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1 Review

1.1 Trees & Forests

Proposition 1.1.1
Every forest G = (V,E) with at least 1 edge has a leaf vertex.

Consider the following procedure.

1. start at a non-isolated vertex
2. given the current vertex v, choose a neighbour of v that was not just visited. Go there.
3. If no such neighbour exists, then STOP. The current vertex is a leaf. Elsewise, repeat.

One way of proving that the proposition holds is by proving the correctness of the algorithm
above. A better solution is to consider the fact that we are constructing a path and simply
consider the longest path.

Proof
Let v1, v2, . . . , vk be the vertices of a longest path of G.

Note that the longest path must exist since by definition, a path is composed of unique
nodes and there are only finitely many paths in G.

Since there is at least one edge, k ≥ 2 and v1 6= vk.

Consider vk, we claim it only has one neighbour vk−1.

Suppose otherwise it has a neighbour w, if it on the path, we would have a circuit, elsewise
the path would not be the longest. The claim clearly holds.

1.2 Graph Colorings

Definition 1.2.1 (Bounding χ)
χ(G) is the chromatic number of G.
This is the minimum k ≥ 0 such that the vertices of G can be assigned colours from
[k] such that adjacent vertices always receive different colours.

Proposition 1.2.1 (Greedy Bound)
If G is a graph if every vertex has degree at most k, then χ(G) is at most k + 1.

We first note that any complete graph Kt requires at least t = k + 1 colours and any odd
cycle Ct requires 3 = k + 1 colours.
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Proof
Suppose the proposition fails.

Let G be a graph for which it fails, with as few vertices as possible. Clearly |G| 6= 0

This means the proposition holds for all P − v where v ∈ V (G).

Every vertex of G− v has degree at most k, so G− v is (k + 1) colourable.

There must be some colour in a (k + 1)-colouring of G − v not used by any color of v.
Assigning this colour to v gives a (k + 1)-colouring of G.

This contradicts the fact that the proposition fails for G. In addition, this means there is
no minimum example and the proposition holds.

1.3 Matchings

1.3.1 Definitions

Definition 1.3.1 (Matching)
A matching M in a simple graph G is a subset of the edges E(G) such that no two
share a vertex ie

{x, y} ∈ M =⇒ ∀z 6= x, y, {x, z}, {y, z} /∈ M

We denote the size of the maximum matching with v(G).

Definition 1.3.2 (Satisfy)
We say a matching M satisfies a vertice v ∈ V (G) if it is incident to an edge in M

Definition 1.3.3 (Perfect Matching)
A matching M in a graph G is perfect if it satisfies every vertice v ∈ V (G).

Note that if a graph has a perfect matching, then |V (G)| is even
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1.3.2 Hall’s Theorem

Definition 1.3.4 (neighbourhood)
A neighbourhood of a subset S ⊆ V (G) of the vertices of a graph is

ΓG(S) := {w ∈ V (G) : v ∈ S, {v, w} ∈ E(G)}

Definition 1.3.5 (Halls’s Condition)
Let G be a bipartite graph with vertice classes X,Y .
Hall’s Condition is the statement that

∀S ⊆ X, |Γ(S)| ≥ |S|

Theorem 1.3.1 (Hall)
Let G be a bipartite graph with vertice classes X,Y .
There is a matching satisfying X if and only if Hall’s Condition holds.

Proof ( =⇒ )
This is trivial.

Take any subset of X and note that a matching satisfying X must satify this subset as
well.

By the definition of a matching and a bipartite graph, Hall’s Condition holds. �

Proof ( ⇐= )
We argue by induction on the size of X.

The case where X is a singleton is trivial.

Suppose now that the Hall’s Theorem holds true for all n < |X|.

Case I

Let x ∈ X be arbitrary and choose y ∈ Y such that xy ∈ E(G).

If Hall’s Condition holds in the graph induced by the removal of x, y, namely (X − x) +
(Y −y), then we are done as the induction hypothesis gives us a matching satifying X−x
and with the addition of xy, X is satisfied.

Case II
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Otherwise there must be some subset S0 ⊆ X − x such that

|ΓG−x−y(S0)| < |S0|

which contradicts Hall’s Condition for X − x.

But since by assumption Hall’s Condition holds for X and we have removed at most one
vertice in the neighbourhood of S0, we have

|ΓG(S0) \ ΓG−x−y(S0)| ≤ 1

In particular, this means that |ΓG(S0)| = |S0|.

We will now show there are two disjoint matchings satisfying S0 and X \ S0.

To get the matching for S0, note that by assumption, Hall’s Condition holds for X and
therefore also for S0. Coupled with the induction hypothesis, there must be a matching
which satisfies both S0 and ΓG(S0).

Now, it remains to find a disjoint matching for X \S0 in G \S0 \ΓG(S0). We will achieve
this by showing that Hall’s Condition holds for X \ S0 in the proposed subgraph. Note
that for all S ′ ⊆ X \ S0 we have by assumption that

|ΓG(S
′ ∪ S0)| ≥ |S ′ ∪ S0|

But since S ′, S0 are disjoint with |ΓG(S0)| = |S0|, we must have

|ΓG(S
′) \ ΓG(S0)| ≥ |S ′|

so
|ΓG\S0\ΓG(S0)(S

′)| ≥ |S ′|

This means that Hall’s Condition holds for X \ S0 in Y \ ΓG(S0) so we have found a
disjoint matching satisfying X \ S0. �

Corollary 1.3.1.1
Any regular bipartite graph with degree ≥ 1 has a perfect matching.

Proof
Let X,Y be the vertex classes of G and S ⊆ X be arbitrary.

Let E(S,Γ(S)) be the set of edges from a vertice in S to one of its neighbours.

Then we have
|E(S,Γ(S))| = k|S|
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On the other hand, since the the number of vertex degree is bounded, we also have

|E(S,Γ(S))| ≤ k|Γ(S)|

But then Hall’s Theorem holds and there is a matching satisying X. This means that
|X| ≤ |Y |.

By similar logic, there is a matching satisfying Y , meaning |Y | ≤ |X|.

All in all, |X| = |Y | and we have a perfect matching. �

1.3.3 Berge’s Theorem

Definition 1.3.6 (Alternating Path)
Let M be a matching of a graph G.
A M -alternating path is a path in G with every other edge in M .

Definition 1.3.7 (Exposed)
A vertex v ∈ V (G) is M -exposed if it is not M -saturated.

Definition 1.3.8 (Augmenting)
An M -augmenting path is an M -alternating path that start and end with M -exposed
vertices.

Theorem 1.3.2 (Berge)
A matching M in a graph G is maximal if and only if it has no M -augmenting paths.

1.4 Vertex Covers

1.4.1 Basic Definitions & Results

We denote the maximum size of a matching in a graph G with v(G).

Definition 1.4.1 (Vertex Cover)
A vertex cover is a subset C ⊆ V (G) of the vertices such that every edge is incident
to a vertex in C ie

∀xy ∈ E(G), x ∈ C ∨ y ∈ C

9
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We denote with τ(G) the size of the minimum cover in graph G.

Proposition 1.4.1

v(G) ≤ τ(G) ≤ 2v(G)

Proof
To see the lower bound, note that a vertex cover necessarily includes one of the vertices
of each edge of a maximum matching.

To see the upper bound, we note that by taking all vertices indicent with an edge in a
maximal matching necessarily yields a vertex cover. If not, there is an edge which is not
in the proposed matching with both endpoints not inside the proposed vertex cover. This
would contradict the maximality of the proposed matching.

1.4.2 König’s Theorem

Theorem 1.4.2 (König)
If G is a bipartite graph, then v(G) = τ(G).

Proof
By the proposition above, it suffices to show that the maximal matching has equivalent
size to the minimum vertex cover.

Let A,B be the vertex classes and let S ⊆ A, T ⊆ B such that S+T is a minimum vertex
cover of G.

Note that there cannot be any edges between A− S,B − T , or else this would contradict
the definition of a vertex cover.

We will now proceed to find disjoint matchings satisfying S, T so that

|S|+ |T | ≤ v(g) ≤ τ(G) = |S|+ |T |

We will apply Hall’s Theorem on S. Indeed, let Q ⊆ S be arbitrary.

Suppose Q has less than |Q| neighbours in B− T . Note that we can then remove Q from
S and add ΓG(Q) \ T to T to maintain a valid vertex cover of strictly smaller size.

In other words, |S −Q+ T + (ΓG(Q) \ T )| < |S + T | with the former being a valid vertex
cover.

This contradicts the minimality of our vertex cover and is thus a contradicion.

10
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By contradiction, Hall’s Condition holds and there must be a matching satisfying S with
only neighbours in B − T .

We can apply similar logic and arrive at a matching satisfying T with only neighbours in
A− S.

These two matchings are necessarily disjoint and have cardinality equivalent to that of
the the proposed minimum cover.
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2 Introduction

2.1 Definitions

Definition 2.1.1 (Graph)
A graph G = (V,E, i) is a 3-tuple where

• V is a finite set of vertices

• E is a finite set of edges with V ∩ E = ∅

• i : V × E → {0, 1, 2}

i(v, e) = # of times e is incident to v

such that
∀e ∈ E,

∑
v∈V

i(v, e) = 2

We say G = (V,E) is a simple graph under the Math249 definitions.

Definition 2.1.2 (Adjacent)
u, v ∈ V are adjacent in G if either
(1) i(u, e) = i(v, e) = 1, if u 6= v

(2) i(u, e) = 2

for some e ∈ E.

Definition 2.1.3 (Incident)
v ∈ V, e ∈ E are incident in G if i(u, e) 6= 0 for some e ∈ E.

Definition 2.1.4 (Degree)
The degree of a vertex v is

deg(v) = d(v) =
∑
e∈E

i(v, e)

Definition 2.1.5 (Ends)
The ends of an edge e are the vertices u, v such that i(u, i > 0, i(v, i) > 0.

12
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To see why we define graphs this way consider the following example

Example 2.1.1 (Dual)
If G(V,E, i) is the primal planar graph with a fixed planar embedding then

H = (F,E, j)

is the dual planar graph with F being the faces of the embedding of G and j the incidence
function determined by adjacent faces of

our definition of a graph makes it easier to work with the dual graph.

Definition 2.1.6
• walk

• path

• cycle / circuit

• forest

• isolated vertex

• leaf vertex

Definition 2.1.7 (Connected)
u, v ∈ V (G) are connected in a graph G, if there is a walk from u → v in G.

