add uv and v to T

5.8.4 Proof of Correctness

y is always feasible by our work above. This includes at initialization as we do not have
negative costs.

41

©Fel
ix

Zh
ou

All arcs in T are equality arcs.

In addition, The algorithm produces a spanning tree rooted at S.

So the same LP argument gives that it must be a tree of shortest s, v-dipaths for all v ∈ N .

5.8.5 Running Time

O(|N | log|N | + |A|), which is faster than Bellman-Ford as we can take advantage of the
greedy approach.

5.9 Applications of Shortest Path

5.9.1 Network Reliability

Given a network D = (N,A), each arc e is assigned an associated reliability re ∈ (0, 1].
Think of this as a probability that re is operational.

For a given dipath P , the reliability of P is

r(p) =
∏
e∈P

re

Our goal is to maximize reliability amongst all s, t-dipaths.

Notice that log r(P) =
∑

e∈P log re and log is strictly increasing so it suffices to compare
logarithms of reliability.

We also make this a minimization problem by having negative arc costs.

The cost ij is
− log rij

Proposition 5.9.1
Modify Djikstra’s Algorithm to solve this problem without taking logs.

Proof
Exercise.

5.9.2 Currency Exchange

We have a set of currencies and an exchange rate ruv representing the number of units of v
currencies which 1 unit of u currency exchanges.

42

©Fel
ix

Zh
ou

Our goal is to make a profit through a series of exchanges.

If we can make a profit, there must be a cycle C such that∏
e∈C

re > 1 ⇐⇒
∑
e∈C

− log re < 0

Label each arc cost with − log re and simply run Bellman-Ford.

43

©Fel
ix

Zh
ou

6 Maximum Flow

6.1 LP Formulation

Given D = (N,A) and s, t ∈ N as source and sink, we wish to maximize total flow from s
to t.

This is given by the LP (P)

maxx(δ(s))− x(δ(s̄)) maximize net out flow of s
x(δ(v̄))− x(δ(v)) = 0 ∀v ∈ N \ {s, t}

xe ∈ [0, ce] ∀e ∈ A

Note that we can turn this into a MCFP.

6.2 Ford-Fulkerson Algorithm

Given D, c, x (flow), its corresponding residual digraph D′ is defined by

N(D′) = N(D)

∀uv ∈ A

{
cuv > xuv =⇒ uv ∈ A(D′), c′uv = cuv − xuv

0 < xuv =⇒ vu ∈ A(D′), c′vu = xuv

Now, notice that if there is an s, t-dipath in D’, we can push flow in D.

Every time the flow changes, the residual graph changes as well.

6.2.1 The Algorithm

Definition 6.2.1 (Augmenting Path)
An augmenting path is an s, t-dipath in D′ the residual digraph.

1) Initialize xe = 0 for all e ∈ A. Form the residual digraph D′

2) While D′ has an augmenting path (st-dipath in D′)

(a) find augmenting path P in D′

(b) push additional flow r along P (+r for forward arcs, −r for backward arcs)

3) Update D′ with the abridged flow

44

©Fel
ix

Zh
ou

6.2.2 Termination

If c is integral, then at each step we increase the flow by at least 1.

If c is rational, we can multiply c by some large integer to make everything into integers.

If c is irrational, then is it possile that this algorithm does not terminate.

6.2.3 Running Time

The running time is polynomial in the numeric values of the input.

6.3 Edmonds-Karp

If we pick an augmenting path in D′ with the fewest number of arcs (with breadth-first
search), then we only need |N ||A| iterations.

6.3.1 Running Time Analysis

Lemma 6.3.1
let df (s, v) denote the minimal number of edges in a sv-dipath in the residual digraph
Df corresponding to the flow f .
Let f ′ be the flow of the next iteration of Edmonds-Karp.
We claim df (s, v) ≤ df ′(s, v).

Proof
Suppose for a contradiction that some v ∈ N violates the claim and let v be a minimal
counterexample with respect to df ′(s, v).

Let P be a path attaining df ′(s, v) in the digraph. Clearly v 6= s so there is at least one
edge uv ∈ A(P).

But then u is not a counterexample so df ′(s, u) ≥ df (s, u).

Case I: uv ∈ A(D′
f).

We have

df (s, v) ≤ df (s, u) + 1

≤ df ′(s, u) + 1

= df (s, v)

45

©Fel
ix

Zh
ou

which contradicts the assumption that v is a counterexample.

Case II: uv /∈ A(D′
f)

But uv ∈ A(D′
f ′). This means flow was pushed through vu ∈ A(D′

f). But the algorithm
chooses the shortest path. In particular

df (s, v) = df (s, u)− 1

≤ df ′(s, u)− 1

= df ′(s, v)− 2

< df ′(s, v)

which is again a contradiction.

