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1 Introduction

1.1 Optimization

Definition 1.1.1 (Optimization Problem)
f : S → R, called the objective function, with S the feasible region, and x our
variable.
We wish to maximize or minimize f(x), x ∈ S.

note that {max f(x) : x ∈ S} = {min−f(x) : x ∈ S}, so it suffices to minimize a function.

1.1.1 Outcomes

• S = ∅, the problem is infeasible, otherwise we say the problem is feasible

• S 6= ∅,∃x′ ∈ S such that f(x′) ≤ f(x),∀x ∈ S so x′ is an optimal solution and f(x′)
is an optimal value

• S 6= ∅ but the problem is unbounded, so there are reasible solutions of arbitaryily
small objective values

• S 6= ∅ and the problem is bounded, but there are no optimal solutions

1.2 Classes of Optimization Problems

1.2.1 Linear Programs

Definition 1.2.1 (Linear Programs)
f(x) = cTx =

∑
cixi + z0

S = {x ∈ Rn : Ax ≤ b ⇐⇒ aTi x ≤ bi, A ∈ M(R)m×n, b ∈ Rm}
We minimize cTx such that Ax ≤ b, x ∈ Rn

A feasible solution is a point x′ ∈ S

Definition 1.2.2 (Integer (Linear) Programs)
Minimize cTx where Ax ≤ b, x ∈ Zn

We can also only require some xi to be integers.
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1.2.2 Convex Programs

Definition 1.2.3 (Convex Set)
S ⊆ Rn is convex if

∀x, y ∈ S, ∀λ ∈ [0, 1], λx+ (1− λ)y ∈ S

Definition 1.2.4 (Convex Function)
f : S → R is convex if

∀x, y ∈ S, ∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Definition 1.2.5 (Concave Function)
f as above is concave if −f is convex

Definition 1.2.6 (Convex Programs)
S is a convex set, f : S → R is a convex function.

1.3 Examples

1.3.1 Transportaion Problem

Example 1.3.1
A company has a set F of distribution centers, set C of clients, each i ∈ F can supply at
most ui units and each j ∈ C demands dj units. Shipping items cost i → j costs cij/unit.
Find the minimum cost way of satisfying client demands.

Let us use variables xij to represent the number of units went from i → j. We want to
find the minimum

∑
i∈F
∑

j∈C cijxij where

∀i ∈ F, ∀j ∈ C,
∑
j∈C

xij ≤ ui,
∑
i∈F

xij = dj, xij ≥ 0

6
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1.3.2 2-Player Game

Example 1.3.2
A ∈ Rm×n = (aij). Players R,C choose a row i ∈ {1, . . . ,m}, a column j ∈ {1, . . . , n}
respectively. R pays C aij, what is C’s best randomized strategy?

(C-LP) Maximize mini∈{1,...,m}
∑n

j=1 aijpj where
∑n

j=1 pj = 1, pj ≥ 0. So we find

max v, v ≤
n∑

j=1

aijpj,∀i = 1, . . . ,m,

n∑
j=1

pj = 1, pj ≥ 0

Note that v is simply another variable introduced as a method to formulate the problem
of maximizing a minimum.

(R-LP) R’s best strategy is similar. Minimize maxi∈{1,...,n}
∑m

i=1 aijqi where
∑m

i=1 qi =
1, qi ≥ 0. So we find

minw,w ≥
m∑
i=1

aijqi,∀j = 1, . . . , n,
m∑
i=1

qi = 1, qi ≥ 0

Note that both programs are feasible, not unbounded, and have optimal solutions.

Suppose (v, p) is a feasible solution to (C-LP), (w, q) is a feasible solution to (R-LP), we
have

w ≥ max
j

m∑
i=1

aijqi ≥ min
i

n∑
j=1

aijpj ≥ v

So optimal values are equal, which is a consequence of LP-duality.

1.3.3 General 2-Player Game

In general, we wish for A,B ∈ Rm×n, the payoff matrices for C,R respectively. Before, we had
B = −A (zero-sum game). Now, R,C play i, j respectively and receive aij, bij respectively.

Example 1.3.3
We wish to find an equilibrium such that each player has no incentive to deviate even if
the other player’s strategy is revealed. Given p, to not deviate from q, R wants qtBp =
maxi(Bp)i. Given q, to not deviate from p, C wants qtAp = maxj(q

TA)j.

To find an equilibrium (p, q) means to find an equilibrium which maximizes total payoff:

max pT (A+B)q

7
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1.3.4 Fair Assignment

Definition 1.3.1 (Fair Division)
We have n players i = 1, . . . , n, m items j = 1, . . . ,m. Assigning a fraction x of j → i
gives player i utility uij · x.

Example 1.3.4 (Fair Assignment)
We wish to maximize

n∏
i=1

uij · x

Use variables xij to represent the fraction of j given to i. Determine

max
n∏

i=1

(
m∑
j=1

uijxij

)

where
∑n

i=1 xij ≤ 1, x ≥ 0

Note that the above is equivalent to determining

max
n∑

i=1

ln

(
m∑
j=1

uijxij

)

where
∑n

i=1 xij ≤ 1, x ≥ 0.

This would be a convex programing problem.

1.3.5 Job Assignment

8
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Example 1.3.5
We have n worker, n jobs, and must match a different worker to each job. Assigning job
j to worker i costs cij. We wish to find the minimum cost assignment.

Let

xij =

{
1, worker i assigned to job j

0, otherwise

Determine
min

∑
i,j

cijxij

where
∑n

j=1 xij = 1, i = 1, . . . , n,
∑n

i=1 xij = 1, j = 1, . . . , n, xij ∈ N

Note that there is an optimal solution w, x∗
ij integral to the LP obtained by dropping the

integer constraint.

1.3.6 Fermat’s Last Theorem

To demonstrate the power of non-linear programming, we model the infamous Fermat’s Last
Theorem.

Example 1.3.6
Consider the following optimization problem:

(minxx4
1 + xx4

2 − xx4
3 )2 +

4∑
i=1

sin2(πxi)

The sine terms force the variables to be integers.

such that
x1 ≥ 1, x2 ≥ 1, x3 ≥ 1, x4 ≥ 3

Note that the infimum which is 0 is not attained if and only if Fermat’s Last Theorem
holds.

9
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2 Linear Programming

2.1 Definitions

Definition 2.1.1 (Affine Function)
f : Rn → R if f(x) = αTx+ b for some α ∈ Rn, β ∈ R.

Definition 2.1.2 (Linear Function)
An affine function with β = 0.

Definition 2.1.3 (Linear Constraint)
Inequalities in the form of f(x) ≤ g(x) or f(x) = g(x) or f(x) ≥ g(x).

Definition 2.1.4 (Linear Program - LP)
An optimization problem such that

• the objective function being affine

• variables x ∈ Rn

• the variables are subject to finite linear constraints

In this context,

• a feasible solution is x̄ ∈ Rn satisfying the linear contraints.

• an optimal solution is a feasible solution with maximal objective value

• the feasible region is the set of feasible solutions

Definition 2.1.5 (Standard Inequality Form)
max cTx where

Ax ≤ b, x ≥ 0

Definition 2.1.6 (Standard Equality Form)
max cTx where

Ax = b, x ≥ 0

10
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Proposition 2.1.1
The Standard Inequality Form and Standard Equality Form are general enough to ex-
press any linear program.

Proof
We can turn an LP in SIF to SEF by introducing slack variables.

We can turn any LP to SIF by

1. reversing ≥ constraints by multiplying both sides by −1.
2. splitting equality constraints by taking ≤,− ≥ −.

2.2 Feasibility

2.2.1 Fourier-Motzkin Elimination

This is a procedure to determine the feasibility of Ax ≤ b.

Example 2.2.1

2x1 + x2 + x3 ≤ 5 (1)
−x1 + 3x2 + 2x3 ≤ 6 (2)

2x1 − x2 ≤ 0 (3)
x1 − 2x2 − x3 ≤ −2 (4)

From (1), (2), and (4) we have that

x3 ≤ min

{
5− 2x1 − x2,

6 + x1 − 3x2

2

}
x3 ≥ x1 − 2x2 + 2

So we arrive at a new system of equations

x1 − 2x2 + 2 ≤ 5− 2x1 − x2 (5)

x1 − 2x2 + 2 ≤ 6 + x1 − 3x2

2
(6)

3x1 − x2 ≤ 0 (7)

Note how we completely eliminated x3!

11
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Theorem 2.2.2 (Fourier-Motzkin Elimination)
Let Ax ≤ b be the given system where A ∈ Rm×n.
Let

I+ = {i ∈ {1, . . . ,m} : ain > 0}
Ii = {i ∈ {1, . . . ,m} : ain < 0}
I0 = {i ∈ {1, . . . ,m} : ain = 0}

For all k ∈ I+, l ∈ I−, consider

xn ≤

(
bk −

n−1∑
j=1

akjxj

)
1

akn

xn ≥

(
bl −

n−1∑
j=1

aljxj

)
1

aln

We can then generate a new system A′x ≤ b′ in terms of
(i) aTi x ≤ b,∀i ∈ I0

(ii) (
bl −

n−1∑
j=1

aljxj

)
1

aln
≤

(
bk −

n−1∑
j=1

akjxj

)
1

akn

for all k ∈ I+, l ∈ I−.
By repeating this procedure to eliminate all variables, then we get the final system
A0x ≤ b0, where A0 is a zero matrix. This is feasible if and only if b0 ≥ 0.

The idea behind the Elimination algorithm is to produce a lowest upper bound and a greatest
lower bound for xn, from which we can extract values of xn given feasible x0, . . . , xn−1 to
produce a feasible solution x = (x1, . . . , xn).

However, to stay within the rules of LP, we generate all possible inequalities and know that
one of the generated inequalities will be between the LB and UB. If LB ≤ UB, we are done,
else the LP is infeasible.

12
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Proposition 2.2.3
(1) If either I+, I− is the emptyset, there are no (k, l)-inequalities
(2) Every inequality of A′x ≤ b′ is a nonnegative linear combination of inequalities

from Ax ≤ b

(3) A′x ≤ b′ has n − 1 variables but can have as many as n2

4
constraints (not very

efficient)

Lemma 2.2.4
Ax ≤ b is feasible ⇐⇒ A′x ≤ b′ is feasible

Proof
=⇒ This follows from (2) of the proposition above

⇐= When I+ or I− is ∅, we can choose xn large or small enough to satisfy the inequalties.
Elsewise, since A′x ≤ b′ is feasible, we must have[

max
l∈I−

bl −
∑n−1

j=1 aljxj

aln
,min
k∈I+

bk −
∑n−1

j=1 akjxj

akn

]
6= ∅

We can then simply choose xn in the interval above.

So when we say we have “eliminated” a variable, we actualy mean that we can easily find
feasible values for it given feasible values of the reduced system of linear inequalities.

Note that if Ax ≤ b is feasible, Fourier-Motzkin is guaranteed to produce a feasible solution.

Next note that if Ax ≤ b is infeasible, Elimination gives nonnegative linear combinations of
the system of inequality given by u ∈ Rm

+ so

uT = 0, uT b = γ < 0

this is basically when we eliminate the very last variable.

Also note the similarities between Fourier-Motzkin and Gaussian Elimination. However,
there is much less “flexibility” in the choices (pivots, linear constraints generated).

13
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2.2.2 Farkas’ Lemma

Theorem 2.2.5 (Fundamental Theorem of Linear Algebra)
Let A ∈ Rm×n, b ∈ Rm one and only one of the following holds
(I) ∃x ∈ Rn, Ax = b

(II) ∃y ∈ Rm, ATy = 0 ∧ bTy = −1

Proof
Suppose that (II) does not hold. This means that the rows of A are linearly independent.

By gaussian elimination, we will arrive at something of the form
1 0 . . . 0 . . .
0 1 . . . 0 . . .
. . . . . . . . . . . . . . .
0 0 . . . 1 . . .


which enables us to get the x for the b.

Suppose (II) holds, and for a contradiction that (I) holds as well, we have

xTAT = bT

xT (ATy) = bTy

0 = −1

This is clearly a contradiction.

Theorem 2.2.6
Let A ∈ Rn×m, b ∈ Rm. Only one of the following has a solution
(1) x such that Ax ≤ b

(2) u such that ATu = 0, u ≥ 0, bTu < 0

Proof (¬(1) ∨ ¬(2))
If both were true

0 > bTu ≥ xT
(
ATu

)
= 0

which is a contradiction.

14
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Proof (¬(1) =⇒ (2))
Fourier-Motzkin Elimination on Ax ≤ b derives

0Tx ≤ γ < 0, u ∈ Rm
+ , u

TA = 0T , uT b = γ < 0

Theorem 2.2.7 (Farkas’ Lemma)
Let A ∈ Rm×n, b ∈ Rm one and only one of the following holds
(I) ∃x ∈ Rn, Ax ≤ b, x ≥ 0

(II) ∃y ∈ Rm, ATy ≥ 0, y ≥ 0, bTy < 0

Proof (¬(1) ∨ ¬(2))
Identical.

Proof (¬(1) =⇒ (2))
Reduce the assumptions to the theorem above.

Consider (
A
−I

)
x ≤

(
b
0

)
The dual is given by

(AT ,−I)y = 0, y ≥ 0, (bT , 0)y < 0

2.3 LP-Duality

2.3.1 Motivation

How can we prove bounds on the optimal value of a Linear Program? Nonegative combi-
nations of the contraints produce upper bounds as long as the coefficients are greater than
those in the function.

Example 2.3.1 (LP)
Consider the following LP: max z(x) := 2x1 + x2 such that

1 −2
4 1
−1 0
0 −1

(x1

x2

)
≤


2
10
0
0


Note that

(0, 1, 2, 0)Ax ≤ (0, 1, 2, 0)b

15
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gives us
2x1 + x2 ≤ 10

But any feasible solution of the original LP must satisfy the inequality above as it is a
nonegative linear combination of the original constraints and x ≥ 0. So the problem is
optimal if the objective value is 10!

one solution is
x̄T := (0, 10)

Definition 2.3.1 (Unbounded)
A LP is unbounded if for every M ∈ R there is a feasible x such that

z(x)

is a better objective value.

Remark that an unbounded LP is certainly feasible and no unfeasible LP is unbounded.