Definition 2.1.8 (Connected)
G is connected if G(V ) 6= ∅ and for every pair of vertices is connected in G.

Proposition 2.1.2
Connectedness is an equivalence relation on V .

Proof
1. reflexive
2. symmetric
3. transitive

13
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Definition 2.1.9 (Subgraph)
A subgraph of G = (V,E, i) is a 3-tuple

H = (V ′, E ′, i′)

where V ′ ⊆ V,E ′ ⊆ E and i′ is the restriction of i to the domain V ′ × E ′

Definition 2.1.10 (Induced Subgraph)
If X ⊆ V , the subgraph G[X] induced by X is the subgraph

(X,E ′, i′)

where E ′ consists of all edges with both ends in X and

i′ = i

∣∣∣∣
X×E′

14
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3 Connectedness

3.1 Definition

Definition 3.1.1 (Components)
A component of G is an induced subgraph of the form G[X] where X is an equivalence
class under connectedness.

Proposition 3.1.1
Components are maximal connected subgraphs.

Definition 3.1.2 (Union)
Let G1 = (V1, E1, i1) and G2 = (V2, E2, i2).
Suppose that the subgraph obtained from G1 by restricting to V1 ∩ V2 and E1 ∩ E2

is the same as the subgraph obtained from G2 by restricting to these sets. In other
words, G1, G2 agree on their common vertices / edges.
Then G1 ∪G2 is defined to be the graph with vertex sets V1 ∪V2, edge set E1 ∪E2, in
which a vertex v is incident to an edge e if and only if e and v are incident in either
G1 or G2.

Definition 3.1.3 (Direct Sum)
We write G1 ⊕G2 to denote the direct sum of G1, G2 which is

G1 ∪G1

when V1 ∪ E1, V2 ∪ E2 are disjoint.

Definition 3.1.4 (Subtraction)
For a set X ⊆ V ∪ E and where G = (V,E, i) is a graph, we write

G−X

for the subgraph of G with vertex set V \X ad edge set E \X ′, where X ′ is the set
of edges that are either in X or incident with a vertex in X.

Proposition 3.1.2
Every graph is uniquely the direct sum of connected graphs if we define the empty graph
as disconnected.

15
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Definition 3.1.5 (Path)
A path is a graph whose edges and vertices form a path.

Definition 3.1.6 (Ends)
The ends of a path are its degree 1 vertices, or the sole vertex if there are no edges.

Definition 3.1.7 (Circuit)
A graph which forms a circuit.

Definition 3.1.8 (AB-path)
Give disjoint sets of vertices A,B in a graph G, an AB-path is a path with one end
in A, another in B and all other vertices in V (G) \ (A ∪B)

Definition 3.1.9 (ab-path)
An {a}{b}-path.

Definition 3.1.10 (Seperates)
A set X ⊆ V ∪ E separates A,B in G if there is no AB-path in G−X.

Definition 3.1.11 (cut edge / bridge)
e ∈ E is a cut edge / bridge if there are vertices u, v of G that are not separated by
∅, but separated by {e}.

Definition 3.1.12 (k-Connectedness)
Let k ≥ 1. A graph G is k-connected if |V (G)| > k and there is no set X ⊆ V (G)
with |X| < k such that G−X is disconnected.
In other words, it is the minimal size of a subset of the vertices which separates G.

Definition 3.1.13 (cut-vertex)
A cut vertex of G is a vertex v such that there is some pair a, b not separated by ∅
but separated by {v}.

Note that

16
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• 1-connected ⇐⇒ connected and G is not the singleton graph

• 2-connected ⇐⇒ connected and there is no cut vertex, except G = o− o.

3.2 Basic Results

We can augment a 2-connected graph by connecting a pair of vertices u, v of G by taking its
union with a path whose ends are u, v.

Definition 3.2.1 (Adding a Path)
G′ arises from G by adding a path if there is a non-trivial path P such that

G′ = G ∪ P

and
(E(P ) ∪ V (P )) ∩ (E(G) ∪ V (G))

is the set of two ends of P

Proposition 3.2.1 (Ear Decomposition)
A loopless graph G is 2-connected if and only if G can be obtained starting from a
circuit by successively adding paths (ears).
In other words there must be graphs G1, . . . , Gk such that
(1) G1 is a circuit, Gk = G

(2) for each 1 ≤ i < k, Gi is connected and Gi+1 arises from Gi by adding a path.

Proof ( ⇐= )
Assignment.

Proof ( =⇒ )
Let G be a loopless 2-connected graph, and let l be maximal so that there are subgraphs
G1, . . . , Gl of G so that each Gi is 2-connected and arises from Gi−1 by adding a path,
while G1 is a circuit.

Note that l is at least 1 since every 2-connected graph has a circuit or else G is a tree and
has leaf vertices which contradicts the definition of 2-connected.

Suppose Gl 6= G.

Since adding a single edge between vertices of Gl adds a path, the maximality of l implies
that every edge of G between two vertices of Gl is an edge of Gl. In otherwords, Gl is an
induced subgraph of G.

17
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If V (Gl) = V (G), then Gl = G so we may assume some vertex u ∈ V (G) \ V (Gl) which
is adjacent to some v ∈ V (Gl) by connectedness.

Because G is 2-connected, there must be a path from u to V (Gl) in the graph G− v.

Pv is a path of G with both ends in V (Gl) and no other vertices in V (Gl).

But then
Gl ∪ (Pv)

is a subgraph of G obtained from Gl by adding a path. It is also 2-connected by ⇐= .

This contradicts the maximality of l.

3.3 The Block Graph

Definition 3.3.1 (Separator)
A separator of a connected graph G is a set X such that G − X is nonempty and
disconnected.

Definition 3.3.2 (Cut Vertex)
v ∈ V (G) such that {v} is a separator.

Definition 3.3.3 (Block)
A block of G is a maximal connected subgraph of G which has no cut vertex.
So it is either 2-connected or has at most 2 vertices.

Definition 3.3.4 (Simple Graph)
A graph with no multiple edges or loops.

Definition 3.3.5 (Block Graph)
The block graph of a graph G is a simple bipartite graph with bipartition (B,K)
where B is the set of blocks of G and K is the set of cut vertices of G.
A block b is adjacent to a cut vertex v if its vertex set in G contains v.

The block graph encodes how the blocks are pieced together to form G.

Proposition 3.3.1
Each graph G is the union of its blocks.

18
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Proof
It suffices to show that each vertex and edge of G is contained in a block of G.

This is true as for every edge e from x to y, the subgraph on x, y, e has no cut vertex and
so is contained in some maximal subgraph with no cut vertex (ie block).

Proposition 3.3.2
Any two blocks intersect in at most one vertex (and no edges).

Proof
Let B1, B2 be blocks and

x, y ∈ V (B1) ∩ V (B2)

be distinct.

By maximality of B1, B2, the subgraph B1 ∪ B2 has a cut vertex w. Let a, b be vertices
separated by w.

Let z ∈ {x, y} \ {w}.

Since B1 has no cut vertex, each of a, b is connected to z in either B1 −w or B2 −w and
hence in B1 ∪B2 − w.

So a, b are connected in B1 ∪B2 − w, a contradiction.

3.4 Contractions

Definition 3.4.1 (Edge Contraction)
For a graph e ∈ E(G) we write G/e for “G contract e”.
For the same graph with edge set

E \ {e}

and vertex set
V \ {u, v} ∪ {xuv}

where xuv is a new vertex, in which each edge with an end equal to u or v in G now
has an end equal to the new vertex xuv.

Note that any edge parallel to e becomes a loop at the new vertex.

Also note that if G is connected, then so is G/e.

However, the same does not hold for 2-connectedness.

19
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Lemma 3.4.1
If G is k-connected and X ⊆ V (G) with |X| = k, then each vertex in X has a
neighbour in each component of G−X.

Proof
Suppose for a contradiction that x ∈ X fails to have the proposed property.

Consider G − X \ {x} and if x in that graph has no neighbours in some component of
G−X, then X \ {x} is a separator with cardinality strictly less than k.

Proposition 3.4.2
If e is an edge of G with ends u, v and X ⊆ V ∪ E containing neither e, u, v then

(G−X)/e = (G/e)−X

Proof
Exercise.

Proposition 3.4.3
If G is a 2-connected graph, e ∈ E and |V (G)| > 3, then either G/e or G − e is
2-connected.

Proof
Suppose neither are 2-connected. Let y, z be vertices so that

G/e− y,G− e− z

are both disconnected graphs.

Let u, v be the ends of e. Note that u 6= v or else 2-connectedness is preserved when
deleting e.

If y 6= xuv then (G/e)− y = (G− y)/e but (G− y) is connected so (G− y)/e is connected,
a contradiction to the choice of y.

Otherwise, suppose y = xuv, we have
(G/e)− y = G− {u, v}

is disconnected.

We will show that G − e must be connected. To do this, we argue that z is not a cut
vertex of G− e.

First, remark that if z ∈ {u, v}
G− e− z = G− z

20
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which cannot be disconnected so z 6= u, v.

Note that (G/e) − y is disconnected. Let C be a component of (G/e) − y = G − {u, v}
that does NOT contain z. By the lemma, C contains a neighbour u′ of u, v′ of v, and
since C does not contains z, u, v, then u′, v′ are connected in G− {e, z}.

Therefore, u, v are connected in G− {e, z}.

Let a be a vertex of G− z. Since G− z is connected, there is a path from a to u or v in
G− {z, e}.

So

• a is connected to u or v in G− {z, e}

• u and v are connected in G− {z, e}

so a, u are connected in G− {z, e} and by the arbitrary choice of a we have G− {z, e} is
connected. This contradicts the choice of z.

Proposition 3.4.4
Any graph with a degree 2 vertex is not 3-connected.

Proof
Removing its neighbours disconnects the graph.

Proposition 3.4.5
k-connected graphs have a minimum vertex degree of k.

Example 3.4.6
Consider K3,3, removing any vertex would lower the degrees of all vertices adjacent to it.

More generally, if all vertices of a graph G has degree 3, then G − e is not 3-connected
for any edge e, as G− e has degree-2 vertices.

Example 3.4.7
Consider the 8-wheel, and in particular any spoke edge of the 8-wheel. We cannot delete
nor contract it and remain 3-connected.