Definition 6.3.1 (Critical)
We say uv ∈ A(P) on an augmenting path P in D′

f is critical if

c′(P) = c′uv

Lemma 6.3.2
Fix uv, it can be critical at most |N |

2
− 1 number of times.

Proof
Suppose uv is critical on the current iteration i for flow f . Then

df (s, v) = df (s, u) + 1

and it disappears from the digraph in the next iteration.

Now, suppose uv appears again in iteration j. We must have pushed flow on vu in some
iteration after i < k < j.

Let f ′ be the flow on iteration k. By the previous lemma

df ′(s, u) = df ′(s, v) + 1

≥ df (s, v) + 1

= df (s, u) + 2

But df (s, u) ≤ |N | − 2 for the duration of the algorithm since uv being critical means
u 6= t. uv can indeed only be critical at most

|N | − 2

2

as required.

46

©Fel
ix

Zh
ou

Proposition 6.3.3
Edmonds-Karp terminates in O(|N ||A|2) time.

Proof
There are at most O(|N ||A|) iterations since there are |A| arcs, each iteration has a critical
arc, and each arc can be critical O(|N |) times.

Each iteration runs in O(|A|) time so the overall running time follows.

6.3.2 Proof of Correctness

We ask whether Edmonds-Karp terminates with a maximum flow.

The algorithm terminates when there is no augmenting path in D′. This means that there
is an s, t-cut δ(S) that is empty in D′.

Arcs in δD(S) have no forward arc so the flow is at capacity.

Arcs in δD(S̄) has no backward arcs, so the flow is 0.

We cannot do any better than this as any s, t-cut is an upper bound of the sum of the
capacities of the leaving arcs (less the sum of entering arcs which is zero in this case).

6.4 Maximum-Flow Minimum-Cut

Does Ford-Fulkerson give a maximal flow if it terminates?

Proposition 6.4.1
Given D = (N,A) and s, t ∈ N . The value of any st-flow is at most the capacity of any
st-cut.

Proof
For any st-flow x, and any st-cut δ(S), the net flow of S is equal to the net flow of s.
(Net flow of other nodes is 0).

The value of flow s is

x(δ(s))− x(δ(s̄)) = s(δ(S))− x(δ(S̄))

≤ x(δ(S))

≤ c(δ(S))

So the value of any st-flow is at most the capacity of δ(S).

47

©Fel
ix

Zh
ou

Theorem 6.4.2 (Max-Flow Min-Cut)
Given D = (N,A), s, t ∈ N, c, the maximum value of an st-flow if equal to the
minimum capacity of an st-cut.

Proof
Let x be a maxium st-flow.

Then there is no st-dipath in the residual digraph D. This means there is an empty st-cut
δD′(S) in D′.

If uv ∈ δD(S), then uv is not an arc in D′. So xuv = cuv.

If uv ∈ δD(S̄), then vu is not an arc in D′. So xuv = 0.

Therefore, the value of st-flow x is

x(δ(S))− x(δ(S̄)) = c(δ(S))− 0

= c(δ(S))

By the propositions above, x is a max st-flow, and δ(S) is a minimum capacity st-cut.

By Max-Flow Min-Cut, Ford-Fulkerson is correct.

6.4.1 Combinatorial Applications of Max-Flow Min-Cut

Definition 6.4.1
A′ ⊆ A disconnects s from t if there is no st-dipath in D′ = (N,A− A′).

Lemma 6.4.3 (Flow Decomposition)
Given D = (N,A) and nodes s, t with integer capacities. If x is an st-flow of value k,
and x is integral, then x is the sum of characteristic vectors of k st-dipaths.

Proof
If k = 0, then x is a circulation. So x is the sum of characteristic vectors of dicycles
(exercise).

If k > 0, then there is an st-dipath P (exercise).

Notice that x− xP is an st-flow of value k − 1. So we are done by induction on k.

48

©Fel
ix

Zh
ou

Theorem 6.4.4 (Menger, Arc-Disjoint)
Given a digraph D = (N,A), and nodes s, t, the maximum number of arc-disjoint
st-dipaths is equal to the minimum number of arcs that disconnect s from t.

Recall that a feasible integral flow x is the sum of characteristic vectors of k st-dipaths and
any number of dicycles.

Proof
By Max-Flow Min-Cut.

If there are k arc-disjoint st-dipaths then we must remove at least one arc from each of
these dipaths.

The inequality is trivial, so we wish to prove equality.

Apply the max flow min cut theorem with c = 1.

By the max flow min cut theorem, there is an st-flow with the same value as the capacity
of an st-cut δ(S). Let us say k.