Definition 2.3.2 (Bounded)
S ⊆ Rn is bounded if there is some M ∈ R++ such that

S ⊆ [−M,M ]n

Definition 2.3.3 (dual)
Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn with the primal LP (P): max cTx such that

Ax ≤ b, x ≥ 0

The Dual denoted (D) of (P) is min bTy such that

ATy ≥ c, y ≥ 0

Note that

• (P ) being a max-LP gives us (D) being a min-LP

• each primal constraint gives rise to a dual variable

• each primal variable gives rise to a dual constraint

16
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2.3.2 Weak Duality

Theorem 2.3.2 (Weak Duality)
Let P be a max LP with objective function cTx and D the dual of P . D is a min LP
with objective function bTy.
Let x be a feasible solution to P and y a feasible solution to D. Then

cTx ≤ bTy

Proof
We show this for P in SIF: max cTx with Ax ≤ b, x ≥ 0. Constructing the dual, we have
min bTy with cT ≤ yTA, y ≥ 0.

Note that Ax ≤ b =⇒ yTAx ≤ yT b so

cTx ≤ yTAx ≤ yT b = bTy

Corollary 2.3.2.1
If x̄, ȳ are feasible for (P), (D), respectively and

cT x̄ = bT ȳ

then x̄, ȳ are both optimal.

Proof
By Weak Duality, cT x̄, bT ȳ are lower and upper bounds on the objective values of (D),
(P), respectively. But they each attain the lower/upper bounds so must be optimal.

Corollary 2.3.2.2
(P) is unbounded means (D) is infeasible and vice versa.

Proof
By application of Weak Duality on the contrapositive of the statement.

Proposition 2.3.3

dual ◦ dual(P ) = P

17
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2.3.3 Strong Duality

Theorem 2.3.4 (Strong Duality)
If (P), (D) have feasible solutions then they have optimal solutions x̄, ȳ such that

cT x̄ = bT ȳ

Proof
Let P : max cTx such that Ax ≤ b, x ≥ 0, D: min bTy such that ATy ≥ c, y ≥ 0.

We wish to show that

Ax ≤ b, x ≥ 0

−ATy ≤ −c, y ≥ 0

−cTx+ bTy ≤ 0

 is feasible

Note the last inequality coupled with Weak Duality forces the feasible values have equiv-
alence.

In matrix form we have  A 0
0 −AT

−cT bT


︸ ︷︷ ︸

A′

[
x
y

]
︸︷︷︸
x′

≤

 b
−c
0


︸ ︷︷ ︸

b′

Suppose for a contradiction that A′x′ ≤ b′ is infeasible. By Farkas’ Lemma, there is some
u, v, λ ≥ 0 such that

(
AT 0 −c
0 −A b

)u
v
λ

 ≥ 0

u
v
λ

 ≥ 0

(
bT −cT 0

)u
v
λ

 < 0

In particular, notice we have
bTu < cTv

Case I: λ > 0. Then u
λ
, v
λ
≥ 0. From (1), AT (u

λ
) ≥ c. we get A( v

λ
) ≤ b. So u

λ
, v
λ
are feasible
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solutions for D,P respectively but

bT
(u
λ

)
< cT

(v
λ

)
which contradicts Weak Duality

Case II: λ = 0. Since P,D are feasible, we can find feasible solutions x, y. Then, we have

bTu ≥ (Ax)Tu = xTATu = 0

cTv ≤ (AT ȳ)Tv = yTAv = 0

}
bTu ≥ cTv

which contradicts our assumptions.

Either way, we reach a contradiction so we conclude the proof.

Lemma 2.3.5
if P is feasible and D is infeasible, then P is unbounded.

Proof (2 =⇒ 1)
If P has an optimal solution, then P is feasible and not unbounded. By (the contrapositive
to) the lemma, D is feasible.

Then by (2), D has an optimal solution and opt(P ) = opt(D).

Lemma 2.3.6
If (P) is feasible and (D) is unfeasible, then (P) is unbounded.

Proof
Suppose (P) is feasible, there is some x̄ ∈ Rn such that

Ax̄ ≤ b

Since (D) is unfeasible, we can apply the second case of Farkas’ Lemma, there is some d
such that

−Ad ≥ 0, d ≥ 0,−cTd < 0

or
Ad ≤ 0, d ≥ 0, cTd > 0

For all λ ∈ R+ considr
x(λ) := x̄+ λd

we have
Ax(λ) = A(x̄+ λd) = Ax̄+ λAd ≤ b

19



©Fel
ix

Zh
ou

by nonnegativity and nonpositivity.

But cT (x̄+ λd) can be made arbitrily large, demonstrating the unboundedness of (P).

Theorem 2.3.7
If (P) has an optimal solution then (D) also has an optimal solution. Moreover, they
have equivalent optimal values.

Proof
By the Lemma.

2.4 Foundamental Theorem of Linear Programming

Theorem 2.4.1 (Foundamental Theorem of Linear Programming)
Every LP is only one of the following:
(i) has an optimal solution
(ii) unbounded
(iii) infeasible

Proof
If (P) is feasible with dual infeasible, it is unblunded. If the dual is feasible, then an
optimal solution exists.

2.5 Applications & Interpretations of (Strong) Duality

2.5.1 Complementary Slackness

Conditions and structural characterizations of optimal solutions.

Let

(P ) :max cTx Ax ≤ b, x ≥ 0

(D) :min bTy yTA ≥ cT , y ≥ 0

Let x̄, ȳ be feasible solutions to (P ), (D) respectively. Then x̄ is optimal for (P ), ȳ optimal
for (D) if and only if

cT x̄ = bT ȳ

by Weak and Strong Duality.
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In particular, we have
cT x̄ =︸︷︷︸

(i)

ȳTAx̄ =︸︷︷︸
(ii)

ȳT b

from the proof of weak duality.

(i) 0 =
∑n

j=1

(
cj − (ȳTA)j

)︸ ︷︷ ︸
≤0

x̄j︸︷︷︸
≥0

so

∀j
(
x̄j = 0 ∨ (ȳTA)j = cj

)
which gives us a tight contraint for ȳ

(ii) 0 =
∑m

i=1 ȳi︸︷︷︸
≥0

((Ax̄)i − bi)︸ ︷︷ ︸
≤0

so

∀i (ȳi = 0 ∨ (Ax̄)i = bi)

which gives us a tight contraint for x̄

Theorem 2.5.1 (Complementary Slackness Theorem)
x̄, ȳ feasible solutions to (P ), (D) respectively are optimal if and only if
(a) ∀j, x̄j = 0 or the dual is tight for ȳ
(b) ∀i, ȳi = 0 or the primal is tight for x̄

Example 2.5.2 (applying CS conditions)
Let (P ) : max 5x1 + 3x2 + 5x3 such that

x1 + 2x2 − x3 ≤ 2 (1)
3x1 + x2 + 2x3 ≤ 4 (2)
−x1 + x2 + x3 ≤ −1 (3)

x2 ≤ 0 (4)
x3 ≥ 0 (5)

With dual (D) : min 2y1 + 4y2 − y3 such that

y1 + 3y2 − y3 = 5 (6)
2y1 + y2 + y3 ≤ 3 (7)

−y1 + 2y2 + y3 ≥ 5 (8)
y1, y2, y3 ≥ 0 (9)

Is x̄ = (1,−1, 1)T optimal to (P )? If so, there must exist a dual feasible solution ȳ
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satisfying the CS requirements. Since 6 ∃j, x̄j = 0, we must have

(6)

2ȳ1 + ȳ2 + ȳ3 = 3

−ȳ1 + 2ȳ2 + ȳ3 = 5

Plugging in values for the CS requirements for x̄ we must have

ȳ1 = 0 ∨ x̄1 + 2x̄2 − x̄3 = 2 RHS is false

ȳ2 = 0 ∨ 3x̄1 + x̄2 + 2x̄3 = 4 to fulfill CS for ȳ
ȳ3 = 0 ∨ −x̄1 + x̄2 + x̄3 = −1 to fulfill CS for ȳ

So

ȳ2 + ȳ3 = 3

2ȳ2 + ȳ3 = 5

and ȳ = (0, 2, 1)T necessarily. After verifying for feasibility of ȳ we conclude it is the
unique optimal solution as it is the only feasible one satisfying CS.

2.5.2 Valid Inequalities

Definition 2.5.1 (Valid Inequality)
We say that an inequality

αTx ≤ β, α, x ∈ Rn, β ∈ R

is valid for a set S ⊆ Rn if
∀x̄ ∈ S, αT x̄ ≤ β

Example 2.5.3
Consider a polyhedron P := {x ∈ RN : Ax ≤ b}. Every valid inequality for P is implied
by an inequality derived via a nonnegative linear combination of the constraints of P .

More rigorously, αTx ≤ β is valid for P if and only if

max
x∈P

αTx ≤ β

by Strong Duality, this happens if and only if there is a dual feasible y, ie

∃y ≥ 0, yTA ≥ αT
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such that bTy ≤ β, so the optimal values are equivalent and

yTAx = αTx ≤ βTy =⇒ αTx ≤ β

2.5.3 Geometric Interpretations of Farkas’ Lemma

Definition 2.5.2 (cone)
K ⊆ Rn is a cone if

• 0 ∈ K

• ∀x ∈ K, ∀λ ≥ 0, λx ∈ K

• ∀x, y ∈ K, x+ y ∈ K

Lemma 2.5.4
The intersection of arbitrary family of cones is a cone.

for S ⊆ Rn, cone(S) denotes the smallest cone containing S.

cone(S) =
⋂
i∈I

Ci

such that i ∈ I =⇒ S ⊆ Ci is the index set of all cones generated by S.

Lemma 2.5.5
If S ⊆ Rn is finite, ie S = {a(1), . . . , a(k)}, then

cone(S) =

{
x : x =

∑
i

λia
(i), λi ≥ 0

}

Let A = [A1, . . . , An] ∈ Rm×n. The following are equivalent:

(1) b ∈ Rm, b /∈ cone({A1, . . . , An})
(2) Ax = b, x ≥ 0 has no solutions
(3) ∃y ∈ Rm, yTA ≥ 0, yT b < 0. In other words, the hyperplane {δ ∈ Rm : yT δ = 0}

seperates b from the cone.
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2.5.4 Geometric Interpretation of Duality

Definition 2.5.3 (tight/active)
We say αTx ≤ β is tight/active at x̄ if αTx = β

Proposition 2.5.6
Let (P ) : max cTx such that Ax ≤ b, and x̄ be a feasible solution to (P ).
Let A=x ≤ b= be the contraints of Ax ≤ b which are tight at x̄.
Then x̄ is an optimal solution to (P ) if and only if c ∈ cone(rows of A=).

Proof
x̄ is an optimal solution if and only if ∃ȳ such that ȳ is a feasible solution to the dual

(D) : min bTy, y ≥ 0, yTA = cT

and ȳ satisfies the CS conditions with x̄.

The above is true if and only if ȳ ≥ 0, AT ȳ = c and ȳi > 0 =⇒ (Ax̄)j = bj, meaning
(Ax̄)j = bj is a constraint from A=x ≤ b=.

Which in turn is true if and only if c =
∑

aTi yi, i corresponds to rows in A.

We can see cones and the above as some sort of a one-sided row space.

Example 2.5.7
maxx1 + 3x2 such that

2x1 + x2 ≤ 10 (1)
x1 + x2 ≤ 6 (2)

−x1 + x2 ≤ 4 (3)
x1, x2 ≥ 0 (4)

We get x = (1, 5)T and it is optimal since

c = (1, 3)T ∈ cone
(
{(1, 1)T , (−1, 1)T}

)
2.5.5 Physical Interpretation / Intuition

Think of each hyperplane aTi x = bi as a wall, with a free particle inside the feasible region
subjected to a force of c.
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To reach equilibrium, c should be balanced by other forces (normal force from walls that the
particle touches [A=]).

If x̄ is resting position, then c is balanced by a nonnegative combination of constraints in
A=.

−c =
∑

i: particle touches wall i

−aTi yi, yi ≥ 0

2.5.6 Strong Duality & Farkas’ Lemma

Proposition 2.5.8 (Strong Duality Implies Farkas’ Lemma)
(P ) : max 0Tx such that Ax ≤ b, x ≥ 0 is infeasible or has optimal value of 0.
(D) : min bTy such that yTA ≥ 0, y ≥ 0 is feasible with ȳ = 0 as feasible solution.
(P ) is infeasible ⇐⇒ (D) unbounded ⇐⇒ bTy has a negative solution.

2.5.7 Economic Interpretation of Duality & Sensitivity Analysis

(P ) : max cTx such that Ax ≤ b, x ≥ 0 and∑
aijxj ≤ bi

where aij is the number of units of resource i to produce 1 units of product j and bi is the
supply of resource i.

(D) : min bTy such that y ≥ 0, ATy ≥ c.

By Strong Duality, cT x̄ = bT ȳ if x̄, ȳ are optimal values. If bi → bi + ε, bT ȳ → bT ȳ + εȳ.

ȳi is the rate of change of optimal value with respect to change in bi called the shadow
price of resource i.

2.6 Summary of Duality Theorems for LPs

We begin this section by remarking that complementary slackness conditions are not always
helpful!

Example 2.6.1
Consider max cTx such that

Ax ≤ 0, x ≥ 0

is x = 0 optimal?
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The dual is min 0Ty such that
ATy ≥ c, y ≥ 0

Unfortunately, the CS conditions say nothing about y as every xi is!

In fact, any feasible y would show that x = 0 is an optimal solution.

Definition 2.6.1 (LP Equivalence)
(P), (P’) are equivalent if
(1) (P) has optimal solutions if and only if (P’) does
(2) (P) is infeasible if and only if (P’) is
(3) (P) is unbounded if and only if (P’) is
(4) certificates of optimality, infeasibility, unboundedness can be “easily” converted

between the problems

Example 2.6.2
• min cTx ⇐⇒ −max−cTx

• aTx = α ⇐⇒ aT ≤ α and −aTx ≤ −α

• xj is free ⇐⇒ we introduce 2 new nonegative variables uj, vj with

xj = uj − vj, uj, vj ≥ 0

• aTx ≤ α ⇐⇒ aTx+ xn+1 = α, xn+1 ≥ 0

Example 2.6.3
(P): max cTx such that

Ax = b, x ≥ 0

(P’): max cTx such that [
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0

(D): min[bT ,−bT ]

[
u
v

]
such that

[
AT −AT

] [u
v

]
≥ c, u, v ≥ 0

(D’): min bT (u− v) such that

AT (u− v) ≥ c, u, v ≥ 0
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note that this is the same as y := u− v free as a single variable.