Proposition 3.4.8
An n-wheel for n ≥ 3 is 3-connected. But its “spoke” edges cannot be deleted nor
contracted while maintaining 3-connectedness.
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Theorem 3.4.9 (Tutte)
Let G be a 3-connected graph with |V (G)| > 4, then G has an edge so that G/e is
3-connected.

Lemma 3.4.10
If Tutte’s Theorem does not hold then we claim that for every edge e with distinct
ends x, y, there is a vertex

z /∈ {x, y}

so that G− {x, y, z} is disconnected, and each of the vertices x, y, z has a neighbour
in each component of

G− {x, y, z}

Proof
To see the claim, let axy be the vertex of G/e created by the contraction. Since G/e is
not 3-connected, there is a set Z with |Z| = 2 such that

G/e− Z

is not connected.

If axy /∈ Z, then
G/e− Z = (G− Z)/e

but the RHS is connected by the size of Z and contraction does not affect connectivity.

So axy ∈ Z, let z ∈ Z be the other element of Z.

The disconnected graph (G/e)− Z is equal to

G− {x, y, z}

so the other part follows from what was proved last lecture.

Proof (Tutte’s Theorem)
Suppose that the statement is false.

Choose e with ends x, y so that the number of vertices of a smallest component C of

G− {x, y, z}

is as small as possible, where z is given by the claim.

Let v be a neighbour of z in C.

Now, by the claim, there is a vertex w so that G − {v, z, w} is disconnected and each of
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v, z, w has a neighbour in each component of G− {v, z, w}.

Since x, y are adjacent in G and G − {v, z, w} has at least 2 components, there is a
component of D of G− {v, z, w} containing neither x nor y.

So D is also a component of G− {v, z, w, x, y}.

We argue that V (D) ⊆ V (C). This would be a contradiction as v ∈ V (C) \ V (D) and C
was chosen to be minimal.

To see this, let b ∈ V (D). Since v has a neighbour in V (D) and D is a component of
G− {v, w, z, x, y}, there is a path from b to v in G− {z, w, x, y}.

So there is a path from b to v in G−{x, y, z}, this means that b is in the same component
as v in the graph

G− {x, y, z}

so b ∈ V (C).

Thus V (D) ⊆ V (C) and we are done.

3.5 Menger’s Theorem

Definition 3.5.1 (Internally Disjoint Paths)
Suppose that a 6= b.
ab-paths are internally disjoint if the sets

V (P1) \ {a, b}, . . . , V (Pk) \ {a, b}

and if a, b are adjacent,
E(P1), . . . , E(Pk)

are disjoint sets.

Theorem 3.5.1 (Menger I)
If G is a graph with |V (G)| > k, then the following are equivalent:
(1) G is k-connected.
(2) for every a 6= b ∈ V (G) there are k internally disjoint ab-paths in G.
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Theorem 3.5.2 (Menger II)
Let a, b be distinct vertices in a graph G. For k ≥ 1, exactly one of the following is
true:
(1) There exists k internally disjoint ab-paths in G.
(2) There is a set X ⊆ V (G) \ {a, b} so that |X| < k and there are no ab-paths in

G−X.

Theorem 3.5.3 (Menger III)
Given sets A,B ⊆ V (G) and an integer k ≥ 1, exactly one of the following holds:
(1) There are k vertex disjoint AB-paths in G.
(2) There is some X ⊆ V (G) with |X| < k such that G−X has no AB-paths.

Theorem 3.5.4 (Menger III*)
Given sets A,B ⊆ V (G) and k being the cardinality of a minimal set X such that
G−X has no AB-paths, then there are k vertex disjoint AB-paths in G.

Proof
Suppose the statement is false and let G,A,B, k specify a counterexample where |E(G)|
is as small as possible.

We argue by induction on |E|.

If every edge of G is a loop, then every AB-separator contains A ∩ B and A ∩ B is itself
a separator. This means

k = |A ∩B|

But each vertex in A∩B is an AB-path, so there are k vertex disjoint AB-paths. Therefore
G is not a counterexample.

So G has an edge e with ends u, v where u 6= v.

Let xe be the identified vertex of G/e.

Let

A′ :=

{
A, u, v /∈ A

(A \ {u, v}) ∪ {xe}, {u, v} ∩ A 6= ∅

and

B′ :=

{
B, u, v /∈ B

(B \ {u, v}) ∪ {xe}, {u, v} ∩ A 6= ∅
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Claim I Let H be a subgraph of G containing e. Let H ′ = H/e.

We claim there is an AB-path in H if and only if there is an A′B′-path in H ′.

Let C be a component of H and C ′ be the corresponding component of H ′ = H/e.

Note that C ′ = C if e /∈ E(C) and C ′ = C/e otherwise.

Then C contains a vertex in A if and only if C ′ contains a vertex in A′, by the definition
of A′.

Same for B,B′.

So H contains an AB-path if and only if some component of C of H contains a vertex in
A and a vertex in B if and only if some component of C ′ of H ′ contains a vertex in A′

and a vertex in B′ if and only if H ′ contains an A′B′-path.

Claim II Now we claim that there do not exist k disjoint A′B′-paths in G/e.

Suppose that disjoint A′B′-paths P1, . . . , Pk existed in G/e.

Each path Pi not containing xe is also an AB-path in G. If none of the Pi contain xe,
then G has k disjoint A,B-paths, contradicting the choice of G.

Now suppose one of the Pi, say P1, contains xe. Let H be the subgraph of G with vertex
set and edge set

(V (P1) \ {xe}) ∪ {u, v}, E(P ) ∪ {e}

Now H/e = P . By claim I, since P has (is) an A′B′-path, H contains an AB-path P̂1.

Now, since P1, . . . , Pk are vertex-disjoint, the paths

P̂1, . . . , Pk

are vertex-disjoint AB-paths in G, which is again a contradiction.

By the minimality of E(G), G/e is not a counterexample. This would be a contradiction
unless the smallest A′B′-separator X ′ in G/e has size less than k.

Claim III xe ∈ X ′

If xe /∈ X ′ then
(G/e)−X ′ = (G−X ′)/e

so (G−X ′)/e contains no A′B′-path.

Applying claim 1 with H = G−X ′ shows that H has no AB-paths. So X ′ is a separator
of size less than k in G, which is a contradiction.

Let us “uncontract” G/e.
X := (X ′ \ {xe}) ∪ {u, v}
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Note that (G/e)−X ′ = G−X so X separates A from B in G.

This gives |X| ≥ k. Since |X|′ < k and |X| = |X|′ + 1 we must have

|X| = k

Let X = {x1, · · · xk}. If there were an AX-separator Y in G with |Y | < k in G, then
G − Y would contain no AX-paths. Since every AB-path contains an AX-path, this
would imply that Y is an AB-separator, so |Y | < k gives a contradiction.

So the smallest size of an AX-separator is at least k, similarly for a XB-separator.

Since G− e is not a counterexample by the minimality of E(G), it follows that there are
k disjoint AX-paths

P1, . . . , Pk

in G− e. Say that xi is the end in X of Pi.

Similarly, we can find k disjoint XB-paths

Q1, . . . , Qk

where xi is the end in X of Qi.

If there were a vertex z in
(Pi −X) ∩ (Qj −X)

for some i, j, then let a be the end of Pi in A and b the end of Qj in B. So a ∼ z ∼ b
contradicts the definition of a separator.

This shows that any Pi, Qj can only intersect at their ends in X.

So
PixiQi : 1 ≤ i ≤ k

gives a collection of k disjoint AB-paths in G, a contradiction.

Corollary 3.5.4.1 (Menger’s Theorem II)

Proof
Let k be the size of the smallest a, b-separator X which does not include a, b.

Consider A = N(a), B = N(b), the neighbours of a, b respectively.

Then let k′ be the smallest size of an A,B-separator X ′ in G.

Since G − X ′ contains no A,B-paths, and every ab-path contains an AB-path, X ′ is
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necessarily an ab-separator and so

k′ = |X ′| ≥ k

Apply Menger’s Theorem III* and we have k vertex-disjoint paths

P1, . . . , Pk

Without loss of generality, assume a, b /∈ V (Pi) for every i. But then we can augment the
ends of the paths with a, b and arrive at internally disjoint a, b-paths as desired.

Note that all (vertex) versions of Menger’s Theorem apply for k-connected graphs, since
k-connected graphs do not contain any separators of size less than k.

Lemma 3.5.5 (Fan)
If a is a vertex of a graph G, and B ⊆ V (G) with a /∈ B. Then either
(1) There are k paths P1, . . . , Pk each starting at a and disjoint with the exception

of a, which all intersect B only at the end vertex.
(2) there is a set X ⊆ V (G) \ {a} so that |X| < k and G−X has no aB-paths.

Proposition 3.5.6
If G is a k-connected graph for k ≥ 2 and A is a set of at most k vertices of G, then G
has a circuit containing each vertex in A.

Proof
Let C be a circuit containing the maximal number of vertices in A.

Notice that 2-connected graphs have circuits so such a C exist.

Let a ∈ A \ V (C).

Since G is k-connected, there is no set X ⊆ V (G) \ {a} of size less than min(|C|, k) such
that there are no aC-paths in G−X by Menger’s Theorem.

Therefore, there are at least min(|C|, k) paths from a to C, say Q is the collection of
paths.

Let P1, P2, . . . , P` be the paths formed by C between the elements of V (C) ∩ A.

We have ` = |A ∩ V (C)| < k.

By the Fan Lemma, there are min(|V (C)|, k) paths from a to C that only intersect at a.

Since ` ≤ |V (C)|, in either case (k < |V (C)| or k ≥ |V (C)|) there is some i so that Pi

contains the end in C of two of these paths Q 6= Q′ ∈ Q.
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Now, there is a circuit C ′ contained in C ∪Q∪Q′ containing all vertices in V (C)∩A and
also the vertex a.

This contradicts the maximality of C.
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4 Planar Graphs

1

2

3

4

5

6

7

8

4.1 Definitions

Definition 4.1.1 (Plane Graph)
a pair G = (V,E) where
(i) V is a finite subset of R2.
(ii) each e ∈ E is an “arc” whose “endpoints” are in V

(iii) the interior of the edges in E are disjoint from each other, and from V .

Note that the word disjoint gives us non-crossing edges.

Definition 4.1.2 (Curve)
A subset of R2 which is homeomorphic to the unit interval

[0, 1]

Example 4.1.1 (Curve)
X := f([0, 1]) where f : [0, 1] → R2 which is a continuous injection.