By flow decomposition, x is the sum of k st-dipaths and some dicycles. Since c = 1, each
arc is used in at most 1 st-dipath.

Hence, these st-dipaths are all arc-disjoint. By removing all k arcs in δ(S), then S is
disconnected from t.

If there are k node-disjoint st-dipaths, then we need to remove at least k nodes to disconnect
s, t.

Definition 6.4.2 (st-Separator)
X ⊆ N such that s 6∼ t in G−X.

Theorem 6.4.5 (Menger, Node Disjoint)
If st is not an arc, then the maximum number of node-disjoint st-dipaths is equal to
the minimal size of an st-separator.

Proof (Sketch)
For every node, generate two nodes with a single edge between them, v−, v+.

Arcs of the form uv map to u+v− with

cu+v− = ∞

All newly created capacities are 1.

49

©Fel
ix

Zh
ou

We can then simply apply Menger’s Theorem for arc-disjoint paths and conclude the
proof.

Then minimal cut cannot use ∞ arcs and thus only newly created edges (ie nodes that
disconnect s from t).

Theorem 6.4.6 (König)
ν(G) = τ(G) in a bipartite graph.

Observe that ν(G) ≤ τ(G) trivially since we can take half one vertex per edge in the matching
to obtain a lower bound.

s

A ∩ S

A \ S

B ∩ S

B \ S

t

Proof
Let A,B be a bipartition of V and create a, b with edges aA,Bb. Then orient the edges
a → b.

A maximum flow corresponds to a maximum matching.

There is a corresponding minimum st-cut δ(S). In the illustration above, S = {s} ∪ (S ∩
A) ∪ (S ∩B).

Notice that δ(S) cannot have any of the original edges-turned-arcs or else it contains one
of infinite capacity. The red arcs are the arcs of δ(S).

We claim A \ S,B ∩ S is a vertex cover. This shows the claim.

50

©Fel
ix

Zh
ou

6.5 Flows with Lower Bounds

We know introduce non-negative lower bounds `e ∈ RA for the arcs. A flow must satisfy

`e ≤ xe ≤ ce

for all e ∈ A.

(3, 9)

(10, 20)

(2, 3)
(5, 7)

(8, 17)

s

a

b

t

6.5.1 Modification of Ford-Fulkerson

Given a feasible flow, we form the residual digraph D′, where for the backward arcs, we put
the residual xe − `e. Otherwise, the algorithm is exactly the same.

(9, 3, 9)

(15, 10, 20)

(2, 2, 3)
(7, 5, 7)

(17, 8, 17)

s

a

b

t

where the labels are (xe, `e, ce).

Consider the residual digraph.

51

©Fel
ix

Zh
ou6

5
5

1

2

9

s

a

b

t

There is clearly an empty st-cut and so the algorithm terminates.

Proposition 6.5.1
For any st-flow x, and any st-cut δ(S), the value of x is at most

c(δ(S))− `(δ(S̄))

Proof
Exercise.

At the end of Ford Fulkerson, there is no st-dipath in D′, meaning that there is an empty
st-cut δ(S).

The net outflow of this flow x (at termination) is

c(δ(A))− `(δ(S̄))

By the proposition, FF finds a maximum st-flow.

Theorem 6.5.2 (Generalized Maximum-Flow Minimum-Cut)
Given D = (N,A), c, ` and nodes such that there is a maxium st-flow x whose value
is the same as the minimum value of

c(δ(S))− `(δ(S̄))

(provided there IS a feasible solution).

6.5.2 Feasibility Characterization

The network is infeasible if and only if there is an st-cut δ(S) such that

c(δ(S))− `(δ(S̄)) < 0

52

©Fel
ix

Zh
ou

Proof
Exercise.

6.5.3 Aside: Finding an Initial Solution

Recall that it was mentioned the possibility of formulating this problem as a MCFP.

s

a

b

t

ce = ∞

6.6 Applications of Maximum Flow

6.6.1 Matrix Rounding

Round the matrix M ∈ Rm×n elements either by taking the ceiling or floor such that the
sum of the columns and sum of rows are floored or ceilinged.

We can describe this as an instance of an st-flow problem.

Let s, t be dummy nodes, and ri, 1 ≤ i ≤ m, cj, 1 ≤ j ≤ n. There is an arc sui with bounds
floor/ceiling of row i There is an arc vjt with bounds floor/ceiling of column j. Finally, there
is an arc uivj with bounds (bmijc, dmije).

6.6.2 Maximum Closure

We have a set of tasks which may depend on each other. So if uv ∈ A then taking task u
requires taking task v.

In order to maximize profit, we want S ⊆ N such that δ(S) = ∅.