2.6.1 General Formula for LPs

(P) max LP (D) min LP
i-th constraint is of the ≤ type i-th dual variable of is ≥ 0
i-th constraint is of the ≥ type i-th dual variable of is ≤ 0
i-th constraint is of the = type i-th dual variable of is free
j-th primal variable is ≥ 0 j-th dual constraint if of the ≥ type
j-th primal variable is ≤ 0 j-th dual constraint if of the ≤ type
j-th primal variable is free j-th dual constraint if of the = type

Theorem 2.6.4 (Strong Duality for General LPs)
Let (P), (D) be primal, dual LPs.

1. If (P), (D) have feasible solutions then they both have optimal solutions and
optimal objective values are the same.

2. If one of (P) have an optimal solution, then they both do with equivalent optimal
objective values.

Theorem 2.6.5 (CS Conditions)
Let (P), (D) be pairs of primal-dual LPs.
Let x̄ be feasible in (P) and ȳ feasible in (D).
Then x̄, ȳ are optimal in thei respective problems if and only if:

∀j ∈ [n], x̄j = 0 ∨ j-th dual constraint is tight
∀i ∈ [m], ȳi = 0 ∨ i-th primal constraint is tight

2.7 Geometry of Polyhedra

2.7.1 Notation and Definitions

Definition 2.7.1 (Convex)
S ⊆ R is convex if forall x, y ∈ S

{λx+ (1− λ)y : λ ∈ [0, 1]} ⊆ S
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Example 2.7.1
∅, {1}, ellipsoids, half-spaces, Rn are convex.

{1, 2}, donut, random V are not convex.

Proposition 2.7.2
A ∈ Rm×n, b ∈ Rm, F := {x ∈ Rn : Ax ≤ b}
F is convex.

Proof
Suppose x, y ∈ F

A(λx+ (1− λ)y) = λ︸︷︷︸
≥0

≤b︷︸︸︷
Ax +(1− λ)︸ ︷︷ ︸

≥0

≤b︷︸︸︷
Ay

≤ λb+ (1− λ)b

= b

Definition 2.7.2 (Closed Half-Space)
{x ∈ Rn : aTx ≤ α} for some a ∈ Rn, α ∈ R

Note that Rn,∅ are closed half-spaces.

Proposition 2.7.3
Let {Cλ}λ∈Λ be a collection of convex sets.⋂

λ∈Λ

Cλ

is convex.

Definition 2.7.3 (Polyhedron)
A polyhedron is an intersection of finitely many closed half-spaces.

Remark that Polyhedra are convex sets.

In addition, the feasible region of LP problems are polyhedra.

Moreover, the optimal solution sets of LP problems are polyhedra as well.
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Definition 2.7.4 (Convex Hull)
conv(S), S ⊆ Rn is the smallest convex set containin S.

conv(S) :=
⋂

S⊆H,H is convex

H

Definition 2.7.5 (Convex Combination)
For x(1), . . . , x(k) ∈ Rn is

k∑
i=1

λix
(i),

k∑
i=1

λi = 1, λi ≥ 0

Proposition 2.7.4
S ⊆ Rn is convex if and only if it contains all convex combinations of its elements.

Proof
The forwards direction is trivial. We show the reverse.

Let us argue by induction on k.

For k = 1, 2, it is true by definition. Now suppose it holds for all n ≤ k.

We have
x̄ :=

∑
i = 1k+1λix

(i)

where without loss of generality λi > 0.

Write

x̄ = (1− λk+1)

(
k∑

i=1

λi

1− λk+1

x(i)

)
︸ ︷︷ ︸
∈S,induction hypothesis

+λk+1x
(k+1)

= (1− λk+1)x̂+ λk+1x
(k+1) reduced to base case k = 2

∈ S

Corollary 2.7.4.1
A convex hull of S is the set of all convex combinations of elements of S.
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Theorem 2.7.5 (Carathéodory, 1907)
Let S ⊆ Rn, every point in conv(S) can be expressed as a convex combination of at
most n+ 1 points in S.

Proof
Let x̄ ∈ conv(S)

x̄ =
k∑

i=1

λix
(i), k ≥ n+ 2

Consider (
x(1)

1

)
, . . . ,

(
x(k)

1

)
∈ Rn+1

They live in Rn=1 and must be linearly dependent by the dimension.

There are µi
k∑

i=1

µix
(i) = 0,

k∑
i=1

µi = 0

Let
ᾱ := max{α : λ+ αµ ≥ 0}

this is valid as there must be at least one negative µi.

Let
λ̄ := λ+ ᾱµ

and note that at least one entry is zero by construction.

We have ∑
λ̄ix

(i) =
∑

λix
(i)︸ ︷︷ ︸

=x̄

+α
∑

~uix
(i)︸ ︷︷ ︸

=0

= x̄

with ∑
λ̄ix

(i) =
∑

λi︸︷︷︸
=1

+α
∑

~ui︸ ︷︷ ︸
=0

= 1

So we reduced x̄ to a convex combination of at most k − 1 points. We can repeat this
argument until we express x̄ with n+ 1 points.
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Definition 2.7.6 (Affine Combination)
If (

x(1)

1

)
, . . . ,

(
x(k)

1

)
∈ Rn+1

are linearly dependent in Rn+1 then

x(1), . . . , x(k)

are affinely dependent in Rn.

2.7.2 Extreme Points

Definition 2.7.7 (Extreme Point)
Let S ⊆ Rn be convex, we say x̄ is an extreme point of S if
(1) x̄ ∈ S

(2) there do not exist distinct u, v ∈ S \ {x̄} such that

x̄ =
1

2
(u+ v)

Equivalently
∀α ∈ Rn, α 6= 0, x̄+ α /∈ S ∨ x̄− α /∈ S

In a polyhedron, extreme points are an intersection of some hyperplanes (defined by some
linearly independent tight restrictions).

Theorem 2.7.6
Let x̄ ∈ S ⊆ Rn be convex. x̄ is an extreme point of S if and only if S \{x̄} is convex.

Proof (sketch)
If x̄ is an extreme point, then

S \ {x̄}

is still convex.

Theorem 2.7.7
Let P = {x ∈ Rn : Ax ≤ b}, x̄ ∈ P and A=x ≤ b= be the constraints that are tight at
x̄.
x̄ is an extreme point ⇐⇒ rank(A=) = n
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Proof ( =⇒ )
Suppose rank(A=) < n, then ∃α ∈ Rn, α 6= 0 such that A=α = 0.

We claim that for sufficiently small ε > 0, x(1) = x + εα, x(2) = x − εα ∈ P , so it cannot
be an extreme point.

We have

A=x(1) = A=x+ ε(A=α) = A=x̄

A=x(2) = A=x+ ε(A=α) = A=x̄

}
= b=, So every constraint of A=x ≤ b= is tight at x(1), x(2)

Now, consider a constraint aTi x ≤ bi which is NOT tight at x̄. Then

aTi x
(1) = aTi x̄+ ε(aTi α) < bi + ε(aTi α)

aTi x
(2) = aTi x̄− ε(aTi α) < bi − ε(aTi α)

}
a small ε satisfies the inequalities ≤ bi

Since x(1), x(2) ∈ P , the line segment in between them lie in P . In particular, x̄ is on that
line so x̄ cannot be an extreme point.

Proof ( ⇐= )
Suppose rank(A=) = n but x̄ is not an extreme point.

Then ∃u 6= v ∈ P, ∃λ ∈ (0, 1), x̄ = λu+ (1− λ)v. It follows that

b= =A=x̄ = A=(λu+ (1− λ)v) = λA=u+ (1− λ)A=v

0 =λA=u− λb= − b= + λb= + (1− λ)A=v

0 =λ (A=u− b=)︸ ︷︷ ︸
≤0

+(1− λ) (A=v − b=)︸ ︷︷ ︸
≤0

So A=u = b = A=v =⇒ A=(v − u) = 0 but that is a contradiction as v 6= u and A is of
full rank.

We present an alternative proof

Lemma 2.7.8
a ∈ Rn, α ∈ R, x̄ ∈ Rn, H := {s ∈ Rn : aTx ≤ α}
If aTx = α and u, v ∈ H such

1

2
u+

1

2
v = x̄

then
aTu = aTv = α
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Proof
α ≥ 1

2
aTu+ 1

2
aTv = aT x̄ = α but

aTu, aTv ≤ α =⇒ aTu = aTv = α

Proof ( ⇐= )
Suppose for a contradiction that rank(A=) = n and x̄ is NOT an extreme point of the
polyhedra.

There must be u, v ∈ F \ {x̄} such that

1

2
u+

1

2
v = x̄

Note that u, v, x̄ satisfy every inequality in A=x ≤ b by the lemma which is a contradiction
since a matrix with full column rank has unique solutions to every equation.

Corollary 2.7.8.1
(i) if rank(A) < n there are no extreme points.

(ii) Every Polyhedron has a finite number of extreme points upper bounded by
(
m
n

)
Proof
If x̄ is an extreme point and A=x ≤ b= are the tight constraints of x̄, then rank(A=) = n
and x̄ is the unique solution to A=x = b=.

It follows that the number of extreme points is at most the number of subsystems A′x ≤ b′

with rank(A′) = n. This in turn is bounded above by
(
m
n

)
.

In particular, this means that the number of constrainsts must be at least the number of
variables in order to have ANY extreme points.

We say P ⊆ Rn has a line if ∃x̄ ∈ P, d ∈ Rn, d 6= 0 such that

{x̄+ λd : λ ∈ R} ⊆ P

Definition 2.7.8 (Pointed Polyhedron)
A polyhedron is pointed if it does not contain a line.

Proposition 2.7.9
P ⊆ Rn is a nonempty, pointed polyhedron if and only if P has an extreme point.
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Theorem 2.7.10
Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron with no lines. If the LP max cTx such
that x ∈ P has optimal solution, then it always has an optimal solution that is an
extreme point of P .

Proof
Let x̄ be the optimal solution to max cTx such that x ∈ P for which the number of tight
contraints at x̄ is maximized. Let A=x ≤ b= be the tight constraints.

Suppose rank(A=) < n, else x̄ is an extreme point by our work before. So ∃α 6= 0, A=α =
0.

Now, as x̄ is not an extreme point, by the characterization of extreme points, ∃ε > 0 such
that

x̄± εα ∈ P

Note we must have cTα = 0 or else one of the two values has greater objective value than
cT x̄, contradicting the optimality of x̄.

So all points on the line
L = {x̄+ λα : λ ∈ R}

have cTx = cT x̄

But since L /∈ P WLOG there is a maximum λ∗ such that

x′ = x̄+ λ∗α ∈ P

x′ “activates” one more constraint than x̄ while achieving the same objective value, we can
now apply the same method and pick up inequalities until reaching n, thus guaranteeing
we have found an extreme point.

Theorem 2.7.11
Let P = {x ∈ Rn : Ax ≤ n} be a polyhedron and x̄ ∈ P . Then x̄ is an extreme point
of P ⇐⇒ ∃c ∈ Rn such that x̄ is the unique optimal solution to

max cTx, x ∈ P
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2.7.3 Polytopes, Polyhedral Cones, & more Geometric Objects

Definition 2.7.9 (Polytope)
A bounded polyhedron

Theorem 2.7.12
Let F ⊆ Rn be a polytope.
F is the convex hull of its extreme points.

Proof
If F = ∅, we are done.

Elsewise, let
v(1), . . . , v(k)

be all the extreme points of F and note that there are finitely many by our previous work.

Define
F̄ := conv(v(1), . . . , v(k))

and note F̄ ⊆ F since F is convex and contains all the points above.

Suppose there is some x̄ ∈ F \ F̄ , so the system

k∑
i=1

λiv
(i) = x̄,

k∑
i=1

λi = 1, λ ≥ 0

is infeasible.

By Farkas’ Lemma, there is some ȳ ∈ Rn, ᾱ ∈ R such that

ȳT x̄+ ᾱ < 0, ȳTv(i) + ᾱ ≥ 0,∀i ∈ [k]

Consider the LP: min ȳTx such that
x ∈ F

By asumption, F is bounded and nonempty so there are optimal solutions. In particular,
by our previous work, there is an optimal solution being an extreme point.

But none of v(i) are optimal solutions by construction so we have the desired contradiction.
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Theorem 2.7.13
The convex hull of any finite subset of Rn is a polytope.

Definition 2.7.10 (Minkowsky Sum)

S + T := {s+ t ∈ Rn : s ∈ S, t ∈ T}

Definition 2.7.11 (Polyhedral Cone)
A set that is simutaneously a cone and a polyhedron.

Theorem 2.7.14
Let F ⊆ Rn be a nonempty pointed polyhedon. There is a polytope P ⊆ Rn and
pointed polyhedral cone K ⊆ Rn such that

F = P +K

The decomposition above is not unique in general but if we can get one using the extreme
points of F .

Theorem 2.7.15
P is a polyhedron ⇐⇒ P = Q+ C where Q is a polytope, C is a polyhedral cone.

Lemma 2.7.16
max cTx such that Ax ≤ b is unbounded ⇐⇒ max cTx such that Ax ≤ 0 is un-
bounded.

Proof
Consider the duals of the LPs in question.

By Farkas’ Lemma, min bTy such that cT ≤ yTA is infeasible if there is some 0 ≤ α ∈ Rn

such that
Aα = 0, cTα > 0

But note that the conditions does not depend on b at all! This means that α is also a
certificate of infeasibility for min 0Ty such that cT ≤ yTA.
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Proof ( =⇒ , Case I)
Let us consider P = {x ∈ Rn : Ax ≤ b} if it is pointed.

Take
Q = conv(S)

where S is the set of extreme points of P , as well as

C = {x ∈ Rn : Ax ≤ 0}

If P = ∅, then ∅ = Q, so we certainly have P = Q + C. Otherwise, let u ∈ Q, v ∈ C, we
have

A(u+ v) = Au+ Av ≤ Au ≤ b

so Q+ C ⊆ P .

Now, suppose ∃x̄ ∈ P \ (Q+ C). So there is some c ∈ Rn such that

max
x∈P

cTx > max
x∈Q+C

cTx (∗)

(check)

The LP maxx∈Q+C cTx is feasible as the feasible region is by assumption nonempty. But
LP max cTx such that x ∈ P is unbounded ⇐⇒ the LP max cTx such that x ∈ C is
unbounded by the lemma above. This means that the LP maxx∈P cTx is also bounded!