The endpoints of the curve is f(0), f(1).
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Definition 4.1.3 (Closed Curve)
A set of the form f([0, 1]) where f : [0, 1] → R2 is continuous and injective on the
domain [0, 1) and f(0) = f(1).

Definition 4.1.4 (Polygonal)
A curve (or closed curve) is polygonal if it is a union of a finite number of straight
line segments.

Definition 4.1.5 (arc)
Polygonal curve.

Definition 4.1.6 (polygon)
Polygonal and closed.

Theorem 4.1.2 (Thomassen)
The class of graphs that have a plane drawing where the edges are curves is equal to
the class where the edges are required to be polygonal.
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1

2

3

4

The above is a plane graph. There is a corresponding abstract graph.

Definition 4.1.7 (Abstract Graph)
A plane graph G = (V,E) naturally corresponds to a graph

G′ = (V,E, i)

G′ is the abstract graph defined by G.

G is a plane drawing or plane embedding of G′.

Definition 4.1.8 (Planar)
A graph G is planar if it has a plane drawing.

31



©Fel
ix

Zh
ou

Definition 4.1.9 (Open Disc)
A subset of R2

D = {x ∈ R2 : ‖x− a‖ < r}

with radius r, center a.

Definition 4.1.10 (Open)
X ⊆ R2 is open if every x ∈ X is contained in an oen disc D ⊆ X.

Proposition 4.1.3
open sets do not contains boundary points.

Definition 4.1.11 (Closed)
X ⊆ R2 is closed if R2 \X is open.

Proposition 4.1.4
Closed sets contains all boundary points.

Definition 4.1.12 (Bounded)
X ⊆ R2 is bounded if it sits inside some disk D.

Definition 4.1.13 (Compact)
X ⊆ R2 is compact if it is closed and bounded.

Proposition 4.1.5
Finite union of open/closed/compact/bounded sets in is still open/closed/com-
pact/bounded.

Proposition 4.1.6 (Topogical Compactness)
If U is a collection of open sets such that

X ⊆
⋃
U∈U

U

for some set X ⊆ R2 that is compact.
Then there there is a finite subcover.
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Proposition 4.1.7 (Sequential Compactness)
If X is compact, then any sequence in X has a convergent subsequence which converges
within X.

Definition 4.1.14 (Linked)
x1, x2 ∈ X are linked in a set X ⊆ R2 if there is an arc contained in X with endpoints
x1, x2.

Below, a, b are NOT linked.

1

2

3

4

5

6

a b

Note that connectedness in plane graphs gives us an equivalence relationship.

Its equivalence classes are the components of X.

4.2 Basic Results

Definition 4.2.1 (Faces)
Let G be a plane graph.
The faces of G are the components of R2 \G

R2 \
((⋃

V
)
∪
(⋃

E
))

We can “abuse” notation by writing
R2 \G
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Proposition 4.2.1
Every plane graph has exactly one unbounded face.

Proposition 4.2.2
Faces are always open.

Definition 4.2.2 (Frontier)
The frontier of a face f of a plane graph G is the set

{x ∈ G︸︷︷︸
⊆R2

: every disc centered at x contains a point in f}

Theorem 4.2.3 (Jordan Edge Theorem for Polygons)
If G is a plane graph whose abstract graph is a circuit, then G has exactly two faces.

Proposition 4.2.4
If e is a cut edge of a plane graph G, then the interior of e is on the frontier of exactly
one face of G.

Proposition 4.2.5
Let ė denote the set of points in e that are not endpoints.

(1) If X is the frontier of a face f of a plane graph G, then every edge of e either
satisfies ė ⊆ X or ė ∩X = ∅.

(2) For each edge e, the set ė is contained in the frontier of at most 2 faces.

Proof (2)
Consider the set G\ ė ⊆ R2. Since G\ ė is also a plane graph, it is a closed (compact) set.

Now, each x ∈ ė is NOT in G\ ė, so since R2 \ (G \ e′) is open, there is a disc Dx centered
at x that does not intersect G \ e′.

Since e is a finite union of line segments, by choosing Dx small enough, we can guarantee
that Dx ∩ e is the union of two radii of Dx.

Since Dx \G contains 2 equivalence classes with respect to linkedness, it follows that x is
the frontier of at most 2 faces.

Proof (1)
Let x1, x2 ∈ e′ be distinct.
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Let e[x1, x2] be the sub-arc of e with x1, x2 as endpoints.

Let L1, L2 be the perpendiculars at x1, x2 to the initial/final segments.

Let R be the region of the plane bounded by L1, L2 containing e[x1, x2].

Now, by the compactness of e[x1, x2] and the existence of the discs Dx.

There is a finite collection D1, . . . , Dk of discs whose union contains e[x1, x2]. Each Di

only intersects G in e, and in the union of two radii of Di.

By choosing Di appropriately, we may assume that their centers appear “in order” along
the arc from x1 to x2 and that each Di intersects Di+1.

Let f be a face with x1 on its frontier and choose points

a0, . . . , ak−1

such that

• a0 ∈ f

• ai ∈ Di ∩Di+1 for each i ≥ 1

• ai is linked to ai+1 in (Di ∪Di+1 \ e) for each i ≥ 0

Inductively, a0 is linked to ak−1 in R2 \G so f contains a point in a face of G containing
x2 on its frontier.

So f has x2 on its frontier.

If e′ is contained in the frontier of f , then e is also contained in the frontier of f , as each
disc around an endpoint of e contains a point x in the interior of e.

Therefore, by shrinking the ball around x sufficiently small, we fit that ball around the disc,
and we are done.

Corollary 4.2.5.1
The frontier of a face f is a subgraph of G (union of vertices and edges of G).

Definition 4.2.3 (boundary)
The subgraph corresponding to the frontier of a face f the boundary of f .

Proposition 4.2.6
If e is a cut edge, it is contained in exactly one face boundary.
Otherwise e is in a circuit, and is contained in two face boundaries.
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Corollary 4.2.6.1
If G is a plane forest, then G has exactly one face.
The boundary of this face is G.

Proposition 4.2.7
Let G be a plane graph and P be a path of G so that G is obtained from a graph H by
adding the path P .

• there is a single face f of H that contains the interior of P

• each face of H other than f is a face of G

• The face of H containing P is the union of two faces f1, f2 of G and the interior
of P

Moreover, if f is bounded by a circuit then so is f1, f2.

Corollary 4.2.7.1
G has exactly one more face than H.

Proposition 4.2.8
In a 2-connected, loopless graph, every face boundary is a circuit.

Proof
Recall that there are 2-connected plane graphs

G1, . . . , Gk

so that G is a circuit, Gk = G and each Gi+1 is obtained from Gi by adding a path.

This shows that if each face of Gi is bounded by a circuit, the same is true of Gi+1. An
inductive argument shows the proof.

4.3 Euler’s Formula

Let F (G) denote the set of faces of a plane graph G.

Theorem 4.3.1 (Euler’s Formula)
If G is a connectd plane graph the

|V (G)| − |E(G)|+ |F (G)| = 2
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Note that the formula works in S2 as well since we can take draw planar graphs on a
neighbourhood of the sphere and take the stereographical projection of of S2 \ {(0, 1, 0)}
onto R2. Note that this is a homeomorhpism between the plane and the unit sphere less one
point.

Proof
Recall that a tree on n vertices has n− 1 edges.

Let G be a counterexample with as few edges as possible. If G has no circuit, then G is
a tree so

|G(E)| = |V (G)| − 1

Moreover, trees have exact one face, so |F (G)| = 1 and the formula holds so G is not a
tree by choice of G.

So G has a circuit. Let e ∈ E(G) be an edge contained in a ciruit of G.

Note that G− e is connected. By the lemma,

|F (G)| = |F (G− e)|+ 1

as G− e is not a counter example.

So

2 = |V (G− e)| − |E(G− e)|+ |F (G− e)|
= |V (G)| − (|E(G)| − 1) + (|F (G)| − 1)

= |V (G)| − |E(G)|+ |F (G)|

which contradicts the assumption that G is a counterexample.

Proposition 4.3.2
If f is a face of a plane graph G that is not a forest, then the boundary of f contains a
circuit of G.

Proposition 4.3.3
If G is a simple planar graph with |V (G)| ≥ 3, then

|E(G)| ≤ 3|V (G)| − 6

If G is also triangle-free, then

|E(G)| ≤ 2|V (G)| − 4

The number of edges in a general graph is O(|V |2) but it is O(|V |) in planar graphs.
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Proof
Note that if G is a forest then

|E(G)| ≤ |V (G)| − 1 ≤ 3|V (G)| − 6 ≤ 2|V (G)| − 4

so the proposition holds.

Let us assume G contains a circuit so that

X := {(f, e) : e is an edge in the boundary f}

Note that
|X| =

∑
f∈F (G)

(number of edges in the boundary of f) ≥ 3|F |

as each face boundary contains a circuit so hence has size at least 3.

Also
|X| =

∑
e∈E

(number of faces with e in the boundary) ≤ 2|E(G)|

because each edge is in at most 2 face boundaries.

Thus

3|F | ≤ |X| ≤ 2|E|

|F | ≤ 2

3
|E|

But
2 = |V | − |E|+ |F | ≤ |V | − |E|+ 2

3
|E| =⇒ |E| ≤ 3|V | − 6

Adjusting the lowerbound 3|F | above will show the proposition for triangle-free planar
graphs.

Corollary 4.3.3.1
K3,3, K5 are non-planar.

1 2 3

a b c
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Proof
K3,3 is triangle free with |V | = 6, |E| = 9 but

2|V | − 4 = 8 < 9

K5 has |V | = 5, |E| = 10 so
3|V | − 6 = 9 < |E|

1

2

34

5

Note that we can draw both graphs after deleting an edge.

4.4 Subdivisions

Definition 4.4.1 (Edge Subdivision)
Let e be an edge of a graph G. The graph H obtained from G by subdividing e is the
graph obtained from G by deleting the edge e, adding a new vertex ve, and adding
new edges veu1 and veu2 where u1, u2 (not necessarily distinct) were the original ends
of e.

Definition 4.4.2 (Subdivision)
A subdivision of a graph G is a graph obtained from G by repeatedly subdividing
edges.