53

©Fel
ix

Zh
ou

Definition 6.6.1 (Closure)
A set of nodes S such that

δ(S) = ∅

Our goal is to find a closure with maximum total weight (a function of nodes). Let s, t be
two new nodes and for every node with w(u) > 0, add an arc su, with weight

wsu = wu

for every node with w(v) < 0, add an arc vt with weight

wvt := −wv

Finally, all original arcs have capacity ∞.

Proposition 6.6.1
An st-cut δ(S) in the new digraph has finite capacity if and only if

S \ {s}

is a closure in the original digraph.

Proof (sketch)
Any cut with an arc of capacity ∞ has an arc from the original digraph.

Proposition 6.6.2
The weight of the closure is

c(δ(s))− c(δ(S))

Proof (sketch)
Let v ∈ N and S ⊆ N a closure of the original digraph D.

Case I: v ∈ S,w(v) > 0

Then sv ∈ δ(s).

Case II: v ∈ S,w(v) < 0

Then sv /∈ δ(s), vt ∈ δ(S).

Case III: v /∈ S,w(v) > 0

Then sv ∈ δ(s), sv ∈ δ(S).

Case IV: v /∈ S,w(v) < 0

54

©Fel
ix

Zh
ou

Then vt /∈ δ(s), vt ∈/∈ δ(S).

Proposition 6.6.3
Now, c(δ(s)) is fixed so to maximize the weight of the closure, we minimize

c(δ(S))

We can solve this with maximum flow.

6.7 Preflow-Push Algorithm

With Ford-Fulkerson, we only push an additional flow of 1 each time. Instead, we want to
make “local adjustments”.

The idea is to introudce a “height” for each node. We keep the heights so that we always
push flow downwards, however not too steeply.

1) push as much flow as possible from s

2) while the flow is not feasible
3) (a) if we can push flow on uv “gently” (some requirements), do it

(b) otherwise increase height of u.

The main difference between FF, PP is that FF always maintains feasibility while PP works
towards feasibility.

The running time for EK is O(nm2).

PP has running time O(n2m).

Where n is the number of vertices and m is the number of edges.

Definition 6.7.1 (Preflow)
An st-preflow x is a flow which satisfies 0 ≤ x ≤ c and

x(δ(v̄)) ≥ x(δ(v))

for all v ∈ N(D) \ {s, t}.

Definition 6.7.2 (Excess)
The excess at v is

ex(v) = x(δ(v̄))− x(δ(v))

55

©Fel
ix

Zh
ou

Consider the residual digraph D′, defined the same way as before. Use re to represent the
residual of each arc in A(D′).

Think of embedding the digraph in R3 and only allowing changes with “gentle” slopes.

For each v ∈ N , we have a height function h(v)

Definition 6.7.3 (Compatible)
A set of heights h is compatible with a preflow x if

(a) h(s) = |N |
(b) h(t) = 0

(c) h(v) ≥ h(u)− 1 for all uv ∈ A(D′)

This means that any arc in D′ does NOT point down too steeply.

6.7.1 The Algorithm

1) Initialize h(s) = |N |, h(v) = 0 for all other nodes h(v). Set preflow x with xe = ce for
all e ∈ δD(s) and xe = 0 otherwise

2) While there is u ∈ N \ {s, t} where e(u) > 0

(a) if there is uv ∈ A(D′) where h(v) = h(u) − 1, then push min{ruv, e(u)} on uv
(push means add flow on forward arcs, substract flow on backward arcs)

(b) else h(u) + + (“relabel” operation)

6.7.2 Correctness of Preflow-Push

Lemma 6.7.1
If preflow x and height h are compatible, then D′ has no st-dipath.

Proof
Suppose not, so an st-dipath exists. Let

S : s = v0v1 . . . vk = t

in D′ with
h(vi+1) ≥ h(vi)− 1

Adding all these inequalities gives

h(vk) ≥ h(v0)− k

56

©Fel
ix

Zh
ou

so 0 ≥ |N | − k and
|N | ≤ k

which is a contradiction as there are k + 1 nodes in the path but only |N | nodes in the
digraph.

Corollary 6.7.1.1
If x is a feasible flow, with compatible heights h, then x is a maximum flow.

Proof
There are no st-dipaths in D′, x is feasible, so no agumenting paths exist, and x is an
optimal solution.

Theorem 6.7.2
The algorithm maintains a preflow and a height function that are compatible with
each other.

Proof
At initialization, we have a preflow. We saturate all arc in δ(s), and so the heights are
compatible.

Suppose we push some flow, then we push

min{eu, ruv}

and the resulting flow is a preflow.