However, this means there is an optimal solution to maxx∈P cTx which means there is an
optimal solution in Q as it contain all the extreme points of P . This contradicts (*).

Proof ( =⇒ , Case II)
Now suppose P contains a line.

We have rankA < n. Let
L := {α ∈ Rn : Aα = 0}

and note that this has dimension at least 1 since rankA < n.

Define
P ′ := P ∩ L⊥

where
L⊥ :=

{
x ∈ Rn : xT = zTA, z ∈ Rn

}
which is the row space of of A. Note that L⊥ is a polyhedron as it is the projection of
A. Also note that L,LT are orthogonal as the null space is the space of vectors which are
orthogonal to the rows of A, which the rows space is precisely the span of the rows of A.

First we claim that P ′ is a pointed polyhedron. Suppose not, then P ′ contains a line,
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meaning there is some x̄ ∈ P ′, d ∈ Rn, d 6= 0 such that

{x̄+ λd : λ ∈ R} ⊆ P ′

Note x̄+ d ∈ P ′ =⇒ x̄+ d ∈ L⊥.

We must have Ad = 0 ie d ∈ L, else by choosing a sufficiently large λ, A(x̄ + λd) > b.
Then, by orthogonality:

0 = (x̄+ d)Td = x̄Td+ dTd = zTAd+ dTd = dTd =⇒ d = 0

But then, the supposed line does not exist!

We then claim that P = P ′ + L

To see ⊆, let x = p+ q ∈ P with p ∈ L, q ∈ LT . Then

q ∈ P ∩ LT = P ′

To see ⊇, let u ∈ P ′, v ∈ L so

A(v + u) = Au ≤ b =⇒ u+ v ∈ P

Proof ( ⇐= )
Since Q,C are polyhedra, their Minkowski Sum : P is also a polyhedron.

Proposition 2.7.17
If K ⊆ Rn is a polyhedral cone, then there is an A such that

K = {x ∈ Rn : Ax ≤ 0}

Proof
Consider any tight restriction aTi x ≤ bi, we can scale x by any positive factor and it will
still be in P .

The only way that is possible is if bi = 0.

Definition 2.7.12 (Affine Subspace)
The solution set of Ax = b for some A, b.

Note that every linear subspace of Rn can be expressed as

{x ∈ Rn : Ax = 0}

for some A ∈ Rm×n.
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Suppose
S := {x ∈ Rn : Ax = b} 6= ∅

Then there is some l such that Al = b.

Then
S = l + {x : Ax = 0}

Definition 2.7.13 (Lineality Space)
The largest affine subspace contained in a polyhedron.

Theorem 2.7.18
Let F ⊆ Rn be a nonempty polyhedron.
There exist a pointed polyhedral cone K ⊆ Rn, and a polytope P ⊆ Rn such that

F = P +K + L

where L is the lineality space of F .

2.7.4 Additional Content

Theorem 2.7.19
Let C ⊆ Rn be a compact convex set and S ⊆ C.
The following are equivalent:
(i) conv(S) = C

(ii) inf{hTx : x ∈ S} = min{hTx : x ∈ C}
(iii) extC = S̄

Theorem 2.7.20 (Characterization of Polytopes)
P is a polytope ⇐⇒ P = conv(S) for a finite set S ⊆ Rn.
Moreover, we take S to be the set of extreme points of P .

Proof ( =⇒ )
Let P be a polytope, and S the set of extreme points of P . We have conv(S) ⊆ P as P
is convex.

Suppose there is an x̄ ∈ P \conv(S). Then there are α, β such that αT x̄ > β but αTx < β
for all x ∈ conv(S).

So maxαTx, x ∈ P > maxαTx, x ∈ conv(S).
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Since the LP has an optimal solution, it must have an optimal solution in S, the set of
extreme points.

We have the desired contradiction.

Proof ( ⇐= )
It suffices to show that any convex hull is a polyhedron. Then, the finiteness forces us to
have a bounded polyhedron.

We claim for Rn ⊇ P := {x1, . . . , xk0},

conv(P ) =

{
k∑

i=1

λixi : k ≤ k0,
k∑

i=1

λi = 1, λi ≥ 0

}

To see ⊇, we argue by induction that any convex set C containing P also contains the
RHS.

For the case k = 1 this is trivial.

Elsewise, we can consider 0 ≤ λ′ :=
∑k−1

i=1 λi ≤ 1. Scale this down and define µi :=
λi

λ′ .

By the induction hypothesis, q :=
∑k−1

i=1 µixi ∈ C, since
∑k−1

i=1 µi = 1 by construction.

But then
k∑

i=1

λixi = λ′

(
k−1∑
i=1

µixi

)
+ λkxk ⊆ C

since 1 = λ′ + λk =
∑k−1

i=1 +λk.

Now to see ⊆, it suffices to show that the RHS is a convex set.

Let x =
∑k

i=1 λixi, y =
∑k

i=1 µixi.

For any ξ ∈ [0, 1], we have

k∑
i=1

(ξλi + (1− ξ)µi) = 1 =⇒ ξx+ (1− ξ)y ∈ RHS

Theorem 2.7.21
P is a polyhedral cone ⇐⇒ P = cone(S) for a finite set S ⊆ R

Proof ( =⇒ )
Let P be a polyhedral cone, and Q = {x ∈ P : −1 ≤ xj ≤ 1,∀j ∈ [n]}. We are able to do
this as we can freely “scale” values in a cone and stay within a cone.
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Q is a polytope, so Q = conv(S) where S =
{
q(1), . . . , q(k)

}
⊆ Rn. Since P ⊇ Q ⊇ S and

P is a cone, we must have cone(S) ⊆ P .

Let x ∈ P , there is some δ ∈ R such that

δ > 0,
x

δ
=
∑

λiq
(i), λi ≥ 0,

∑
λi = 1

So x = δ
∑

λiq
(i) =⇒ x ∈ cone(S). In other words, P ⊆ cone(S).

Proof ( ⇐= )
If S =

{
q(1), . . . , q(k)

}
, then

cone(S) =
{∑

λiq
(i) : λi ≥ 0,∀i

}
We show that this is a polyhedron, and so is by definition a polyhedral cone.

cone(S) =
{
x ∈ Rn : ∃0 ≤ λ ∈ Rn, x =

[
q(1), . . . , q(k)

]
λ
}

=

{
x ∈ Rn : ∃0 ≤ λ ∈ Rn, 0 ≥

[
x, q(1), . . . , q(k)

] [ 1
−λ

]
, 0 ≥

[
x, q(1), . . . , q(k)

] [1
λ

]}

Through Fourier-Motzkin Elimination, we can completely eliminate λi’s, arriving at a
system of inequalities independent of λ, thus demonstrating that cone(S) is in fact a
polyhedron.

Proposition 2.7.22
(i) If S, T are polyhedra, S + T is also a polyhedron
(ii) If S, T are polytope, S + T is also a polytope
(iii) If S, T are polyhedral cones, S + T is also a polyhedral cone

Proof (i)
Suppose

S = {x ∈ Rn : Ax ≤ b}
T = {x ∈ Rn : αx ≤ β}
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We then have

S + T = {x ∈ Rn : x = s+ t, As ≤ b, αt ≤ β}
= {x ∈ Rn : As ≤ b, α(x− s) ≤ β}

=

{
x ∈ Rn :

[
0 A
α −α

] [
x
s

]
≤
[
b
β

]}
We can then apply Fourier-Motzkin Elimination to take s out of the picture and complete
the proof.

Proof (ii)
By our work above we know S = conv(s1, . . . , sk), T = conv(t1, . . . , tl). We now claim

S + T = convi≤k,j≤l(si + tj)

Let s ∈ S, t ∈ T .

To see ⊆, consider s+ t ∈ S + T , we have

s =
k∑

i=1

λisi, λ ≥ 0,
∑

λi = 1

t =
l∑

j=1

µjtj, µ ≥ 0,
∑

µi = 1

s+ t =
k∑

i=1

(
l∑

j=1

µi

)
λisi +

l∑
j=1

(
k∑

i=1

λi

)
µjtj

=
k∑

i=1

l∑
j=1

λiµj (si + tj)

with
∑k

i=1

∑l
j=1 λiµj =

(∑k
i=1 λi

)(∑l
j=1 µj

)
= 1

To see ⊇, it suffices to show that S + T is convex. Consider

ξ
(
s(1) + t(1)

)
+ (1− ξ)

(
s(2) + t(2)

)
= ξs(1) + (1− ξ)t(1) + ξt(2) + (1− ξ)t(2)

which is cleary in S + T by definition, so we are done.
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Proof (iii)
We claim S + T = conei≤k,j≤l(si, tj) where

S = cone(si)

T = cone(tj)

To see ⊆, we first decompose an element from the Minkowski Sum as two elements from
S, T , we then write it as a nonegative sum of the generating sets of S, T respectively.

To see ⊇ we note that S + T is a cone since we can add nonnegative linear combinations
of items from S, T freely decompose the sum as a binary addition between an element
from S, T .

2.8 Simplex Method

2.8.1 Introduction

Definition 2.8.1 (Simplex)
S ⊆ Rn such that

S = conv(v(1), . . . , v(n+1))

where the v(i)’s are affinely independent.

Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn and consider: max cTx subject to

Ax = b, x ≥ 0

Assume rank(A) = m. If not, we can apply Gaussian Elimination on [A|b] to check either

(i) Ax = b is infeasible
(ii) rankA = m

(iii) Ax = b has redundant equations

Definition 2.8.2 (Basis)
We say B ⊆ [n] is a basis of A if AB is square and nonsingular.
Equivalently, |B| = m, rank(AB) = m.

Let B ⊆ [n] be a basis and N = [n] \B. The system Ax = b, xN = 0 has a unique solution

xB = A−1
B b, xN = 0

we say that the above is the basic solution corresponding to B.
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Definition 2.8.3 (Basic Solution)
x̄ is called a basic solution to Ax = b if there is a basis B such that x̄ is the basic
solution corresponding to B.

Definition 2.8.4 (Basic Feasible Solution)
We say that a basic solution x̄ ≥ 0 is a basic feasible solution (BFS).

For a basis B, xj, j ∈ B are basic variables with others being non-basic variables.

Theorem 2.8.1
Let A ∈ Rm×n, rankA = m, b ∈ Rm, F = {x ∈ Rm : Ax = b, x ≥ 0}.
Suppose x̄ ∈ F . TFAE
(1) x̄ is a basic feasible solution to Ax = b, x ≥ 0

(2) {Aj : x̄j > 0} is linearly independent
(3) x̄ is an extreme point of F .

Let B be a basis of A and x̄ be the basic feasible solution determined by B. Consider

max cTx

ABxB + ANxN = b

x ≥ 0

There are unique solutions

xB = A−1
B b− A−1

B ANxN

ȳ = A−T
B cB

Definition 2.8.5 (Feasible Basis)
A subset

B ⊆ [n]

is a feasible basis for (P) if B is a basis of A and the BFS determined by B is feasible
in (P).

Note that a feasible basis determines a unique BFS of (P).

Given a reasible basis B of (P), how can we improve the objective value?

Since xB is “locked” by feasibility, we must take some j ∈ N and set it to nonzero value.
Assume we pick k ∈ N . To maintain feasibility of the new solution, we must set

xk := α ≥ 0
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Moreover, to maintain Ax = b by the relation

ABxB + Akxk = b

we actually need

xB = A−1
B b− (A−1

B Ak)α ≥ 0

α ≥ 0

Define d := A−1
B Ak. We can determine how large α can be set. We must choose it so that

for all j ∈ B, dj > 0, then
x̄j − αdj ≥ 0 =⇒ α ≤ xj

dj

Therefore, we can let

α := min

{
x̄j

dj
: j ∈ B, dj > 0

}
and our new feasible solution is of the form

x′ := x+ αd̄

where

d̄j :=


−dj, j ∈ B

1, j = k

0, j ∈ N \ {k}

However, if dj ≤ 0 for all j ∈ B, then the feasible region F of (P) is unbounded since F
contains the ray

x(λ) := x+ λd̄

We will ignore this case for now.

Proposition 2.8.2
Suppose that the above does not occur, then x′ is a BFS.

Proof
The index l which achieved the minimal value of α can be removed from B so

B′ := B ∪ {k} \ {l}

is the desired basis.
How can we be sure that the k ∈ N that we picked actually improves the objective value z?

45



©Fel
ix

Zh
ou

Write
cTx = cTBxB + cTNxN

For all basic feasible solutions xB

cTx = cTBA
−1
B b− cTB(A

−1
B ANxN) + cTNxN

= cTBA
−1
B b+ (cTN − cTBA

−1
B AN)xN

Let ȳ be the unique solution to the system AT
By = cB so that

cTx = cTBA
−1
B b︸ ︷︷ ︸

current objective value

+(cTN − ȳTAN)xN

= constant+
∑
j∈N

c̄jxj

where c̄ = cTN − ȳTAN .

If c̄ ≤ 0, then ȳ satisfies AT ȳ ≥ c.

If both x̄, ȳ are feasible, by CS Conditions, they would be optimal in their respectively
problems.

Since (AT )−1 = (A−1)T , we will then write this as

A−T

Proposition 2.8.3
If c̄N ≤ 0, then the current BFS is optimal in (P).

Proof
For every feasible solution x of (P),

z := c̄Tx+ v̄ = 0TxB +

≤0︷ ︸︸ ︷
c̄TN xN︸︷︷︸

≥0

≤ cTBA
−1
B b = cTx

If c̄N < 0, then x̄ is the unique optimal solution.

Proof (alternative)
The dual of (P) is (D):

min bTy

ATy ≥ c
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Consider ȳ = A−T
B cB. Then

AT ȳ ≥ c ⇐⇒ 0 ≥ c− AT ȳ = c̄

Therefore, ȳ is a feasible solution of (D) if and only if cN ≤ 0. We have feasible solutions
x̄, ȳ for (P), (D), with equivalent objective values

c̄T x̄ = bTy

which are optimal by duality.

Note that the converse to the lemma is NOT necessarily true.