Proposition 4.4.1
G is planar if and only if H is planar.
In fact, G,H have plane drawings coresponding to the same set of points in R2.
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Note that degH(ve) = 2 since we explicitly forced it to have two neighbours, the ends of e.

Also, G is isomorphic to H/e1, H/e2 as contracting either new edges “reverses” the subdivi-
sion.

Corollary 4.4.1.1
If H is non-planar and G is a subdivision of H, then G is non-planar.

Corollary 4.4.1.2
If G has a subdivision of a non-planar graph H as a subgraph, then G is non-planar.

Definition 4.4.3 (Topological Minor)
We say H as above to be a topological minor of G.

Notice that we can find a subdivision of K3,3 in the Peterson Graph.

1

2

34

5

a

b

cd

e

4.5 Facial Circuit: 3-Connected Graphs

Recall that G is a 2-connected loopless plane graph, every face boundary is a circuit.
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Lemma 4.5.1
If f is a face of a plane graph G, then there is a plane graph G+ obtained by adding
a vertex v inside the face f , and an edge from v to each vertex in the boudary of f .

1

2

34

5

a

Theorem 4.5.2
IfG is a simple 3-connected plane graph, then a circuit C ofG is the boundary of a face
if and only if C is induced (chordless) and G−C is connected (C is non-separating).

So the above is a purely combinatorial property and does not rely on the embedding in R2.

v+

x

y

u′

v′

Proof ( =⇒ )
Let C be a circuit that is the boundary of a face f . We will construct the plane graph
G+ by adding a new vertex v+ ∈ f as in the lemma.
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Suppose that C has a chord xy. Therefore |V (G)| ≥ 4 and there exists vertices u, v in
different components of C − {x, y}.

By the 3-connectedness of G, there is a path P in G− xy with one end u′ and the other
end v′ in differnent components of C − {x, y}.

Now, the path P , the edge xy, and the paths around C from x to u′ to y to v′, and the
edges from v+ to

x, u′, y, v′

give a subgraph of G+ that is a subdivision of K5, where

x, u′, y, v′, v+

are the “terminals”.

Therefore, G+ is nonplanar, which is a contradiction.

Suppose that G−C is disconnected. Let xy be certices in different components of G−C.

By 3-connnectedness and Menger’s Theorem, there are 3 internally disjoint xy-paths

P1, P2, P3

in G.

None of these is a path in G− C so there is a vertex

ui ∈ V (C) ∩ V (Pi)

for each i ∈ {1, 2, 3}.

Now the paths from x to ui to y and the edges from v+ to

u1, u2, u3

form a K3,3-subdivision. This is a subgraph of G+, contradicting the planarity of G+.

x

u1 u2 u3

y v+
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Proof ( ⇐= )
Let C be a set so that C is an induced subgraph and G− C is connected.

Let f1, f2 be the two faces of the plane graph C. If f1, f2 both contain points of the
drawing of G, then since C has no chords, each contains a vertex of the drawing of G.

Let the vertices v1 ∈ f1, v2 ∈ f2. By the Jordan Curve Theorem, there is no v1v2-path in
G− C, a contradiction since G− C is connected.

It follows that either f1, f2 is a face of G as it contains no vertices of G with boundary C.

4.6 Graph Minors

Definition 4.6.1 (Minor)
A graph G has a graph H as a minor if H can be obtained from G by deleting
vertices/edges and contracting edges.

Proposition 4.6.1
G has an H-minor if and only if there is a function ϕ that
(i) maps vertices of H to connected subgraphs of G
(ii) edges of H to edges of G

and
(a) the subgraphs ϕ(v) : v ∈ V (H) are vertex-disjoint
(b) for each e ∈ E(H) with ends u, v, the edge ϕ(e) has ends in ϕ(u), ϕ(v)

(c) ϕ is injective

Definition 4.6.2 (Topological Minor)
A graph G has a graph H as a topological minor if some subdivision of H is contained
in G as a subgraph.
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Proposition 4.6.2
H is a topological minor of G if and only if there is a function ϕ such that
(i) ϕ maps vertices of H to vertices of G
(ii) ϕ maps edges of H to paths of G

and
(a) the vertices ϕ(v) : v ∈ V (H) are distinct vertices of G (terminals)
(b) for each edge e ∈ E(H) with ends u, v, the path ϕ(e) has ends ϕ(u), ϕ(v) in V (G)

(or ϕ(e) is a ciruit containing ϕ(u) if e is a loop at u)
(c) paths ϕ(e), ϕ(e′) only intersect at a vertex x if x = ϕ(u) and u is a common end

of e, e′ in H

Proposition 4.6.3
If G has an H-topological-minor, then G has an H-minor.

Proof
Assignment.

Theorem 4.6.4
G has K5 or K3,3 as a topological minor if and only if G has K5 or K3,3 as a minor.

Proof ( =⇒ )
By previous proposition.

Proposition 4.6.5
IfH has maximum degree at most 3 andG has anH-minor, thenG has anH-topological-
minor.

Proof
Assignment.

Proof (theorem, ⇐= )
If G has a K3,3-minor, then it has a topological K3,3-minor by another proposition since
maximal degree of K3,3 is 3.

It remains to show that if G has a K5-minor, then it has a K5 or K3,3-topological minor.

Let G be a counterexample with as few edges as possible.

If G has at most 10 edges, G is just K5 with some isolated vertices and has a topological
K5-minor.
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Otherwise, G has at least 11 edges, so there is an edge e of G such that G− e or G/e has
a K5-minor.

By the minimality of G, G− e and G/e both have a K5 or K3,3-topological-minor.

But if H is a topological minor of G− e, it also has a topological minor G.

Elsewise, H is a topological minor of G/e. Let u, v be the ends of e, and x = xuv be the
identified vertex in G/e.

Let T be the set of terminal vertices corresponding to the topological copy of H inside G.
Furthermore, define P to be the set of paths betweeen the terminals that give H.

Case I: If x /∈ T , nor is x in any of the paths in P , then T,P give a topological copy of
H inside G, which is contrary to the choice of G.

Case II: If x is an internal vertex of a path P ∈ P (ie x /∈ T ). Then, there is a path P ′

of G with the same ends as P such that

E(P ) ⊆ E(P ′) ⊆ E(P ′) ∪ {e}

Now, replacing P with (P \ {P})∪ {P ′} gives a topological copy of H within G, which is
again a contradiction.

Case III: Otherwise, x ∈ T . So x corresponds to a vertex a of H and each edge of H
incident with a corresponding to a path Pf ∈ P such that x is an end.

There is also a path P ′
f of G with

E(Pf ) = E(P ′
f )

and either u, v is an end.

If one of u, v (say u) is an end of at most 1 of the paths P ′
f , we can replace this P ′

f with
either itself or

P ′
f ∪ {e}

to give a topological copy of H in G.

Case IV: Finally, if this is not the case, then each of u, v is an end of at least 2 of the
paths P ′

f . Since the number of P ′
f is equal to the degree of a in H, and H ∈ {K3,3, K5},

it follows that H = K5 and each of u, v is an end of exactly two P ′
f .

So G contains a topological copy of K3,3.
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4.7 Kuratowski’s Theorem

Theorem 4.7.1 (Kuratowski)
The following are equivalent
(1) G is planar
(2) G has no topological minor in {K3,3, K5}
(3) G has no minor in {K3,3, K5}

Lemma 4.7.2 (A-interval)
Let C be a circuit.
Given A ⊆ V (C), a path contained in V (C) with both endpoints in A but no internal
vertices in A is an A-interval.

Lemma 4.7.3 (Circle Lemma)
Let C be a circuit.
If A,B are sets of vertices of C, only one of the following hold:
(1) |A ∪B| ≤ 2

(2) |A ∩B| ≥ 3

(3) There are distinct vertices a1, b2, a2, b2, in cyclic order around C such that
a1, a2 ∈ A, b1, b2 ∈ B

(4) There is a A-interval containing B or vice versa.

Proof (circle lemma)
We may assume |A| ≤ |B|.

Case I: If |A| ≤ 1, then either |B| = 1 (outcome (1)) or there is a B-interval containing
A (outcome (4)).

Case II: Now, suppose |A| ≥ 2. If there is some b1 ∈ B \ A, then b1 ∈ I, an A-interval
with ends a1, a2.

If B ⊆ I (outcome (4)), we are done. Suppose not, there is some b2 ∈ B \ I (outcome
(3)).

Case III: Elsewise, B ⊆ A and by cardinality A = B. so A ∩B = A ∪B (outcome (1) or
(2)).
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Lemma 4.7.4
If G is 3-connected and does not have a minor in {K5, K3,3}, then it is planar.

Proof (lemma)
Let G be a minimal counterexample (few edges as possible). Clearly, G is simple (parallel
edges and loops do not affect planarity) and |V (G)| ≥ 5 (K4 is planar).

By the lemma a million years ago, there is an edge e such that G/e is 3-connected. So
G/e does not have a minor in K3,3, K5 (or else G does), but is not a counterexample,
Therefore, it is forced to be planar.

Let u, v be the ends of e in G. Let x be the identified vertex in G/e. Since G/e is
3-connected, (G/e)− x is 2-connected and therefore, each face is bounded by a circuit.

Let C be the circuit bounding the face containing x in some planar embedding of G/e.
So every neighbour of x in G/e is a vertex of C by planarity.

We show that we can contradict the either the nonplanarity of G, the 3-connectednes of
G, or the assumption that we do not have a K5 or K3,3 minor.

Apply the circle lemma with A = NG(u), B = NG(v) and consider the outcomes:

(1) |A ∪B| ≤ 2 and A ∪B is a separator in G/e, contradicting 3-connectedness.
(2) K5-topological-minor
(3) K3,3-topological-minior
(4) G is planar

In all cases, we have a contradiction, so G cannot be a counterexample.

Proposition 4.7.5
If G is a planar graph
(1) G has a planar embedding in {(x, y) ⊆ R2 : x > 0}
(2) For every vertex of v ∈ V (G), G has a planar embedding so that v is at the origin

and every other vertex has positive x-coordinate
(3) For every pair of adjacent vertices u, v of G, there is a planar embedding of G

where u is at the origin, v is at (0, 1), and every other point in the drawing has
positive x-coordinates

and vice versa with “positive” replaced with “negative”.

Proof (sketch)
We us stereographic projection to find a drawing of G where the edge from u to v is on
the unbounded face.
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Shift this drawing so that all x-coordinates are positive.