We may create new arcs, but the only arc created is actually vu (if we are pushing flow
on uv). But the arc vu is ok.

Suppose we relabel. The reason for performing a relabel operation is that

h(u) ≤ h(v)

for all arcs uv ∈ δD′(u).

It follows that when we add 1 to h(u), then we have

h(u)− 1 ≤ h(v)

for all arcs uv ∈ A(D′).

Notice that if the algorithm terminates, the theorem above guaratees that we are happy.

57

©Fel
ix

Zh
ou

6.7.3 Termination & Running Time Analysis

We will bound the number of push/relabel operations.

To bound the number of relabel operations, we bound the maximum value of h(v), and hence
the number of relabel operations is finite.

Lemma 6.7.3
If e(u) > 0, then there is a us-dipath in D′.

Proof
We will show contrapositive.

Let T be the set of all nodes u ∈ N with no u, s-dipath (we want to show e(u) = 0) in D′.

We note that
δD′(T) = ∅

since otherwise, uv ∈ δD′(T) means vs-dipath P exists and thus uP is a us-dipath.

This gives ∑
v∈T

e(v) = · · · = 0− c(δ(T)) ≤ 0

but since excess is non-negative, this can only happen if e(v) = 0 for each v ∈ T .

Corollary 6.7.3.1
h(u) ≤ 2|N | − 1 for all u ∈ N throughout the algorithm.

Proof
Suppose that at some point in the algorithm, the height h(u) increases to 2|N |.

This means that e(u) > 0. By the lemma, there is a us-dipath in D′

P : u = v0v1 . . . vk = s

By compatibility, height decreases by at most 1 in each arc resulting in

h(s) > |N |

clearly a contradiction.

58

©Fel
ix

Zh
ou

Corollary 6.7.3.2
The total number of relabel operations is at most

2|N | · |N | = 2|N |2

Definition 6.7.4 (Saturating Push)
Push an arc uv ∈ A(D′) if we push ruv

Definition 6.7.5 (Non-saturating Push)
Push an arc if we push e(u).

Observe that if we perform a saturating push on uv, then uv disappears from D′, and vu is
in D′.

Theorem 6.7.4
The number of saturating pushes is at most 2|N ||A|.

Proof
Given uv ∈ A(D′), how many times can we do a saturating push on uv?

Suppose we have a saturating push on uv

h(u) = h(v) + 1

then uv disappears from D′.

In order to push flow on uv again, we need to first push flow on vu. In order to do that,
we need to relabel v at least TWICE to obtain

h(v) = h(u) + 1

So between two saturating pushes on uv, at least two relabel operations need to occur.

The maximum number of relabel operations on node v is 2|N |. Thus the number of
saturating pushes on a fixed uv ∈ A(D′) is |N |.

There are at most 2|A| arcs in A(D′) at any given time and the result follows.

For non-saturating pushes, we define the function

Φ(x, h) =
∑

v∈N,e(v)>0

h(v)

59

©Fel
ix

Zh
ou

At initialization, we have
Φ = 0

and it is always non-negative.

Theorem 6.7.5
The number of non-saturating pushes is at most

4|N |2|A|

Proof
We will determine the effect on Φ(x, h) for each type of operation

Relabel Operation: The relabel operations is done on an excess node, so φ(x, h) goes up
by 1.

Over the algorithm, the maxmum increase from relabelling is 2|N |2.

Saturating Push on uv: This decreases e(u) and increases e(v).

If e(v) = 0 before the push, then after the push, we add h(v) to Φ(x, h).

Since h(v) ≤ 2|N | − 1 (from our last lecture) we add at most 2|N | − 1.

Over the course of the algorithm, the maximum increase from saturating pushes is

2|N ||A|(2|N | − 1) ≤ 4|N |2|A|

(at most 2|N ||A| saturating pushes).

Non-saturating Push: Then e(v) becomes positive, but e(u) = 0

At worst, we add h(v) to Φ(x, h) and we subtract h(u) from Φ(x, h). Since

h(u) = h(v) + 1

and Φ(x, h) decreases by at least 1.

Note Φ(x, h) ≥ 0 throughout the algorithm. The number of non-saturating pushes is
therefore at most

2|N |2 + 2|N ||A|(2|N | − 1) = 2|N |2 + 4|N |2|A| − 2|N ||A|
≤ 2|N |2 + 4|N |2|A| − 2|N ||N | connectedness
= 4|N |2|A|

60

©Fel
ix

Zh
ou

Corollary 6.7.5.1
Preflow-push terminates in at most

2|N |2 + 2|N ||A|+ 4|N |2|A| ∈ O(|N |2|A|)

operations.