2.8.2 Simplex Details

The input is
(A, b, c, x̄, B)

such that

(i) A, b, c defines an LP (P), in SEF
(ii) B is a feasible basis for (P), determining a BFS x̄

1) Solve AT
By = cB with solution ȳ

2) let c̄N := cN − AT
N ȳ. If c̄N ≤ 0, then we have optimal solutions x̄, ȳ

3) Pick k ∈ N such that c̄k > 0

4) Solve ABd = Ak with solution d

5) Define

d̄j :=


1, j = k

0, j ∈ N \ {k}
−dj, j ∈ B

If d̄ ≥ 0, then stop, as (P) is unbounded with certificate x̄, d̄. This is due to the fact
that cTx(λ) = cTx+ λc̄k → ∞

6) Compute
ᾱ :=

x̄l

−d̄l

where l is the index achieving minimal ratio for d̄l < 0

7) Take the new basis
B′ := B ∪ {k} \ {l}

47



©Fel
ix

Zh
ou

and new feasible solution
x̄′ := x̄+ αd̄

8) goto 1) with B = B′, x̄ = x̄′

2.8.3 Termination

Theorem 2.8.4
The Simplex Method applied to LP problems in SEF with a basic feasible solution
termintes in at most (

m

n

)
iterations provided that ᾱ > 0 (when all x̄i 6= 0) in each iteration.
When the algorithm stops, it gives either a certificate of optimality or unboundedness.

Definition 2.8.6 (Degenerate)
A BFS x̄ determined by basis B of A is degenerate if x̄i = 0 for some i ∈ B.

Notions of degenerate basic feasible soutions and degenerate basis are defined similarly.

When degeneracy happens, ᾱ = 0 and the algorithm may not make progress. the improve-
ment is in the choice of k or l. When there is a tie, choose the possible k, l with the lowest
index. This is the smallest index rule and ensures termination.

Definition 2.8.7 (Nondegenerate)
An LP problem (P) with constraints

Ax = b, x ≥ 0

is nondegenerate if every basis of A is nondegenerate.

Theorem 2.8.5 (Bland’s Rule)
The Simplex Method applied to LP problems in SEF with a basic feasible solution
and utilizing the smallest subscript rule (Bland’s Rule) termintes in at most(

m

n

)
When the algorithm stops, it gives either a certificate of optimality or unboundedness.
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Proof
Assignment 3.

2.9 Lexicographic Simplex Method

Our goal is to remove degeneracy.

Consider

max z := cTx

Ax = b

x ≥ 0

The idea is to perturb the RHS in a way that we never get

(A−1
B b)j = 0

for any i ∈ B for any basis B.

Consider (P ′) given by

max z := cTx

Ax =


ε1 ε2 . . . εm

b1 1 0 . . . 0
b2 0 1 . . . 0
. . . . . . . . . . . . . . .
bm 0 0 . . . 1


x ≥ 0

where 1 >> ε1 >> · · · >> εm > 0.

We apply the Simplex Method to (P’), in computing

min

{
x̄i

di

}
we need to compare expressions like

β0 + β1ε1 + β2ε2 + · · ·+ βmεm

γ0 + γ1ε1 + γ2ε2 + . . . γmεm

We can determine that the first expression is lexicographically larger than the second if for
the smallest i such that

βi 6= γi
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we have
βi > γi

For any basis B of A, the corresponding xB for (P’) is

xB =
( ε
A−1

B b A−1
B

)
and A−1

B cannot have zero rows.

So the Lexicographic Simplex Method induces a total order on the bases.

Proposition 2.9.1
The LP problem (P’) is nondegenerate.

Apply the Simplex Method to (P’) is applying the Lexicographic Simplex Method to (P).

Theorem 2.9.2
Lexoicographic Simplex Method applied to (P) with a starting BFS terminates in at
most (

m

n

)
iterations.
The resulting basis from the Lexographic Simplex Method proves the same claim for
(P).

2.9.1 Summary

Degeneracy can lead to both cycling and stalling where cycling is problematic in theory and
stalling is problematic in practice.

We can avoid this by perturbing b be a small amount, but different “independent” amounts
for each bi.

Remark that Non-degeneracy is generic in the sense that randonly generated LP’s are non-
degenerate. However, LPs in practice are almost always fomulated, which leads to degener-
acy.
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2.10 Two Phase Method

Given (P)

max z := cTx

Ax = b

x ≥ 0

we can introduce artificual variables xn+1, . . . , xn+m and solve the auxiliary LP (P-AUX)

max−s[
A I

] [x
s

]
= b

x, s ≥ 0

The basis corresponding to s yields a trivial BFS of (P-AUX). But it is certainly bounded,
and so has an optimal solution.

Proposition 2.10.1
(P-AUX) has an optimal objective value equal to zero if and only if (P) has a feasible
solution.

We can then solve (P-AUX) with the Simplex Method. If the optimal value is not zero, then
(P) is infeasible with the last ȳ being a certificate of infeasibility.

2.10.1 Dual of the Auxiliary Program

(D-AUX) given by

min bTy

ATy ≥ 0

Iy ≥ −1

In the case that the optimal value of (P-AUX) is not zero, the last ȳ computed by the
Simplex Method is an optimal solution of (D-AUX) with

bTy < 0

So ȳ is a certificate of infeasibility for (P).

Notice that we then have an algorithm proof of the Fundamental Theorem of Linear Pro-
gramming (with some tie-breaking rule).
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2.10.2 Alternative Approach

(P’)

max 0Tx

Ax = b

x ≥ 0

with dual (D’)

min bTy

ATy ≥ 0

Notice that 0m is a BFS of of (D’).

We can then run Simplex on (D’) and if it is unbounded, (P’) and therefore (P) is infeasible.
Else if there is an optimal solution, (P’) and therefore (P) is feasible.

2.11 Abridged Complementary Slackness

Theorem 2.11.1
(P)

max cTx

Ax = b

x ≥ 0

(D)

min bTy

ATy ≥ c

Suppose (P) has a optimal solution. The (P), (D) have optimal solutions x̄, ȳ such
that for all j = 1, 2, . . . , n

x̄j(A
T ȳ − c)j = 0 ∧ x̄j + (AT ȳ − c)j > 0

so it is complementary slackness, with with non-tight part being “positive”
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Proof
We will prove that for every j ∈ [n] either there is some x(j) optimal in (P) such that
x
(j)
j > 0 or there is some y(j) optimal in (D) such that

(ATy(j) − c) > 0

Since (P) has an optimal solution by Strong Duality Theorem, so does (D). Let z̄ be the
optimal value.

Consider (Pj)

max eTj x

Ax = b

cTx ≥ z̄

x ≥ 0

As well as (Dj)

min bTy + z̄η

ATy + ηc ≥ ej

η ≤ 0

If (Pj) has a feasible solution with positive objective value, we have our x(j) as desired.

Else, we may assume the optimal value of (Pj) is zero. Then, by the Strong Duality
applied to (Pj) and (Dj), there is some ŷ ∈ Rm, η̂ ∈ R such that

η̂ ≤ 0

AT ŷ + η̂ ≥ ej

bT ŷ = −z̄η̂

Case I: If η̂ = 0, then AT ŷ ≥ ej, b
T ŷ = 0. Since (D) has an optimal solution, say y∗, we

can take
y(j) := y∗ + ŷ

and y(j) is optimal in (D) with (ATy(j) − c)j ≥ 1 > 0.

Case II: If η̂ < 0, we can take
y(j) :=

ŷ

−η̂
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Note that

ATy(j) ≥ c− 1

η̂
ej

bTy(j) = z̄

That is, y(j) is an optimal solution of (D) with (AT ŷj − c)j ≥ − 1
η̂
> 0.

Now, let
B := {j : ∃x(j)}, N := [n] \B

Define
x̄ :=

1

|B|
∑
j∈B

x(j), ȳ :=
1

|N |
∑
j∈N

y(j)

If B = ∅, then x̄ := 0 is the unique optimal solution of (P). But ȳ still satisfies the
statement.

If N = ∅, then there is a unique optimal solution ȳ with rankA = m (which we may
assume WLOG), satisfying

AT ȳ = c

Again x̄ still satisfies the statement.
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3 Combinatorial Optimization

3.1 Motivational Examples

Example 3.1.1 (Assignment Problem)
Suppose we have a set of jobs J , set of workers W .

We are given cij ∈ R for each i ∈ W, j ∈ J describing the “compatibility” of worker i to
job j.

We want to assign workers to jobs bijectively such that the summation of cij for the
assignment pairs is maximized.

Let

xij :=

{
1, worker i assigned to job j

0, otherwise

We wish to maximize max
∑

i∈W
∑

j∈J cijxij subject to∑
j∈J

xij = 1 ∀i ∈ W∑
i∈W

xij = 1 ∀j ∈ J

xij ≥ 0

xij ∈ Z

(AP) has feasible solutions if and only if |W | = |J |.

The linear equations contain a redundant one.

Definition 3.1.1 (Graph)
G = (V,E) in a graph.
E is a subset of pairs {u, v} where u 6= v ∈ V .

We will define graphs to be by default simple graphs in this course.

Definition 3.1.2 (Matching)
A matching in a graph G is a subset M ⊆ E such that every vertex v ∈ V (G) is
incident with at most one edge in M .
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Definition 3.1.3 (Perfect Matching)
A matching in G is perfect if it satisfies every vertex (ie cardinality is exactly |V |

2
.

Definition 3.1.4 (Maximum Weight Matching Problem)
Let we ∈ R for every e ∈ E.
The said problem in G is to find a matching M in such that∑

e∈M

we

is maximized

Definition 3.1.5 (Maximum Weight Perfect Matching Problem)
The said problem is a maximum weight matching problem with the added constraint
that the matching must be perfect.

Definition 3.1.6 (Bipartite)
A graph G = (V,E) is bipartite if there is a bipartition A,B of V such that

{u, v} ∈ E =⇒ u ∈ A, v ∈ B ∨ vice versa

Definition 3.1.7 (Complete)
A graph is complete if for every u, v ∈ V

{u, v} ∈ E

We can formalize the Assignment Problem as a Maximum Weight Perfect Matching Problem
in a (complete) bipartite graphs.

3.2 Pure Integer Programming Problems

max cTx

Ax ≤ b

x ∈ Zn
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The LP relaxation of an Integer Program is (LP)

max cTx

Ax ≤ b

If we solved the LP and obtained an optimal solution x̄ and x̄ ∈ Zn, then we are done!

Regardless if x̄ ∈ Zn, cT x̄ is an upper bound on the optimal objective value of the IP.

Definition 3.2.1 (Integer Hull)
If

P := {x ∈ Rn : Ax ≤ b}

the integer hull of P is
PI := conv(P ∩ Zn)

Note that PI is the set of feasible solutions of our (IP). In some sense, P is the “closest”
approximation to PI .

Theorem 3.2.1
Let A ∈ Rm×n, b ∈ Rm and

S := {x ∈ Zn : Ax ≤ b}

where S is bounded.
Then conv(S) is a polytope.

By boundedness, S is finite and thus the convex hull is just the convex combination of all
the finite points. It is by definition a Simplex, which is a polytope.

Theorem 3.2.2
Let A ∈ Qm×n, b ∈ Qm and

P := {x ∈ Zn : Ax ≤ b}

Then P is a polyhedron.

Corollary 3.2.2.1
Let A ∈ Qm×n, b ∈ Rm

S := {x ∈ Zn : Ax ≤ b}

Then conv(S) is a polyhedron.
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Proof
Let A, b, S be as above and ξ ∈ Z++ be the LCM of all denominator of rational Aij.

ξA ∈ Zm×n.

Then S = {x ∈ Zn : ξAx︸︷︷︸
∈Zm

≤ ξb}. But this is the same as

{x ∈ Zn : ξAx ≤ bξbc}

Let
Ã = ξA, b̃ = bb̃c

we have
S = {x ∈ Zn : Ãx ≤ b̃}

By the previous theorem, conv(S) is a polyhedron.

We now as when is P = PI

If P = ∅, then the statement holds. Elsewise, if P is bounded then

P = PI ⇐⇒ ext(P ) ⊆ Zn

Theorem 3.2.3
Let A ∈ Qm×n, b ∈ Qm such that

P := {x ∈ Rn : Ax ≤ b}

is nonempty and bounded.
Then P = PI if and only if for all c ∈ Zn, the LP

max cTx

x ∈ P

has an integer optimal value.

Proof
(⇒) Suppose P = PI . Then ext(P ) ⊆ Zn and by our work in class, since P is pointed,
for all c ∈ Zn, the LP has an extreme point x̄ of P that is optimal. Since x̄ ∈ Zn, c ∈ Zn,
we get that

cT x̄ ∈ Zn

and we are done.
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(⇐) Suppose that forall c ∈ Zn, the optimal value of LP is an integer. We show that
every extreme point x̄ of P is in Zn.

Let x̄ ∈ P be an arbitrary extreme point of P . Let A=x ≤ b= be the tight constraints at
x̄.

Since x̄ is an extreme point of P , we have rankA= = n. Define

ȳi :=

{
ξ, (Ax̄)i = bi

0, else

where ξ ∈ Z++ is such that ξA ∈ Zm×n.

Choose c̄ := AT ȳ ∈ Zn. Observe that by CS Conditions, x̄ is an optimal solution of the
LP

max c̄Tx

x ∈ P

In fact, x̄ is the unique optimal solution for this LP. Indeed, by CS Conditions again, we
see that all optimal solutions of the LP must satisfy

A=x = b=

But rankA= = n, so there is a unique solution (ie x̄).

Since x̄ is the unique optimal solution, there exists r > 0 such that

c̄T x̄− c̄T x̃ > r

for all other extreme points x̃ ∈ P .

By finiteness, there is also R > 0 such that

|x̄j − x̃j| < R

for all j and for all other extreme points x̃ of P .

Let M ∈ Z++ be some positive integer satisfying

M >
R

r

Now, take k ∈ [n]. Define ĉ ∈ Zn be

ĉj :=

{
Mc̄j + 1, j = k

Mc̄j, else
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Let us consider

ĉT x̄− ĉT x̃ = ĉTj (x̄− x̃)

=

>R︷ ︸︸ ︷
M c̄T (x̄− x̃)︸ ︷︷ ︸

>r

+

>−R︷ ︸︸ ︷
x̄k − x̃k

> R−R

= 0

Therefore, x̄ is the unique optimal solution of

max{ĉTx : x ∈ P}

Since Mc̄ and ĉ are in Zn with x̄ the corresponding optimal solution,

ĉT x̄ = Mc̄T x̄+ x̄k ∈ Z

But ĉT x̄,Mc̄T x̄ ∈ Z and so
xk ∈ Z

It follows that P = PI by the arbitrary choice of k.