Move u, v to the desired poisitions and reroute edges consistently.

Theorem 4.7.6
If G has no K3,3-minor or K5-minor, then G is planar.

Proof
Let G be a minimal counterexample.

Every proper minor of G is not a counterexample, and so is planar. If G is disconnected,
then let C be a component of G. Now, G−C and C are planar, and thus G is planar by
the proposition.

We may proceed assuming G is connected. If G is not 2-connected, then G has a cut-vertex
v. Therefore, let G1, G2 intersecting at only v, so that G = G1 ∪G2.

By the proposition, we can draw G1 in the right of y-axis and G2 on the other side, with
v at the origin. This directly gives a drawing of G.

If G is not 3-connected, and |V (G)| ≥ 5, then it is 2-connected and has vertices u, v such
that G− u− v is disconnected.

Let G1, G2 be graphs on at least 3 vertices, with intersection {u, v} such that G1∪G2 = G

Let G′
1, G

′
2 be obtained from G1, G2 by drawing an edge e from u to v. Since G is 2-

connected, G2 is connected, and so contains a path P2 from u to v.

Therefore G1∪P2 has G′
1 as a minor, so G′

1 is a minor of G. Similary, G′
2 is a minor of G.

Since G′
1, G

′
2 are proper minors of G, they have no K3,3, K5 minors. They are not coun-

terexamples, and thus are planar.

Now, we can glue embeddings G′
1, G

′
2 with the proposition and this will give a drawing of

a graph with G as a subgraph.

Otherwise, G is 3-connected and by our prior work, we are done.

4.8 Algorithmic Planarity Testing

Can we decide if a graph is planar in polynomial time?

We can test for 3-connectedness by deleting every pair of vertices and using BFS to check
connectedness.

Given G that is 3-connected, we can always find an edge e such that G/e is 3-connected.
Guess e, check if G/e is 3-connected, and so on.
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Now, recursively run the algorithm on G/e after simplifying to check if we have a K3,3 or
K5 minor, then this is a minor of G.

Otherwise, the algorithm will give a planar drawing of G/e.

The recursion is by testing the identified vertex x in G/e and checking its bounding cycle
and neighbours of original ends. Similar to our prior work in the proof of the 3-connected
case of Kuratowski’s Theorem

4.9 Planar Embeddings with Straight Line Edges

K4 is planar and actually has an embedding with straight lines.

Theorem 4.9.1 (Fary, 1948)
Every simple planar graph has an embedding where edges are straight lines.

Theorem 4.9.2 (Tutte)
Every 3-connected simple planar graph has a drawing where edges are straight line
segments and faces are convex arguments.

Definition 4.9.1 (Spring Embedding)
Given a circuit C of a 3-connected plane graph G = (V,E), a spring embedding of G
is a function

ϕ : V → R2

such that
(1) the vertices of C are mapped to a prescribed convex polygon
(2) ϕ(u) = 1

deg u
·
∑

v adjacent to u ϕ(v) for u ∈ V \ C
To see this exists, we can use a physics argument, a linear algebraic argument using
the Laplacian, or an analytic one with sequential compactness.

Theorem 4.9.3 (Tutte)
A spring embedding of a 3-connected simple planar graph G gives a straight line
drawing with convex faces.
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Lemma 4.9.4 (I)
In a spring embedding, for each u ∈ V \ C and each line L through ϕ(u), either

1. all neighbours of u live on L

2. u has a neighbour strictly on each side of L

Proof
If the first case does not hold, there must be neighbours on both sides of the line to be at
“average” position.

Lemma 4.9.5 (II)
For each open half-plane P for which P ∩ ϕ(v) 6= ∅ , the vertices in P ∩ ϕ(v) induce
a connected subgraph of G.

Proof
P will include some part of the bounding circuit C (connected).

Assume the there is another component from the connected subgraph including parts of
C. We can find a linear function such that one vertex of that component is the unique
optimal solution of cTx.

So there is a line which on one side does not have neighbours.

Lemma 4.9.6 (III)
No vertices u /∈ C have all neighbours on a line through u (ie I(i) does not happen).

Proof
There must be three vertices on such a hypothetical line with neighbours on both sides
of the hypothetical line. Or else there is a separator of size 2.

By Menger’s Theorem, we can find internally disjoint paths from one neighbour on each
side of the line to each of the 3 vertices on the line.

This is a K3,3 minor.

Lemma 4.9.7 (IV)
For every pair C1, C2 of facial circuits of G intersecting in a edge e = uv, the line
through ϕ(u), ϕ(v) separates C1 from C2.
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Proof
Suppose not.

There is a uv-path Q that does not include e on the C2 side. There is a path P disjoint
from Q from a vertex in C1 to a vertex in C2.

We can add v∗ to the ends of the P,Q and gives a K5 minor. But that would give a planar
embedding of some graph with a K5 minor which is a contradiction.

Lemma 4.9.8 (V)
The facial circuits map to convex polygons, call them tiles. No tiles intersect.

Proof
There is a point “close” to the bounding circuit which is only in 1 tile. We can walk tile to
tile by crossing an edge each time and not changing the amount of tiles which intersects
the path (only 1).

This reduces to a smaller subgraph and we can proceed by induction.

Proof (theorem)
Argue by induction on the number of vertices or edges.
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5 Matchings

5.1 Definitions

Definition 5.1.1 (Matching)
A matching in a graph G is a set of edges of G so that no two have an end in common.

Let ν(G) denotes the size of a maximum (largest) matching of G.

Definition 5.1.2 (Maximum Matching)
A maximum matching of G is a matching of size ν(G).

Remark that there is nothing to be gained from non-simple graphs since we really only care
if an edge exists between two graphs and NOT how many edges.

a

b

d

c

e

f

gh

i

j

a

b

d

c

e

f

gh

i

j

Definition 5.1.3 (Saturated)
A vertex that is an end of an edge in a matching is saturated.
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Otherwise, the vertex is unsaturated.

Definition 5.1.4 (Vertex Cover)
A vertex Cover of G is a set U ⊆ V (G) such that every edge has an end in U .
(ie G− U has no edgse).

For a graph G, τ(G) denote the size of a minimum (smallest) vertex cover.

5.2 Basic Results

Proposition 5.2.1
If U is a vertex cover and M is a matching, then every edge in M has an edge in U , and
no two edges in M have such an end in common, so

|M | ≤ |U |

thus
ν(G) ≤ τ(G)

Proposition 5.2.2
If M is a matching and U is a cover with |M | = |U |, then M is a maximum matching
and U is a minimum cover. In addition
(i) Every vertexx in U is an end of an edge in M

(ii) every edge in M has exactly one end in U .

Proof
By previous proposition.

Theorem 5.2.3 (König, 1931)
If G is bipartite, then

ν(G) = τ(G)

a

b

c
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If a graph is not bipartite, then it has no odd cycles, which causes problems in general. For
C3 above ν(G) < τ(G) strictly.

On the other hand, even circuits have perfect matchings equal to the minimal size of a vertex
cover.

Proof (König)
We apply Menger’s Theorem.

Let A,B be the bipartition of V (G).

A vertex cover is the same as a set X ⊆ V (G) so that G−X has no edges.

This is equivalent as saying G−X has no AB-paths.

So
τ(G) = min

X⊆V (G)
|X|

such that G−X has no AB-paths.

By Menger’s Theorem, this is precisely the number of vertex-disjoint AB-paths. This
happens to be the maximum size of a matching of G. So

ν(G) = τ(G)

There is an alternative proof that does not use Menger’s Theorem NOR alternating paths.
NICE!

Proof (König)
Let G be a counterexample with as few edges as possible. Note that if G has no edges,
its minimal cover and maximum matching is 0. So |E(G)| > 0.

In other words, ν(G) < τ(G) but
ν(H) = τ(H)

for every proper subgraph H of G.

G is connected, since if C is a component of G, then

ν(G) = ν(C) + ν(G− C) = τ(C) + τ(G− C)

which is a contradiction.

We claim thatG is also not a path or a (even) circuit as they are both not counterexamples.
(We considered these explicitly).

Since G is connected but is not a path or circuit, it has a vertex u of degree at least 3.

Let v be a neighbour of u.
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Case I: If ν(G − v) < ν(G), then let U be a vertex cover of G − v. Now, U ∪ {v} is a
cover of G. So

τ(G) ≤ |U ∪ {u}|
= |U |+ 1

= τ(G− v) + 1

= ν(G− v) + 1 induction
≤ ν(G) assumption
< τ(G) choice of G

which is a contradiction.

Case II: So ν(G − v) = ν(G). Let M be a maixmum matching of G − v, so M is also a
max matching of G.

Since M is maximum in G but does not saturate v, it must saturate u.

Let f be an edge of G incident with u but not v such that f /∈ M .

By the minimality of G we have

ν(G− f) = τ(G− f)

so M is a maximum matching of G− f , and G− f has a vertex cover U such that

|U | = |M |

If U is a cover of G then ν(G) = |M | = |U | = τ(G) which is a contradiction. Thus U is
not a cover of G and u /∈ U .

But the edge from u to v is an edge of G− f so has on end in U , giving v ∈ U .

So v is a vertex of G− f that is in the cover U , but is not saturated by M .

Since every edge in M contains a vertex in U , it follows that |U | > |M |, which is the
desired contradiction.

5.3 Matchings in General Graphs

Proposition 5.3.1
If S is a set of vertices of a graph G such that G−S has more than |S| odd components,
then G has no perfect matching.
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Definition 5.3.1 (Odd)
Let odd(G) denote the number of odd components of G.

Proposition 5.3.2
If S is a set of vertices in a graph G, and M is a matching of G, then G has at at least

odd(G− S)− |S|

vertices that are not saturated.

Proof
Every odd component of G − S that contains no unsaturated vertex has a vertex joined
by an edge of M to a vertex in S.

There are at most |S| edges of M with an end in S, so at least

odd(G− S)− |S|

odd components of G− S contain an unsaturated vertex.

When M is a maximum matching, this gives

n− 2ν(G) = n− 2|M |
≥ odd(G− S)− |S|

for each S ⊆ V (G).

So
ν(G) ≤ min

S⊆V (G)

1

2
(|V (G)| − odd(G− S) + |S|)

Let M,M ′ be matchings of G.

Definition 5.3.2
For F ⊆ E(G) let

G[F ] :=

(
V (G), F, φ

∣∣∣∣
V (G)×F

)
be the graph obtained from G by deleting all edges not in F .