61

©Fel
ix

Zh
ou

7 Gobal Minimum Cuts

We wish to find a minimum non-trivial cut in D = (N,A) with cap c.

7.1 First Steps

We can pick all possible pairs s, t and run maximum flow on each of the

|N |(|N | − 1)

pairs.

Something better would be to pick s ∈ N and notice that it must reside on either side of a
global minimum cut.

We just need to find all st-cuts and ts-cuts

2(|N | − 1)

times.

We will use Hao-Orlin to solve this more quickly, it is a modification of pre-flow push.

7.2 Hao-Orlin

Definition 7.2.1 (X, t-cut)
Given X ⊆ N, t /∈ X, an X, t-cut has the form

δ(S)

where X ⊆ S, t 6= S.

Definition 7.2.2 (s-cut)
Given s ∈ N , and s-cut has the form

δ(S)

where s ∈ S and S is non-trivial (S 6= N).

Remark that to solve the global minimum cut, we just solve the minimum s-cut (at most
twice) for a fixed s.

Indeed, if a global minimum cut contains s then we are done. Elsewise, reverse all the arcs
and this finds the global minimum cut.

62

©Fel
ix

Zh
ou

7.2.1 Generic Algorithm for Minimum s-Cut

1) X = {s}
2) While X 6= N

(a) choose t /∈ X and find a minimum Xt-cut.
(b) add t to X

3) Output minimum over all cuts found

7.2.2 Proof of Correctness

Let δ(S∗) be a minimum s-cut. If we only pick t ∈ S∗, there is nothing to prove.

Consider the first time we pick some t not in S∗. Immediately before this step, X ⊆ S∗ by
our choice of t.

The algorithm at this step gives us a minimum Xt-cut

δ(Ŝ)

But δ(S∗) is also an Xt-cut so
c(δ(S∗)) ≥ c(δ(Ŝ))

and δ(Ŝ) is also an s-cut so
c(δ(S∗)) ≤ c(δ(Ŝ))

thus as cuts, they have the same capacity.

It follows that we output the capacity of the minimum s-cut since any X during is the
algorithm is an s-cut and cannot overcome this lowerbound.

7.2.3 Preparation for Hao-Orlin

Definition 7.2.3 (X-preflow)
For X ⊆ N , an X-preflow is a flow where

e(v) ≥ 0

for v /∈ X.

63

©Fel
ix

Zh
ou

Definition 7.2.4 (Compatible Height)
Heights h are compatible with an X-preflow if

(1) h(v) = |N | for all v ∈ X

(2) h(t) ≤ |X| − 1

(3) h(v) ≥ h(u)− 1 for all uv ∈ A(D′)

Definition 7.2.5 (Level)
A level k consists of all nodes with height k denoted

H(k)

Definition 7.2.6 (Cut Level)
A cut level is a level k where no arcs goes from

H(k) → H(k − 1)

in D′

Lemma 7.2.1
If δ(S) is an Xt-cut with

δD′(S) = ∅

and e(v) = 0 for all v ∈ N \ (S ∪ {t}) then δ(S) is a minimum Xt-cut.

Proof
Take any Xt-cut δ(S). The net flow out of S is

x(δ(S))− x(δ(S̄)) ≤ c(δ(S))

The total net inflow of N \ S is equal to∑
v∈N\S

e(v) ≥ e(t)

by non-negativity and the fact that t ∈ N \ S.

Now, δD′(S) = ∅ just as in the argument for max-flow min-cut. We have

x(δ(S))− x(δ(S̄)) = c(δ(S))

64

©Fel
ix

Zh
ou

with the same argument as well as

e(t) =
∑

v∈N\S

e(v)

since e(v) = 0 for every v ∈ N \ (S ∪ {t}).

So S attains the lower bound and
δ(S)

is a minimum Xt-cut.

Corollary 7.2.1.1
If ` is a cut level and e(v) = 0 for all v with

h(v) < `

(except t).
Then

{v : h(v) ≥ `}

is a minimum Xt-cut.

7.2.4 The Algorithm

The idea is to run Preflow Push and maintain a cut level `. We try to get rid of excess on
nodes below `.

The algorithm keeps non-empty levels consecutuve (except |N |).

1) Initialisation X = {s}, t ∈ N \X, h(s) = |N |, h(v) = 0 otherwise, ` = |N | − 1. Send as
much flow out of s as possible.

2) While X 6= N

(a) Run preflow push with these exceptions

• only select nodes v such that e(v) > 0 AND h(v) < `

• if we want to relabel v, and v is the only node with height h(v). Do not
relabel, and instead set ` = h(v).