Theorem 3.2.4
Let A ∈ Qm×n, b ∈ Qm.
Suppose P := {x ∈ Rn : Ax ≤ b} is nonempty and bounded. Then, TFAE
(i) P = PI

(ii) Every extreme point of P is in Zn

(iii) ∀c ∈ Rn, the LP problem max{cTx : Ax ≤ b} has an optimal solution x̄ ∈ Zn.
(iv) ∀c ∈ Zn, max{cTx : Ax ≤ b} ∈ Z
(v) ∀c ∈ Zn, min{bT : ATy = c, y ≥ 0} ∈ Z
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3.3 Totally Unimodular Matrices

Definition 3.3.1 (Submatrix)
Let I ⊆ [m], J ⊆ [n] then the submatrix AIJ is given by

[aij]

for i ∈ I, j ∈ J .

Definition 3.3.2
A ∈ Zm×n is totally unimodular (TU) if for every k ∈ [m] the determinant of every
k × k submatrix of A is in {−1, 0, 1}.

Clearly, any such A has entries only in {−1, 0, 1} (k = 1).

Example 3.3.1

A =

1 0 1
0 1 1
1 1 1


Example 3.3.2

A =

1 0 1
0 1 1
1 1 0


is not TU as detA = −2.

Theorem 3.3.3
Let A ∈ Zm×n, rankA = m ≤ n. Then TFAE
(i) |detAB| = 1, for every basis B of A
(ii) Every extreme point of {x ∈ Rn : Ax = b, x ≥ 0} is in Zn for every b ∈ Zm

(iii) A−1
B ∈ Zm×m for all bases B of A

Proof (i =⇒ ii)
Suppose for all bases B of A, detAB ∈ {−1, 1}.

61



©Fel
ix

Zh
ou

Let b ∈ Zm be arbitrary and x̄ is an arbitrary extreme point of

{x ∈ Rn : Ax = b, x ≥ 0}

Then there is a basis B of A which determines x̄. Thus

x̄N = 0, x̄B = A−1
B b =

adjAB

detAB

b ∈ Zm

where adjA is the transpose of the cofactor matrix and the cofactor matrix C is such that
cij is the determinant of the submatrix of AB with i, j-th row and column removed.

Proof (ii =⇒ iii)
Assume ii.

Let B be an arbitrary basis. We wish to choose b := ei + αAB1m ∈ Zm where

α :=

⌈
max
ij

∣∣(A−1
B )ij

∣∣⌉ ∈ Z++

for each i ∈ B.

Consider the basic solution of Ax = b determined by B

x̄N = 0

x̄B = A−1
B ei + αA−1

B AB1m

= A−1
B ei + α1m

≥ 0

by the choice of α.

So x̄ is feasible and so is a BFS (extreme point). By ii, x̄B ∈ Zm. But α1m ∈ Zm, and so
A−1

B ei is in Zm (ie the i-th column is in Zm for every i).

Proof (iii =⇒ i)
Suppose A−1

B ∈ Zm×m for all bases B of A.

Note that
detAB detA−1

B = 1

Therefore, detAB = detA−1
B ∈ {−1, 1} as desired.
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Proposition 3.3.4
Let A ∈ {−1, 1, 0}m×n. TFAE
(i) A is TU
(ii) AT is TU
(iii) [A|I] is TU

(iv)
[
A
I

]
is TU

(v) [A|A] is TU
(vi) Let D be an m ×m diagonal matrix with only ±1 on the diagonal. Then DA is

TU

Remark that A is TU if and only if every matrix obtained from A via elementary row-ops is
TU.

Theorem 3.3.5
Let A ∈ {−1, 0, 1}m×n be TU and b ∈ Zm. Then every extreme point of

{x ∈ Rn : Ax ≤ b}

is in Zn.

Theorem 3.3.6
Let A ∈ {−1, 0, 1}m×n be TU, b ∈ Zm. Then every extreme point of

{x ∈ Rn : Ax ≤ b, x ≥ 0}

is in Zn.

Theorem 3.3.7
The node-arc incidence matrix of every di-graph is TU.

Proof
We argue with induction on the size of the square submatrices that every square submatrix
has the desired value of the determinant. This holds for k = 1 trivially.

Suppose for k ≤ l this holds. Let us consider some (l + 1)× (l + 1) submatrix C.

Case I: If C has a zero column, then detC = 0

Case II: We have a column with exactly one nonzero element. We can compute detC
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with cofactor expansion to get
|detC| = |det??|

where ?? is some l × l submatrix and thus the statement holds.

Case III: Every column has two non-zero elements. Notice that every column has a +1,−1
entry. So the sum of the rows is 0 and detC = 0.

1

2

4

5

3

Example 3.3.8
The indicence matrix of the above is given by


(1, 2) (1, 4) (1, 5) (2, 3) (3, 4) (4, 5)

1 −1 −1 −1 0 0 0
2 1 0 0 −1 0 0
3 0 0 0 1 −1 0
4 0 1 0 0 1 −1
5 0 0 1 0 0 1


Corollary 3.3.8.1
The incidence matrix of every (undirected) bipartite graph is TU.

Proof
Let W,J be a bipartition of G = (V,E).

Orient all edges of G from W to J to get a directed graph ~G.

By our work above ~G is TU. Let ~A be the incidence matrix of ~G.

But we can assume WLOG that ~A has only -1 up to index |W | and 1 after. So

~A = DA

where D is a diagonal matrix with ±1 entries on its diagonal and A the incidence matrix
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of G.

This completes the proof.

Notice that the above corollary is “tight” in the sense that if G is NOT bipartite, its incidence
matrix is not necessarily TU.

This is because G is bipartite if and only if G does not contain an odd cycle.

3.4 König’s Theorem

Definition 3.4.1 (node/vertex cover)
C ⊆ V (G) such that every edge is incident with some vertex in C.

Theorem 3.4.1 (König’s Theorem, 1916)
In every bipartite graph, the cardinality of a maximal matching is equal to the car-
dinality of a minimal vertex cover.

Proof
Let G = (V,E) be a bipartite graph and let A be the incidence matrix of G.

We may assume G has no isolated vertices.

Let M be a maximal matching and

xe :=

{
1, e ∈ M

0, e /∈ M

Consider (P)

max 1Tx

Ax ≤ 1

x ≥ 0

x ∈ ZE

and consider (P’)

max 1Tx

Ax ≤ 1

x ≥ 0
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Note opt(P) is at most opt(P’).

Then the dual (D’) is

min 1Ty

ATy ≥ 1

y ≥ 0

Notice that (P’) is always feasible and there is a trivial bound |V (G)|/2 on (P’) so it is
bounded. Thus it has an optimal solution equal to the optimal value of (D’).

Then consider (D)

min 1Ty

ATy ≥ 1

y ≥ 0

y ∈ ZV

Similarly, opt(D’) is at most opt(D).

The first IP formulates the maximum cardinality matching problem. Its LP relaxation
has a feasible solution x̄ := 0. Moreoever, every feasible solution x of the LP has that
Ax ≤ 1 and

1TAx = 2 · 1Tx ≤ |V |

By the Fundamental Theorem of LP, it has an optimal solution with objective value equal
to (D’).

We claim that every optimal solution of (D’) is such that yi ≤ 1. If not, set yi = 1. This
maintains feasibility but strictly improves the objective value.

The last problem is equivalent to

min 1Ty

AT ≥ 1

y ∈ {0, 1}V

which is an IP formulation of the minimum cardinality node cover problem in G.

Since G is bipartite, by corollary previous, A is TU. It follows that AT is also TU.

By our work with TU matrices, we conclude that all extreme points of both LPs are
integral. Therefore, we have equality throughout the above chain and so

max
M matching

|M | = min
C vertex cover

|C|
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Remark that this type of proof is extremely robust and can be used to prove things such as
the Maximum-Flow Minimum-Cut Theorem. Even if we do not have equality throughout,
there maybe perhaps some very good approximation.

Consider (IP)

max cTx

Ax ≤ b

x ≥ 0

x ∈ Zn

≤ (P)

max cTx

Ax ≤ b

x ≥ 0

= (D)

min bTy

ATy ≥ c

y ≥ 0

≤ (ID)

min bTy

ATy ≥ c

y ≥ 0

y ∈ Zm

where A is TU and b ∈ Zm, c ∈ Zn.

If we show that all are feasible, then we have equality throughout.

3.5 Maximum Flow

Given ~G = (V, ~E) digraph and two distinguished nodes s, t ∈ E, we are given capacities
uij ∈ Z+ for all ij ∈ E.

We wish to push as much flow from s to t as possible while respecting capacities.

Let xij denote the amount of flow from node i to node j. For every ij ∈ ~E.
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We wish to

max
∑
sj∈E

ssj∑
ij∈E

xij −
∑
jk∈E

xjk = 0 ∀j ∈ V \ {s, t}

xij ≤ uij ∀ij ∈ E

xij ≥ 0 ∀ij ∈ E

We should restrict to integral solutions but notice that the constraints are given by the
incidence matrix and so we can apply the technique we used to prove König’s Theorem.

Definition 3.5.1 (Cut)
Let U ⊆ V

δ(U) := {ij ∈ ~E : i ∈ U, j /∈ U}

This is normally the directed cut but can also be defined for undirected graphs.

Definition 3.5.2 (st-Cut)
Let U ⊆ V be such that x ∈ U, t /∈ U , then δ(U) is an st-cut.

The integer dual gives the minimum st-cut problem.

Theorem 3.5.1
The maximum st-flow is equivalent to the minimum st-cut.

Proof
Exactly the same as König’s.

3.5.1 Integer Programming Formulation

Let

cuv :=

{
1, u = s

0, else
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We wish to

max cTx

Mx = 0

x ≤ u

x ≥ 0

where M is the incidence matrix of ~G (with rows corresponding to the source s, sink t
removed).

Equivalently

max cTx M
−M
I

x ≤

00
u


x ≥ 0

and note that the constraint matrix is TU.

Similarly in the dual [
MT −MT I

]
which is TU.

The main ideas we used in proving König’s Theorem apply here as well, leading to the famous
Maximum-Flow Minimum-Cut Theorem.

3.5.2 Maximum-Flow Minimum-Cut

Definition 3.5.3 (st-Cut)
Let W ⊆ V such that s ∈ W, t /∈ W . Then δ(w) is an st-cut in ~G.

Definition 3.5.4 (Cut Capacity)
The capacity of a st-cut W is ∑

ij∈δ(W )

uij
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Theorem 3.5.2 (Maximum-Flow Minimum-Cut)
Let ~G = (V, ~E) be a directed graph with two distinct nodes s, t ∈ V .
Also, let u ∈ R ~E

+ be given.
The value of the maximum flow in ~G is equal to the capacity of the minimum st-cut
in ~G.
Furthermore, if u ∈ Z ~E

+, then there is a maximal flow in ~G which is integral.

Proof
Same as König’s Theorem.

3.6 Comments on Integer Programs via Polyhedral Theory

We saw that if A is TU with b, c integral, then under some mild assumptions, we can establish:

Primal (IP) ≤ (LP) relaxation = (Dual LP) ≤ (Dual LP with integrality constraint) and
equality throughout.

From this, we obtain combinatorial min-max theorems and efficient, robust primal-dual
algorithms.

However, it is not always possible to find an IP formulation with coefficient matrix being
TU OR to have the LP relaxation

max cTx, x ∈ P

have the property that
P = PI

as we usually have PI ⊆ P .

How can we judge IP formulations based on how closely P approximates PI?

3.6.1 Dimension

Definition 3.6.1
P ⊆ Rn is a polyhedron, then

dimP

is the number of affinely independent points in P less one!
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Definition 3.6.2 (Valid Inequality)
Given a ∈ Rn, α ∈ R

aTx ≤ α

is a valid inequality for P if

P ⊆ x ∈ Rn : aTx ≤ α

Definition 3.6.3 (Face)
Pf ⊆ P is a face of P if

Pf = P ∩ {x ∈ Rn : aTx = α}

for some valid inequality
aTx ≤ α

Every face of P is a polyhedron.

• dim∅ = −1

• dim extreme points 0

• dim edges 1

• . . .

• dim facets dim(P )− 1

Definition 3.6.4 (Facet)
A face Pf of P is called a facet if

limPf = dimP − 1

Theorem 3.6.1
Let P ⊆ Rn, dimP = n where P is a polyhedron.
Then every description of P in terms of linear inequalities contain at least one in-
equality for each facet and all such minimal descriptions have exactly one inequality
per facet.
Moreover, minimal descriptions are unique up to scaling by positive constants.
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Remark that facets of PI help us describe the strongest valid inequalities for PI , hence give
us a tool in judging IP formulations

max cTx, x ∈ P

versus
max cTx, x ∈ PI

While the facet description of a polyhedron P ⊆ Rn, with dimP = n is minimal, if we are
allowed to express P as a projection of another polyhedron

P2 ⊆ Rn+m

P2 might have much fewer facets than P .

For example, some description in higher dimensions have less facets and can be projected
down.

3.7 Special Combinatorial Optimization

We will now specialize to a class of combinatorial optimization problems.

3.7.1 Perfect Matchings in Bipartite Graphs

Definition 3.7.1 (Neighbour)
Let G = (V,E) be bipartite with (W,J) a bipartition of V .
Given S ⊆ V , the neighbour set of S is

N(S) := {u ∈ V : u ∈ S, v /∈ S, uv ∈ E}

Theorem 3.7.1 (Hall, 1939)
Let G = (V,E) be bipartite, (W,J) a bipartition such that |W | = |J | = |V |

2
.

G has a perfect matching if and only if for all S ⊆ W

|N(S)| ≥ |S|

Proof
(¬ ⇐ ¬) If there exists S ⊆ W such that |N(S)| < |S|, then clearly there cannot be a
perfect matching.

(¬ ⇒ ¬) Suppose G does not have a perfect matching. Let M be a maximum matching
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and C a minimum cardinality vertex cover in G.

We have

|W | > |M |
= |C| König

Let S := W \ C. Then, since C is a vertex cover, S ONLY has neighbours in J ∩ C.

|N(S)| ≤ |J ∩ C|
= |C| − |W ∩ C|
< |W | − |W ∩ C| assumption
= |S|

as desired.
Although this result is not overly useful for formulating an algorithm, it does provide a
concise certificate that no perfect matching exists.