Consider G[M ∪M ′]. Every vertex has degree at most 2 by the definition of matchings and
thus it is just paths and circuits.
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Each vertex in a circuit of G[M ∪M ′] is saturated by both M,M ′.

Each path either has length 1 (number of edges) and its edge is in M AND M ′, or all its
interval vetices are saturated by both M and M ′, and all its end vertices are saturated by
exactly 1, or it has length 0.

Each circuit and path of length at least 2 alternates between edges in M and M ′. Therefore,
each circuit is even.

If P is a path component of odd length that is NOT an edge of M ∩M ′, either

|P ∩M | < |P ∩M ′| or |P ∩M | > |P ∩M ′|

Definition 5.3.3 (Symmetric Difference)
Define

A∆B := (A ∪B) \ (A ∩B)

Say |P ∩M ′| < |P ∩M |, then

M ′ 7→ M ′ ∆︸︷︷︸
symmetric difference

P

is a matching longer than M ′.

So if M and M ′ are both maximum matchings, then every path component that is not an
edge of M ∩M ′ has even length!
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Theorem 5.3.3 (Tutte, Berge)

ν(G) =
1

2
min

S⊆V (G)
(|V (G)|+ |S| − odd(G− S))

In other words, for every maximum matching, there is a set S for which equality
holds.
This S gives a concise certificate that there is no larger matching.

Definition 5.3.4 (Hypomatchable)
A graph G is hypomatchable if G− u has a perfect matching for all u ∈ V (G).

Lemma 5.3.4
If ν(G− v) = ν(G) for every v ∈ V (G), then every component H of G is hypomatch-
able.

Proof
Let u ? v if

u = v ∨ ν(G− {u, v}) < ν(G)

We show that ? is an equivalence relation. It suffices to show transitivity.

Suppose that u1, v, u2 are distinct with

u1 ? v, v ? u2

Moreoever, suppose for a contradiction that u1 6 ?u2. (ie ν(G − (u1 + u2)) = ν(G)). In
other words, there is a maximum matching M not saturating u1, u2.

Therefore, there is a maximum matching M ’ not saturating v.

Consider G[M ∪M ′]. Each of u1, v, u2 have degree at most 1 and so is an end of a path
component of G[M ∪M ′].

But at least one of u1, u2 is not connected to v, say u1 so we can toggle the path with end
u1 to get a matching M ′∗.

Notice that M ′∗ does not saturated v, u1 and thus contradicts the fact that v ? u1.

Now, suppose there is a path u1, . . . , uk then by transitivity

u1 ? uk
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and every pair of vertices in the same component are related by ?.

We claim that each component H of G has a matching saturating every vertex except u
for every choice of u.

If not, then H−u has a maximum matching avoiding another vertex v of H. This implies
that

ν(G− u− v) = ν(G)

contradicting u ? v.

This gives the result.

Proof (theorem)
Let G be a minimal counterexample with respect to the number of vertices.

Clearly |V (G)| > 0.

Claim I: G is connected.

If not, let H be a component of H. Since H,G−H are not counterexamples, we have

ν(G) = ν(H) + ν(G−H)

=
1

2
min

S⊆V (H)
(|V (H)|+ |S| − odd(H − S)) +

1

2
min

S′⊆V (G−H)
(|V (G−H)|+ |S ′| − odd(G−H − S))

=
1

2
min

S⊆V (H),S′⊆V (G−H)
(|V (G)|+ |S ∪ S ′| − odd(H − S)− odd(G−H − S ′))

=
1

2
min

S′⊆V (G)
(|V (G)|+ |S| − odd(G− S))

which is contrary to the choice of G.

Claim II: ν(G− v) = ν(G) for each v ∈ V (G).

Suppose that v ∈ V (G) and ν(G− v) < ν(G) ie

ν(G− v) ≤ ν(G)− 1

Then
ν(G− v) =

1

2
min

S⊆V (G−v)
(|V (G− v)|+ |S| − odd(G− v − S))

so there is a set S0 ⊆ V (G− v) which achieves the minimum.

Let S ′ := S0 ∪ {v}. We know that

ν(G− v) ≤ ν(G)− 1

|V (G− v)| = |V (G)| − 1

|S ′| = |S0|+ 1
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so

ν(G)− 1 ≥ ν(G− v)

=
1

2
(|V (G− v)|+ |S0| − odd(G− v − S0))

=
1

2
(|V (G)| − 1 + |S ′| − 1− odd(G− S ′))

This gives

ν(G) ≥ 1

2
(|V (G)|+ |S ′| − odd(G− S ′))

≥ 1

2
min

S⊆V (G)
(|V (G)|+ |S| − odd(G− S))

and contradicts the choice of G as a counterexample.

So G is hypomatchable by the lemma and thus has an odd number of vertices (only 1
component). It has

ν(G) =
1

2
(|V (G)| − 1)

because ν(G− v) = 1
2
|V (G− v)| for each v.

This is equal to
1

2
(|V (G)|+ |S| − odd(G− S))

when S = ∅.

Since this is an upper bound for ν(G), we have equality. It follows that G is not a
counterexample and we conclude the result holds.

Corollary 5.3.4.1 (Tutte)
G has a perfect matching if and only if

|odd(G− S)| ≤ |S|

for all S ⊆ V (G).

Corollary 5.3.4.2 (Peterson)
If G is a 3-regular graph with no cut-edge, then G has a perfect matching.

Proof
Suppose not, there is a set S with

|odd(G− S)| > |S|
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Let X ⊆ V (G) be a subset of the vertices with odd cardinality. We argue that X has an
odd number of edges leaving X.

Let F = δ(X) be the set of outgoing edges from X. Since G has no cut edges, |F | > 1.

Next, remark that
odd︷ ︸︸ ︷∑

x∈X

deg(x) = |F |︸︷︷︸
outgoing

+

internal edges, even︷ ︸︸ ︷
2|E(G[X])|

so |F | is necessarily odd. This gives |F | ≥ 3.

So every odd component of odd(G− S) has at least 3 outgoing edges.

Therefore, the number of edges with an end in S and an end in an odd component of
G− S is at least

3 odd(G− S) > 3|S|

This contradicts the 3-regularity of G.

5.4 Matching Structure

Definition 5.4.1 (Berge Witness)
Let G be a graph. Then if S ⊆ V (G) is such that

ν(G) =
1

2
(|V (G)|+ |S| − odd(G− S))

then S is a berge witness.

What is the structure of G and its maximum matchings relative to a Berge Witness.

For any matching M , there are ar least odd(G − S) − |S| odd components of G − S that
contain an unsaturated vertex.

If M is a a maximum matching, then there are exactly odd(G−S)−|S| unsaturated vertices
in M .

Therefore, the unsaturated vertices of M all lie in odd components of G−S, and no two are
in the same component.

Every other vertex of G is saturated. Thus

(1) Every odd component of G−S containing no unsaturated vertices must have a vertex
that is matched by M to a vertex in S

(2) Every vertex in S is matched to a vertex in some odd component of G−S in this way.
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(3) The even components of G−S contain no unsaturated vertices and no vertices matched
by M to a vertex in S, so they have a perfect matching

Definition 5.4.2 (Avoidable)
A vertex v ∈ V (G) is avoidable if some maximum matching of G does NOT saturated
v.
In other words

ν(G− v) = ν(G)

Theorem 5.4.1 (Gallai-Edmonds)
Let G be a graph, D the set of avoidable vertices of G, and A the neighbour of vertices
that are not in D themself. Finally let C = V (G) \ (A ∪D)

(i) A is a Berge witness
(ii) Every odd component of G− A is hypomatchable and contained in D

(iii) Every even component of G− A has a perfec matching contained in C

Proof (Kotlov, 2000)
We will construct sets Â, D̂, Ĉ and show taht they have the required properties.

Let Â be a Berge witness, chosen so that

(a) The number of non-hypomatchable odd components of G− Â is as small as possible
(b) The size of Â is as small as possible (subject to the first condition)

Suppose inductively that the theorem holds for graphs with less than |V (G)| vertices.

Lemma 5.4.2
Every odd component of G− Â ia hypomatchable.

Proof
Let H be a non-hypomatchable odd component, and v be a vertex of H so that H − v
has no perfect matching.

Let X be a Berge Witness for H− v, chosen so that every odd component of (H− v)−X
is hypomatchable.

Since X is a Berge Witness in H − v and H − v is even, there are at least two vertices
unsaturated in a maximum matching of H − v, so

odd(H − v −X)− |X| ≥ 2
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We now argue that {v} ∪ Â ∪X is a Berge Witness of G. This would be a contradiction
since G− ({v}∪ Â∪X) has fewer non-hypomatchable odd components then G− Â does.

We have

odd(G− ({v} ∪ Â ∪X))− |{v} ∪ Â ∪X| =
[
(odd(G− Â)− 1) + odd(H − v −X)

]
− 1− |Â| − |X|

= (odd(G− Â)− |Â|) + [(odd(H − v −X)− |X| − 2]

≥ odd(G− Â)− |Â|

So the fact that Â is a Berge Witness show that

Â ∪ {v} ∪X

is a Berge Witness whose deletion leaves fewer non-hypomatchable odd components than
Â, a contradiction.

Lemma 5.4.3
For every non-empty set A′ ⊆ Â, at least |A′| + 1 odd components of G − Â have a
neighbour in A′.

Proof
Let A′ ⊆ Â be a set violating this. Let

A′ = {v1, . . . , vk}

In a maximum matching M , the vertices v1, . . . , vk are matched to vertices in different
odd components of G− Â.

Call them H1, . . . , Hk respectively. Since A′ violates the claim, {Hi} are the only odd
components of G− Â having a neighbour in A′.

We demonstrate that Â \ A′ is a Berge Witness in G.

odd(G− (Â \ A′))− |Â \ A′| ≥ (odd(G− Â)− k)− |Â|+ |A′|
= odd(G− Â)− |Â|

and Â \ A′ is a Berge Witness.

All odd components of G− Â that are not in {Hi} are odd components of G− (Â \ A′).
The other vertices of G− (Â \ A′) are partitioned by the connected even sets

Hi ∪ vi

and the even components of G− Â.
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Therefore G − (Â \ A′) has no odd components that are not odd components of G − Â.
But |Â \ A′| < |Â| and G − (Â \ A′) have no more non-hypomatchable odd components
than G− Â.