• if we want to relabel v to ` then relabel! But reset ` = |N | − 1

(b) When no node satisfies e(v) > 0 and h(v) < `, store the cut {v : h(v) ≥ `}
(minimum Xt-cut by the corollary) Add t to X and set h(t) = |N |. Send as
much flow out of t as possible (δD′(t) = ∅). Pick t with lowest height and set
` = |N | − 1.

65

©Fel
ix

Zh
ou

7.2.5 Proof of Correctness

We will show that X-preflow and heights are compatible.

h(v) = |N | for all v ∈ X from the definition of the algorithm.

h(v) ≥ h(u) − 1 for uv ∈ A(D′) follows from our work with pre-flow push during each
iteration.

Suppose at the end of each iteration, we move t to X and push all flow out of t. This
maintains

h(v) ≥ h(u)− 1

for every uv ∈ A(D′) as δD′(t) is now the emptyset.

We need h(t) ≤ |X| − 1.

Lemma 7.2.2
The non-empty levels less than |N | are consecutive.

Proof
Initially, we only have one level less than |N | so the result holds trivially.

We do not relabel v when v is the only node of heigh h(v) so this keeps the non-empty
levels consecutive. Transitioning to a new iteration, we move t with lowest height to X.
This means the non-empty levels remain consecutive.

Lemma 7.2.3
h(t) ≤ |X| − 1.

Proof
Initially, |X| = 1 and h(t) = 0 ≤ |X| − 1 = 0.

When we move t to X, the next t (call it t′) has height h(t) or h(t) + 1 (since non-empty
levels are consecutive).

Originally h(t) ≤ |X| − 1. We add 1 to |X| after the move and possibly add 1 to h(t).

Either way, the inequality is preserved.

Corollary 7.2.3.1
The algorithm maintains compatible X-preflow and heights.

We will now show that the store cuts are min Xt-cuts.

66

©Fel
ix

Zh
ou

It suffices to show that ` is always a cut level, as then our corollary from before applies.

Lemma 7.2.4
h(v) ≤ |N | − 2 for all v /∈ X.

Proof
We proved h(t) ≤ |X| − 1 (which is the lowest level) and that there are |N | − |X| − 1
nodes not in X ∪ {t}.

Since the non-empty levels are consecutive, the highest level outside X is at most

(|X| − 1) + (|N | − |X| − 1) = |N | − 2

Lemma 7.2.5
` is always a cut level when ` = |N | − 1.

Proof
level ` is empty, so it is automatically a cut level.

Corollary 7.2.5.1
` is always a cut level.

Proof
Suppose we change ` to something else (other than |N | − 1) when we wish to relabel v,
but v is the only node with its height. This happens as e(v) > 0 and no neighbours of V
is one level below in D′.

No arcs goes from h(v) to level h(v)− 1. So h(v) is a cut level and we can set

` = h(v)

7.2.6 Termination & Running Time Analysis

This section is not covered on the final exam.

Relabel ops h(v) ≤ |N | − 2 so in total is at most |N |2 operations.

Saturating and non-saturating pushes are the same as before.

Level settings operations are stmost the number of relabel operations +n (number of itera-
tions).

67

©Fel
ix

Zh
ou

Overall, the running time is asymoptotically equivalent as preflow-push.

68

©Fel
ix

Zh
ou

8 Global Minimum Cut in Undirected Graphs

We may wish to find the global minimum cut in undirected graphs.

Consider the undirected graph G = (V,E) with edge capacity c ∈ RE
+.

8.1 Karger’s Algorithm

The idea of the algorithm is as follows

1) Pick a random edge and contract it
2) Keep track of vertices each contracted vertex represents
3) Do this until only two vertices remain
4) output the cut represented by these two vertices

In general, edges with small capacities are more likely to be in a minimum cut. So we try
to lower the probability that these edges are selected.

Thus, we set the probability of an edge getting selected as propotional to its capacity.

8.1.1 The Algorithm

1) While |V | > 2

(a) pick uv with probability cuv∑
e∈E ce

(b) contract uv.

8.1.2 Proof of Correctness

Theorem 8.1.1
Let δ(S∗) be a global minimum cut.
The probability that the algorithm produces δ(S∗) is at least

1(|V |
2

)
Proof
Consider the probability we pick an edge in δ(S∗) in the first step. The denominator is∑

ce and the numerator is c(δ(S∗)).

69

©Fel
ix

Zh
ou

Consider cuts of the form δ(v) for some vertex v. Each edge uv appears in two such cuts

δ(u), δ(v)

Therefore, ∑
ce =

1

2

∑
c(δ(v))

≥ 1

2
|V |c(δ(S∗))

since δ(S∗) is a global minimum cut.