Definition 3.7.2 (Deficient Set)
A set S ⊆ W such that

|N(S)| < |S|

is a deficient set.

3.7.2 Maximum Weight Perfect Matching Problem in Bipartite Graphs

Definition 3.7.3
Let the characteristic vector of a perfect matching M be

xe :=

{
1, e ∈ M

0, else

Consider the following (IP) formulation of Weighted Perfect Matching Problem.

max
∑
e∈E

cexe

Ax = 1

x ≥ 0

x ∈ ZE

73



©Fel
ix

Zh
ou

for ce ∈ R and A the incidence matrix of a digraph.

By TU, we can relax the integrality condition to obtain the LP relaxation (P)

max cTx

Ax = 1

x ≥ 0

and then consider its dual (D)

min 1Ty

ATy ≥ c

Let α := max{ce} we can obtain a trivial feasible solution for (D) with

ȳ := α
1

2
1V

We will start with a dual feasible solution and maintain dual feasibility, complementary
slacknesss conditions, and strive for primal feasibility.

Let G(ȳ) := (V,E(ȳ)) be the graph obtained from G such that

E(ȳ) := {uv ∈ E : ȳu + ȳv = cuv}

Does G(ȳ) have a perfect matching? If so, we have an optimal x̄ for (IP), (P). Moreoever, ȳ
is an optimal solution of (D).

If G(ȳ) does NOT have a perfect matching, by Hall’s Theorem, there is

S ⊆ W, |NG(ȳ)(S)| < |S|

Now, let

ȳv :=


ȳv − ε, v ∈ S

ȳv + ε, v ∈ NG(ȳ)(S)

ȳv, else

where
ε := min{yu + yv − cuv : uv ∈ E, u ∈ S, v /∈ NG(ȳ)(S)}

If that set above is empty (ie the minimum is NOT well defined), S gives a certificate that
that there is no perfect matching by Hall’s Theorem (NG(ȳ)(S) = N(S)). Another way to
see this is that we can let ε → −∞ and still maintain dual feasibility. By Hall’s Theorem,
G has no perfect matching.

(P), (IP) infeasible and (D) is unbounded.

74



©Fel
ix

Zh
ou

We can then terminate the algorithm and conclude there is no perfect matching.

Notice that for each iteration the objective value becomes

1T ȳnew − 1T ȳ = −ε(|S| − |NG(ȳ)(S)|) ≤ −ε ∈ Z

3.8 Theorems of the Alternative

We wish to consider some of these theores in the context of Combinatorial Optimization and
Integer Programming.

Theorem 3.8.1
A bipartite graph G = (V,E) with bipartition (W,J), |W | = |J | either
(i) has a perfect matching, or
(ii) has a deficient set

Recall the first lecture, now over Q

Theorem 3.8.2 (Fundamental Theorem of Linear Algebra, Gauss)
Given A ∈ Qm×n and b ∈ Qm, exactly one of the following holds
(i) ∃x̄ ∈ Qn such that Ax = b

(ii) ∃y ∈ Qm such that ATy = 0, bTy = 0

Is there a suitable generalization to Integer Programming?

We first come up with the following:

Given A ∈ Qm×n and b ∈ Qm, exactly one of the following holds

(I) ∃x̄ ∈ Zn such that Ax = b, x ≥ 0

(II) ∃y ∈ Qm such that ATy ∈ Zn
+, b

Ty /∈ Z+

Notice this is NOT true.

Example 3.8.3
Consider A = [2, 3], b = 1

(I) there is x ∈ Z2 such that 2x1 + 3x2 = 1, x ≥ 0, NO SOLUTION
(II) there is y ∈ Q such that 2y, 3y ∈ Z2

+, b
Ty = y /∈ Z+, NO SOLUTION

Let us lower our expectations and focus on solving systems of linear equations in integers.
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Theorem 3.8.4 (Kronecker, 1800’s)
Let a ∈ Qn, b ∈ Q. Then exactly one of the following has a solution

I there is x ∈ Zn such that aTx = b

II there is y ∈ Q such that ya ∈ Zn, yb /∈ Z

Theorem 3.8.5 (Kronecker’s Approximation Theorem, 1884)
Let A ∈ Rm×n, b ∈ Rm. Exactly one of the following holds
(I) for all ε > 0, there is x ∈ Zn such that ‖Ax− b‖ < ε

(II) there is y ∈ Rm such that ATy ∈ Zn and bTy /∈ Z

Corollary 3.8.5.1
Let A ∈ Qm×n, b ∈ Qm. Then exactly one of the following holds
(I) there is x ∈ Zn such that Ax = b

(II) there is y ∈ Qm such that ATy ∈ Zn, bTy /∈ Z

Definition 3.8.1 (Unimodular)
U ∈ Zn×n is called unimodular if

|detU | = 1

Definition 3.8.2 (Hermite Normal Form)
Not necessarily square matrix H such that

hii > 0 ∀i
0 ≤ −hij < hii ∀j < i

hij = 0 ∀j > i

Proof
Given A ∈ Zm×n, rankA = m, we will write

A =: HU

where U ∈ Zn×n unimodular and H is in Hermite Normal Form.

We will repeatedly do one of the following

(i) swap two colums (multiply from right by permutation matrix)
(ii) multiply any column by (-1) (multiplication from left by identity slightly changed)
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(iii) replace a column j by columns j+p·(column i) for some p ∈ Z (multiplication from
right by I + p on one entry)

Moreover, we have H ∈ Zm×n

A = HU

so
Ax = b ⇐⇒ HUx = b

For every unimodular matrix U ∈ Zn×n

U(Zn) = Zn

which tells us that HUx = b has an integral solution if and only if

Hz = b

has a solution z ∈ Zn.
In general, for IPs, how do we construct theorems of the alternative?

S := {x ∈ Zn : Ax = b, x ≥ 0}

We will deal convS instead.

We will try to represent convS in terms of contraints obtained from

Ax = b

x ≥ 0

x ∈ Zn

Then, we can express theorems of the alternative in terms of convS.
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4 Nonlinear Optimization (Continuous Optimization)

Nonlinear Optimization Problems are at least as hard as (IP)s. Indeed

x ∈ {0, 1}n ⇐⇒ xj(1− xj) = 0 ∀j ∈ [n]

x ∈ Zn ⇐⇒ sin(πxj) = 0 ∀j ∈ [n]

Because there is so much freedom with formulating problems, it is incredibly important
to study the structure of problems and formulate problems such that we gain additional
information about the problem.

4.1 Definitions & Basic Results

Definition 4.1.1 (Open Euclidean Ball)
B(x̄, δ) := {x ∈ Rn : ‖x− x̄‖2 < δ} for δ > 0.

Definition 4.1.2 (Interior)
For S ⊆ Rn the interior of S is

intS := {x ∈ S : B(x, δx) ⊆ S}

Definition 4.1.3 (Sequence)
{x(k)} is a sequence of points in Rn

Definition 4.1.4 (Closure)
Given S ⊆ Rn, the closure of S is

clS := {x̄ ∈ Rn : x(k) → x̄, {x(k)} ⊆ S}

Definition 4.1.5 (Compact)
S ⊆ Rn is called compact if S is closed and bounded.

Remark that there are different notions of compactness in other spaces.
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Theorem 4.1.1 (Bolzano-Weierstrass)
Let S{R}n be compact.
Then every sequence {x(k)} ⊆ S has a convergent subsequence, say {x(l)} such that

x(l) → x̄ ∈ S

Definition 4.1.6 (Continuity)
Let S ⊆ Rn, f : S → Rm.
We say f is continuous at x̄ ∈ S if for every sequence (xk) ⊆ S such that

xk → x̄ =⇒ f(xk) → f(x̄)

Theorem 4.1.2
Let S ⊆ Rn, f : S → Rm. Then TFAE
(i) f is continuous on S

(ii) ∀x̄ ∈ S, ∀ε > 0,∃δ, ‖x− x̄‖ < δ =⇒ ‖f(x)− f(x̄)‖ < ε

(iii) for every open set U ⊆ Rm, f−1(U) ⊆ S is open in S

(iv) for every closed set F ⊆ Rm, f−1(F ) is closed in S

Definition 4.1.7 (Level Sets)
Level sets (sublevel sets) is

Levelα(f) := {x ∈ S : f(x) ≤ α}

Notice that if f : S → R is continuous with S being closed, then all Level Sets are closed.

Definition 4.1.8 (Infimum)
Let S ⊆ Rn and f : S → R.
The infimum of f over S is the largest α ∈ [±∞] such that

∀x ∈ S, f(x) ≥ α

Definition 4.1.9 (Supremum)
of f over S is the smallest β ∈ [±∞] such that

∀x ∈ S, f(x) ≤ β
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Example 4.1.3
inf{ 1

x
: x ∈ R++} = 0 (not attained)

sup{ 1
x
: x ∈ R++} = ∞ (not attained)

By convention, we will define

inf ∅ = ∞, sup∅ = −∞

as they are consistent with the primal-dual relations we saw before!

Theorem 4.1.4 (Weierstrass)
Let S ⊆ Rn be a non-empty compact set.
Let f : S → R be continuous on S. Then f attains both its infimum and supremum.

Definition 4.1.10 (Coercive)
Let S ⊆ Rn and f : S → R.
Then f is called coercive on S if the level sets

{x ∈ S : f(x) ≤ α}

of f are bounde for every α ∈ R.

Notice that f is coercive if and only if every sequence (xk) ⊆ S such that

‖xk‖ → ∞ =⇒ f(xk) → ∞

Theorem 4.1.5
Let S ⊆ Rn be a non-empty closed set and f : S → R is continuous and coercive over
S.
Then f attains its infimum over S.

Definition 4.1.11 (Symmetric)
Let A ∈ Rn×n then A is symmetric if A = AT .

Proposition 4.1.6
If A is symmetric, then there is U ∈ Rn×n orthogonal and A = UDUT where

U := {u1, . . . , un}

eigenvectors of A.
Furthermore, D is diagonal consisting of the eigenvalues of A.

80



©Fel
ix

Zh
ou

Example 4.1.7
Consider a quadratic fnction

f(x) = δ + cTx+ xTAx = δ + cTx+
∑
i

∑
j

aijxixj

for δ ∈ R, c ∈ Rn, A ∈ Rn×n

Note that we can assume A is symmetric as

xTAx = xT

(
A+ AT

2

)
x

Definition 4.1.12 (Positive-Semidefinite)
A symmetric matrix A ∈ Rn×n is positive semidefinite if all eigenvalues are non-
negative.

Note that an equivalent definition is that

hTAh ≥ 0

for every h ∈ Rn.

Definition 4.1.13 (Positive-Definite)
Positive-semidefinite matrices are positive-definite if every eigenvalue is positive.

Note that we can require
hTAh > 0

for every h ∈ Rm, h 6= 0.

Proposition 4.1.8 (Rayleigh Quotient)
We have formulas for the largest and smallest eigenvalues of positive semi-definite ma-
trices

λ1(A) = max
h6=0

hTAh

hTh
, λn(A) = min

h6=0

hTAh

hTh

Proposition 4.1.9
If A is positive definite, then

f(x) = δ + cTx+ xTAx

is coersive.

81



©Fel
ix

Zh
ou

Proof
f(x) = δ + cTx+ xTAx ≥ δ + cTx+ λn(A)‖x‖22 given by the Rayleigh quotient.

Furthermore
f(x) ≥ δ − ‖c‖ · ‖x‖+ λn(A)‖x‖22

by the cauchy-schwartz inequality.

This shows that ‖x‖ → ∞ =⇒ f(x) → ∞.

4.2 Convexity

Definition 4.2.1 (Convex)
Let S ⊆ Rn be a convex set.
f : S → R is convex on S if

∀u, v ∈ S, ∀λ ∈ [0, 1], f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v)

Definition 4.2.2 (Strictly Convex)
f above is strictly convex if for λ ∈ (0, 1) and u 6= v ∈ S

f(λu+ (1− λ)v) < λf(u) + (1− λ)f(v)

Definition 4.2.3 (Differentiable)
Let S ⊆ Rn, f : S → R, x̄ ∈ int(S).
Then if there is ∇f(x̄) ∈ Rn such that

lim
x→x̄

f(x)− [f(x̄) +∇f(x̄)T (x− x̄)]

‖x− x̄‖
= 0

then we say f is differentiable at x̄, and ∇f(x̄) is the derivative of f at x̄.

Proposition 4.2.1
If ∂f

∂x
are continuous in an open neighbourhood of x̄, then

∇f(x̄) =

[
∂f

∂xi

(x̄)

]
and f is continuously differentiable.

The vector above is also called the gradient of f . Note that the derivative is really a linear
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map while the gradient is an actual vector.

There is a simple but very useful correspondance between sets and functions (Analysis ⇐⇒
Geometry).

Definition 4.2.4 (Epi-graph)
For f : Rn → R

epi(f) := {(µ, x) ∈ R× Rn : f(x) ≤ µ}

Theorem 4.2.2
f : Rn → R is a convex function if and only if epi(f) is a convex set in Rn+1.

Theorem 4.2.3
Let S ⊆ Rn be a convex set. Let f : S → R be continuously differentiable on S.
Then f is convex if and only if

f(v) ≥ f(u) +∇f(u)T (v − u)

for all u, v ∈ S.

Proof
(⇒) Suppose f is convex and u, v ∈ S. Let λ ∈ (0, 1]

λf(u) + (1− λ)f(v) ≥ f(λu+ (1− λ)v)

f(v) + λ[f(u)− f(v)] ≥ f(v + λ(u− v))

f(u)− f(u+ λ(u− v))

λ
≥ f(v)− f(u)

We can take the limit as λ → 0+ and get that

−∇f(v)T (u− v) ≥ f(v)− f(u)

We used g(λ) := f(v + λ(u− v)), g : [0, 1] → R

g′(0) = ∇f(v)T (u− v)

(⇐) Suppose for all u, v ∈ S

f(v) ≥ f(u) +∇f(u)T (v − u)
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Let u, v ∈ S be arbitrary and λ ∈ [0, 1]. Let z := λu = (1− λ)v. Then

f(u) ≥ f(z) +∇f(z)T (u− z)

f(v) ≥ f(z) +∇f(z)T (v − a)

λf(u) + (1− λ)f(v) ≥ f(z) +∇v(z)T [λu+ (1− λ)v − z]

= f(z)

Definition 4.2.5 (Differentiable)
Let S ⊆ Rn, f : S → Rm. Also, let x̄ ∈ int(S).
Then if there is a linear transformation Df(x̄) : Rn → Rm such that

lim
x→x̄

‖f(x)− [f(x̄) +Df(x̄)(x− x̄)]‖
‖x− x̄‖

= 0

then f is differentiable at x̄ and Df(x̄) is the derivative of f at x̄.