This contradicts the choice of Â.

Lemma 5.4.4
Every vertex in an odd component of G− Â is avoidable.

Proof
Let v be a vertex of an odd component H of G− Â. We show that there is a maximum
matching M0 of G that matches every vertex in Â to a vertex in an odd component of
G− Â other than H.

By the second lemma, each set A′ ⊆ Â has neighbours at least |A′| odd components of
G−Â other than H. Then, there is a Â-saturating matching M0 by Hall’s Theorem which
does not use vertices in H.

Now, since M0 saturates at most 1 vertex from each odd component of G− Â, no vertices
of any even component of G− Â, and saturates Â, we can use the second lemma and the
fact that even components of G− Â have perfect matchings to extend M0 to a maximum
matching of G, avoiding v.

We have shown the existence of a Berge Witness Â such that

(1) Every odd component of G− Â is hypomatchable
(2) Every vertex in an odd component of G− Â is avoidable
(3) Each nonempty set A′ ⊆ A has edges to at least |A′|+ 1 odd components of G− Â

Since every vertex in Â and in an even component of G− Â is unavoidable, claim 2 implies
that the vertices in odd components of G− Â are precisely the avoidable vertices of G.

By (2), every x ∈ Â has a neighbour in D, the set of avoidable vertices of G and clearly no
vertex outside of Â∪D has a neighbour in D, so Â = A, the set of neighbours of vertices in
D that are not in D. This implies the result (using claim (1)).

Proposition 5.4.5
If M is a matching in a graph G that is NOT maximum, then there is a M -augmenting
path in G.

Proof
Assignment 4.

64



©Fel
ix

Zh
ou

5.5 Slither

This is played on a graph G by two players Alice and Bob. They take turns choosing edges
of G so that the chosen edges always form a path. The first player with no move loses.

5.5.1 Win Conditions

When can Alice force a win?

Proposition 5.5.1
If G has a perfect matching M , then Alice can force a win.

Proof
Consider the first turn where Alice cannot choose an edge from M .

Bob just extended the path P by a vertex w.

Every vertex of P has its matching in P , so Alice can extend using the match of w,
contradicting the assumption that this turn is a counterexample.

When can Bob force a win?

Proposition 5.5.2
If G is hypomatchable, then Bob can force a win.

Proof
Symmetric to the previous proposition.

5.5.2 Gallai-Edmonds

There is a partition of V (G) into three sets

C(G), A(G), D(G)

where C is the leftover, A is berge witness, and D has avoidable vertices.

Every component of G[D(G)] is hypomatchable.

Since A(G) is a Berge witness, every maximum matching of G induces a perfect matching
of each component of G[C(G)], and a maximum matching of each component of G[D(G)].

Proposition 5.5.3
If C(G) 6= ∅, then Alice can win.
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Proof
Let M be a maximum matching of G, and Alice starts with e0 ∈ M in C(G).

Say Alice uses vertex w and Alice is stuck. But then the portion of the path from e0 to
w is M -alternating. w is M -unsaturated, and both ends of e0 are unavoidable, which is a
contradiction.

Proposition 5.5.4
If C(G) 6= ∅, then the first player to choose an edge with an edn in D(G) loses.

Proof
Similar to previous proposition.

We can continually reduce the game by consider the Gallai-Edmonds partition of A(G), etc.

5.6 Blossom Algorithm

The idea is to take any matching M , look for an augmenting path. If there is not augmenting
path, M is maximum. Otherwise, use the path to find a larger matching.

We can find an M -alternating tree.

Definition 5.6.1 (M -Alternating Tree)
An M -Alternating Tree rooted at u is a tree subgraph of G containing u so that
(i) for each v ∈ V (T ), the uv-path in T is M -alternating and v is saturated
(ii) every leaf vertex of T has even distance from u in T .

Note that by this definition, whenever v ∈ V (T − u), the matching edge incident with v is
an edge of T .

Definition 5.6.2 (Outer Vertices)
Given an M -alternating tree T rooted at u, the outer vertices of T are those at even
distance from u (including u).

Definition 5.6.3 (Inner Vertices)
Similar.
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Definition 5.6.4 (M -Alternating Forest)
F , when it is a subgraph whose components are M -alternating trees.
Define the inner and outer vertices of F in the obvious way.

Proposition 5.6.1
Given a matching M is a graph G, we can find (efficiently) find either
(a) an M -augmenting path.
(b) an M -alternating forest so that

(i) every M -unsaturated vertex of G is a vertex of F
(ii) the neighbours of each outer vertex v in F are either inner vertices of F , or

outer vertices in the same component of F as v

Proof
Start with F = {M -unsaturated vertices}.

While an outer vertex v of F has a neighbour v′ outside F , since v′ /∈ V (F ), v′ is saturated
and therefore matched by M to some w /∈ V (F ).

Let Ti be the component of F containing v. Replace Ti with

Ti ∪ {vv′, v′w}

to form a larger M -alternating forest F .

After the loop, all neighbours of outer vertices of F are in F . If vi, vj are outer vertices
in distinct components Ti, Tj of F that are adjacent, then

Pi ∪ {vivj} ∪ Pj

is an M -augmenting path, where Pi is the path in Ti from the root to vi.

Thus, if we cannot find an M -augmenting path, F satisfies the alternative scenario of the
proposition.

Corollary 5.6.1.1
If there are no edges between outer vertices in the same component, then G is bipartite
and we are done.

Proof
Bipartiteness is clear.

Let F be given by the proposition. If there are no edges in F between outer vertices, then
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let
S := {inner vertices}

The outer vertices are isolated in G− S so the outer vertices are precisely the odd com-
ponents of G− S. Remark that

odd(G− S)− |S| = # outer vertices−# inner vertices
= # components of F
= # unsaturated vertices of F construction

so S is a Berge Witness and M is a maximum matching.

Definition 5.6.5 (Blossom)
Tight odd circuit with only one unsaturated vertex.

Proposition 5.6.2
If C is an odd circuit in G and M is a matching of G such that M contains a maximum
matching of C and the other vertex of C is unsaturated, then M is a maximum matching
of G if and only if M \ E(C) is a maximum matching of G/C.
Moreoever, if M0 is any matching in G/C, then M0 can be extended to a matching of
G of size

|M0|+
1

2
(|E(C)| − 1)

Proof
Assignment.

This allows us, given a matching M and a blossom C for M , to reduce the problem of finding
a matching larger than M to find a maximum matching of G/C.

In other words, ifM\E(C) is a maximum matching in G/C, stop; M is a maximum matching
in G. Otherwise, let M0 be a maximum matching in G/C; Extend M0 to a matching of size

|M0|+
1

2
(|E(G)| − 1) > |M \ E(C)|+ 1

2
(|E(C)| − 1)

= |M |

Proposition 5.6.3
If there is an edge e between outer vertices v, v′ in the same component, we can recurse
on a smaller graph.
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Proof
let C be the odd circuit of

T ∪ {e}

containing e, let P be the shortest path in T from the circuit to C.

Now, C is a blossom in the matching

M∆P

which has sizeM . Use C recursively to either conclude thatM∆P is a maximummatching
in G, or to find a larger matching in G.

Since matchings have size < 1
2
|V (G)| we only find an augmenting path or recurse a maximum

of O(|V (G)|) times, gives a polytime algorithm.
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6 Bonus Material

6.1 Extremal Graph Theory

Does there exist a graph with chromatic colour 100?

The easy answer is K100. But how but if we restrict to graphs which are only allowed circuits
of size at least 1000?

6.2 Algebraic Graph Theory

From the assignment, we have seen the signed incidence matrix.

Let us consider the incidence matrix M of a graph G over the field Z2.

6.2.1 Cut Space

What is the row space of M?

Consider a sum of the rows of M . It is the sum of rows of S ⊆ V (G). Any edge with both
ends in S sum to 0 and any edge with no ends in S are no represented. It follows that

∑
S

is the sum of edges with one edge in S ie the cut of S.

So the rows space of M is the space of all cuts.

Definition 6.2.1 (Cut Space)
The row space of the incidence matrix.

6.2.2 Cycle Space

What is the null space of M?

It is the set of vectors which are orthogonal to the row space. Let u be such that Mu = 0.
u picks a combination of the edges such that every vertex is incident to an even number of
edges in some subgraph of G.

So u corresponds to a cycle.

Definition 6.2.2 (Cycle Space)
The null space of the incidence matrix.
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We can define bipartite graphs and planar graphs using linear algebaric characterizations.

Theorem 6.2.1
Let C denote the cut space of a planar graph G. Then

C∗(G∗) = C(G)

6.3 Bases of the Incidence Matrix

Proposition 6.3.1
Let B be the incidence matrix of a simple graph G. B is totally unimodular.

Proof
Induction.

Theorem 6.3.2 (Regular Matroid Decomposition Theorem)
Every regular matroid can be obtained from graphic matroids, their duals, and ...

What is BBT =: L?

Lu,w = BT
uBw =


−1, uw ∈ E

0, uw /∈ E

deg(u), u = w

Definition 6.3.1 (Laplacian)
L(G) = BBT of the incidence matrix B of a simple graph G.

uB = 0 =⇒ uBBT = 0 so it has determinant 0.

Let
Lv = BvB

T
v

where Bv is the incidence matrix less the row corresponding to v.

Proposition 6.3.3 (Cauchy-Binet Formula)

detAAT =
∑

r × r submatrices A′ of A

det(A′)
2

so
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Theorem 6.3.4 (Matrix Tree Theorem, Kirchoff)

detLv = detBvB
T
v

=
∑

(|V | − 1)2 submatrices B′ of B

det(B′)
2

= # of spanning trees of G

Corollary 6.3.4.1 (Cayley)
The number of spanning trees on Kn is nn−2.

Proof
Lv of Kn is n− 1 on the diagonal and -1 elsewise.

Lv = nIn−1 − 1(n−1)2

Say v is an eigenvector of Lv

(nIn−1 − J)x = λx

−Jx = (λ− n)x

Jx = (n− λ)x

so x is an eigenvector of J with eigenvalue n− λ.

Now the nullspace of Jn−1 has dimension n − 2 so 0 is an eigenvalue with multiplicity
n− 2. The only other eigenvalue is n− 1 as the trace is the sum of the eigenvalues.

So Lv has eigenvalues
n, . . . , n, 1

and so
detLv = nn−2
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