So the probability that an edge in δ(S∗) is selected is

c(δ(S∗))∑
ce

≤ c(δ(S∗))
1
2
|V |c(δ(S∗))

=
1

1
2
|V |

=
2

|V |

The probability that δ(S∗) survives the first contraction is thus at least

1− 2

|V |

Suppose we have contracted k edges, and δ(S∗) is still intact.

We have |V | − k vertices left, and say the graph is

G′ = (V ′, E ′)

We want to find the probability of selecting an edge in δ(S∗). The numerator is c(δ(S∗)).
The denominator is

∑
e∈E′ ce.

Now, ∑
e∈E′

ce =
1

2

∑
v∈V ′

c(δ(v))

≥ 1

2

∑
v∈V ′

c(δ(S∗))

=
1

2
(|V | − k)c(δ(S∗))

70

©Fel
ix

Zh
ou

so the probability is at most

c(δ(S∗))
1
2
(|V | − k)c(δ(S∗))

=
2

|V | − k

It follows that δ(S∗) survives this iteration is at least

1− 2

|V | − k

The largest possible k is |V | − 3 (since we finish when we have 2 vertices left, this is the
last step).

Overall the chance that δ(S∗) survives all contractions is at least

|V |−3∏
k=0

(
1− 2

|V | − k

)
=

|V |−3∏
k=0

|V | − k − 2

|V | − k

=
2

|V |(|V | − 1)

=
1(|V |
2

)
We expect the algorithm to produce a minimum cut if it runs

(|V |
2

)
≈ |V |2 times.

Corollary 8.1.1.1
The probability that the agorithm produces δ(S∗) after k|V |2 runs is at least

1− e−2k, k ≥ 1

Proof
We use the simple bound

1− x ≤ e−x

The probability of failure is at most(
1− 1(|V |

2

))k|V |2

≤
(
1− 2

|V |2

)k|V |2

≤
(
e
− 2

|V |2
)k|V |2

= e−2k

71

©Fel
ix

Zh
ou

and thus the probability of success is at least

1− e−2k

Recall that if we wish to use the brute force algorithm to check every single cut, it takes
exponential time with Karger’s Algorithm gives us a polynomial time solution with very high
chance.

72

	Preface
	Assignments
	Midterms
	Final Exam

	Graph Theory
	Undirected Graphs
	Directed Graphs (Di-Graphs)
	Underlying Graph

	Transshipment Problem (TP)
	LP Formulation of TS
	dual LP for TP
	Complementary Slackness Condition
	Simplex Applied to TP
	Linear Algebra
	Finding a Flow
	The Dual
	Tree Flow
	Selecting a Leaving Arc
	How Much Flow to Introduce
	Full Algorithm
	Economic Interpretation
	Unboundedness
	Finding an Initial BFS
	Feasibility Characterization

	Minimum Cost Flow Problem (MCFP)
	LP Formulation
	Dual of MCFP LP
	Rank of Matrix
	Summary

	Complementary Slackness Conditions
	Economic Interpretation

	Network Simplex for MCFP
	Feasibility Characterization
	Applications of TP and MCFP
	Minimum Bipartite Perfect Matching
	Airline Scheduling
	Catering
	Matrix with Consecutive 1's

	Shortest Dipaths
	Problem
	LP Formulation
	Dual

	Integral Feasible Solutions
	Consequences

	Terminology
	Results on Rooted Trees
	Ford's Algorithm
	The Algorithm
	Remarks
	Termination

	The Bellman-Ford Algorithm
	The Algorithm
	Proof of Correctness

	Dijkstra's Algorithm
	Motivation
	Details
	The Algorithm
	Proof of Correctness
	Running Time

	Applications of Shortest Path
	Network Reliability
	Currency Exchange

	Maximum Flow
	LP Formulation
	Ford-Fulkerson Algorithm
	The Algorithm
	Termination
	Running Time

	Edmonds-Karp
	Running Time Analysis
	Proof of Correctness

	Maximum-Flow Minimum-Cut
	Combinatorial Applications of Max-Flow Min-Cut

	Flows with Lower Bounds
	Modification of Ford-Fulkerson
	Feasibility Characterization
	Aside: Finding an Initial Solution

	Applications of Maximum Flow
	Matrix Rounding
	Maximum Closure

	Preflow-Push Algorithm
	The Algorithm
	Correctness of Preflow-Push
	Termination & Running Time Analysis

	Gobal Minimum Cuts
	First Steps
	Hao-Orlin
	Generic Algorithm for Minimum s-Cut
	Proof of Correctness
	Preparation for Hao-Orlin
	The Algorithm
	Proof of Correctness
	Termination & Running Time Analysis

	Global Minimum Cut in Undirected Graphs
	Karger's Algorithm
	The Algorithm
	Proof of Correctness