Since Df(x̄) is a linear transformation from Rn → Rm, it has a matrix representation by
some A ∈ Rm×n

Df(x̄)(x− x̄) = A(x− x̄)

If we write
f(x) = [fi(x)]

fi :→ R for every i.

If f is continuously differentiable at x̄, then the ij-th entry of A is

∂fi
∂xj

Definition 4.2.6 (Jacobian Matrix)
The underlying matrix is called the Jacobian matrix when m = n.

Definition 4.2.7 (Jacobian Determinant)
We are also interested in the detA called the Jacobian Determinant.
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Definition 4.2.8 (Contour)
f : Rn → R, α ∈ R
We define

{x ∈ Rn : f(x) = α}

as the contour of f .

Note that in some literature, we let level set be the contour set and sublevel set be the level
set as we have defined them.

Example 4.2.4
f : R2 → R

f(x) = x2
1 +

1

16
x2
2

The contour with α = 1 is an ellipsoid.

Proposition 4.2.5
If f : Rn → R is twice continuously differentiable, then

∂2f(x̄)

∂xi∂xj

=
∂2f(x̄)

∂xj∂xi

for every i, j.

Definition 4.2.9 (Hessian Matrix)
With the same assumptions above

Hf(x̄) =

[
∂2f

∂xi∂xj

]
where i, j ∈ [n].

Notice that since f is twice continuously differentiable, the Hessian at x̄ is a symmetric
matrix.

Example 4.2.6
f : R2 → R

f(x) = x2
1 +

1

16
x2
2

then
Hf(x) =

[
2 0
0 1

8

]
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is positive-definite for every x ∈ R2.

Theorem 4.2.7
Let S ⊆ Rn be a convex set. Suppose f :→ R is twice continuously differentiable.
Then f is convex on S if and only if Hf(x) is positive semi-definite for every x ∈ S.

Definition 4.2.10 (Strict Convexity)
f : S ⊆ Rn → R is strictly convex if f is convex and for every distinct pair u, v ∈ S
and for all λ ∈ (0, 1)

λ(u) + (1− λ)f(v) < f(λu+ (1− λ)v)

Theorem 4.2.8
Let S ⊆ Rn be a convex set. Suppose f :→ R is twice continuously differentiable.
Then f is convex on S if Hf(x) is positive semi-definite for every x ∈ S.

Notice that converse is false. Consider f : R → R given by

f(x) := x4

which is clearly strictly convex.

But
f (2)(x) = 12x2, f (2)(0) = 0

Theorem 4.2.9
Let S ⊆ Rn be convex with f : S → R continuously differentiable on S. Then f is
convex on S if and only if

[∇f(u)−∇f(v)]T (u− v) ≥ 0

for all u, v ∈ S.

In continuous optimization, we almost always pick a direction d ∈ Rn, to iteratively “move
along” to improve our current point x̄.

Definition 4.2.11 (Search Direction)
d is referred to as the search direction

The new point is x̄+ αd
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Definition 4.2.12 (Step Size)
where α > 0 is the “step size”.

We wish to analyze the behavior of f .

g(α) := f(x̄+ αd) x̄, d

g′(α) = [∇f(x̄+ αd)]Td

g′(0) = [∇f(x̄)]Td

g′′(α) = dT [Hf(x̄+ αd)]d

g′′(0) = dT [Hf(x̄)]d

4.3 Steepest Descent & Newton’s Method

Assume we are at x̄ ∈ Rn, we perform the update

x̄′ = x̄+ αd

4.3.1 Steepest Descent

If we choose
d = ∇f(x̄)

the method is called the Steepest Descent.

The line search comes at the fact that we must linearly search to not “overshoot”.

4.3.2 Newton’s Method

If we choose
d = [Hf(x̄)]−1∇f(x̄)

the method is called Newton’s Method and is asymptotically better but requires computation
of the Hessian and inverting a matrix. This is too costly in practice.

Theorem 4.3.1
Let S ⊆ Rn be a non-empty, convex set and f : S → R be convex.
Suppose f is of class C1 at x̄ ∈ S. Then x̄ is a minimizer of f over S if and only if

[∇f(x̄)]T (x− x̄) ≥ 0

for all x ∈ S.
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4.4 Separating & Supporting Hyperplane Theorems

Example 4.4.1
Consider S ⊆ Rn, non-empty, convex. Let

f(x) := ‖x− u‖22

where u ∈ Rn fixed.

Since f is convex
Hf(x) = 2I

for all x ∈ Rn.

Furthermore, f(x) is continously differentiable at every x ∈ Rn.

We wish to minimize f(x) over S. Let us apply the previous theorem.

Then x̄ is a minimizer if and only if

[∇f(x̄)]T (x− x̄) = 2(x− u)T (x− x̄) ≥ 0

for all x ∈ S.

Corollary 4.4.1.1 (Kolmogorov Criterion)
Let ∅ 6= S ⊆ Rn be closed and convex. Then there exists a closest point

x̄(u)

in S to u, which is unique and satisfies

[u− x̄(u)]T [x− x̄(u)] ≤ 0

for all x ∈ S.

Proof
To show existence and uniqueness, note that

‖x− u‖22

is strictly convex and coercive.
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Theorem 4.4.2 (Separating Hyperplane)
Let S ⊆ Rn be a non-empty closed convex set. Then for every u ∈ Rn \ S, there is
a ∈ Rn \ {0}, α ∈ R such that

aTx ≤ α

for all x ∈ S and
aTu > α

In other words,
aTx = α

separates u, S.

Proof
Let S, u be as above. Then there is a closest x̄(u) ∈ S to u.

Moreoever, we know u /∈ S so
‖x̄(u)− u‖2 > 0

By the Kolmogorov Criterion

[u− x̄(u)]T [x− x̄(u)] ≤ 0

for every x ∈ S.

Expand

T

[u− x̄(u)]︸ ︷︷ ︸
=:a

x ≤
=:α︷ ︸︸ ︷

x̄(u)T (u− x̄(u))

We need only show the second case.

aTu− α = [u− x̄(u)]Tu− x̄(u)T (u− x̄(u))

= [u− x̄(u)]T [u− x̄(u)]

= ‖u− x̄(u)‖22
> 0

Note that we can use this theorem to get another proof for the Farkas’ Lemma and Strong
Duality follows. We can generalize this to get Strong Duality for general NLP.

Recall Farkas’ Lemma
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Lemma 4.4.3
For every A ∈ Rm×n, b ∈ Rm exactly one of the following holds
(I) Ax = b, x ≥ 0

(II) ATy ≥ 0, bTy < 0

In geometric terms
(I) b ∈ cone{Aj} remark that cone{Aj} is a polyhedral cone and therefore is a

closed convex set
(II) b /∈ cone{Aj} so there is a separating hyperplane a ∈ Rn, α ∈ R such that

aT b > α

In the second case, we can take

y := −a

yTaj ≥ −α ∀j
yT b < −α

Definition 4.4.1 (Supporting Hyperplane)
S ∩ {x ∈ Rn : aTx = α} 6= ∅
Then the RS set is a supporting hyperplane for S.

Note that the hyperplane we found in the proof is a supporting hyperplane for S as x̄(u) is
in the intersection and

S ⊆ {x ∈ Rn : aTx ≤ α}

4.5 Lagragians & Lagrangian Duality

Let S ⊆ Rn, f, g1, . . . , gn : S → R be given where S is a “simple” set and consider (P)

inf f(x)

gi(x) ≤ 0 ∀i ∈ [m]

x ∈ S

Definition 4.5.1 (Lagrangian)
L : Rn × Rm → R such that

L(x, λ) := f(x) + λTg(x)
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Definition 4.5.2 (Lagrange Multipliers)
λi, . . . , λm as above.

Definition 4.5.3 (Lagrangian Dual)
The lagrangian dual of (P) is (D)

suph(λ)

λ ≥ 0

where
h(λ) := inf

x∈S
{L(x, λ)}

Theorem 4.5.1
Let S ⊆ Rn, x̄ ∈ S.
Then x̄ is an optimal solution of (P) if there is λ̄ ∈ Rm such that all the following
hold:
(i) g(x̄) ≤ 0 (primal feasibility)
(ii) λ̄ ≥ 0 and f(x̄) + λ̄T = infx∈S{L(x, λ̄)} (dual feasibility)
(iii) λ̄i · gi(x̄) = 0 for all i ∈ [m] (complementary slackness)

Before the proof, let us note the connection to Weak Duality.

sup
λ≥0

inf
x∈S

{L(x, λ)} ≤ inf
x∈S

sup
λ≥0

{L(x, λ)}

which holds as any feasible x̄, λ is a solution for each system.

So the theorem above is NOT analogous to the Strong Duality Theorem, but is more like a
corollary of the Weak Duality Theorem.

Proof
Let

x̄ ∈ S

g(x̄) ≤ 0

λ̄ ≥ 0

f(x̄) + λ̄Tg(x̄) = inf
x∈S

{L(x, λ̄)}

λ̄Tg(x̄) = 0
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Let x be any arbitrary feasible solution of (P).

f(x) ≥ f(x) + λ̄︸︷︷︸
≥0

≤0︷︸︸︷
g(x)

≥ f(x̄) + λ̄g(x̄) dual feasibility
= f(x̄) complementary slackness

Now, let us consider the special case when S = Rn and

f, g1, . . . , gm

are convex functions.

Definition 4.5.4 (Slater Point)
x̂ ∈ Rn is a Slater point for (P)

inf{f(x) : x ∈ Rn, g(x) ≤ 0}

if g(x̂) < 0.

Theorem 4.5.2
Let S = Rn and

f, g1, . . . , gm : S → R

convex.
Suppose (P) has a Slater point, then a feasible solution x̄ of (P) is optimal if and only
if there exist λ̄ ≥ 0 such that
(i) L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄) for all x ∈ Rn, λ ≥ 0 (saddle point condition)
(ii) λ̄Tg(x̄) = 0 (complementary slackness)

Theorem 4.5.3 (Karush 1931, Kuhn-Tucker 1950s)
Consider the same (P) as above. Suppose (P) has a Slater point.
Assume x̄ ∈ Rn satisfies g(x̄) ≤ 0 and

f, gi, i ∈ J(x̄) := {i : gi(x̄) = 0}

are differentiable at x̄.
Then x̄ is optimal in (P) if and only if

−∇f(x̄) ∈ cone{∇gi(x̄) : i ∈ J(x̄)}

Can we generalize this theorem when f, gi are NOT convex?
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Consider (P)

inf f(x)

gi(x) ≤ 0 i ∈ [m]

hj(x) = 0 j ∈ [p]

x ∈ S

where f, gi, hj : Rn → R, S ⊆ Rn is a “simple” set.

Theorem 4.5.4 (Mangasarian & Fromonitz Constraint Qualification)
Feasible x̄ is optimal in (P) if and only if
(i) x̄ ∈ int(S), g(x̄) ≤ 0, h(x̄) = 0

(ii) f, gi, hj are continuous on S and f, gi, i ∈ J(x̄) and hj are differentiable at x̄
(iii) {∇hi(x̄) : i ∈ [p]} is linearly independent
(iv)

{d ∈ Rn : ∇gi(x̄)
Td < 0, i ∈ J(x̄),∇hj(x̄)

Td = 0, j ∈ [p]} 6= ∅

We will write (MFCQ) for short.

Consider the special case S = Rn, gi are convex, and hj are affine.

If such a convex optimization problem has a Slater point x̂, then

0 >︸︷︷︸
Slater point

gi(x̂) ≥︸︷︷︸
convexity

=0︷︸︸︷
gi(x̄)+∇gi(x̄)

T (x̂− x̄) = ∇fi(x̄)
Td

for all i ∈ J(x̄).

This gives us that (iv) of MFCQ holds at x̄.

Consider another condition (iii’) which says

{∇hj(x̄) : j ∈ [p]} ∪ {∇gi(x̄) : i ∈ J(x̄)}

are linearly independent and notice that

(iii′) =⇒ (iii), (iv)

93


	Introduction
	Optimization
	Outcomes

	Classes of Optimization Problems
	Linear Programs
	Convex Programs

	Examples
	Transportaion Problem
	2-Player Game
	General 2-Player Game
	Fair Assignment
	Job Assignment
	Fermat's Last Theorem


	Linear Programming
	Definitions
	Feasibility
	Fourier-Motzkin Elimination
	Farkas' Lemma

	LP-Duality
	Motivation
	Weak Duality
	Strong Duality

	Foundamental Theorem of Linear Programming
	Applications & Interpretations of (Strong) Duality
	Complementary Slackness
	Valid Inequalities
	Geometric Interpretations of Farkas' Lemma
	Geometric Interpretation of Duality
	Physical Interpretation / Intuition
	Strong Duality & Farkas' Lemma
	Economic Interpretation of Duality & Sensitivity Analysis

	Summary of Duality Theorems for LPs
	General Formula for LPs

	Geometry of Polyhedra
	Notation and Definitions
	Extreme Points
	Polytopes, Polyhedral Cones, & more Geometric Objects
	Additional Content

	Simplex Method
	Introduction
	Simplex Details
	Termination

	Lexicographic Simplex Method
	Summary

	Two Phase Method
	Dual of the Auxiliary Program
	Alternative Approach

	Abridged Complementary Slackness

	Combinatorial Optimization
	Motivational Examples
	Pure Integer Programming Problems
	Totally Unimodular Matrices
	König's Theorem
	Maximum Flow
	Integer Programming Formulation
	Maximum-Flow Minimum-Cut

	Comments on Integer Programs via Polyhedral Theory
	Dimension

	Special Combinatorial Optimization
	Perfect Matchings in Bipartite Graphs
	Maximum Weight Perfect Matching Problem in Bipartite Graphs

	Theorems of the Alternative

	Nonlinear Optimization (Continuous Optimization)
	Definitions & Basic Results
	Convexity
	Steepest Descent & Newton's Method
	Steepest Descent
	Newton's Method

	Separating & Supporting Hyperplane Theorems
	Lagragians & Lagrangian Duality


